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SUMMARY
In Part 1 of this paper1 we have investigated numerically the
quasiperiodic and frequency locked solutions of mathemat-
ical model of a robot with one degree of freedom. In this
paper we extend our investigations to the region of transient
chaos. The zones of chaotic transients are very broad and lie
beyond the parameter range of engineering significance.
Transiently chaotic zones exhibit a complex structure,
fractally intertwined with tongues of regular pattern and
cover a broad range of control parameter L. The crisis point
for the onset of sustained chaos lies extremely far from the
point of onset of transient chaos.
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1. INTRODUCTION
In order to avoid potentially adverse errors, industrial
designers must be prepared to devote a greater effort into
exploring the full range of possible dynamic responses of
their systems.2 In particular, it is important to know
quantitatively where in the parameter space the simple
period 1 solution (with the period of the external driver)
becomes unstable; this is of importance for the construction
of devices on the basis of nonlinear oscillator which should
operate reliably, with the generation of complicated periodic
motion or chaotic noise. It is well known that even simple
mathematical models of nonlinear dynamics can exhibit
surprisingly complex behavior.3–7

The periodic forcing of nonlinear oscillators has been, in
particular, a topic of broad interest to basic scientists and
engineers.3,7–12

In a previous paper (Part 1) we have introduced a
mathematical model for a robot with one degree of
freedom,1 based on considerations of dynamics of a full
robot (manipulator plus actuators), incorporating relevant
mechanical parameters.13–18 It was shown that the resulting
mathematical model corresponds to the following simple
form:

ẍ2b2 ẋ2sgn(ẋ)2g2 sgn(ẋ)2d21 x2d23 x3

= L
v 2

0

2p
cos (v0 t)2j21 el 21t 2j22e

l 22t. (1)

The second and third term on the l.h.s. of Eq. (1) are
dissipative terms, corresponding to the viscous and dry
friction,18 respectively. The parameters d 21 and d 23 are the
coefficients of rigidity; the signs d 21 < 0 and d 23 < 0
correspond to the rigidity with the effect of a hard spring.
The first term on the r.h.s. of the Eq (1) is the periodic
driving force with driving frequency v 0 and driving
amplitude Lv 2

0/2p, where L denotes the translation length.
This term corresponds to the nominal control minimizing
the Hamiltonian.19 The last two terms present the feedback
drive with the strengths given by:

j 21 =
a2

c2

· l 2
21 ,

j 22 =
b2

c2

· l 2
22 ,

a2 = l 22 z2 (t0 )2z4 (t0 ) ,

b2 = z4 (t0 )2l 21 z2 (t0 ) ,

c2 = l 22 2l 21, l 22 ≠ l 21.

The parameters l21 and l22 denote the desired roots of the
system in the regime of closed regulation loops.

The values of parameters in Eq. (1) were fixed
at the values: v 0 = 2p, l 21 = 210.5, l 22 = 211.5,
b 2 =25.18·1026, g 2 = 20.00298, d 21 = 20.7611, d 23 =
20.0127, z2(0) = 0.01, z4(0) = 0.01. This parameterization
was referred to as the parametrization (I). The length
parameter L (in the units of length) was treated as a control
parameter in computer simulations. Throughout the compu-
tations, the fixed initial conditions are taken x0 = 0, ẋ0 = 0. A
particular parameter scan was adopted, close to the upper
boundary of the estimated range of linear and cubic
coefficients or rigidity. In Part 11 nonlinear aspects of
dynamics of this mathematical model were numerically
investigated in regular region in the length parameter –
forcing frequency parameter plane and for sweeps through
that plane.

Computations were performed using a network of DEC-
3100 and ALPHA work stations. Differential equation (1)
was solved using the D02BAF routine from the NAG
library. This routine employs the Runge-Kutta method with
automatic adjustments of numerical precision. The toler-
ance was fixed at 10211.

It was shown1 that for an approximately small length
parameter L, the system shows a limit cycle with period
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T = 2p
v 0

, i.e. the period-1 behavior. As L is gradually
increased, the system exhibits the two-frequency quasiper-
iodic behavior, with a period-1 asymptote. The range of L
which is of direct significance for engineering purposes, lies
within this interval of L. Nonlinear effects in the neighbor-
ing regions of higher values of L in a particular parameter
scan showed1 a complex frequency locked and quasiper-
iodic structure with increasing L up to the point of
appearance of chaotic transients (at L<48 for v 0 = 2p).

2. DYNAMIC STRUCTURE IN THE REGION OF
TRANSIENT CHAOS
In the present paper we investigate solutions of Eq. (1) in
the region of transient chaos. Chaotic transients have been
previously observed and investigated in various dynamical
systems.19–25 In dynamical system (1) the transient chaos
appears for v 0 = 2p at L ≈ 48. In order to get an insight into
the onset of this transient chaos, successive magnifications
of the sweep through the control parameter L at v 0 = 2p are
presented in Figure 1.

At the level of resolution in the top row (the L = 1-50
interval with the increment DL = 1), one observes two
period-5 and two period-4 Arnold tongues prior to the onset
of transient chaos at L ≈ 48. The rest of the first row
corresponds to a two-frequency quasiperiodic motion
asymptoting into the period-1 solution, which is, therefore,
labelled by 1. In the first step of magnification (second row),
which magnifies the L = 44–49 subinterval, several addi-
tional Arnold tongues appear: four of period 4, one of period
7 and one of period 11. In the second step of magnification
(third row), which magnifies the L = 47.60–48.10 sub-
interval, several additional tongues are observed: one of
period 4, one of period 17 and three narrow chaotic tongues,

etc. In each step, from one row to the next below, the
resolution is increased ten times, revealing the tongue
structure at smaller and smaller length scales. The repeated
birth of narrow tongues can be seen under transformation of
scale: at the level of finer resolution there appear narrower
Arnold tongues and tongues of transient chaos. Each Arnold
tongue of a particular period is getting splitted into a larger
and larger number of narrower and narrower tongues of the
same period. Similar fractal-type structure appears also for
the quasiperiodic and transiently chaotic tongues in the
same region, as indicated in Figure 1. Thus, in the region of
onset of transient chaos there appears a fractal-type multiple
structure of splitted Arnold tongues of some particular
frequencies, tongues of quasiperiodicity (with period-1
asymptote) and tongues of chaotic transients.

This structure bears geometrical resemblance to the one
found for the zones of sustained chaos in some dynamical
systems with sizeable damping, as discussed, for example in
Ref. 26.

The fractal-type pattern in Figure 1 is clearly seen from
the map of the boundary between regular (frequency locked
or periodic) and transiently chaotic zones in the phase
diagram.

Figure 2(a) shows a 4003 248 grid of (L,v 0) parameters,
ranging from L = 45 to L = 49 and from v 0 = 6.222 to
v 0 = 6.48 in increments of DL = 0.001 and Dv0 = 0.0010375,
respectively. At each of these lattice points on the parameter
grid, the Eq. (1) was solved numerically and it was
determined whether the solution is regular or transiently
chaotic. The regular type of solution was indicated by a
blank space and transiently chaotic by a dot in the parameter
space. Such a map (and its successive magnifications) will
be referred to as the phase space map of transient chaos.

Fig. 1. Phase diagram showing the sweep through L for the system (1) at v0 = 2p and successive magnifications of some subintervals.
In the first row the increment of L is DL = 1. At each step of magnification, going from a row to row, the increment DL is decreased 10
times, i.e. the resolution is increased ten times. The label n denotes a solution with frequency locking of period n, and the chaotic transient
is shown as dashed.
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Fig. 2. Fractal zone boundary between the regular and transiently
chaotic zones and its successive magnifications in the phase
diagram for the system (1). At each lattice point on the parameter
grid the type of solution is shown by a dot (transiently chaotic
solution) or blank (regular solution) for the settings time of 20000
cycles. (a) Map of transient chaos for a grid of (L, v0) parameters
ranging from L = 45 to L = 49 and from v0 = 6.222 to v0 = 6.48. (b)
Magnification of the boxed region shown in the map (a); (c)
Magnification of the boxed region shown in the map (b). (d)
Magnification of the boxed region shown in the map (c). (e)
Further magnifications as well show a similar pattern.

Chaotic transients 203

https://doi.org/10.1017/S0263574799001952 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574799001952


A segment of this map within the box determined by
48.300 ≤ L ≤ 48.400 and 6.310 ≤ v 0 ≤ 6.317 is magnified in
Figure 2(b), employing a 4003 200 parameter grid.

A segment within the boxed region is magnified in the
next map shown in Figure 2(c), with a 2503 250 parameter
grid, associated with the increments DL = 1.4·1025 and
Dv0 = 1.4525·1026. A smaller boxed region in this figure is
further magnified in Figure 2(d) with a 2503 250 parameter
grid, associated with the increments DL = 7·1027 and
Dv0 = 7.2625·1028. A smaller boxed region in this figure is
further magnified in Figure 2(e), with a 2883 288 parameter
grid, associated with the increments DL = 6·1028 and Dv0

= 6.225·1029.
Comparison of Figures 2(c), (d) and (e) reveals a

repetition of the same pattern at smaller and smaller scales.
This clearly indicates that we are seeing a self-similar
fractal web that repeats itself indefinitely under higher and
higher magnification.

We note that although the Poincare map associated with
chaotic transients is not fractal (it consists of a stochastic
cloud of unorganized points over a two-dimensional region
in parameter space), the boundary between the regular and
transiently chaotic zones in the parameter space exhibits the

fractal structure. This may be significance because of
possibility that some particular narrow tongues intrude
deeper into the regular regions.

On the other hand, it is interesting to compare the present
phase space map of chaotic transients for the system (1) in
the presence of light damping to the previous calculations of
basin boundary and transient time initial condition maps
associated with Duffing oscillator in the presence of
sizeable damping.23 In the latter case, upon magnification,
the fractal structure of the maps appear striated, or a series
of narrow parallel lines.

A typical power spectrum of chaotic transients is shown
in Figures 3(a), (b). The broad band noise, characteristic of
chaotic motion, is the main component of the Fourier
spectrum, even though a peak corresponding to the driving
frequency v 0 is still present, but with a rather low amplitude
above the noisy background. Furthermore, it is seen that the
transiently chaotic Fourier spectrum is characterized by a
mean white noise spectrum which approaches a constant
value in the limit of low frequencies. Therefore, in analogy
to some previous investigations of other systems,20,27,28 it
may be concluded that the appearance of chaotic transients
is associated with the loss of phase locking, i.e. that the

Fig. 3. Time evolution of the power spectrum for L = 47.98 at the onset of transient chaos. Power spectra were calculated in the following
time intervals: (a) t = 0–546.13; (b) t = 1000–1546.13; (c) t = 5000–5546.13; and (d) t = 30000–30546.13.
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observed chaotic feature appears to be related to random
transitions between different phase-locked states that have
become unstable.

During the lifetime of chaotic transient, the power
spectrum exhibits the broad band noise (Figures 3(a), (b)),
and afterwards the solution settles into a regular pattern,
with the power spectrum consisting of one or several
pronounced peaks (Figures 3(c), (d)). In the example shown
in Figure 3, the chaotic transient asymptotes to the period-1
solution.

After the chaotic transients have died out, the solution
asymptotes into one of regular type (quasiperiodic or
frequency locked). In Figure 4 the power spectra of such
asymptotes are shown for some values of L within the
region of onset of transient chaos.

In order to get deeper insight into qualitative behavior of
the system associated with the complex transiently chaotic
pattern for weak damping, the stable (attractors) and
unstable (saddles) periodic orbits were investigated for
L = 48, v = 2p. The attractors calculated for the

220 ≤ x ≤ 1, 22 ≤ y ≤ 20 section of the phase plane are
shown in Figure 5(a).

In calculating the saddle points the last two terms on r.h.s.
of Eq. (1) had to be neglected. We have found a large
number of unstable periodic orbits (saddles). The most
pronounced saddle point is the fixed point xf = 260.4,
yf = 0.9, with its stable and unstable manifolds (Figure 5(b)).
These manifolds intersect each other (Figure 5(b)), produc-
ing homoclinic points (homoclinic orbit) which is a
necessary and sufficient condition for the appearance of
transient chaos.

3. REGION OF CHAOTIC TRANSIENT AND THE
CRISIS POINT
The chaotic transient, which for v 0 = 2p appears first at the
value of control parameter L<48, persists in a very broad
interval up to high values of control parameter L, interrupted

Fig. 4. Power spectra for some values of control parameter near the region of the onset of transient chaos after the chaotic transients have
died out, in the time interval t = 20000–20546.13. (a) L = 45.1 (quasiperiodic); (b) L = 45.2 (period-4); (c) L = 45.3 (quasiperiodic; (d)
L = 45.8 (period-4); (e) L = 45.9 (quasiperiodic); (f) L = 46.4 (period-11); (g) L = 46.9 (quasiperiodic); (h) L = 47.0 (period-4); (i) L = 47.4
(quasiperoidic); (j) L = 47.5 (period-7); (k) L = 48.2 (quasiperiodic); and (l) L = 48.3 (period-13).
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by some narrow intervals of periodic windows. A partic-
ularly pronounced periodic window is of period 3 in the
L<70–80 interval of control parameter, as seen from the
bifurcation diagram in Figure 6.

In Figure 7 the power spectra are shown for some
characteristic values of the control parameter L within the
broad region of transient chaos for v 0 = 2p. Power spectra
are calculated for each L in the initial time interval from
t = 100 to t = 646.13 and in the time interval from t = 30000
to t = 30546.13 after the chaotic transients have died out.

At the critical value of control parameter, L = Lc <4·104,
the transient chaos turns into sustained chaos. At this point
of an inverse crisis, a chaotic transient is converted into
chaotic attractor.19 We see that this crisis point Lc lies far out
of the range of values of any significance for engineering
purposes.

We note that some dynamical aspects of the Coulomb
friction have been previously investigated in mechanical
models showing stick-slip motion and chaos.23–25 In these

cases damping was sizeable and accordingly rapid onset of
sustained chaos, contrary to the behavior of the present
system characterized by weak damping.

4. CONCLUSIONS
In this work numerical solutions of the system (1), which
corresponds to a model of robot with one degree of
freedom, have been investigated in the parameter region of
transient chaos.

Numerical calculations show that nonlinear phenomena
are much richer for this system, characterized by weak
damping, than for standard nonlinear system (damped
driven pendulum, Duffing oscillator etc.).

We have determined fractal boundaries between the zones
of transient chaos and quasiperiodicity, although the
Poincaré map of transient chaos is not fractal. It is shown
that the range of transient chaos is very broad and the crisis
point at which the transient chaos turns into the strange
attractor is far removed from the range of significance for
engineering purposes. Concluding, the calculations for the
present model of a robot with one degree of freedom and
reduced to a particular parameter scan indicate that outside
of the parameter range of immediate engineering sign-
ificance the nonlinear effects may be expected to appear in
the following order of appearance: two-frequency quasiper-
iodicity with a period-1 asymptote, Arnold tongues of
frequency locking, fractal-type multiple splitting of Arnold
tongues, and a very broad region of chaotic transients. Thus,
we find that in spite of the rich nonlinear transient
phenomena and Arnold tongues, the dynamical system of
our robot model exhibits an extreme robustness against
sustained chaos.

Fig. 5. Stable fixed points (attractors) (a) and unstable fixed point
(saddle) with its stable and unstable manifolds (b) for L = 48,
v = 2p.

Fig. 6. Bifurcation diagram of (1) in the L-scan of parameteriza-
tion (I). The calculated values of xmin of each oscillation in the time
interval from t = 100 to t = 850 is presented versus L in the range
from L = 50 to L = 100, with increment DL = 0.08.
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15. B. Novaković, “A time and energy optimal control of
industrial robots” In: (P. Kopacek, I. Troch and K. Desoyer,
Eds.) Theory of Robots, IFAC Proc. Ser. (Pergamon Press,
New York, 1988) pp. 205–210.
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