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Bubble velocities induced by trailing vortices
behind neighbours
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J. M. Burgers Center for Fluid Mechanics, University of Twente, Enschede, The Netherlands

(Received 4 January 2003 and in revised form 5 May 2005)

Although potential flow, including viscous dissipation, explains quite well the flow
around individual bubbles of about 1 mm radius rising in water, and e.g. predicts their
drag quite accurately, this model cannot explain the homogeneous rise of a bubbly
suspension. From numerical and analytical work it follows that eventually all bubbles
cluster together. On the other hand it has been shown that velocity fluctuations of the
bubbles of sufficient intensity, expressed in terms of a critical (pseudo) temperature,
prevents clustering.

Bubbles with radius above 0.8 mm rising in water perform zigzag or spiralling
motions. Recently experimental and numerical work has made it clear that such
bubbles have a wake behind them consisting of twin vortical threads carrying vorticity
of opposite sign in the direction of motion. It is the purpose of this contribution to
make an estimate of the velocity fluctuations induced by these trailing vortices in
neighbouring bubbles. To this end the two-threaded wake is represented as a horseshoe
vortex similar to the wake behind an airfoil. A pair of bubbles is considered and first
the velocity induced by the horseshoe vortex behind one of the pair at the centre
of the other is calculated. After this the force exerted on the latter based on the
induced velocity and on the relative velocity of the bubbles, due to hydrodynamic
interaction is calculated. Then the motion of one bubble in the pair is analysed under
the influence both of this force and the hydrodynamic forces already there in the
absence of the horseshoe vortex. Using these results and appropriate averaging, an
estimate is made of the intensity of the velocity fluctuations of bubbles, and the
corresponding temperature.

1. Introduction
Numerous experiments have shown that a collection of air bubbles of about 1 mm

radius rises in water as a homogeneous suspension up to a concentration by volume of
25 %, say. The average velocity of rise decreases with increasing concentration due to
hydrodynamic interaction between bubbles. Attempts to describe this interaction and
to derive properties of the suspension including a steady probability distribution have
failed thus far. The flow around a single rising bubble of this size is well understood
(Moore 1963, 1965). At the interface of the bubble with the liquid the tangential stress
must be zero, as opposed to the flow around a solid body where the no-slip condition
holds, and this causes a weak vorticity in the boundary layer and in a narrow wake
behind the bubble. Denoting the Reynolds number of the flow around such a bubble
by Re, the correction to the potential flow due to the boundary layer is of order Re−1/2

and for the relevant Reynolds numbers negligible. Apart from this Re−1/2 correction
the flow is potential, though viscous. The drag can to leading order be derived from
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the dissipation in the viscous potential part of the flow. This model of the flow explains
the rise velocity of single bubbles very well as many experiments, e.g. by Duineveld
(1995), see also Magnaudet & Eames (2000), show. The next step, in the spirit of
the kinetic theory of dilute gases, is to consider pairs of bubbles. Kok (1993a, b)
considered pairs of rising bubbles using the same model (Kok 1993a) and found
good agreement with experiments in Kok (1993b). So it is natural that Sangani &
Didwania (1993) and Smereka (1993) also employed this model, that is viscous poten-
tial flow, in their numerical simulation of a large number of rising bubbles with
the expectation that an initially random collection would eventually evolve into a
homogeneously rising suspension. This, however did not happen. Instead, horizontal
clusters are formed as time proceeds. Van Wijngaarden (1993) noted that pairs with
a horizontal line connecting the centres have a high probability. He considered a
suspension in which all the pairs have a horizontal line of centres and showed that
no steady probability distribution exists, and that bubbles eventually cluster.

Somewhat later two papers, Yurkovetsky & Brady (1996) and Spelt & Sangani
(1998) appeared describing numerical simulations in which bubbles were in addition
provided with random initial impulses with a zero mean, thus representing bubble
velocity fluctuations. In the latter paper viscous dissipation was also allowed for. In
both simulations clustering appeared when the intensity of the fluctuations sinks below
a certain critical value. It is of importance to note that the clustering in horizontal
aggregates is not caused by viscous effects but is an essentially inertial effect due to
hydrodynamic attraction. In a real life situation such fluctuations are absent when
bubbles are released in a quiescent liquid and for that situation the simulations predict
clustering, which nevertheless is not observed in experiments. So the question arises
whether aspects of a real bubbly flow in quiescent water, not taken into account in
the models discussed above, could provide such fluctuations.

As a candidate for such an aspect we consider here the wake behind bubbles. Up
to a radius of about 0.8 mm bubbles rise rectilinearly and there is a narrow single
wake containing only azimuthal vorticity. Above that size bubbles display zigzag or
spiralling motion and this is accompanied by a wake consisting of two threads bearing
axial vorticity. This was reported e.g. in Lunde & Perkins (1997) but studied in greater
detail recently by de Vries (2001) and de Vries, Biesheuvel & van Wijngaarden (2002).
In particular these authors were able to visualize the two-threaded wakes. They also
measured many properties of the threads such as self-induced velocity and distance
between the threads.

Figure 1 shows an experimental result by C. H. J. Veldhuis (2005, personal com-
munication) of a spiralling bubble. Numerical calculations also have produced such
wakes (Mougin & Magnaudet 2002), see figure 2. Mougin & Magnaudet (2002) find
that initially zigzagging bubbles end up with a spiralling trajectory. De Vries et al.
(2002) report that during their experiments both types of motion were found with
bubbles of radius larger than 0.81 mm.

It is clear that the trailing vortices will affect the flow of suspensions. Experimental
work by Cartellier & Rivière (2001) and by Risso & Ellingsen (2002) has indeed shown
that, whereas in front of the bubbles in a suspension the velocity distribution agrees
with what potential theory predicts, aft velocities fall off more rapidly than behind a
single bubble. It is not clear why this is so but it is likely that vortices are associated
with this. We do not pursue that question here but we want to analyse velocities
induced in neighbouring bubbles by such two-threaded wakes. Such velocities are
indeed observed in experiments by Duineveld (1994), see also Duineveld (1998), and
by de Vries et al. (2002). Duineveld (1994) describes experiments with two bubbles
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Figure 1. Two mutually perpendicular views of a double-threaded wake behind a nearly
perfectly spiralling bubble with an equivalent radius of 1.01 mm (from an experiment by
C. H. J. Veldhuis).

Figure 2. Isosurfaces of streamwise vorticity in the two-threaded wake behind a spiralling
bubble; from the numerical simulation by Mougin & Magnaudet (2002).

rising side by side and observed that above the critical Reynolds number for path
instability (in 1994 the bi-threaded wakes were not yet visualized), the two bubbles
kept bouncing against each other and finally escaped from their mutual influence.
Duineveld (1994, 1998) calls this ‘bouncing and separation’ and in Duineveld (1998)
it is attributed to the action of vortices. This is in contrast to what happens below
the critical Reynolds number for path instability. Then bouncing becomes weaker
and weaker and ends in coalescence. De Vries et al. (2002) performed, apart from the
experiments mentioned with single bubbles, experiments on the interaction of a single
bubble with a vertical wall. In potential flow this would be equivalent to the interaction
with another bubble rising at its side, but in a real fluid this is not entirely so because
of different conditions at the line of symmetry. Nevertheless some correspondence
may be expected. De Vries et al. (2002) found that at Reynolds numbers below path
instability a bubble bounces a few times against the wall and finally slides along the
wall. Above a certain bubble size repeated bouncing takes place over a much longer
time. They write that the critical parameter “turns out to be the same critical parameter
that signifies the transition from rectilinear motion to zigzagging or spiralling motion
of free rising bubbles”. These observations are strong indications that trailing vortices
are indeed capable of inducing significant velocities in neighbours.
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Since there are differences between zigzagging and spiralling we shall focus on the
latter. Of course such a motion itself implies fluctuations but these can, as we shall
see, be separated from the fluctuations that one bubble induces in another.

2. The double threaded wake
Consider a bubble rising in a clean, i.e. devoid of surfactants, liquid. Numerical

analysis by Mougin & Magnaudet (2002) shows that at a Reynolds number, based
on diameter, of about 600 the rectilinear motion becomes unstable and a bifurcation
occurs at which the linear motion changes to a zigzag motion, subsequently turning
into a spiralling trajectory. The shape of the bubble at such a Reynolds number is
an oblate ellipsoid. It should be noted that in the numerical work by Mougin &
Magnaudet (2002) bubbles have a fixed ellipsoidal shape. In experimental work the
shape is an ellipsoid also, with good accuracy, but the axes ratio varies with the
Reynolds number. De Vries (2001) reports the onset of path instability at a Reynolds
number of 740, slightly above that obtained by Mougin & Magnaudet (2002). The
equivalent bubble radius as reported by de Vries (2001) then is 0.81 mm.

As long as the motion is rectilinear the horizontal momentum in the fluid is zero
and this remains so. At instability two threads appear, bearing streamwise vorticity
of equal magnitude and opposite sign, such that the momentum of the two of them
together is opposite to that caused by the bubble motion. We denote the terminal rise
velocity of a bubble by V , and its effective radius with ae. In addition ρ and ν denote
fluid density and kinematic viscosity respectively. In clear water V is about 0.35m s−1

for bubbles with ae of the order of 1 mm. The ratio χ between the longer and the
shorter axes is usually expressed in terms of the Weber number We = 2ρV 2ae/γ, γ

denoting surface tension. At the experimentally observed onset of path instability,
equivalent radius 0.81 mm, the Weber number is 2.7 in water. The experimental graph
in Duineveld (1995) for χ as a function of We gives χ = 1.7, somewhat lower than
χ = 2.2 found in the simulation by Mougin & Magnaudet (2002).

In de Vries (2001) it is reported that for this kind of bubble the self-induced velocity
of the vorticity threads, here indicated with U , is about 0.2V , that is approximately
7 cm s−1, a conclusion from numerous pictures of bubbles with their wake. Extensive
measurements of trajectories of this kind of bubble were made by Ellingsen & Risso
(2001). They found that the shape is approximately an oblate ellipsoid, with the
shorter axis in the direction of the bubble velocity. The spiral has a frequency of
about 5 Hz. It is clear that the wake described induces velocities in the adjacent fluid.
If there is another bubble, its motion is affected.

We shall in the following make use of an earlier paper, van Wijngaarden (1993),
henceforth denoted by VW, on the relative motion between two bubbles when the
fluid motion is governed by viscous potential flow as described in the Introduction.
It was shown in VW that, assuming an energy-conserving collision, the bubbles in
general bounce against each other till viscosity exhausts the kinetic energy involved.
We will investigate whether the trailing vortices behind the bubbles are able to supply
energy to this motion. We shall make use of the circumstance that the time scale for
the hydrodynamic interaction between two bubbles is ae/V , much smaller than the
time scale for the spiralling motion, which is typically 0.2 s. With bubbles of 1 mm
radius and V ∼=0.4 m s−1, ae/V is 0.0025 s, two orders of magnitude smaller. So, we
can assume the spiralling motion to be ‘frozen’ during the interaction of the test
bubble with another one. The test bubble can be approached by another from many
directions. Without wakes, the direction in which the line of centres is horizontal has
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Figure 3. Two bubbles in spiralling motion close to another. They have a vertical velocity V ,
in the x-direction and a (small) sideways velocity U , mentioned in the text but not shown in
the figure. Both bubbles have a wake consisting of two threads carrying vorticity of opposite
sign and equal magnitude Γ . Bubble A is the test bubble and is in hydrodynamic interaction
with B. The line of centres is horizontal, the separation between these centres is 2R.

statistically a high probability, see VW (pairs with vertical line of centres rise faster
and those with a horizontal one slower than a single bubble), and we will consider
that configuration first. We imagine two spiralling bubbles approaching each other
along a horizontal line. When both have reached their maximum (but in opposite
direction) excursion and therefore minimum relative distance, their trajectories start
to go in opposite directions, as sketched in figure 3. This is the moment in which
we ‘freeze’ their spiralling motion and consider the hydrodynamic interaction. The
dynamics of a pair of bubbles without trailing vortices were investigated in detail in
VW. The relative velocity due to hydrodynamic interaction is of order of V , and at
bouncing the relative velocity is about 0.9V , which is much larger than U (for oblate
ellipsoids it appears to be even larger, 1.5V , see (5.6)).

When, in analysing the relative motion, we wish to add the influence of the double-
threaded wake, the question arises of how to represent the wake. We choose to do this
by considering it as a horseshoe vortex with straight arms, similar to the horseshoe
vortex behind an aeroplane. This ignores the spiral shape of the vortices but that
makes little difference in view of the relatively (with respect to the bubble radii) long
wavelength, about 25 cm, of the vortical threads.

3. The force exerted by a horseshoe vortex on a bubble
In figure 3 the situation is depicted. The test bubble, bubble A, is separated from

bubble B by a horizontal distance 2R between the centres. Both A and B have
trailing behind them a horseshoe vortex. The relative velocity due to hydrodynamic
interaction between the two bubbles is 2 dR/dt , or 2Ṙ. The horizontal velocity U due
to the spiralling motion is equal but opposite for the two bubbles, because A moves to
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the right and B to the left. This means that the signs of the circulation in the threads
is as indicated in the figure. Note that the solenoidal property of vorticity implies a
constant circulation along the threads. Let Γ be counterclockwise circulation and l
the distance between the two threads behind each bubble. The rate of change ΓρlV

of the wake momentum equals roughly, apart from a viscous force, the rate of change
of the horizontal component of the bubble impulse. If v denotes bubble velocity
and m the virtual mass tensor, the bubble impulse is m · v. From all observations,
for example Ellingsen & Risso (2001) it follows that spiralling bubbles have the shape
of an oblate ellipsoid whereby the shorter axis is in the direction of the momentary
velocity. The shorter axis is oscillating around the vertical direction during the
spiralling motion. In the present calculation we shall take the short axis in the vertical
direction for both ellipsoidal bubbles, which are axisymmetric with respect to this
axis.

We need to know some hydrodynamic properties of such ellipsoids, in particular
added mass, drag and dipole strength in uniform flow. Added mass values can be
obtained from the potential flow around an ellipsoid as given in Milne-Thomson (1968,
pp. 501, 534). For motion in the direction of the minor axis and major axis respectively
we have

m1 = ρYQ1(χ), (3.1)

m2 = ρYQ2(χ). (3.2)

Here Y is the volume of a bubble. For spheres both Q1 and Q2 have the value 0.5.
Relations between the Q and χ are given and/or derived in Appendix C.

Next we consider the drag. For motion in the vertical direction the drag has been
obtained by Moore (1965) in the form

D1 = 12πµaeV G(χ) (3.3)

where µ is the dynamic liquid viscosity, ae the effective bubble radius defined by

Y = 4
3
π(ae)

3 (3.4)

and G(χ) is found from equating the dissipation to V D1. In our calculation the vertical
drag is balanced by the buoyancy force on the ellipsoids. Since we are in particular
interested in the relative motion we need the drag in the horizontal direction. This
has not been calculated by Moore (1965) nor by anybody else. For the present and
future purposes Veldhuis & van Wijngaarden (2005) performed the corresponding
calculation to determine the drag F1 of an ellipsoid, symmetrical about the short,
vertical, axis when the ellipsoid moves in horizontal direction with velocity Ṙ. The
result is

F1 = −12πµae dR/dtJ (χ). (3.5)

The relation between J (χ) and χ is

J =
2(χ2 − 1)3/2{(χ2 − 2)(χ2 − 1)1/2 + χ4 sec−1 χ}

3χ2/3{(2χ2 − 1)(χ2 − 1)1/2 − χ2 sec−1 χ}2
.

The function J (χ) is drawn in figure 4. Just like G(χ) it takes the value unity for
χ = 1. For the moderate values of χ which are of interest to us here, the sideways
drag is below that of a sphere with the same volume.

A third property of importance is the dipole strength for motion in the directions
of the minor and major axes. Let these be M1 and M2 respectively. They are obtained
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Figure 4. The viscous drag of an axisymmetric ellipsoid moving in the direction of the
longer axis is F1 = − 12πµae(dR/dt)J (χ), see equation (3.5). J (χ) is shown.

from the relation which, both for rigid and for deforming bodies, exists between
dipole strength and impulse, see e.g. Benjamin & Ellis (1990). For a body moving
with velocity v this relation is

4πM = Yv + m · v/ρ. (3.6)

Using (3.1) and (3.2) for m1 and m2 we obtain from this relation

4πM1 = YV {1 + Q1(χ)}, (3.7)

4πM2 = Y |Ṙ|{1 + Q2(χ)}. (3.8)

In the situation of figure 3 there is a second bubble in the vicinity of the test bubble.
The hydrodynamic properties discussed above are affected by its presence. For sphe-
rical bubbles this was investigated in detail in van Wijngaarden (1976) and van
Wijngaarden & Kapteyn (1990). The added mass of each of the bubbles in a pair is
larger by a factor {1 + 3/16(a/R)3}, and the drag D1 by a factor {1 + 1/8(a/R)3}.
With ellipsoids the numerical coefficients will be different but the variation as (ae/R)3

remains. We shall neglect this small quantity.
Recently Legendre, Magnaudet & Mougin (2003) carried out a full Navier–Stokes

solution for the same situation as considered here: two bubbles rising side by side
in clean water, but at Reynolds numbers (the maximum value in their work is 500)
below the threshold where zigzag and spiralling occurs. Nevertheless there is a wake
and there are boundary layers, carrying vorticity. The results obtained (p. 145 of
Legendre et al. 2003) “confirm that added-mass effects are not altered by viscous
effects even in a bounded flow domain”. We can therefore use the results for added
mass from potential flow with confidence.

In addition to the slow, of order of cm s−1, velocity associated with the spiralling
motion, which we shall ignore as explained before, the bubbles have a relative velocity
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2dR/dt , or 2Ṙ, caused by hydrodynamic interaction. It should be emphasized that
this relative motion does not change the net momentum in the liquid and is quite
different from the spiralling motion exhibited by each of the bubbles alone.

We now form the force balance in the horizontal direction on the test bubble.
The drag is given by (3.5), and all the other forces are obtained from the general
relationship

F = {−4πρM · ∇u}centre of ellipsoid, (3.9)

see e.g. Landweber & Miloh (1980), where we restrict consideration to dipole forces.
In this relation u is the fluid velocity induced by bubble B in the centre of the ellipsoid
A. First we consider the velocity induced by the dipole in B . The corresponding force
and its ramifications for the dynamics of a bubble pair was investigated in VW. For
an oblate axisymmetric ellipsoid it is, using (3.6)–(3.9),

F0 = −πρa6
eV

2

12R4
(1 + Q1)

2. (3.10)

For a sphere Q1 = 0.5 and the numerical factor on the right-hand side of (3.10)
becomes 3/16, as in VW. In addition there are now the forces due to the horseshoe
vortex behind B . In determining these, we may neglect the influence which the
horseshoe vortex behind A exerts on its counterpart behind B , for the following
reasons. First we consider the recent numerical simulation of Legendre et al. (2003),
mentioned above, in which the same configuration as here is simulated, two bubbles
rising side by side, but at Reynolds numbers below the threshold where spiralling
or zigzagging occurs, and using the full Navier–Stokes equations. There are wakes
behind the bubbles, but without horseshoe vortices. The maximum Reynolds number
is 500 in their study and they report that “at leading order the second bubble does
not affect the vorticity distribution and the iso-contours would be almost identical to
those if the bubble were alone”. Second, this is also the case for Reynolds numbers at
which spiralling occurs, as is made plausible as follows. Vortices move, by Helmholtz’s
laws, with the local velocity. In a frame moving with the vertical rise velocity V this is,
for a bubble alone, the velocity associated with its spiralling motion. In the presence of
a second bubble there is in addition the velocity induced by the latter. A calculation,
given in Appendix B, shows that at a distance 3ae between the centres, the velocity
induced by the horseshoe vortex behind A in the arms of its counterpart behind B , is
only 0.04U . This means that the displacement of vortex B by A after 20 oscillations
with period ae/V is very small, 0.16ae. In the situation of figure 3 such an induced
velocity would be the same on corresponding points of both arms. With an arbitrary
orientation of the horseshoe with respect to the line of centres, they are different
causing a change in the orientation. Such a change is small however and moreover
accounted for by the averaging over all possible orientations which we shall eventually
make.

We proceed now by calculating the force F2 induced by the horseshoe behind B

as given in (3.9) with M the dipole given in (3.7) and (3.8). An additional force is on
the image in A of the horseshoe vortex behind B . We shall come to that in § 4.

The velocity field induced by a horseshoe vortex can be found in several textbooks
on hydrodynamics. We use Milne-Thomson (1952, p. 175). With an x, y, z frame
for bubble B such that the arms of the horseshoe with circulation Γ and −Γ are
along −∞ <x < 0, y = l/2, z = 0 and −∞ <x < 0, y = −l/2, z = 0, the bound vortex is
along x = 0, l/2 � y � −l/2, z =0. In this configuration the line of centres is along the
negative z-axis and the centre of bubble A at 0, 0, −2R. Then the velocity components
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induced at x, y, z by the horseshoe are

ux = − Γ z

4π(x2 + z2)

{
r(x, −y, z)

(
1
2
l − y

)
+ r(x, y, z)

(
1
2
l + y

)}
, (3.11)

uy = − Γ z

4π
{
z2 +

(
1
2
l + y

)2}{1 − xr(x, y, z)} +
Γ z

4π
{
z2 +

(
1
2
l − y

)2}{1 − xr(x, −y, z)},

(3.12)

uz = −
Γ

(
1
2
l + y

)
4π

{
z2 +

(
1
2
l + y

)2}{1 − xr(x, y, z} −
Γ

(
1
2
l − y

)
4π

{
z2 +

(
1
2
l − y

)2}{1 − xr(x, −y, z}

+
Γ x

4π(x2 + z2)

{
r(x, −y, z)

(
1
2
l − y

)
+ r(x, y, z)

(
1
2
l + y

)}
. (3.13)

In these expressions r(x, ±y, z) is shorthand for 1/{(x2 + (l/2 ± y)2 + z2)}1/2
. For the

force on the ellipsoid we now use (3.9). We see that there are components in all three
directions. Here we concentrate on the R-direction. It is interesting, though, to note
that apart from a central force there is also a force normal to the plane through the
vertical and R. Often, see e.g. Stewart (1995), bubbles have been observed darting
around each other. That cannot happen within potential flow theory but as we see,
vortices cause it. In this paper we focus on the relative radial motion and therefore
consider the z-component of (3.9). R points in the negative z-direction, test bubble
A moves in the negative z-direction relative to bubble B , with velocity −2|Ṙ|, and
velocity −|Ṙ| with respect to the liquid, therefore M · ez = −M2 where M2 is given in
(3.8). Likewise in vertical, x, direction, with M1 given in (3.7), M · ex = M1. Here ex

and ez are unit vectors in the x- and z-direction respectively. Using these values and
the velocity components given in (3.11)–(3.13) evaluation of (3.9) gives

F2 · ez = (1 + Q2)ρY |Ṙ| ∂

∂z
(uz)0,0,−2R − (1 + Q1)ρYV

∂

∂x
(uz)0,0,−2R

= F2,1 + F2,2 = −ρ(1 + Q2)YΓ l
R|Ṙ|

4π
(
4R2 + 1

4
l2

)2

− ρ(1 + Q1)YΓ l
V

4π
(
4R2 + 1

4
l2

)1/2

{
1

4R2
+

1

4R2 + 1
4
l2

}
. (3.14)

The forces indicated above by F2,1 and F2,2 have a negative sign, which means that
they are felt by bubble B as repulsive. It is perhaps helpful to remind the reader
that the sign of these and similar forces on a dipole can be checked as follows: the
source in a dipole prefers to swim against the local stream but the sink prefers to go
with it. Take for example F2,1. The velocity induced by the horseshoe is negative. The
sink–source direction is the negative z-direction, so the outward force on the sink is
stronger than the inward force on the source.

We can simplify (3.14) by observing that, since bubbles cannot overlap, R � a. The
measurements by de Vries (2001) show that l is of order ae, and we shall in the
following use his observation that

l ≈ 0.6ae. (3.15)
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This means that we can safely neglect l2/4 with respect to 4R2, which simplifies the
forces in (3.14) to

F2,1 = −ρ(1 + Q2)YΓ l

16πR3
|Ṙ|, (3.16)

F2,2 = −ρ(1 + Q1)YΓ l

16πR3
V. (3.17)

The circulation Γ of the threads in the bubble wake can be determined from the
self-induced velocity U of the threads. From many observations this was reported by
de Vries (2001) to be 0.1V –0.2V . The relation between Γ and U is

Γ = 4πlU. (3.18)

Inserting this into (3.16) and (3.17) and taking U = 0.2V , we obtain

F2,1 = −(1 + Q2)ρY l2
V |Ṙ|
20R3

, (3.19)

F2,2 = −(1 + Q1)ρY l2
V 2

20R3
. (3.20)

At this stage we note two things about these forces. First, by inserting numerical
values for the various symbols, and subsequent comparing with the primary attractive
force F0 in (3.10) and the viscous force F1 in (3.5), it appears that the forces due
to the vortices, as given in (3.19) and (3.20), are much smaller than the attractive
force but comparable with the frictional force. This is promising since overcoming
frictional force may maintain the velocity fluctuations. A second remark concerns the
dependence on the distance 2R between the centres. F0 falls off like R−4. The forces
due to the wake, in contrast, fall off as R−3. This is explicitly shown here for the
horizontally aligned relative positions, but holds, as is easily seen, for a general case
as well.

In the above calculation we have considered the line of centres to be along the
z-axis of the frame attached to the horseshoe vortex. For later use we include here the
more general case in which there is an arbitrary angle, ψ , between the line connecting
the corner points of the horseshoe and the line of centres of the two bubbles. In
figure 5 are sketched, as seen from above, these corner points with the directions of
the circulation about the two arms, at a distance l, and the centre of bubble A. The
middle of the line connecting the corner points is at a distance 2R from A, the corner
points themselves at distances 2R1 and 2R2 respectively. With reference to this figure
it is easy to see that, with σ1 and σ2 as indicated, the velocity uR in the direction of
R induced in A equals Γ/8π{sin σ1/R1 + sin σ2/R2}. Since in our application R � ae

and l ≈ 0.6ae, l/4R is smaller than 0.15. From figure 5 we see that

R−1
1 =R−1{1− l/4R cos(σ1 +ψ1)}+O(l/4R)2 and R−1

2 = R−1{1+ l/4R cos(σ1 +ψ1)}.

Both sin σ1 and sin σ2 are of order l/4R, so if we neglect the square of this small
quantity, we may write

uR =
Γ

4πR
sin

(
ψ2 − ψ1

2

)
. (3.21)

Now twice the area of the triangle AB1B2 in figure 5 is both 2R × l = 2Rl sin ψ and
2R1 × 2R2 = 4R2 sin(ψ2 − ψ1), from which it follows that sin(ψ2 − ψ1) = l/2R sinψ ,
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B1

2R1

2R

σ1

σ22R2

B2

Centre of A

1
2

l

1
2

l

ψ1

ψ

ψ2

Figure 5. The two arms of the horseshoe vortex trailing behind bubble B , parallel to the
x-axis, cut through the plane of the figure in B1 and B2. The line connecting the centres of
bubble A and bubble B makes an angle ψ with the y-axis. The figure is an illustration of the
calculation of the velocity which the horseshoe vortex induces in the centre of bubble A.

whence (3.21) becomes

uR =
Γ l sinψ

8πR2
. (3.22)

In the calculation earlier in this section we have considered the case ψ = π/2.
Before proceeding with the dynamics of the interaction, we must turn our attention

to the forces exerted on the images, in bubble A, of the horseshoe behind bubble B .

4. Force exerted on the image vorticity
For the determination of the force on the image vorticity in bubble A we will treat

both bubbles as spherical. It will turn out that this force is small with respect to F2 as
determined in the previous Section. Since the oblate ellipsoid changes only the shape
and not the strength of the image vorticity this makes no significant difference. In
a beautiful paper Lighthill (1956) showed that the image of a vortex filament Γ ds
located at a distance r from the centre of a sphere with radius a is located in a2/r

and consists of two elements. If ds = dst + dsr , the subscripts denoting tangential and
radial direction respectively, then the image consists first of an element −Γ a/r dst

and an element Γ a/r dsr . This is not all. To ensure that the image vortex field is
solenoidal, there is in addition a vortex sheet bounded by the image element and by
the lines connecting the beginning and end points with the origin of the sphere. The
circulation around this sheet accounts for the difference between the circulation at
the begin point and the end point of the image element. Dhanak (1981) used this
result to determine the image of a line vortex in a sphere. Let this line vortex have
a circulation Γ and be located, in terms of the frame of our previous section, in
−∞ <x < ∞, y = 0, z =0. The centre of the sphere is at 0, 0, −2R, see figure 6. The
result of Dhanak’s analysis is that the image consists in the first place of a circular
vortex ring with radius a2/4R and centre, see figure 6, at 0, 0, −2R + a2/4R. The
image of a point r on the line vortex is at a2/r on the vortex ring and the circulation
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z 2R
Image

A

φ θ

ds dst

Figure 6. The image of a vortex line, along the x-axis, in sphere A. As explained in the text
the image consists in the first place of a vortex ring with centre at 0, 0, −2R + a2/4R. The
difference between the circulation associated with r and r + dr is Γ dr/a. Further, the surface
bounded by this vortex ring is a vortex sheet, needed in order to make the vorticity solenoidal.

of an element on this ring is Γ r/a. This obviously varies along the vortex ring and
to ensure that the vorticity is solenoidal an additional vortex sheet is needed. Let the
angle between er , a unit vector in the r-direction, and the z-axis (see figure 6) be θ ,
then r = 2R/ cos θ . The difference dΓ between the circulation at points on the vortex
ring associated with r and r + dr is Γ dr/a or

dΓ =
2RΓ sin θ dθ

a cos2 θ
.

The circulation of the part of the vortex sheet bounded by this piece of the vortex
ring and the lines connecting its ends with the origin must be equal and opposite to
this. The associated vorticity is in the r-direction. Since s measured along the vortex
line can be written as s = 2R tan θ , we have along the sheet

dΓ = Γ ds sin θ/a = Γ dsr/a. (4.1)

With help of this result we can now find the image of the horseshoe vortex. The two
arms of the horseshoe are semi-infinite and hence the image of each of these is a
semicircular vortex ring. One of these is in the plane through the origin of the sphere
and the line −∞ <x < 0, y = −l/2, z = 0, the other in the plane through the origin and
the line −∞ <x < 0, y = l/2, z = 0. These planes are perpendicular to the plane x =0,
and are at an angle tan−1 l/4R and −tan−1l/4R with the (x, z)-plane respectively. The
surfaces bounded by the semicircles are vortex sheets with circulation as in (4.1), each
with the appropriate sign of Γ .

We should now calculate the force exerted on these rings and sheets at bubble A by
the horseshoe vortex behind bubble B . We shall do this in Appendix A. It turns out
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that this forms a small fraction of the forces given on the right-hand sides of (3.19)
and (3.20) and we shall neglect it in the following.

5. Dynamics of relative motion
We collect the forces in the z-direction on bubble A. In addition to the forces F0 and

F1 defined in (3.10) and (3.5) respectively, we have the repulsive forces in (3.19) and
(3.20). Remembering that R points in the negative z-direction, we obtain the equation
of motion valid when the motion caused by the interaction is with increasing R:

ρYQ2

d2R

dt2
= −12πµae

dR

dt
J (χ) − (1 + Q1)

2

12R4
πρ(ae)

6V 2

+
(1 + Q2)ρY l2V

20R3

dR

dt
+

(1 + Q1)ρY l2V 2

20R3
. (5.1)

The quantities Q1, Q2 and J in (5.1) are all functions of the axes ratio χ . We now
make the calculation more specific by choosing a value of χ . We take a bubble with
an effective radius of about 1 mm. Then, according to the measurements by Duineveld
(1995), the rise velocity is about 0.35 m s−1 and χ is about 2. This value is therefore
representative for the bubbles of interest here and we shall use it in the following.
Using the data collected in Appendix C for the Q and figure 4 for J , we have

Q1(2) = 1.17, Q2(2) = 0.30, J (2) = 0.70. (5.2)

We insert these values into (5.1), divide each term by ρYQ2 and introduce the
relaxation time τ by

τ =
ρQ2Y

12πµaeJ
=

a2
e

21ν
, (5.3)

to obtain

d2Ro

dt2
= −0.98

a3
eV

2

R4
o

+ 0.36
l2V 2

R3
o

+

(
−τ−1 + 0.22

l2V

R3
o

)
dRo

dt
. (5.4)

In this equation we have added the subscript o to indicate that the outgoing motion
of bubble A is considered. The bubble has an initial velocity and is decelerated by the
attractive force represented by the first term on the right-hand side and the frictional
force, but sustained by the forces due to the horseshoe vortex. Eventually the bubble
comes to rest, in a time of order ae/V , and the inward motion starts. The force exerted
by the horseshoe vortex on the radial dipole is now attractive, and the source in front
‘swims’ against the oncoming stream caused by the arms of the horseshoe, whereas
the force on the vertical dipole keeps the same sign, and is repulsive. Hence for the
incoming motion we obtain, adding the subscript i to R to indicate that the incoming
motion is concerned,

d2Ri

dt2
= −0.98

a3
eV

2

R4
i

+ 0.36
l2V 2

R3
i

+

(
−τ−1 + 0.22

l2V

R3
i

)
dRi

dt
. (5.5)

The equations for the in and out movement are the same, as we see. We must keep
in mind however that dRo/dt is positive and dRi/dt negative.

In VW the terms involving l2 are absent. Solving the remainder of the above
equations for τ → ∞ shows that the bubbles keep oscillating with respect to each other,
assuming elastic bounces. We denote by Rm the maximum value reached by R during
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an oscillation. The velocities during the oscillations are

dRo

dt
= −dRi

dt
=

{
0.67

a3
eV

2

R3
m

(
R3

m

R3
− 1

)}1/2

. (5.6)

The time scale of this motion is ae/V , which is of order of 1 ms. On the scale of the
relaxation time τ , which is at least an order of magnitude larger, Rm becomes smaller
and smaller, according to (see VW){

1 − (ae/Rm)1/2
}/

{1 − (ae/Rm)t=t0} = exp −(t − t0)/τ.

With ae =1 mm, V = 0.35 m s−1, ν =0.8 × 10−6 m2 s−1 we have τ = 0.05 s and ae/V =
0.003 s. This means, with a view to the above relation, that after about 20 oscillations
the relative motion with time scale ae/V is exhausted, because by that time Rm ∼ ae.
The ratio between the time scales involved, V τ/ae, can be written as Re/36, where
Re is the Reynolds number

Re = 2V ae/ν. (5.7)

In our case Re = 870. Kumaran & Koch (1993), in connection with a study on bubble
coalescence, calculated numerically the trajectories of two bubbles rising side by side
at a smaller Reynolds number of 400, and their figure 2 shows that the oscillation
discussed here ceases after roughly ten oscillations.

It is our intention to see what changes the two terms containing l2, that is the terms
representing the forces by the horseshoe vortices, bring. We start with the inward
motion at R =Rm. We write (5.5) as

1

2

d

dRi

(
dRi

dt

)2

=
d

dRi

(
0.33

a3
eV

2

R3
i

− 0.18
l2V 2

R2
i

)
+

(
0.22

l2V

R3
i

− τ−1

)
dRi

dt
.

We integrate between Ri = Rm where dRi/dt = 0 and Ri = ae, where the maximum
radial velocity, −W, W � 0, say, is reached. This gives

1

2
W 2 = 0.33V 2

(
1 − a3

e

R3
m

)
− 0.18V 2

(
l2

a2
e

− l2

R2
m

)
+

∫ ae

Rm

(
0.22

V l2

R3
i

− τ−1

)
dRi

dt
dRi. (5.8)

The value of W is mainly determined by the attractive force exerted by B , and a
little reduced by the second term at the right-hand side of (5.8). The other force
from the horseshoe, that in the integral, tends to increase W , but is counteracted by
viscosity. We assume the collision between A and B to be elastic such that at the
rebound bubble A starts with dRo/dt =W . In the absence of the horseshoe vortex the
two bubbles reach a final distance apart which is less than 2Rm, because of viscous
dissipation. With the vortex it might be larger, equal to or smaller than 2Rm. We
call this distance 2R#. Operating on (5.4) in the same way as we did on (5.5), now
integrating between Ro = ae and Ro = R#, we obtain

−1

2
W 2 = 0.33V 2

(
a3

e

(R#)3
− 1

)

− 0.18V 2

(
l2

(R#)2
− l2

a2
e

)
+

∫ R#

ae

(
0.22

V l2

R3
o

− τ−1

)
dRo

dt
dRo. (5.9)
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ae/R
∗ λ

0.95 1.1
0.66 1.6
0.50 1.9
0.33 2.5
0.05 5.2

Table 1. Results from the analysis of the integral in (5.13).

We add now the two expressions (5.8) and (5.9) to obtain

0.33V 2

(
a3

e

R3
m

− a3
e

(R#)3

)
− 0.18V 2

(
l2

R2
m

− l2

(R#)2

)

=

∫ R#

ae

(
0.22

V l2

R3
o

− τ−1

)
dRo

dt
dRo −

∫ Rm

ae

(
0.22

V l2

R3
i

− τ−1

)
dRi

dt
dRi. (5.10)

This is an interesting relation. We have seen that without the horseshoe vortex R# is
always smaller than Rm, because of viscous dissipation. This follows also from (5.10)
if we take out the terms with l2. In the presence of the vortex R# may be larger than
Rm. This means that the outward motion of the bubble stops at a value of Ro beyond
where the inward motion started. The inward motion then starts from this value,
R#. The process repeats itself until Rm = R#, upon which the two bubbles remain
oscillating with that value of Rm. After 50 or so oscillations we are on the time scale
of the spiralling motion and this takes over. To see whether such a scheme is possible,
we look for values of ae/Rm where Rm = R#. Anticipating that this value is of order
unity, we neglect the terms containing l2 on the left-hand side of (5.10). Both for
the inward and for the outward motion the attractive dipole force is dominant and
we can use as a first approximation for dRo/dt and dRi/dt the expressions in (5.6).
Inserting this in the integrals in (5.10) it follows that we need to investigate whether∫ Rm

ae

(
0.22

V l2

R3
− τ−1

)(
R3

m

R3
− 1

)1/2

dR = 0, (5.11)

for a value of ae/Rm smaller than one. For brevity and using (3.15) we introduce λ as

λ = 0.22
V l2τ

a3
e

= 0.08
V τ

ae

. (5.12)

We denote the particular value of Rm for which (5.11) holds by R∗. For that value of
Rm the force exerted by the horseshoe vortex is large enough to enable a repeating
cycle. In order to solve (5.11) at given λ for ae/R

∗ we write x = R/R∗ and ae/R
∗ = ζ .

Inserting this into (5.11) and using (5.12) gives∫ 1

ς

(
λζ 3

x3
− 1

)(
1 − x3

x3

)1/2

dx = 0. (5.13)

Solution, see Appendix D, results in the given in table 1 values for ae/R
∗ for a number

of given λ values. De Vries (2001) measured, for a bubble of radius of 1–1.5 mm, a
rise velocity of roughly 0.35 m s−1. This in agreement with earlier measurements by
Duineveld (1995). The kinematic viscosity of the water in which De Vries (2001) did
his experiments was 0.8 × 10−6 m2 s−1. When we calculate λ for these circumstances
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we find 1.57, 1.73 and 1.87 for bubbles with radius 1, 1.25 and 1.5 mm respectively.
Table 1 then tells us that R∗/a values can be expected to be of modest magnitude,
between 1 and 2.

The above calculation shows that in the configuration of figure 3, with the line of
centres horizontal and the horseshoe positioned as in that figure, the bubbles will
oscillate indefinitely, with R∗ following from the appropriate value of λ.

We verified this by a numerical solution of (5.4) and (5.5) for the case V τ/ae = 20,
corresponding to a bubble of radius ae = 1.23 mm rising in water, V =0.28 m s−1,
with ν = 0.8 × 10−6 m2 s−1. The oscillations without trailing vortices beginning with
Rm/ae = 4, are shown in figure 7(a). They clearly decay in about twenty oscillations.
Figure 7(b) shows the influence of the trailing vortices. Now, as predicted, an equilib-
rium is reached at R∗/a very close to 1.52, which is the value from our analysis, as
table 1 shows, for λ= 1.6 associated with V τ/ae = 20 from (5.12). We recall that
for this relative motion, induced by another bubble, we have frozen the position in
the spiralling motion. From the observations of Ellingsen & Risso (2001) it follows
that the sideways excursion in the spiralling motion is relatively small. They used
bubbles of radius ae = 1.25 mm. The observed spiralling frequency is about 5Hz, and
the horizontal velocity in the spiralling motion on the average 5 cm s−1. De Vries
(2001) reports that during the spiralling motion the two threads are not twisted (as
suggested by Ellingsen & Risso 2001) and that the vortex force on the bubble itself,
i.e. in our example the force by the horseshoe on bubble B is always directed towards
the centreline of the spiral.

In the configuration of figure 3 the vortex enables relative motion. However, if the
velocity induced by the horseshoe vortex in the centre of A were from right to left,
then the analysis points out that the relative motion is even more damped than in
the absence of the vortex. Roughly speaking we can assume that, with the line of
centres horizontal, half of the time the mutual oscillations between two bubbles are
reinforced by the trailing vortices. During this the vector l connecting the arms of
the horseshoe is not always at right angles with R as in the above analysis. In the
general case in which these enclose an angle ψ the velocity induced in the bubble
centre by the vortex is, see (3.22), {Γ 1/(8πR2)} sinψ . This means that the force F2,1

in (3.12) must be multiplied with sinψ , and as a consequence λ takes instead of the
right-hand side of (5.12) the value

λ′ = 0.08(V τ/ae) sinψ = λ sinψ. (5.14)

In the next section we investigate the average intensity of the vortex-induced velocity
fluctuations.

6. Intensity of velocity fluctuations
We mentioned in the Introduction that according to the studies of Yurkovetsky &

Brady (1996) and Spelt & Sangani (1998) a suspension rising under buoyancy is stable
provided velocity fluctuations of the bubbles are sufficiently intense. These authors
introduced a virtual temperature T defined as

T = (〈v · v〉 − 〈v〉2)/3, (6.1)

where 〈 〉 denotes ensemble averaging. This temperature must exceed some critical
value in order to prevent clustering.

It is therefore of interest to calculate that intensity in our case, that is in the
presence of horseshoe vortices. The fluctuations are due to the spiralling motion itself,
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Figure 7. Trajectory of one bubble in a pair under the influence of the other. λ= 1.6. Shown
is the ratio R/ae as a function of the dimensionless elapsed time V t/ae . (a) Only hydrodynamic
attraction by the other bubble in the pair and viscous resistance; (b) Trailing vortices behind
the other bubble included.

vsp , and in addition there are the oscillations studied in the foregoing sections, vhs ,
say, the subscript referring to ‘horseshoe’. Hence we can write for the bubble velocity

v = V i + vsp + vhs. (6.2)
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Here i is a unit vector in the vertical direction. The spiralling motion produces mainly
horizontal bubble velocities (Ellingsen & Risso 2001). With a bubble of radius ae

they report that in the horizontal plane the trajectory of a spiralling bubble can be
represented by an excursion X, where

X ≈ 3.2ae sin 2πf t, (6.3)

f being the spiral frequency, about 5 Hz. Similar figures are provided by de Vries
(2001). We introduce the number density of the bubbles n and their concentration by
volume α as

α = (4/3)πn(ae)
3. (6.4)

Then, taking into account the bubble volume, we have from (6.3) and (6.4)

〈vsp · vsp〉 ≈ 200α(ae)
2f 2. (6.5)

Next we consider 〈vhs · vhs〉. To have an idea about the quantities involved, consider
the mutual oscillations of two bubbles which we have investigated in the foregoing
sections. If we compare these with the spiralling motion, we note first that the
frequency is of order V/ae, much higher than f . Whereas the amplitude of the spirall-
ing motion is of order ae, it is of order Rm for the oscillation due to hydrodynamic
interaction. Hence the ratio of 〈vhs · vhs〉 to the right-hand side of (6.5) is of order

10−2 V 2

(aef )2
〈
R2

m

〉/
(ae)

2. (6.6)

This is a large quantity, of order 102.
We consider a large number, N , of bubbles in a large volume E. The ensemble

average of a quantity G, say, is defined as

〈G〉 =

∫
G(CN, ĊN )P (CN, ĊN/x) dCN dĊN , (6.7)

where CN and ĊN indicate the configuration space and the velocity space of N bubbles,
and P (CN, ĊN/x) dCN dĊN is the probability of finding another bubble in an element
of that space given that there is a bubble in x. Assuming that all quantities involved
fall off sufficiently rapidly we may, for dilute suspensions, restrict considerations
to interactions between pairs. As in the foregoing sections, we will consider pairs
separated by a distance 2R and having a relative velocity 2Ṙ. Instead of Ṙ we employ
Rm related to R and Ṙ by a relation of the type (5.6). Since the distance between the
test bubble in x and another bubble is 2R, we introduce

S = 2R, Sm = 2Rm. (6.8)

In principle P is the solution of a Liouville equation which can be solved once the
trajectories of bubbles are known. With viscous potential flow around bubbles no
steady solution of that Liouville equation exists, as shown in VW. All bubbles cluster
at Sm = 2ae. Here we know that, depending on λ′ (defined by (5.14)) various steady-
state values of Sm exist. In order to make an estimate of the value of T obtained in
this way, we make some assumptions on P . We introduce both for S and Sm spherical
polar coordinates S, β, ψ and Sm, βm, ψm respectively. The elements of volume in S
and Sm space are thus S2 sinβ dβ dψ dS and S2

m sinβm dβm dψm dSm respectively. At
given values of x and Sm the probability of finding a bubble in S is independent of
ψ but the probability for β near π/2 is very high (see VW). We shall use this in the
following.
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Integration of P (S|x), for all Sm together, must give N − 1, equal to N for large N .
We take for the present purpose, using the number density n= N/E,

P (S, β|x) = 0, S � 2a

= nδ(β − π/2), S > 2a. (6.9)

In (6.9) δ is the Delta function. We could have taken another expression to indicate
the strong preference for lines of centres at right angles with the vertical direction, but
this would not influence the result much because we will integrate over β . Because
integration of P over S and Sm must give the total number of bubbles and because
of the choice (6.9) P (Sm) is subject to the condition∫

P (Sm) dSm = 1. (6.10)

After these preliminaries we consider the average 〈vhs · vhs〉. In the preceding sections
we have considered the case in which the line of centres of the two bubbles is
horizontal. We consider now the general case. Take a plane through the line of
centres and the vertical and let the angle between the vertical and the line of centres
be β . For the velocity Ṙ of each of the bubbles in a pair we take as an approximation
the velocity in the absence of viscosity and also in the absence of the horseshoe
vortices. This is justified by both the viscous force and the force induced by the
vortices being small with respect to the attraction by the other bubble. The relative
motion then is entirely in that plane. Consider expression (3.9) applied to the force
exerted on the dipole in B on the test bubble. This force can be written as the gradient
of a potential Φ , say, where

Φ = −4πρM · ∇(M · S/S3). (6.11)

The dipole strength M has components given in (3.7) and (3.8):

4πM = Y [{1 + Q1(2)}V i + {1 + Q2(2)Ṙ]. (6.12)

Potential energy is converted into kinetic energy during the oscillation. In VW the
case of spheres is treated and it is shown there that the contribution to the kinetic
energy by the term with Ṙ in (6.12) is negligibly small. This is even more the case
for oblate ellipsoids since Q2(2) is only 0.30, whereas Q1(2) has the value 1.17, both
having the value 0.5 for spheres. Leaving only the first term on the right-hand side
of (6.12), inserting the above-mentioned values for Q1 and Q2 in (6.11) gives

Φ = −2.15πρa6
eV

2(1 − 3 cos2 β)

S3
. (6.13)

The maximum value is obtained when the two bubbles have their largest distance Sm

apart. The kinetic energy involved in the relative motion is the difference between
this maximum value of Φ and the value at intermediate S and β . This is the kinetic
energy for A and B together, vhs · vhs , times the added mass. Since in the general case
the relative velocity has components both in the S - and in β-directions here we take
for Q the value 0.5 for a sphere. Then it follows from (6.13) that

vhs · vhs = 3.23a3
eV

2

{
1

S3
− 1

S3
m

− 3

(
cos2 β

S3
− cos2 βm

S3
m

)}
. (6.14)

From (6.1), (6.2) and (6.14) it follows that we have to average 1/3 of the expression
on the right-hand side of (6.14). This means integration over the S, Sm space, the
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elements of which are given above (6.9). We start with integration over β which gives
as integrand

1.08a3
eV

2{S−3 − S−3
m (1 − 3 cos2βm)} sinβm dβm. (6.15)

Analysis of the trajectories given by (6.11) and (6.12) shows, see e.g. Kok (1993a),
that the oscillations we are interested in occur for angles βm such that

|cosβm| < 3−1/2. (6.16)

For other directions the main hydrodynamic force (see also (6.13)) is repulsive and
the bubbles are soon out of each other’s reach. We introduce therefore

β∗ = cos−1 1/
√

3 (6.17)

and integrate the expression in (6.15) between β∗ and π − β∗,

1.08a3
eV

2

∫ π−β∗

β∗

{
1

S3
− 1

S3
m

(1 − 3 cos2 βm)

}
sinβm dβm = 1.24aeV

3

(
1

S3
− 2

3S3
m

)
. (6.18)

We multiply the right-hand side of (6.19) with πnS2 dS and integrate over S. The
probability distribution P (Sm) is reduced to P (Sm, ψ) since we have already integrated
over β . Using (6.10) and the expression (6.4) for the relation between number density
n and volume concentration α we obtain for the average kinetic energy of the vortex-
induced fluctuations

T = 0.93αV 2

∫
dψ

∫
P (Sm, ψ)

[
ln

Sm

2a
− 2

9

{
1 −

(
2a

Sm

)3}]
S2

m dSm. (6.19)

We know that P (Sm, ψ) must obey (6.10). Further we know that in the steady state
two possible values of Sm remain. For values of ψ such that 0.08 V τ/a sinψ > 1, see
(5.14), Sm/2a > 1. At other values of ψ oscillations decay to Sm = 2a. We have denoted
the equilibrium value of Sm in the first category by 2R∗. If we in addition denote the
value of ψ at which (cf. (5.14))λ′ = 1 with ψ∗, and take (6.10) into account, we have
for P (Sm, ψ),

P (Sm, ψ) =
π − 2ψ∗

π

δ(Sm − 2ae)

S2
m

for sinψ � λ−1,

=
2ψ∗

π

δ(Sm − 2R∗)

S2
m

for λ−1 < sinψ � 1. (6.20)

We now insert (6.20) into (6.19) and obtain finally, taking (6.1), (6.2) and (6.5) into
account,

T =

(
〈v · v〉2 − 〈v〉2

3

)
= 200αa2

e f
2 + 1.18ψ∗αV 2

∫ π/2

ψ∗

{
ln

R∗

ae

− 2

9

(
1 − a3

e

R∗3

)}
dψ.

(6.21)

Equation (6.21) is the main result of this investigation. The effective bubble tempera-
ture T, defined (cf. (6.1)) as the intensity of the bubble velocity fluctuations, has two
contributions, one from the spiralling motion of the bubbles, the first term on the
right-hand side of (6.21) and the remainder due to hydrodynamic interaction with
neighbours, and sustained by trailing vortices. Since (aef/V )2 for a bubble of radius
1mm and a spiralling frequency of 6, say, is of order (10)−4, the contribution of the
spiralling motion is relatively small, as anticipated earlier in this paper. The other
terms contain R∗, the amplitude at which a stable oscillation of one bubble with
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respect to another can be maintained through the action of the trailing vortices, and
depending on ψ through (5.14) and the results in table 1.

To see what kind of temperatures (6.21) gives, we take an example from the mea-
surements of de Vries (2001). He measured in water with kinematic viscosity ν = 0.8 ×
10−6 m2 s−1 a velocity V of about 0.30 m s−1 with a bubble of radius ae = 1.20 × 10−3 m.
Using (5.2), (5.12) and (5.14) we find λ=1.7, giving sinψ∗ =0.59, or ψ∗ = 0.55 rad. At
this angle R∗/ae has a minimum value 1 and rises to 1.7 at ψ = π/2. It follows from
the values in table 1 and from (5.14) that between these values the relation between
R∗/ae and ψ is very well represented by

R∗/ae = 2 sinψ. (6.22)

Inserting this in (6.23) gives for these bubbles

T = 0.21αV 2 + 200α(aef )2 = 0.24αV 2. (6.23)

It is hard to say whether this is sufficient to prevent clustering of bubbles. In the next
section we shall discuss our result in the light of the scarce literature on this issue.

7. Comparison with other work
We have estimated the velocity variance, expressed as a temperature T, induced by

trailing vortices bearing in mind the idea that such velocity fluctuations might be able
to prevent bubble clustering. The importance of bubble velocity fluctuations in pre-
venting clustering is clearly demonstrated in the numerical studies by Yurkovetsky &
Brady (1996) and Spelt & Sangani (1998). In both of these simulations the flow is
essentially potential. In the first the flow is fully potential, in the latter it is viscous
potential flow, including dissipation. This means that in neither of these simulations
does the wake play a role. Clustering occurs in both simulations below a certain
temperature. It should be stressed that it is essentially an inertial effect. Indeed,
Smereka (1993) showed that in potential flow bubbles tend to maximize their virtual
mass, which happens in horizontal clusters. It is, as is shown in the present paper,
further enhanced by viscous dissipation. Yurkovetsky & Brady (1996) treat the bubbly
suspension as condensed matter and determine, employing statistical mechanics, a
phase transition where the suspension changes from the fluid phase in a solid phase.
Their estimate of the associated critical temperature Tc is, in terms of the symbols of
the present paper,

Tc/V 2 = 0.015α. (7.1)

Spelt & Sangani (1998) calculate, describing the relative flow between bubbles and
liquid as a viscous potential flow, the stress distribution due to hydrodynamic inter-
action. They determine the trace of this stress and call it the particle pressure. This
consists of a kinetic part, increasing with T, and a hydrodynamic part, which is always
negative. They propose as a reasonable criterion for the occurrence of clustering the
temperature at which this particle pressure becomes zero. This leads to

Tc/V 2 = 2.25α. (7.2)

Since the criteria leading to (7.1) and (7.2) are so widely different it is difficult to
compare these with one another or with our result exemplified by (6.23). At most one
could expect that the temperature needed to prevent clustering should be somewhat
higher when viscous dissipation is allowed for. In spite of their limited significance
for the present work, these few results should be mentioned.
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Interesting experimental data on bubble velocity variance and bubble clustering
were reported in Zenit, Koch & Sangani (2001) and in Kusch et al. (2002). In the
former paper it was reported that the measured values of T/V 2 in bubbly suspensions
rising in a vertical channel were “about a factor 5 smaller than those [the criterion of
Spelt and Sangani, cf (7.2)] necessary to stabilise the suspension”. In the later paper
by Kusch et al. it was in addition reported that the expression

T/V 2 = 0.02 + 0.5α. (7.3)

fits the measurements by Zenit et al. (2001) very well.
In the above-mentioned papers pictures of the bubbles are shown. It appears that

on average the diameter is slightly more than 2mm. According to the experiments
done by de Vries (2001) spiralling starts at ae =0.8 mm. Hence the bubbles in the
experiments by Zenit et al. (2001) are spiralling. It is hard to understand the term 0.02
on the right-hand side of (7.3), since it would mean bubble velocity fluctuations even
if there were no bubbles, but the authors attribute this to phenomena at very low
concentration and associated with wall effects. Apart from this term the experimental
results summarized in (7.3) are close to our theoretical value of T in (6.23) for bubbles
with ae = 1.20 mm.

8. Conclusion
We have investigated pair interactions between bubbles in a liquid. The primary

force is the attraction or repulsion caused by the potential flow about a neighbour.
It is well known that clustering occurs in simulations of suspensions under these
conditions. We have considered the possibility that additional forces caused by trailing
vortices may supply energy to the relative motion and thereby lead to persistence of
the latter.

The trailing vortices, as they have been observed in experiments and in numerical
flow simulations by others, are here modelled as horseshoe vortices.

A concise summary of the present work is in fact equation (5.10) expressing that
sustained stirring (left-hand side) is possible provided the average work by the vortices
is larger than the viscous dissipation in the relative motion (right-hand side). The
preceding analysis is needed to derive this relation and, in particular, to give justifica-
tion to a number of simplifying assumptions and approximations.

It appears from our calculations that these vortices can indeed lead to velocity
fluctuations of bubbles. At this moment it is, in view of the paucity of a data (only
numerical simulations of a different nature are available), not possible to predict
whether these fluctuations are sufficiently intense to prevent clustering.

I am grateful to Arie Biesheuvel, Detlef Lohse and Andrea Prosperetti for their
comments on an earlier draft of the paper. I thank Christian Veldhuis and Gerrit de
Bruin for their help with the numerical computation, and one of the referees for his
comments, in particular for strongly suggesting treating ellipsoidal shapes instead of
a spherical approximation.

Appendix A. Calculation of the force on the image of the horseshoe vortex
in the bubble

We start with the force F3, say, on the vortex ring in the plane through the origin
and the semi-infinite line vortex −∞ <x < 0, y = −l/2, z = 0, with circulation −Γ . In
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2R2

2R1

r1

ds1

ds

–Γ

Γ

z

x

y

1
2

l

1
2

l

Figure 8. Shown is the horseshoe vortex of bubble B and the image of one of the arms,
−∞ < x < 0, y = −l/2, z = 0, in bubble A.

figure 8 this plane is sketched including the vortex ring with element ds1, the radius
vector r1 of an element ds of the line vortex the starting point of which is at a distance
2R1 from the origin of bubble A. We are interested in the force in the z -direction,
F3 · ez,

F3 ·ez = ρez ·
∫

(u × ω) dΩ, (A 1)

where Ω the volume occupied by the vortex ring and ω denotes vorticity. We have

ω dΩ = −Γ r1/a ds1. (A 2)

With reference to figure 8 and with θ and φ as indicated in figure 6, we have
r1 = 2R1/ cos θ1 and ds1 = a2/4R1eϕ1 dφ1. Using these results and, from geometry,
φ1 = 2θ1 we obtain for (A 2)

ω dΩ = −Γ aeφ1 dφ1/2 cos(φ1/2). (A 3)

Interestingly, this result does not depend on R1. That means that we can write down
the same expression for the corresponding force F4 on the other vortex ring, with a
change of sign of Γ . Denoting now the velocity induced by the horseshoe vortex, as
a whole, at a point of the first vortex ring by u1 and similarly by u2 a point on the
second one, with the same φ = φ1 = φ2, we can write

(F3 + F4) · ez = ρΓ ak ·
∫

{(u2 × eϕ,2) − (u1 × eφ,1)}/2 cos(φ/2) dφ. (A 4)

The expression between { } can be written as

{(u2 − u1) × eφ,1 + u1 × (eφ,2 − eφ,1) + (u2 − u1) × (eφ,2 − eφ,1)}. (A 5)
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We investigate the contribution of each of the above terms to the integral in (A 4).
We start with the second term which gives, as will turn out, the largest contribution.
For x and y of order l and z of order 2R, which holds for points on the vortex rings,
u is, see (3.11)–(3.13) of order (Γ/2π)(l/(2R)2). Further |eφ,2 − eφ,1| is of order l/2R.
Introduced in (A 4) this results in ρΓ 2al2/16πR3. Using the expression (3.18) for Γ

and taking as before U = 0.2V , this given

0.04πρV 2l4a/R3. (A 6)

This is 0.40 (l/a)2 times the right-hand side of (3.20) (with Q1 = 0.5) and 0.40
(l/a)2(V/|Ṙ|) times the right-hand side of (3.19), which makes the contribution (A 6)
to the force negligibly small.

Next we consider the contribution of the first term in (A 5) to the integral in (A 4).
Take points with the same value of φ on each of the two vortex rings. They are
separated by a distance of order la2/4R2. This is mainly in the y-direction of the
coordinates x, y, z in terms of which the velocity components of u in (3.11)–(3.13)
are given. For a point with x and y of order l and z of order 2R, we find that, for
example, ∂ux/∂y is of order Γ/4π l2/(2R)4. Hence for two such points separated in
the y-direction by the above-mentioned distance

|u2 − u1| ∼ (Γ/4π) l3a2/(2R)6.

Inserting this into (A 4), we find a contribution of order ρΓ 2l3a3/{4π(2R)6} With, as
before, Γ = 4πUl and U =0.2V , this is

0.2πρV 2l5a3/(2R)6.

Since l ≈ 0.6a and R � a, this is much smaller than either F2 or F3 as given in (3.19)
and (3.20).

The forces, let us call them F6 and F7, caused by the horseshoe vortex on the
vortex sheets, are estimated in a similar way. We start again with looking at the sheet
in figure 8. Working out for F6 a relation similar to (A 1), we must evaluate ω dΩ

for a piece of the sheet. Remembering that the circulation of the pertinent arm of the
horseshoe is negative, we use relation (4.1) which gives the circulation per unit length
of the radius connecting the origin with the observed point on the vortex ring. The
length of this radius is a2/r1, giving

ω dΩ = −Γ a/r1 dsr . (A 7)

Now dsr is on the arm of the horseshoe vortex and we want this expressed in terms
of the corresponding element ds1 of the vortex ring. The relation is

ds1 =
dsr1

sin
(

1
2
φ1

) =
a2

r1
2 sin

(
1
2
φ1

) dsr (A 8)

Using this and ds1 = a2/4R1 dϕ1, we obtain from (A 7)

ω dΩ = −Γ ar1/4R1 sin(φ1/2) dφ1er,1.

From the geometry in figure 7 we see that cos(ϕ1/2) = 2R1/r1, so that we finally have

ω dΩ = −2Γ a tan(φ1/2) dφ1er,1. (A 9)

The calculation of the corresponding force leads to an integral similar to the one on
the right-hand side of (A 4), with er,1 and er,2 instead of eφ,1 and eφ,2 respectively. The
outcome is therefore of the same order of magnitude as (A 6).
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The reader might wonder about the apparent singularity in (A 4) when φ = π.
However, the product of {(cos(φ/2)}−1 both with |(u2 − u1)| and with |(eφ,2 − eφ,1)|
remains finite when φ approaches π.

Appendix B. Motion of horseshoe vortex behind bubble B, caused by that
behind A

We consider the displacement in the z -direction in figure 3 of the trailing vortices
behind the test bubble A as caused by its counterpart behind bubble B . Equation (3.13)
of the main text gives for the induced velocity in that direction, at x = 0 of figure 3,
where the vortices are located,

uz = − Γ

4π

{
y − 1

2
l

z2 +
(
y − 1

2
l
)2

−
y + 1

2
l

z2 +
(
y + 1

2
l
)2

}
. (B 1)

For z = −3ae (the example in figure 7b), we have at y = l/2 and y = −l/2, where the
vortices are,

uz = − Γ l

4π
(
9a2

e + l2
) . (B 2)

Using the relations (3.15) and (3.18) in the main text, we find from (B 2)

uz = −0.04U,

which is quoted in the main text.

Appendix C. Added mass of ellipsoids
Milne-Thomson (1968, p. 501) gives the added mass m1 for acceleration in the

direction of the minor axis of an axisymmetric ellipsoid expressed in terms of the
ratio of major to minor axis χ as ρYQ1, where

Q1(χ) =
(χ2 − 1)1/2 − cos−1 χ−1

cos−1 χ−1 − (χ2 − 1)1/2χ2
. (C 1)

This result is obtained by calculating an integral, where a and b are the minor and
major axes respectively,

α0 = ab2

∫ ∝

0

dλ

(a2 + λ)3/2(b2 + λ)
. (C 2)

The relation between Q1 and α0 is

Q1 =
α0

2 − α0

. (C 3)

Likewise Q2 in (3.2) in the main text is related to a quantity β0 by

Q2 =
β0

2 − β0

, (C 4)

where

β0 = ab2

∫ ∞

0

dλ

(a2 + λ)1/2(b2 + λ)2
. (C 5)
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Partial integration of the integral in (C 5) gives β0 = 1 − α0/2, whence with the help
of (C 3)–(C 5) we obtain

Q2 =
1

1 + 2Q1

. (C 6)

Appendix D. Analytic solution of the integral in (5.13)
Consider the integral in (5.13) of the main text∫ 1

ς

(
λς3

x3
− 1

) (
1 − x3

x3

)1/2

dx = 0.

We write λς3/x3 as λς3(1 − x3 + x3)/x3 and use the result∫ 1

ς

(1 − x3)3/2

x9/2
dx =

2

7

[
(1 − ς3)3/2

ς7/2
− 9

2

∫ 1

ς

(1 − x3)1/2

x3/2
dx

]
,

to obtain

λ

(7 + 2λς3)(1 − ς3)3/2
= (1 − ς3)1/2 − 3

2
ς1/2

∫ 1

ς

x3/2

(1 − x3)1/2
dx. (D 1)

The integral on the right-hand side of (D 1) can be expressed as an incomplete Beta
function which is useful for checking a numerical calculation for ζ values close to
zero or one. Abramowitz & Stegun (1970, p. 258) give∫ 1

ζ

x3/2

(1 − x3)1/2
=

1

3

∫ 1

ξ

dy

(1 − y)1/2y1/6
=

1

3
B

(
5

6
,
1

2

)
− 1

3
Bξ

(
5

6
,
1

2

)
with ξ = ζ 3. (D 2)

Table 1 in the main text is obtained from numerical integration and (D 1).
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