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SUMMARY
This paper proposes a globally and exponentially convergent predictive observer for attitude and
position estimation based on landmark measurements and velocity (angular and linear) readings.
It is assumed that landmark measurements are available with time-delay. The maximum value of
the sensor delay under which the estimation error converges to zero is calculated. Synthesis of the
observer is based on a representation of rigid-body kinematics and sensor delay, formulated via
ordinary and partial differential equations (ODE-PDE). Observability condition specifies necessary
and sufficient landmark configuration for convergence of attitude and position estimation error to
zero. Finally, for implementation purposes, a PDE-free realization of the predictive observer is
proposed. Simulation results are presented to demonstrate performance and convergence properties
of the predictive observer in case of a wheeled mobile robot.
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1. Introduction
The estimation problem in this paper is to determine attitude and position of a rigid body moving
in a planar space. Attitude and position estimation are used in detecting and identifying faults1 and
effective attitude and position control of rigid bodies.2, 3 The employed sensors in the landmark-based
attitude and position estimation are divided into velocity sensors, such as rate Gyro and Doppler for
angular and translational velocity readings, and charged-couple device (CCD) cameras for tracking
terrain characteristics. Landmarks are points with known locations which can be observed by rigid
body. Landmark-based attitude and position estimation have received considerable attention for the
past decades.4, 5 Except some sensors, such as laser detection and ranging (LADARs) or laser scanners
which use light to determine the distance, landmark measurement is not usually available at the same
time as it is perceived. This is either caused by long range observation, or complex computation, or
both. Take CCD camera as an example of landmark measurement sensor, which is coupled with a
video processing system. Due to computational burden of the image processing unit,6 the time that
takes to calculate the measurement vector from visual stream of information is not negligible and
creates significant time-delay.

The effect of time-delay in sensor measurement, from the best of our knowledge, has been rarely
dealt within the realm of rigid-body attitude and position estimation.6–9 The existing works, are
basically based on the Kalman filtering and its extensions. Smith predictors can also deal with delay
in linear time-varying systems. However, both approaches do not guarantee asymptotic convergence
of estimation error to zero due to intrinsic non-linear and time-varying nature of attitude and position
estimation problem. On the other hand, non-linear observers4, 10–12 stand out as an important approach
among a wide variety of estimation techniques. However, topological limitations on non-Euclidean
spaces hamper achieving global stabilization. These limitations call for the relaxation from global
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to almost global stability, meaning that the region of attraction of the origin comprises all the state
space except a nowhere dense set of measure zero.4, 13

In ref. [6] authors presented an estimation method for combining measurements provided by
inertial sensors (gyroscopes and accelerometers), global positioning system (GPS), and video system
for unmanned aerial vehicle (UAV). The effect of data delay in video system is taken into account
for attitude and position estimation. In ref. [7,8] the source of data delay was considered to be in the
GPS sensor, where7 proposed complementary Kalman filter and8 proposed extended Kalman filter
(EKF) to deal with estimation problem of interest. A delay and dropout tolerant Kalman filter-based
position, velocity, and acceleration estimation for aerial vehicles was proposed in ref. [9] by fusing
inertial and vision measurements. This work assumes vision measurement packets undergo delay and
dropout due to image processing and wireless communication.

The contribution of this paper is the development of an attitude and position estimation algorithm
in presence of time-delay in landmark measurements, while ensuring global and exponential
convergence of estimation error. The estimation method is based on predictive observer of ref. [16]
which is further developed and employed for the case of attitude and position estimation problem. In
the proposed technique, the overall attitude and position of the rigid body is described by an ordinary
differential equation (ODE) in form of state affine systems. The delayed sensor measurement is
formulated by a first-order PDE. The predictive observer, designed for the cascade of ODE-PDE
systems, aims to predict and compensate delayed sensor measurement. Necessary and sufficient
conditions for landmark configuration are presented to achieve asymptotic estimation of attitude
and position. Convergence analysis is built on Lyapunov–Krasovskii functional. An upper-bound for
sensor delay is derived which preserves convergence properties. Owing to simplified analysis, the
observer is first designed under the ODE-PDE framework and then transformed into an implementable
PDE-free realization.

The remainder of this paper is organized as follows. In Section 2, we formulate our estimation
problem of interest. In Sections 3 and 4, the main result of the papers is presented. In Section 5, we
provide a PDE-free realization for implementation. A numerical example on wheeled mobile robot
is presented in Section 6. Section 7 concludes the paper.

2. Problem Statement and Preliminaries
We denote {I} as the inertial reference frame and {B} as the body frame. P ∈ R

n denotes the position
of the rigid body with respect to {I} and expressed in {B}. Attitude of the rigid body is represented
by the rotation matrix R ∈ SO(n) = {R ∈ R

n×n| det(R) = 1 , R�R = I } where R� represents
orientation of the body frame with respect to the inertial frame. Rigid-body attitude R and position
P can be interpreted as an element of SE(n) := SO(n) × R

n, which is represented by the matrix

[
R P
0 1

]
∈ SE(n).

Thus, rigid-body kinematics is described by

[
Ṙ Ṗ
0 1

]
=
[−S(ω) v

0 0

] [
R P
0 1

]
, (1)

where ω ∈ R
n and v ∈ R

n denote angular and translational velocities of {I} with respect to {B}, and
expressed in {B}. We define the operator S(·) as a function from R

n to the space of skew-symmetric
matrices S(n) = {S ∈ R

n×n| S� = −S}. Without loss of generality in planar motions, namely n = 2,
angular velocity is a scalar variable. Landmark measurements indicated as qi ∈ R

n, i = 1, . . . , N ,
are obtained through the sensors mounted on the rigid body which are capable of detecting and
tracking terrain characteristics (such as CCD cameras). Also, we have

qi = Rpi − P,
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Fig. 1. Landmark-based attitude and position estimation.

where pi represents the location of ith landmark with respect to the inertial frame {I} and N is the
number of landmarks. Figure 1 depicts an example of rigid-body planar motion in compliance with
Eq. (1).

2.1. Embedding SE(n) into the Euclidean space
Consider column stacking of R and P given by X = [P� r�

1 · · · r�
n

]� ∈ R
n2+n, where R =

[r1 · · · rn], rj ∈ R
n, j = 1, . . . , n. It is straightforward to see that Eq. (1) transforms into

Ẋ(t) = A(ω)X(t) + B(v), (2)

where A(ω) = −diag(S(ω), . . . , S(ω)) ∈ R
(n2+n)×(n2+n) is a block diagonal matrix, and B(v) =

[ In 0n×n2 ]�v ∈ R
n2+n . Similarly, by column stacking landmark measurements, the output equation

qi = Rpi − P can be formulated as Y (t) = CX(t), where Y = [y1
� · · · yn

� ]� ∈ R
nN and

C =

⎡
⎢⎣−In p11In · · · p1nIn

...
...

. . .
...

−In pN1In · · · pNnIn

⎤
⎥⎦ ∈ R

nN×(n2+n)

with pi = [pi1 · · · pin ]� ∈ R
n.

Rigid-body position and attitude kinematics can then be considered as a class of state affine systems
described by

Ẋ(t) = A(u)X(t) + B(u)
Y (t) = CX(t),

(3)

where angular and linear velocities are lumped in u(t) ⊂ D, where D is the set to which bounded
inputs belong. Taking into account the delayed stream of information from landmark measurement
sensors, the estimation problem of interest in sequel is that of designing an observer for state affine
system (3).
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2.2. Preliminaries

Definition 1. 15 When A(u) satisfies the commutative property

A(u(t))

(∫ t

t0

A(u(τ ))dτ

)
=
(∫ t

t0

A(u(τ ))dτ

)
A(u(t)) (4)

for all t, t0, then the state transition matrix associated with the system Ẋ(t) = A(u)X(t) is given by

�(t, t0) = e
∫ t

t0
A(u(τ ))dτ

. (5)

Properties pertinent to state transition matrix (5) can be enumerated as

1. �(t0, t0) = I ,
2. �(t, t0) = �(t, s)�(s, t0),
3. d

dt
�(t, t0) = A(u(t))�(t, t0),

4. �−1(t, t0) = ��(t, t0) = �(t0, t),
5. �(t, t0)A(u(t)) = A(u(t))�(t, t0).

Moreover, the transition matrix associated with Ṙ = −S(ω)R is R(t)R�(t0). Therefore, Eq. (5) is
equivalent to

�(t, t0) = diag(R(t)R�(t0), . . . ,R(t)R�(t0)) ∈ R(n2+n)×(n2+n). (6)

Since R(τ )R�(t0) ∈ SO(n), it follows that ‖�(τ, t)‖ = 1.

Remark 1. The commutativity property in Eq. (4) imposes limitation on the diversity of kinematics
that can be fit into framework (2) and at the same time enjoy state transition matrix. Skew-symmetric
matrices of dimension 2 comply with this property. This makes systems with kinematics evolving
in planar space, namely SE(2), to be of practical interest to this theory. Meanwhile, to the best
of authors knowledge, so far, no explicit state transition matrix is proposed for spatial kinematic
evolution, namely SE(3).

Definition 2. The 2-norm of a vector is denoted by, ‖ · ‖. The L2 norm of matrix or vector functions
(of the variable x) are denoted by ‖ . ‖L2[0, D]. In the sequel, the PDE state variable U(x, t) is a vector
function of two variables x and t , where t is time and x is a spatial variable that takes values in the
interval [0, D]. Therefore,

‖U(t)‖L2[0, D] =
(∫ D

0
U�(x, t)U(x, t)dx

)1/2

which makes it a function of time variable t14.

Lemma 1 ([16], [17]). Consider the matrix differential equation

Ṗ (t) = −εP (t) − A�(u)P (t) − P (t)A(u) + C��C, (7)

where ε ∈ R>0 is a positive constant and initial condition P (0) ∈ R
n×n and parameter � ∈ R

n×n are
symmetric positive definite (SPD) matrices. Then, there exist β1, β2 ∈ R>0, such that P (t) becomes
a SPD matrix and satisfies the inequality 0 < β1In ≤ P (t) ≤ β2In for all time. Moreover, the lower
bound of matrix differential equation (7) is given by β1 = 2T e−εT λ(C��C), ∀ t > t0 + T ,16 where
λ is the minimum eigenvalue of corresponding matrix. Parameter T is a positive constant, so that,
for all t > 0

∫ t+T

t

��(τ, t)C��C�(τ, t)dτ ≥ αIn > 0,

where In is the n × n identity matrix and α = T λ(�)λ(C�C). �
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Assuming that the rank of the matrix C�C is complete, the pair (A(u), C) is uniformly completely
observable and hence β1 > 0.

Lemma 2. For any X , Y ∈ R
n and any scalar κ ∈ R>0 , one has

2X�Y ≤ κX�X + κ−1Y�Y . (8)

3. Predictor Observer
Consider the following state affine system

Ẋ(t) = A(u)X(t) + B(u)
Y (t) = CX(t − D),

(9)

where X(t), u(t) and Y (t) are the state, input, and output of the system, respectively. Also,
A(u), B(u), C are uniformly bounded matrices of compatible dimensions. We assume that the
output is delayed by D unit of time, which is constant and known. Let the predictive observer for
system (9) be given by

˙̂X(t) = A(u)X̂(t) + B(u) + e
∫ D

0 A(u(τ ))dτP −1(t)C��
(
Y (t) − Ŷ (t)

)
Ŷ (t) = CX̂(t − D) + C

∫ t

t−D

e
∫ t−θ

0 A(u(τ ))dτP −1(θ)C��
(
Y (θ) − Ŷ (θ)

)
dθ

Ṗ (t) = −εP (t) − A�(u)P (t) − P (t)A(u) + C��C, (10)

where X̂(t) and Ŷ (t) are observer state and output, respectively. The rest of the notations are elaborated
on Lemma 1 and Definition 1.

Remark 2. Observer output in Eq. (10) have a distributed delay integral feedback term. This term
is in form of a general convolution integral function given by

∫ t

t−D

�(t − θ, 0)f (θ)dθ,

where �(t − θ, 0) = e
∫ t−θ

0 A(u(τ ))dτ and f (t) = P −1(t)C��(Y (t) − Ŷ (t)). The distributed delay
integral term depending on the the output estimation error Y (t) − Ŷ (t), is prominent feature of the
predictor based observer and ensures exponential convergence of estimation error to zero. However,
in most standard state observers for time-delay systems, only a pure output error term is presented
and the convergence is normally asymptotic.

4. Observer Synthesis
To simplify convergence analysis, we model the output equation in Eq. (9) by PDE,

Ut (x, t) = Ux(x, t)

U(D, t) = CX(t)

Y (t) = U(0, t), (11)

where the delayed state U(x, t) depends on the time variable t and the spatial variable x. Variable
x assumes values in the interval [0, D]. It can be verified that the solution to this transport PDE
equation is

U(x, t) = CX(t + x − D). (12)
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Fig. 2. Block diagram of the predictive observer in presence of sensor delay D.

Therefore, at the boundary condition x = 0, we have the delayed state U(0, t) = CX(t − D), which
is equivalent to system output. The entire delayed system can then be represented as interconnection
of ODE and PDE

Ẋ(t) = A(u)X(t) + B(u)

Ut (x, t) = Ux(x, t)

Y (t) = U(0, t). (13)

Now, we propose the predictive observer in the ODE-PDE form as

˙̂X(t) = A(u)X̂(t) + B(u) + �(D, 0)P −1(t)C��
(
Y (t) − Û(0, t)

)
Û t (x, t) = Ûx(x, t) + C�(x, 0)P −1(t)C��

(
Y (t) − Û(0, t)

)
Û(D, t) = CX̂(t), (14)

where �(t, 0) is the transition matrix (5) and P (t) is given by the matrix differential equation in
Lemma 1. A block diagram of the proposed observer is provided in Fig. 2. Note that the above
ODE-PDE representation of the observer is for analysis purpose. Real-time implementation of the
observer is always based on Eq.(10).

Next, we define the estimation error variables by

X̃(t) = X(t) − X̂(t)

Ũ(x, t) = U(x, t) − Û(x, t).

By virtue of Eq. (12), the term Ũ(x, t) can be regarded as delayed sensor estimation error. The
following error dynamics are resulted from Eqs. (13) and (14).

˙̃X(t) = A(u)X̃(t) − �(D, 0)P −1(t)C��
(
Y (t) − Û(0, t)

)
Ũ t (x, t) = Ũx(x, t) − C�(x, 0)P −1(t)C��

(
Y (t) − Û(0, t)

)
Ũ(D, t) = CX̃(t). (15)

Global and exponential convergence of the error dynamics (15) is investigated in sequel. We define
the composite estimation error by14

W̃(x, t) = Ũ(x, t) − C�(x, D)X̃(t), (16)
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where W̃(x, t) includes the estimation error X̃(t) and the delayed output estimation error Ũ(x, t).
Introduction of the composite error is to further simplify and clarify the convergence analysis.
Differentiating W̃(x, t) with respect to x and t with appropriate replacement from Eq. (15), yields

W̃ t (x, t) − W̃ x(x, t) = C (A(u(x)) − A(u(t))) �(x, D)X̃(t). (17)

In light of the above transformation and the boundary condition W̃(D, t) = Ũ(D, t) − CX̃(t) = 0,
the observer error dynamics (15) becomes

˙̃X(t) = (A(u) − �(D, 0)P −1(t)C��C�(0, D)
)
X̃(t) − �(D, 0)P −1(t)C��W̃(0, t)

W̃ t (x, t) = W̃x(x, t) + C (A(u(x)) − A(u(t))) �(x, D)X̃(t)

W̃(D, t) = 0. (18)

The following theorem is the main result of this section.

Theorem 1. The attitude and position observer (14) guarantees that limt→+∞ X̃(t) = 0 and
limt→+∞ Ũ(x, t) = 0, ∀x ∈ [0, D]. More specifically, the observer error Eq. (18) is exponentially
stable in the sense of the norm

(
‖X̃(t)‖2 +

∫ D

0
Ũ�

(x, t)Ũ(x, t)dx

)1/2

(19)

provided that the following two assumptions hold:

1. The known and constant time-delay satisfies 0 < D < Dmax.
2. The observer gain is chosen to satisfy 0 < εmin < ε < εmax.

where εmin, εmax, Dmax are given in the proof.

Proof. In order to preserve continuity, a proof of this result is provided in Appendix. �

Both the maximum tolerable delay and the observer gain directly depend on design parameters
and landmark configuration, namely matrix C. For a given sensor delay, the observer gain assumes
its admissible values in an open interval determined in Assumption 2 of the Theorem 1. Note that
the landmarks are not all collinear (on a straight line), otherwise matrix C would be singular and
consequently no specific interval for the observer gain ε could be found to establish the observation
convergence.

The following Theorem provides characteristics of exponential convergence of the norm (19).

Theorem 2. An exponentially decaying upper bound for the estimation error norm is given by

(
‖X̃(t)‖2 +

∫ D

0
Ũ�

(x, t)Ũ(x, t)dx

)1/2

≤
√

ϕ2ψ2

ϕ1ψ1
e− μ

2 t

(
‖X̃(0)‖2 +

∫ D

0
Ũ�

(x, 0)Ũ(x, 0)dx

)1/2

.

(20)

Proof. In order to preserve continuity, a proof of this result is provided in Appendix.
A PDE-free realization of the observer (14) is provided in the next section. �

5. Observer Implementation
In this section, an equivalent representation of predictive observer (11) out of ODE-PDE form
is derived. This representation is of importance in implementation and further understanding of the
predictive observer. Taking the Laplace transform L, from the PDE equation in Eq. (14), and knowing
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that Û(x, 0) = 0, yields

sÛ(x, s) = d

dx
Û(x, s) + C�(x, 0)L

{
P −1(t)C��

(
Y (t) − Ŷ (t)

)}
Û(0, s) = Ŷ (s).

The solution to this first-order ODE in terms of x is

Û (x, s) = Ŷ (s)esx −
∫ x

0
es(x−η)C�(η, 0)L

{
P −1(t)C��

(
Y (t) − Ŷ (t)

)}
dη.

Inserting the boundary condition Û(D, s) = CX(s) in the above equation, we have

Ŷ (s) = CX̂(s)e−sD +
∫ D

0
e−sηC�(η, 0)L

{
P −1(t)C��

(
Y (t) − Ŷ (t)

)}
dη.

Finally, after taking the inverse Laplace transform and a change of variable θ = t − η, we obtain

Ŷ (t) = CX̂(t − D) + C

∫ t

t−D

�(t − θ, 0)P −1(θ)C��
(
Y (θ) − Ŷ (θ)

)
dθ.

Thus, the observer representation in terms of the output is given by

˙̂X(t) = A(u)X̂(t) + B(u) + �(D, 0)P −1(t)C��
(
Y (t) − Ŷ (t)

)
Ŷ (t) = CX̂(t − D) + C

∫ t

t−D

�(t − θ, 0)P −1(θ)C��
(
Y (θ) − Ŷ (θ)

)
dθ. (21)

The predictive observer (21) is a PDE-free realization of observer (14) that involves a distributed
delay integral feedback term in observer output.

6. Numerical Example: Wheeled Mobile Robot
We consider a wheeled mobile robot, depicted in Fig. 1, which complies with the class of state affine
systems for which the predictive observer is designed. Owing to planar motion of the mobile robot,
its rotation is around a single axes, namely the z-axis. Hence, the angular velocity ω(t) is a bounded
scalar value. Furthermore, the employed wheeled robot can not have any displacement along the axis
perpendicular to their wheels. This makes its translational velocity vector (expressed in body frame)
as v = [vx 0]�.

We place our landmarks physically at locations p1 = [1 3]�m and p2 = [3 1]�m. Adding these
landmark locations we find the third location to be p3 = [4 4]�m. After embedding the robot
kinematics from SE(2) into R

6, the attitude and position dynamics take the form of state affine
systems (9). Therefore, the pertinent matrices A(u), B(u), and C are given by

A(u) = diag(S(ω), S(ω), S(ω)), S(ω) =
[

0 −ω

ω 0

]
, B(u) = [vx 0 0 0 0 0

]�

C =
⎡
⎣−I2 I2 3I2

−I2 3I2 I2

−I2 4I2 4I2

⎤
⎦ .

The planar motion of the robot in 100 s is depicted in the x − y plane and shown in Fig. 3. The
angular and linear velocities are given by ω(t) = 2 sin(0.04πt) rad/s and vx = 1 m/s. Furthermore,
The initial values are arbitrarily selected as X(0) = [− 5√

2
1√
2

√
2

2

√
2

2 −
√

2
2

√
2

2 ]�. In order to assess
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Fig. 3. Wheeled mobile robot planar path.

the performance of the proposed predictive observer (21), we consider a standard state observer of
the form18

˙̂X(t) = A(u)X̂(t) + B(u) + P −1(t)C��
(
Y (t) − Ŷ (t)

)
Ŷ (t) = CX̂(t − D)

Ṗ (t) = −εP (t) − A�(u)P (t) − P (t)A(u) + C��C (22)

and compare it with the proposed observer. In the standard observer, we set ε and � similar to
the predictive observer. Landmark measurements are assumed to be available after D unit of time.
Furthermore, both observers assume the arbitrary initial values P (0) = 0.5I6×6 and � = 0.5I6×6.

The observer gain ε is selected according to Assumption 2 in Theorem 1. The pertinent range
for ε is found from simulations for different delays. From numerical simulations it is observed that
the standard observer (22) does not converge for delays of larger than 1.04 s, whereas the predictive
observer (21) is still convergent for delays of shorter than 1.5 s. In simulations for delays D = 1.1,
D = 1.2, D = 1.3, D = 1.4, and D = 1.5, the lower bound of ε is found to be 0.2, 1.6, 2.1,5 and
23, respectively. In Fig. 4, both the predictive and the standard observer are compared for D = 1 and
ε = 0.6. Since the error of the standard observer grows arbitrary large for delays of larger than 1 s,
the results of this observer is eliminated hereafter. The predictive observer performs satisfactorily for
constant delays D = 1.2 and D = 1.4 and different values of ε as illustrated in Fig. 5. Furthermore,
in Fig. 6 the effect of variation in delay is illustrated for a fixed observer gain.

From Figs. 4 and 5, it can be understood that the predictive observer (21) outperforms the standard
state observer (22); in the sense that it handles larger sensor delays, enjoys faster convergence, and
ensures smaller error.
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Fig. 4. Comparison of the predictive and the standard observer for D = 1 and ε = 0.6.

6.1. Sensor noise
Noise in sensors is considered on linear velocity readings and landmark measurements. In particular,
additive, zero-mean, white Gaussian noise is taken into account, with standard deviation of 4 cm/s (4
percent) for linear velocity and 0.04 m for the landmark measurements.

As we can see in Fig. 7, Ỹ (t) is noisier in comparison to X̃(t), while error bound in X̃(t) is
bigger than that of Ỹ (t). In presence of noise the observer is sensitive with respect to output delay.
This means the steady state error for both state and output has a finite bound, while this bound
increases by the growth in sensor delay. We observe that even in presence of noise, the predictive
observer demonstrates a plausible behavior, though the maximum tolerable delay in output sensor
decreases.

To incorporate noise, as a realistic phenomenon, a realistic angular velocity is required as well,
for instance, lets say ω = 0.4 sin(0.04πt) rad/s. From definition of γ in Eq. (A3) and the maximum
tolerable delay in Eq. (A6), we see that decrease in angular velocity (equivalently parameter γ ) leads
to a bigger Dmax. This is corroborated by simulation with adopted angular velocity. The noise-free
observer in this case can tolerate output delay up to Dmax = 8.7; whereas, in presence of noise Fig. 8,
X̃(t) tend to grow larger by increase in output time-delay D. This example better elucidates the
sensitivity and performance degradation of predictive observer in presence of sensor noise for large
sensor delays.

7. Conclusions
This paper presents an attitude and position observer based on landmark measurements and velocity
readings. The attitude and position estimations are obtained from a globally exponential stable
predictive observer combining the measurements from velocity sensors together with landmark
measurements. It is assumed landmark sensors have time-delay in measuring landmark’s position.
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Fig. 5. Performance of the predictive observer for D = 1.2, D = 1.4, and different values of the observer gain.
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Fig. 6. Performance of the predictive observer for ε = 2 and different values of delay.

Upper bound of the time-delay for which the observer converges, is calculated. Simulation results
confirm advantages of the predictive observer over a standard state observer. As a possible future line
of research, it is interesting to investigate the same problem under state dependent delay.
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Fig. 7. Performance of the predictive observer in presence of noise and for ε = 2 and different values of delay.
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A. Appendix

A.1. Proof of Theorem 1

Proof. Consider the Lyapunov–Krasovskii functionals

V (t) = V1(t) + V2(t)

V1(t) = X̃
�

(t)��(0, D)P (t)�(0, D)X̃(t)

V2(t) = ρ

∫ D

0
(1 + x)W̃�

(x, t)W̃(x, t)dx, (A1)

where ρ is a positive scalar to be chosen. By virtue of Eq. (A1), it can be inferred that

β1

∥∥X̃(t)
∥∥2 ≤ V1(t) ≤ β2

∥∥X̃(t)
∥∥2

ρ

∫ D

0
W̃�

(x, t)W̃(x, t)dx ≤ V2(t) ≤ ρ(1 + D)
∫ D

0
W̃�

(x, t)W̃(x, t)dx, (A2)

where β1, β2 are first appeared in Lemma 1, Taking time differentiation of the functionals in
Eq. (A1) and substituting from Eq. (18), yields

V̇ 1(t) = −X̃
�

(t)��(0, D)
(
εP (t) + C��C

)
�(0, D)X̃(t) − 2X̃(t)���(0, D)C��W̃(0, t)

V̇ 2(t) = −ρW̃�
(0, t)W̃(0, t) − ρ

∫ D

0
W̃�

(x, t)W̃(x, t)dx

+ ρ

∫ D

0
2(1 + x)W̃�

(x, t)C (A(u(x)) − A(u(t))) �(x, D)X̃(t)dx.
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In light of properties 2 and 4 in Definition 1, and the lower bound of P (t) given in Lemma 1 and the
inequality (8), we have

V̇ 1(t) ≤ − εβ1‖X̃(t)‖2 + (κ1λ̄(C��2C) − λ(C��C)
) ‖X̃(t)‖2 + κ−1

1 ‖W̃(0, t)‖2

V̇ 2(t) ≤ − ρ‖W̃(0, t)‖2 − ρ

∫ D

0
W̃�

(x, t)W̃(x, t)dx + ρ
[
(1 + D)

(
κ2

∫ D

0
W̃�

(x, t)W̃(x, t)dx
)

+ κ−1
2 λ̄(C�C)‖X̃(t)‖2

∫ D

0
(1 + x)‖�(x, D)‖2‖A(u(x)) − A(u(t))‖2dx

]
.

Since R(x)R�(D) ∈ SO(n) it follows from Eq. (6) that ‖�(x, D)‖ = 1. Moreover,

γ := sup
u∈D

{‖A(u(x)) − A(u(t))‖2
L2[0, D]

}
. (A3)

Choosing ρ = κ−1
1 in the Lyapunov function, implies

V̇ (t) ≤ −δ1‖X̃(t)‖2 − ρδ2‖W̃(t)‖2
L2[0, D] (A4)

where

δ1 = εβ1 + λ(C��C) − κ1λ̄(C��2C) − D

(
D

2
+ 1

)
γ κ−1

1 κ−1
2 λ̄(C�C)

δ2 = 1 − (1 + D)κ2.

In order to make δ2 > 0, the parameter κ2 must be chosen such that κ2 < 1
1+D

. An equivalent

expression can be derived as 1 + D < κ−1
2 . Eliminating κ−1

2 from δ1, yields

εT e−εT ≥ 1

2

[
D(D + 1)(D + 2)γ κ−1

1 λ̄(C�C) + 2κ1λ̄(C��2C)

2λ(C��C)
− 1

]
. (A5)

This makes δ1 > 0. Combining the inequalities (A2) and (A4), we have

V̇ (t) ≤ − δ1

β1
V1(t) − δ2

1 + D
V2(t) ≤ −μV (t),

where μ = min{ δ1
β1

, δ2
1+D

}.
Hence, the origin of transformed system (X̃, W̃) in Eq. (18) is a globally and exponentially

stable equilibrium point in the sense of the norm ‖X̃(t)‖2 + ∫ D

0 W̃�
(x, t)W̃(x, t)dx. Finally, from

the transformation (16), we achieve exponential convergence in the sense of the norm (19).
From inequality (A5), the maximum tolerable delay and admissible range of the observer gain in

Theorem 1 are derived as

0 < D < Dmax = 1

3σ
+ σ − 1

0 < − 1

T
W0(−υ2)︸ ︷︷ ︸
εmin

< ε < − 1

T
W−1(−υ2)︸ ︷︷ ︸

εmax

(A6)
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where

σ =
⎛
⎝υ1

2
+
√

υ2
1

4
− 1

27

⎞
⎠1/3

υ1 = 2λ(C��C)(1 + 2e−1) − 2κ1λ̄(C��2C)

γ κ−1
1 λ̄(C�C)

and finally

υ2 = 1

2

(
D(D + 1)(D + 2)γ κ−1

1 λ̄(C�C) + 2κ1λ̄(C��2C)

2λ(C��C)
− 1

)
.

Furthermore, T is defined in Lemma 1, λ and λ̄ denote the minimum and maximum eigenvalue
of their corresponding matrix and the functions W0 and W−1 are defined in subsection A. Lambert
function in the Appendix. �

A.2. Proof of Theorem 2
From the Lyapunov–Krasovskii functional (A1), we have

ϕ1

(
‖X̃(t)‖2 +

∫ D

0
W̃�

(x, t)W̃(x, t)dx

)
≤ V (t) ≤ ϕ2

(
‖X̃(t)‖2 +

∫ D

0
W̃�

(x, t)W̃(x, t)dx

)

where ϕ1 = min{β1, ρ} and ϕ2 = min{β2, ρ(1 + D)} . By virtue of Eq. (16), we obtain

∫ D

0
W̃�

(x, t)W̃(x, t)dx ≤ φ1

∫ D

0
Ũ�

(x, t)Ũ(x, t)dx + φ2‖X̃(t)‖2

∫ D

0
Ũ�

(x, t)Ũ(x, t)dx ≤ φ3

∫ D

0
W̃�

(x, t)W̃(x, t)dx + φ4‖X̃(t)‖2

where φ1 = 1 + κ3, φ2 = (1 + κ−1
3 )λ̄(C�C)D, φ3 = 1 + κ4, φ4 = (1 + κ−1

4 )λ̄(CTC)D. Combining
the above inequalities, implies

ψ1

(
‖X̃(t)‖2 +

∫ D

0
Ũ�

(x, t)Ũ(x, t)dx

)
≤ ‖X̃(t)‖2 +

∫ D

0
W̃�

(x, t)W̃(x, t)dx

‖X̃(t)‖2 +
∫ D

0
W̃�

(x, t)W̃(x, t)dx ≤ ψ2

(
‖X̃(t)‖2 +

∫ D

0
Ũ�

(x, t)Ũ(x, t)dx

)

where ψ1 = 1
max{φ3, 1+φ4} , ψ2 = max{φ1, 1 + φ2}. Finally, by solving the differential inequality

V̇ (t) ≤ −μV (t) and substituting from inequality

ϕ1ψ1

(∥∥X̃(t)
∥∥2 +

∫ D

0
Ũ�

(x, t)Ũ(x, t)dx

)
≤ V (t) ≤ ϕ2ψ2

(∥∥X̃(t)
∥∥2 +

∫ D

0
Ũ�

(x, t)Ũ(x, t)dx

)
,

we conclude the inequality (20). �

A.3. Lambert function
The Lambert W function is defined as the inverse of the function yey = z whose solution is given by
y = W (z) or shortly W (z)eW (z) = z. For real valued z, if z < −e−1, then W (z) is multivalued complex.
If −e−1 < z < 0, there are two possible real values of W (z): The branch satisfying −1 ≤ W (z) is
denoted by W0(z) and called the principal branch of the W function, and the other branch satisfying
W (z) ≤ −1 is denoted by W−1(z). If z ≥ 0, there is a single real value for W (z), which also belongs to
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Fig. 9. Solid line: W−1(z), Dashed line: W0(z).

the principal branch W0(z).19 The two real branches of the Lambert W function in the third-quadrant
is of interest in Theorem 1. The two real branches of the Lambert W function are depicted in Fig. 9.
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