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ANN-based radar approach to detect breast
cancers in fibro-glandular tissues: numerical
analysis

salvatore caorsi and claudio lenzi

This paper presents a new artificial neural network (ANN)-based radar data processing approach for the detection of breast
cancers located inside fibro-glandular tissues. The aim is not the breast imaging but detecting tumors through ANN processing
of data extracted from the radar signals measured around the breast. The proposed approach has been assessed using several
realistic two-dimensional breast geometries derived from the models provided by the numerical breast phantom repository of
the University of Wisconsin Cross-Disciplinary Electromagnetic Laboratory (UWCEM). The pulsed radar system was
assumed to operate in the mono-static configuration. The obtained results showed the abilities of the proposed approach
to detect, for any single radar trace, tumors located inside the fibro-glandular tissues with a sensitivity of 93%, a specificity
of 90%, and an overall accuracy of 92%.
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I . I N T R O D U C T I O N

According to recent statistical reports of the American Cancer
Society [1], breast cancer is the most diffused topology of
tumor among females. Currently, the X-ray mammogram
represents the standard diagnostic technique. Nevertheless,
it is well known that it presents several problems and limi-
tations. Mainly its ionising radiation can lead to further
develop tumors. In addition, especially in dense breast, the
X-ray mammogram suffers from low and unstable values of
sensitivity, varying from 66 to 96% [2]. In order to improve
the performance, the X-ray mammogram can be used in con-
junction with other diagnostic techniques, such as magnetic
resonance imaging, ultrasound, and the simple clinical exam-
ination. However, clinical studies have found that although
their combined use can improve the value of sensitivity or spe-
cificity, the overall accuracy varies from 66.6 to 75.6% [2].

During last decades, in order to overcome mammograms’
limitations, new detection techniques have been proposed.
Among these, the differences in electromagnetic properties
at microwave frequencies between malignant and healthy
breast tissues [3], have motivated the development of the
microwave imaging techniques. Microwave tomography
[4, 5] and ultra-wide band (UWB) radar imaging techniques
[6, 7] are the most promising active approaches proposed in
the literature.

In this paper, extending the results of our previous work
on subcutaneous breast tumors [8], we aim to evaluate a
new artificial neural network (ANN)-based radar data pro-
cessing approach to diagnose tumors deep seated inside fibro-
glandular tissues.

For each radar trace recorded around the breast, our
purpose is to detect the presence of a cancer independently
of its depth and width. To this end, the primary step is extract-
ing, from the radar signals, the data that best detect the
tumor’s presence. Then an ANN architecture is designed for
optimal processing of the extracted radar data. The proposed
approach is able to provide several advantages including a sig-
nificant reduction of the computational burdens, with the pos-
sibility of reaching quasi-real-time responses.

I I . T H E A N N - B A S E D R A D A R
A P P R O A C H M A T E R I A L S A N D
M E T H O D

The present work considers two-dimensional (2D) breast
geometries and a pulsed mono-static radar system that moves
along an axial circular line around the body and gives, for
each angular position, the radar trace in the time domain.
According with such a problem geometry, the backscattered
radar signals were simulated using the finite-difference
time-domain-based software GprMax [9]. The transmitting
mono-static radar antenna was modeled using an elementary
Hertzian dipole. The receiving mono-static radar antenna was
ideally and numerically simulated as a space point in which
the electromagnetic field is measured. For each angular
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position, the transmitting and receiving antennas coincide in
the same space point.

Each single radar trace is then processed by an ANN to
reveal, trace by trace, the presence of a tumor located
inside fibro-glandular breast tissues. To do this, the ANN
needs to be trained with data extracted from the radar
signal. The idea is to exploit the information contained in
the amplitudes (A1, . . . Ai, . . . AN) and the times of arrival
(t1, . . . ti, . . . tN) of N suitable local maxima and minima.
In order to deduce what and how many local peaks should
be chosen, a preliminary assessment study of the signals will
be performed in Section III.

The ANN architecture used consists of a multilayer, feed-
forward, fully connected network [10]. As represented in
Fig. 1, this type of ANN is formed by an input layer, one or
more hidden layers, and one output layer. Each layer is
formed by a fixed number of nodes that represent the artificial
neurons, and each node is connected to every one of the adja-
cent layers. To each connection – between the generic node j
of the layer k and the generic node i of the previous layer
(k21) – is associated a constant wk−1,k

ij that represents the
weight of the connection. Moreover, to each artificial neuron
j is associated a term of bias wk

0j.
The ANN is trained using a set of input–output pairs, the

so-called “examples,” and their number is strictly related to
the number of weights and bias. During this forming phase,
through a minimization process, for all the input–output pairs,
the ANN iteratively adjusts the weights and bias with the aim
of minimizing the errors between the desired output values
and those effectively reconstructed by the network [10].

Once the training phase is completed, all the weights and
biases are stored, and the network is ready to be used in the
next phases of test and “on-field” operating mode. Even if
the network training phase is time consuming and carries a
high computational burden, it does not represent a problem
because it is an “off-line” phase. Instead during both the test
and “on-field” phases, the network provides results in
quasi-real time and with a very low computational burden.
Indeed, the use of ANNs allows one to reformulate the
inverse scattering problem by considering only a lower set
of unknowns describing the object to be detected.

The number of nodes of the input and the hidden layers
will be discussed in the following sections. Instead, it is
worth noting that, for the purposes of the present diagnostic
method, ANN architectures – having as the output layer
only a single node – will be considered. This choice was

made in order to provide an output of type yes/no, depending
on the presence (yes) or absence (no) of tumors.

In our previous work [8], we obtained interesting results
for subcutaneous tumors using UWB pulses with a central fre-
quency of 2 GHz and a time duration of 1 ns. However, other
works [11, 12] have instead used central frequencies of about
6 GHz with a time duration 0.3 ns for breast imaging pur-
poses. For these reasons in the present paper, we wanted to
assess these two different radiating pulses. As shown in
Fig. 2, for each frequency, we used a differentiated Gaussian
pulse as a signal waveform to produce a higher power of the
backscattered signal [13]. For this reason, it is more suitable
in detecting targets that are deeply located [13].

To characterize the healthy tissues in the 2D geometries
used, we considered the Debye equation where the suitable
values for the static relative permittivity (1s), the relative per-
mittivity at infinite frequency (11), the conductivity (s), and
the relaxation time (t) have been taken by [14].

The tumor was modeled by placing a circular dielectric
anomaly inside the fibro-glandular tissue area. The values
for the Debye dielectric parameters (1s, 11, s, and t) were
obtained starting from the Cole–Cole representation provided
in [15] and minimizing the cost function reported by [16].

I I I . I D E A L B R E A S T M O D E L S

Preliminarily, the ideal cases of different cancerous breasts,
consisting of 2D homogeneous and concentric three-layered
geometries, have been studied.

In particular, we considered the following three healthy
tissues: the skin, the adipose tissue, and the fibro-glandular
tissue. Each tissue was dielectrically characterized using the
Debye model and the tumor placed inside the fibro-glandular
tissue area was characterized by means of the Debye dielectric
parameters (1s, 11, s, and t) as was already described in the
previous section.

As can be expected, for such ideal cases, the presence of the
anomaly can be detected by simply inspecting all the radar
traces recorded around the breast geometry or, in a more
effective way, by simply inspecting the radar grams. The
representation through the radar gram is commonly used to
visualize radar signals in ground-penetrating radar applica-
tions [9]. For our purposes, it consists of an image that repre-
sents all the radar signals measured around the breast placed
adjacent one to the other. In such a way the horizontal axis

Fig. 1. Schematic representation of an ANN architecture of the multilayer, feed-forward, and fully connected type.
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represents the radar angular position, whereas the vertical axis
is the time evolution of each recorded signal.

Nevertheless, as it is proved in the literature [7, 11, 12, 17–
21], the dynamic between the tumor’s signature and the
echoes backscattered from the skin is very high. Moreover, in
some cases, such echoes can also overlap and mask the searched
tumor presence. In the literature, several cleaning techniques
were proposed in order to suppress the strong components
backscattered from the skin [7, 11, 12, 17–21]. Among these,
a skin’s reflection reduction particularly useful for ANN-based
radar detection approaches has already been studied in our pre-
vious work [21]. However, in the present paper, because we are
aiming to perform a preliminary numerical assessment, we
applied an ideal cleaning technique. For each angular position
of the mono-static radar antenna, the ideally cleaned signal is
obtained by subtracting from the total backscattered signal the
radar signal measured on the same radar position, but on a ref-
erence two-layered cleaning model composed only of skin and
adipose tissue. In this way, the signal components due to the
presence of the skin are strongly reduced, whereas the contribu-
tions due to the presence of the fibro-glandular tissue and the
tumor signature are evident.

In this context, we analyzed the radar traces simulated on
30 different cancerous biological models. These were obtained
by sweeping the dimensions of the entire 2D three-layered
geometry, the dimensions of both the adipose and fibro-
glandular layers, and the tumor diameters and by positioning
the tumor at different depths inside the fibro-glandular tissue.
The obtained results can be summarized by looking at the
radar grams reported in Fig. 3 and obtained in the case
where the incident UWB pulse with central frequency of
2 GHz is used.

In particular, Fig. 3 shows the radar grams of the ideally
cleaned radar signals measured on an ideal breast geometry
in which a dielectric anomaly has been inserted at two differ-
ent depths inside the fibro-glandular tissue. The radius of the

breast geometry was 8 cm, the skin thickness was 1.5 mm, and
the radius of the fibro-glandular tissue was 6 cm. Figures 3(a)
and 3(b) show the cases where the dielectric anomaly of 6 mm
in diameter is positioned 0.4 and 3.6 cm, respectively, inside
the fibro-glandular tissue.

For such cases, because the radar signal has been cleaned by
the air–skin reflections, the first reflected echoes are associated
to the fat/fibro-glandular interface. Due to the circular 2D
geometry, the distance of the radar from the fibro-glandular
layer is constant. For this reason, in Fig. 3 the first straight
lines between 1.2 and 2.2 ns are given by the reflections of the
fibro-glandular layer. Instead, because the distance between
the radar and the tumor changes when the radar moves in a
circle around the geometry, the presence of the tumor is iden-
tified by a curved line. In particular, Fig. 3(a) shows that when
the tumor is positioned closer to the outer surface of the fibro-
glandular tissue, its signature is partially overlapped with the
signals backscattered from the interface between the adipose
and fibro-glandular tissue. In contrast, Fig. 3(b) shows that, if
the tumor is located deep inside the fibro-glandular tissue, its
signature is completely visible. It is worth noting that, for
both the cases, the tumor signature is contained in the
second part of the ideally cleaned radar signal.

On the basis of the analyses conducted and of the discus-
sion noted earlier, we concluded that if we want to find suit-
able information in order to characterize the presence of
tumors located inside the fibro-glandular tissue, these data
must be searched inside the second part of the cleaned radar
signals. According to the earlier conclusions, starting from
the ideally cleaned radar signals obtained in both the cases
where the UWB pulses at 2 and 6 GHz are used, we exploited
the information that is contained in the amplitudes and arrival
times of the third, fourth, and fifth local maximum/minimum
of such signals.

Using these data, we trained and tested different ANN
architectures receiving different input data and providing a

Fig. 2. The UWB differentiated Gaussian pulses: (a) UWB pulse with central frequency 2 GHz and time duration 1 ns; (b) central frequency 6 GHz and time
duration 0.3 ns.

Fig. 3. The radar grams of the ideally cleaned radar signals. (a) Dielectric anomaly located close to the outer surface of the fibro-glandular tissue; (b) anomaly
positioned deep inside the fibro-glandular tissue.
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binary output, of type yes/no, in order to discriminate the
tumor presence. In particular, three different ANNs have
been considered: the ANN 6-12-1 that works on the ampli-
tudes and arrival times of the third, fourth, and fifth local
maxima/minima; two different ANNs of type 4-8-1 working,
respectively, on the amplitudes and arrival times of the third
and fourth peaks and of the fourth and fifth maxima/
minima. It means that the ANN 6-12-1 and the ANNs
4-8-1 have, respectively, six and four input nodes, and only
one output node (yes/no). According to our previous experi-
ences [8], we chose to use for all three ANNs only one
hidden layer, with a number of nodes equal to double of
that of the input layer.

The results obtained with all three ANN architectures
applied to 2D ideal breast models have provided excellent
results for both frequencies of the UWB radar pulses used,
reaching values of sensitivity, specificity, and accuracy that
never fell below 98%.

I V . R E A L I S T I C B R E A S T M O D E L S

Because the ideal case of homogeneous 2D geometries pre-
sented in Section III obtained, as expected, excellent results,
we also assessed the capabilities of our approach in the case
of realistic 2D breast models derived by the University of
Wisconsin Cross-Disciplinary Electromagnetic Laboratory
(UWCEM) database [14].

Starting from the nine 3D breast models provided by the
UWCEM database, we built several realistic 2D cancerous
and healthy breast geometries. The healthy breast geometries
were built by randomly choosing the model, the section, and
the Debye parameters (1s, 11, s, and t) for the dielectric char-
acterization of the tissues. These values were chosen in the
same range of values already cited in Section II. Each obtained
geometry allows us to discriminate eight different typologies
of healthy breast tissue: the skin, three typologies of adipose
tissue, a transitional tissue, and three different typologies of
fibro-glandular tissue. Each cancerous geometry was built
starting from a new healthy geometry in which a circular
dielectric anomaly has been inserted inside the fibro-glandular
tissues. The dielectric anomalies were randomly generated by
randomly choosing both the diameter value (between 0.2 and
1 cm) and the locating depth. The values for the Debye dielec-
tric parameters (1s, 11, s, and t) were obtained in the same
way already described in Section II. An example of the cancer-
ous geometries used is reported in Fig. 4.

As discussed in Section III, in order to suppress the strong
skin reflections, we applied an ideal cleaning technique
where, for each angular radar position, the ideally cleaned
radar signal was obtained by subtracting from the total one
the signal measured on the same 2D geometry, but formed by
only the skin and adipose tissue. Moreover, because in the real-
istic geometries the distance between the radar antenna and the
breast surface is no longer constant, the times of arrival and the
amplitudes of the measured backscattered signals change
between different radar positions. In order to reduce this space-
temporal error, we applied a cross-correlation technique in
order to measure the arrival time of the total backscattered
signal, then the resulting arrival times were used as zero refer-
ence times for all the recorded radar signals. At last, the ampli-
tude of the signal has been multiplied by a coefficient that takes
into account the temporal shift [22].

Following the promising results obtained in the cases of
ideal breast models, in order to best characterize the presence
of the tumor, we searched for suitable information inside the
second part of the cleaned and equalized radar signals
obtained by using both the UWB pulses with central frequen-
cies of 2 and 6 GHz.

At this point, different ANN architectures working with
different data inputs and providing a binary output, of type
yes/no, were trained and tested. In particular, we trained an
ANN of type 6-12-1 that works on the amplitudes and
arrival times of the third, fourth, and fifth maxima/minima.
Moreover, an architecture of type 4-8-1 has been designed
for working, respectively, on the amplitudes and arrival
times of the third and fourth peaks, and on the data of the
fourth and fifth peaks. All the networks have been trained
and tested by using the two different incident pulses.

According to the number of degrees of freedom, each
network has been trained using a fixed number of training
data. In particular, the architectures of type 4-8-1 have been
trained using 100 training examples, namely 50 measured on
cancerous geometries (T) and 50 measured on healthy breast
models (NT); however, during the training process of the net-
works 6-12-1, a set of 200 input–output pairs, consisting of
100 T geometries and 100 NT geometries, was used. The
results obtained during the training phases were highly satisfac-
tory, providing values of accuracy equal to 100%. These results
show that, for both the incident pulses, all the networks have
been able to adjust both the weights and bias of their internal
nodes in order to find the best connections between the
input–output pairs furnished during the training process.

In order to test the networks in a significant and general
way, we simulated the radar signals measured on new
healthy and malignant breast geometries. In this way, all the
networks were validated using 60 new geometries, namely
30 T and 30 NT. The results were highly satisfactory, and
they are reported in Tables 1 and 2.

Fig. 4. A realistic 2D cancerous geometry with a tumor located inside the
fibro-glandular tissues.

Table 1. Performance on testing data – 2 GHz.

ANN architecture ANN performance (%)

Sensitivity Specificity Overall
accuracy

4-8-1 (third, fourth peak) 93 90 92
4-8-1 ( fourth, fifth peak) 70 73 72
6-12-1 (third, fourth, fifth peak) 80 77 78

1600 salvatore caorsi and claudio lenzi

https://doi.org/10.1017/S1759078717000897 Published online by Cambridge University Press

https://doi.org/10.1017/S1759078717000897


In particular, Table 1 reports the results obtained using the
UWB pulse at 2 GHz, and Table 2 shows the results obtained
where the pulse at 6 GHz is used. Looking at the tables it is
evident that, despite the fact that all the networks have
detected the presence of the tumor with values of accuracy
.70%, the best results were obtained by using the ANN archi-
tecture of type 4-8-1 that works on the third and fourth
maxima/minima of the ideally cleaned radar signals –
namely the ANN 4-8-1 (third and fourth peaks). Indeed, in
the case where the UWB pulse at 2 GHz is used, Table 1
shows that the tumor was detected with a sensitivity of 93%
(corresponding to a false-negative ratio of 7%), a specificity
of 90% (namely a false-positive ratio of 10%), and an overall
accuracy equals to 92%. Looking at Table 2, in the case
where the UWB pulse at 6 GHz is used, the tumor was
detected with a sensitivity of 90% (false-negative ratio of
10%), a specificity of 87% (false-positive ratio of 13%), and
an overall accuracy of 88%.

V . C O N C L U S I O N

In this paper, we proposed and tested a new ANN-based radar
data processing approach for detecting breast tumors located
inside fibro-glandular tissues. Using a mono-static radar
system, the backscattered signals are measured around the
breast, then suitable data are extracted and ANN processed
in order to detect the presence of internal tumors.

In order to preliminarily assess the proposed approach,
several 2D homogeneous three-layered cancerous geometries
were studied in the case where an ideal skin-artifact removal
technique is applied. The results showed that for such cases,
the tumor can be detected by simply inspecting the radar
grams of the radar signals measured around the breast geom-
etry. Moreover, using different ANNs working on the second
part of such signals, namely the third, fourth, and fifth local
maxima/minima of the cleaned radar signals, the achieved
values of sensitivity, specificity, and accuracy were .98%.

On the basis of these expected excellent preliminary
results, we considered 2D realistic cancerous and healthy
breast models derived from the models of the UWCEM data-
base. In this way, several new ANNs were trained and tested
exploiting, like in the previous homogeneous cases, the infor-
mation contained in the second part of the ideally cleaned
radar signals. The best results were obtained by using the
ANN 4-8-1 that works on the amplitudes and arrival times
of the third and fourth maxima/minima of the cleaned
radar signals. In the case where the UWB pulse with
central frequency of 2 GHz is used as the illuminating
signal, the presence of the tumor was detected with a sensi-
tivity of 93%, a specificity of 90%, and an overall accuracy
of 92%. However, in the case where the UWB pulse with a

central frequency of 6 GHz is used, the tumor has been
detected with a sensitivity of 90%, a specificity of 87%, and
an overall accuracy of 88%.

The encouraging results motivate us to move forward on
this topic, studying the performance in the cases where the
proposed technique is applied to more realistic scenarios.
First of all, attention will be focused on removing the strong
skin reflections using a realistic cleaning technique. As men-
tioned in Section III, several cleaning methods were proposed
in the literature [7, 11, 12, 17–21]. As first step, we will apply
the realistic model-based cleaning technique designed in our
previous work [21]. Moreover the proposed technique needs
to be studied and assessed using 3D realistic breast models.
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