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Abstract. The question of magnetic field structure in the vicinity of the separatrix
in divertor tokamaks is studied. The authors have investigated this problem earlier
in a series of papers, using various mathematical techniques. In the present paper,
the two-wire model (TWM) [Reiman, A. 1996 Phys. Plasmas 3, 906] is considered.
It is noted that, in the TWM, it is useful to consider an extra equation expressing
magnetic flux conservation. This equation does not add any more information to
the TWM, since the equation is derived from the TWM. This equation is useful for
controlling the step size in the numerical integration of the TWM equations. The
TWM with the extra equation is called the flux-preserving TWM. Nevertheless, the
technique is apparently still plagued by numerical inaccuracies when the perturba-
tion level is low, resulting in an incorrect scaling of the stochastic layer width. The
stochastic broadening of the separatrix in the flux-preserving TWM is compared
with that in the low mn (poloidal mode number m and toroidal mode number n)
map (LMN) [Ali, H., Punjabi, A., Boozer, A. and Evans, T. 2004 Phys. Plasmas 11,
1908]. The flux-preserving TWM and LMN both give Boozer–Rechester 0.5 power
scaling of the stochastic layer width with the amplitude of magnetic perturbation
when the perturbation is sufficiently large [Boozer, A. and Rechester, A. 1978, Phys.
Fluids 21, 682]. The flux-preserving TWM gives a larger stochastic layer width when
the perturbation is low, while the LMN gives correct scaling in the low perturbation
region. Area-preserving maps such as the LMN respect the Hamiltonian structure
of field line trajectories, and have the added advantage of computational efficiency.
Also, for a 11

2 degree of freedom Hamiltonian system such as field lines, maps do
not give Arnold diffusion.

1. Introduction
The plasmas in modern tokamaks are bounded by the separatrix between magnetic
field lines that form toroidal magnetic surfaces, on which plasma is confined, and
open field lines that divert the plasma exhaust to divertor plates [1]. An ideal
tokamak is axisymmetric, and the separatrix in an ideal tokamak is a sharp surface.
Asymmetries in the magnetic field cause the last confining magnetic surface to
lie inside the ideal separatrix and create a layer of open field lines between the
last good surface and the ideal separatrix. This layer is called a stochastic layer.
Near the X point, the width of the stochastic layer is proportional to the square
root of the toroidally asymmetric part of the magnetic field [2]. The asymmetric
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part of the magnetic field results from the field errors, plasma instabilities, or
currents in external coils such as C coils or I coils in DIII-D [3] used to control
stochasticity [4]. Magnetic field line trajectories are the trajectories of a 11

2 degree
of freedom Hamiltonian [5,6]. Consequently, the tokamak separatrix and divertor
are archetypal for the behavior of a region of bounded Hamiltonian trajectories
surrounded by a region of open trajectories. The basic features of trajectories near
a separatrix are generic for a Hamiltonian system. The study of magnetic field line
behavior near the X point and the related plasma behavior are important for their
application to tokamaks, to other Hamiltonian or near-Hamiltonian systems, and
to the problem of heat deposition on collector plates [7].
The two-wire model (TWM) originated in a paper by Boozer and Rechester in

1978 [2]. In the TWM, two straight wires and a uniform axial magnetic field model
the axisymmetric part of the magnetic field. The TWM is the simplest model that
has the topology of divertor tokamaks. In 1996, Reiman investigated the TWM [8].
In Reiman’s work, the equations for the trajectories of magnetic field lines in
divertor tokamak are solved in cylindrical geometry. The ends of the cylinder are
identified. An analytic term represents the field errors. The analytic term can be
Fourier decomposed into an infinite series in modified Bessel functions. The simpli-
city of the TWM allows fast numerical integration of a large number of field line
trajectories over long distances. Singular surfaces and the magnetic footprint are
calculated from the numerical integration of field line trajectories. In the Reiman
TWM for the three-dimensional (3D) poloidal divertor, unstable closed magnetic
field lines that follow the pitch of rational surfaces govern the magnetic reconnec-
tion. Magnetic asymmetry destroys the ideal separatrix and the neighboring flux
surfaces. This allows the magnetic field lines in the destroyed surfaces to reach
the collector plate. Reiman’s 1996 TWM study [8] relates to the work of Lau and
Finn [9] on 3D plasmoids reconnection in the Solar corona. Lau and Finn built
their work on the earlier work of Stern [10] and Greene [11] on 3D reconnection.
In this paper, we add an extra equation to the TWM equations. This additional

differential equation is an analytical expression for the preservation of magnetic
flux. The additional equation allows us to control the step size of numerical integ-
ration of the TWM equations to achieve the desired accuracy in the preservation
of magnetic flux. We call the TWM with the additional differential equation the
flux-preserving TWM. We use the same analytic term in the flux-preserving TWM
to represent the field errors. We use the flux-preserving TWM to calculate the
magnetic structure of the stochastic layer and magnetic footprint in the divertor
tokamaks. We calculate the properties of magnetic field lines in the stochastic layer
and in the footprint, the structures of the stochastic layer near the X point, and
the scaling of the width of the stochastic layer with the amplitude of the magnetic
perturbation. We also compare the results of the flux-preserving TWM with the
low mn (poloidal mode number m and toroidal mode number n) map (LMN). A
comparison shows that even when an additional equation is added to the TWM
for flux-preservation, we do not obtain correct scaling of the stochastic layer for
small amplitudes of perturbation; however, the LMN gives the correct scaling while
preserving the Hamiltonian structure.

2. The standard TWM
In this section, we give a brief description of the standard TWM [2,8]. The TWM is
the simplest physical model that has the topology of divertor tokamaks. Full details

https://doi.org/10.1017/S0022377808007526 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377808007526


Stochastic layer scaling in the two-wire model 305

of the standard TWM were given in [8]. In the standard TWM, a single, straight
wire located at x= 0, y = 1 represents the plasma current. Another straight wire at
x = 0, y = −1 creates a single-null divertor. Current in both of the wires is equal.
A divertor plate is located at the y = 0 plane. The X point formed by the ideal
separatrix surface runs along the x= 0 line on the plate. The unperturbed magnetic
field is

B = z× ∇Ψ0 + B0 ẑ, (1)

where Ψ0 = C log(rprc). Here rp and rc are distances from the two wires (see [8,
Fig. 3]), r2

p =x2+(y−1)2 and r2
c = x2+(y+1)2 andC is a constant. It is proportional

to the currents in the wires. A non-axisymmetric magnetic field,

δB = δTB0∇χ, (2)

where

χ =
(

1
k

)
cos(kz)ekx (3)

is superimposed on the axisymmetric field produced by the two wires. Here δT is
the amplitude of the magnetic perturbation. The subscript T denotes the TWM.
This magnetic perturbation is both curl- and divergence-free. The periodicity length
in the z direction is L = 2πR. Here R is the major radius of the tokamak. Since
the distance from the wires to the X point is unity, R is approximately equal to
the aspect ratio. In TWM, R = 3. The non-axisymmetric perturbation satisfies
k = n/R. Here n is an integer. The constant C is chosen so that in the absence
of the divertor coil the cylindrical safety factor q = 3 on the rp = 1 surface. This
leads to C = B0/9. The presence of the divertor coil in the tokamak creates an X
point at the origin, and q → ∞ as one approaches the X point. To compare the
magnitudes of field errors in tokamaks, we can Fourier decompose the field error.
For this purpose, a circular magnetic surface with center at the major radius is
chosen as the reference surface, and the Fourier components of the perturbation
are calculated from the expansion of the exponential term in (3) as

ek cos θ = I0(k) +
∞∑

m=1

2Im (k) cos(mθ). (4)

Here Im is the modified Bessel function of order m. In the outer midplane of the
tokamak, θ = 0, and with n = 1, k = 1/3, the modified Bessel functions Im (1/3)
have the values I0(1/3) ∼= 1.028, I1(1/3) ∼= 0.169, I2(1/3) ∼= 0.014, and I3(1/3) ∼=
0.0008. For n = 1, them = 1, 2, and 3 Fourier amplitudes of the perturbation δB/B
in the midplane are approximately 0.33δT, 0.027δT, and 0.0016δT, respectively.
In divertor tokamaks, the n = 1, m = 2 Fourier components of the field error
are typically of the order of 10−4 times the toroidal magnetic field [12–14]. This
corresponds roughly to the value δT ≈ 10−3 in the flux-preserving TWM. Here
we set k = 1/3 and choose δT = 10−3 , the value used in [8]. We also choose the
same value for the amplitude δM of the low mn perturbation in the LMN map. The
subscript M in δM denotes the LMN as opposed to the subscript T that denotes
the TWM.
To calculate the trajectories of the magnetic field lines, we numerically integrate

the equations of motion of the magnetic field lines: dx/dz = Bx/Bz , and dy/dz =
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By/Bz . Finally, in the standard TWM, we numerically integrate the two equations

dx

dz
= f(x, y, z), (5)

dy

dz
= g(x, y, z), (6)

where f = Bx/Bz , g = By/Bz with

Bx = −1
9
y

(
1
r2
p

+
1
r2
c

)
− 1

9

(
1
r2
c

− 1
r2
p

)
+ δTe

kx cos(kz), (7)

By =
1
9
x

(
1
r2
p

+
1
r2
c

)
, (8)

and

Bz = 1 − δTe
kx sin(kz). (9)

Here rp and rc are given by (3) and (4), respectively, and k = 1/3.

3. Flux-preserving TWM
In this section, we derive an additional differential equation for the preservation
of the magnetic flux for the TWM. The original two differential equations of the
standard TWM plus this additional differential equation make the flux-preserving
TWM. We then describe how we numerically solve the differential equations of
the flux-preserving TWM. We also give a very brief summary of the LMN in this
section since we compare some of the results from the flux-preserving TWM with
the LMN.

3.1. Preservation of the magnetic flux

The critical property of the magnetic field is that it is divergence-free, ∇ · B= 0.
This means that the trajectories of magnetic field lines are a single-degree-of-
freedom, time-dependent Hamiltonian system [5, 6]. Hamiltonian systems are not
generic in the set of dynamical systems, because Hamiltonian systems are not struc-
turally stable against non-Hamiltonian perturbations. So the standard numerical
schemes for integration of ordinary differential equations are not ideal for solv-
ing Hamiltonian equations. Numerical approximation introduces non-Hamiltonian
perturbations giving a completely different long-term behavior. We can address this
problem in a number of ways. One way is to use area-preserving maps [15,16]. We
can construct area-preserving maps by arranging each step of integration to be a
canonical or symplectic transformation. Maps preserve the symplectic form. Preser-
vation of the symplectic form is equivalent to preservation of the Poisson bracket
operation. A consequence of the preservation of the operation of the Poisson bracket
is Louiville’s theorem. Discretization used in the construction of maps introduces a
small non-integrable perturbation into the system [17]. The Kolmogorov–Arnold–
Moser (KAM) theorem [18–20] tells us that most of the invariant tori will survive.
In addition to these invariant tori, the perturbation will also create island chains
surrounded by stochastic layers. If the system is close to being integrable, and
has less than two degrees of freedom, then we know that there exist invariant tori
that the trajectories cannot cross. So the energy of the system can only undergo

https://doi.org/10.1017/S0022377808007526 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377808007526


Stochastic layer scaling in the two-wire model 307

bounded oscillations, and no Arnold diffusion can occur [18–20]. Another approach
is to use numerical integrators that preserve the symplectic property [17]. We see
then that preservation of the magnetic flux is equivalent to preservation of the
symplectic form. Therefore, a third approach is to preserve the magnetic flux. This
is the approach we adopt here. To accomplish the preservation of magnetic flux, we
derive an additional differential equation to preserve the magnetic flux in the TWM.

3.2. Derivation of the additional differential equation for preservation of the
magnetic flux

The magnetic field line equations in the Cartesian coordinates are dx/dz = f(x, y, z)
and dy/dz = g(x, y, z) with f(x, y, z) = Bx/Bz and dy/dz =By/Bz . Since the mag-
netic field is divergence-free, the magnetic flux BzJδxδz in an infinitesimal cell
surrounding a field line trajectory must remain constant with J the coordinate
Jacobian. The coordinates before and after a time step are xa = xb + f(xb, yb,zb)δz
and ya = yb + g(xb, yb,zb)δz. The coordinate Jacobian is

J ≡ ∂(xa , ya)
∂(xb, yb)

= 1 +
(

∂f

∂xb
+

∂g

∂yb

)
δz + (· · · )(δz)2 . (10)

That is, dJ/dz = ∂f/∂xb + ∂g/∂yb . Flux conservation says (d/dz)(BzJ) = 0, so the
z component of the magnetic field along a field line trajectory obeys the differential
equation

d ln Bz

dz
= −

(
∂f

∂x
+

∂g

∂y

)
=

1
Bz

(
f

∂Bz

∂x
+

∂Bz

∂z

)
. (11)

If one integrates this equation along with dx/dz = f(x, y, z) and dy/dz = g(x, y, z),
then the extent to which the actual Bz at each point along the field line differs
from that obtained by integration is a measure of the error in integration. We add
this new differential equation (11) to the original set of two differential equations
(5) and (6). We call the new set of differential equations, (5), (6) and (11), the flux-
preserving TWM. This additional differential equation is an analytical expression
for the preservation of magnetic flux, and it allows us to control the step size
of numerical integration of the TWM equations to achieve desired accuracy in
preservation of the magnetic flux.

3.3. Numerical implementation

We use the fourth-order Runge–Kutta scheme to integrate equations of the flux-
preserving TWM. For a single run of the code, we keep the amplitude δT fixed.When
we run the code, we do not fix how many field lines we will integrate since the code
stops when 20 000 field lines from the stochastic layer hit the collector plate. We
integrate each field line at the most for 10 000 toroidal circuits of the tokamak.
We start the field lines at x= 0, z = 0, and 0< y < yLGS(δT). Here yLGS(δT) is the
y coordinate of the last good surface where it intersects the y axis for a given
δT. We use the new additional differential equation to control the accuracy of
integration. We use the new equation to calculate the maximum step size Δz for
integration.We calculate the actualBz fromBz = 1−δT exp(kx) sin(kz), and denote
it by Bactual

z . We calculate Bz from numerical integration of (11), and denote it by
Bnum

z . The quantity |(Bactual
z − Bnum

z )/Bactual
z | calculates the accuracy. We find that

if 10−13 <Δz < 10−1 , then the accuracy of the integration is in the range 10−9 to
10−7 for 0< δT � 10−3 . Here Δz is the step size of the numerical integration. For
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the amplitude δT = 10−3 , the step size is 10−1 > Δz > 10−13 , and the tolerance τ
is 10−9 � τ � 10−7 .

3.4. The LMN

We give a very brief description of the LMN. For details, see [21]. The LMN
represents the effects of the naturally occurring low mn perturbation. We obtain
the LMN by adding a term to the symmetric simple map (SSM) [22]. The SSM is
derived by symmetrizing the simple map, and the simple map is the simplest area-
preserving map that has topology of divertor tokamaks; just as the TWM is the
simplest physical model that has topology of divertor tokamak. The SSM equations
are

yn+1 = yn + 2kxn − 2k2yn (1 − yn ), (12)

xn+1 = xn − kyn (1 − yn ) − kyn+1(1 − yn+1). (13)

We choose the SSM parameter k = 0.3. The edge safety factor, qedge, for the SSM for
k = 0.3 is 30. We take 10 iterations of the SSM to be equivalent to a single toroidal
circuit of the tokamak, so the SSM with k = 0.3 represents a divertor tokamak with
qedge = 3 and O point at (0, 0) and X point at (0, 1). We place the divertor plate at
y = yplate = 1. In the SSM, the toroidal asymmetries can be simulated using the map
parameter k, by additional terms, or by applying additional maps that explicitly
include the effects of qualitatively different kinds of magnetic perturbations [22,
23]. The generating function that adds the effects of two quadrupoles of opposite
helicity with toroidal mode numbers ±1 is

Δ(x, y) = Δ0 +
1
2
δM(x2 − y2) cos

(
2πi

Np

)
. (14)

Here Δ0(x, y) is the generating function for the SSM, i is the iteration number, Np

is the number of iterations of the unperturbed map that is equivalent to a single
toroidal circuit of tokamak and δM is the amplitude of the low mn perturbation.
Then, the LMN is given by the map equations

yn+1 = yn + 2k(1 − δn )xn − 2k2(1 − δn )(1 − δn − yn )yn , (15)

xn+1 = xn − kyn (1 − δn − yn ) − kyn+1(1 − δn − yn+1). (16)

Here δn = δM cos(2πn/Np). The LMN is an explicit map. It preserves the topological
invariance and is computationally efficient [21]. For δM = 0, it reduces to the SSM.
Here we have chosen the map parameter k = 0.3, amplitude δM = 10−3 , and
Np = 10.

4. Results
Now we present the results from the flux-preserving TWM for the practically
relevant, typical value of the amplitude δ = 10−3 .

4.1. The phase portrait

In Fig. 1, we show a close view of the phase portrait near the X point for δT = 10−3 .
We see that the magnetic structure near the X point has a single, regular, large-
scale structure. This structure is formed by the largest asymmetric term in the
perturbation, the n = 1, m = 1 mode.
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Figure 1. A close view of the stochastic layer near the X point in the Poincaré surface of
section for δT = 10−3 .

4.2. The width of the stochastic layer

To calculate the change in the width of the stochastic layer, w, as δT is varied, we fix
δT, and start 10 000 field lines at x0 = 0 and random y0 distributed uniformly in the
interval (0, 1). We integrate each field line for at most 10 000 toroidal circuits of the
tokamak. We consider a field line to be chaotic if it crosses the y = 0 plane before
completing 10 000 toroidal circuits. We identify the chaotic line that is closest to
the O point. Then, the distance from the starting position of this line on the y-axis
and the X point is the width of the stochastic layer. We repeat this procedure for
different values of δT. Using this procedure, we calculate the width of the stochastic
layer as a function of amplitude of the perturbation.
In Fig. 2, we show w(δT). Overall, the width of the stochastic layer scales as δ0.38

T .
We see that the width scales as: w ∝ δ0.33

T for 10−6 � δT � 2 × 10−5 ; w ∝ δ0.037
T for

3 × 10−5 � δT � 10−4 ; and w ∝ δ0.49
T for 10−4 � δT � 10−3 . So the flux-preserving

TWM scaling of width is in very good agreement with Boozer–Rechester scaling [2]
for typical levels of field errors [13–15]. Overall, in the TWM the exponent in the
scaling of width is about 24% off from the Boozer–Rechester prediction. In Fig. 2,
we also show the scaling of width with amplitude for the LMN. For the LMN, we
iterate each field line for 100 000 toroidal circuits of the tokamak, and for a fixed δM,
we integrate 10 000 field lines. For the LMN, the width scales as δ

1/2
M . The scaling of

width for the LMN is exactly in accordance with the Boozer–Rechester prediction.
The width of the stochastic layer in the flux-preserving TWM is about an order of
magnitude larger than the width in the LMN for the same values of the amplitude
of perturbation.
From these results, we see that all three methods, the flux-preserving TWM, LMN

and Boozer–Rechester, agree with the 0.5 power scaling of stochastic layer width
with the amplitude of magnetic perturbation when the perturbation is sufficiently
large. The flux-preserving TWM gives a larger stochastic layer width when the
perturbation is small, but this may be due to numerical errors. For sufficiently
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Figure 2. Dependence of the width of the stochastic layer on the perturbation amplitude.
Results for the LMN are also shown.

small perturbations, the stochastic layer width will be dominated by numerical
errors. For the smallest perturbations that we have considered, the numerical
errors are only about 100 times smaller, so one could imagine that they produce
a measurable enhancement of stochastic layer width. Boozer–Rechester scaling is
an asymptotic, topological result. Despite the addition of an equation to the TWM
for the preservation of magnetic flux, and despite the TWM being the simplest
physical model that has the topology of the divertor tokamak, the flux-preserving
TWM does not give correct scaling of the stochastic layer in this asymptotic region.
The LMN does give correct scaling for small as well as large amplitudes.

4.3. Properties of the field lines in the stochastic layer

To calculate the properties of the field lines in the stochastic layer, we let δT = 10−3 .
We start 20 000 field lines in the stochastic layer near the X point, and integrate
these lines for at most 10 000 toroidal circuits of the tokamak. If a field line crosses
the y = 0 plane, we consider it as a chaotic line. Once a field line becomes chaotic,
we do not integrate it any further. The safety factors, lengths, and toroidal and
poloidal angles for these field lines are calculated.
The X point is located at x = 0, y = 0. For δT = 10−3 , near the X point the

last good confining surface passes through the point x = 0, YLGS = 0.1399, and the
width of the stochastic layer is w = 0.1399. We start the field lines at x = 0, with
0< y < YLGS. We choose the y coordinates of the starting positions of field lines at
random (with uniform distribution) in the stochastic layer. We express the starting
positions of the field lines in terms of distance from the last good surface normalized
by the width of the stochastic layer. We denote this distance by d.
In Figs 3, 4, 5, and 6, we show the safety factor, lengths of field lines, toroidal

angles and the poloidal angles as functions of d. We see that in these figures
the largest regular structures are the two structures corresponding to the leading
asymmetries in perturbation, n = 1,m = 1 and 3. See also Sec. 4.4. Graphs in these
figures show self-similar structures at smaller scales.
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Figure 3. Safety factor q as a function of the starting position of field lines in the stochastic
layer.

Figure 4. Lengths of field line l as a function of d.

4.4. Properties of the field lines in the magnetic footprint

Now we calculate the properties of the field lines in the magnetic footprint with
δT = 10−3 . We start field lines in the stochastic layer at x = 0, and 0< y < YLGS. We
choose the starting y positions randomly with uniform distribution in the stochastic
layer on the y-axis. We integrate each line at most for 10 000 toroidal circuits of
the tokamak. We do not fix the number of lines that we are going to integrate
when we start the code. We have designed the code to stop once 20 000 field lines
hit the collector plate. The plate is located in the y = 0 plane. In an integration
step if the y position of a field trajectory changes sign from positive to negative,
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Figure 5. Toroidal angles ϕ as a function of d.

Figure 6. Poloidal angles θ as a function of d.

then that field line crosses the plate. At this step, we successively halve the step
size until the difference in the y position of the trajectory and the plate is smaller
than 10−6 . From this, we calculate the coordinates of the strike point of a line on
the divertor plate. We denote the strike point by (Xstrk, Zstrk). We express Zstrk in
units of 2πR0 . For each field line that strikes the plate, we also calculate the safety
factor q, the semiconnection length l, toroidal angle ϕ, and the poloidal angle θ as
functions of d. We divide these data into groups corresponding to the number of
poloidal circuits that the field line makes before it hits the plate. We calculate the

https://doi.org/10.1017/S0022377808007526 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377808007526


Stochastic layer scaling in the two-wire model 313

Figure 7. Dependence of safety factor q on the distance d from the last good surface for the
lines that strike the plate.

Figure 8. Dependence of semiconnection lengths l on the distance d from the last good
surface for the lines that strike the plate.

area of the footprint using the method described in [15]. We show the results in
Figs 7–11.
From Figs 7–9, we see that in the graphs of q(d), l(d), and ϕ(d) two regular

large-scale structures stand out inside the scatter of points. The larger of these two
structures has 0< θstrk � 1, and the smaller has 2< θstrk � 3. From this we infer that
the n = 1, m = 1 and 3 asymmetries in the perturbation create these structures.
These structures are the footprint end of the field lines that bunch together spatially
(toroidally and poloidally) and connect the stochastic layer to the material surface.
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Figure 9. Dependence of the toroidal circuits made by the field lines on the distance d
before striking the plate.

Figure 10. Magnetic footprint for the flux-preserving TWM with δT = 10−3 .

This spatial bunching of lines connecting the chaotic layer with the collector plate
plays an important role in formation of regular structures in the footprint on the
plate [24,25].
In Figs 10 and 11, we show the magnetic footprints for the flux-preserving TWM

and the LMN for δT = δM = 10−3 . In Figs 10 and 11, we express the transversal
distance from the X points, dRSEP, in units of width of the stochastic layer. For the
flux-preserving TWM, we express the toroidal locations of the strike points, ZSTRK,
in units of 2πR0 , R0 = 3; and for the LMN, the toroidal angular position of the
strike points, ϕSTRK, in units of 2π. Figures 10 and 11 show an important result. The
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Figure 11. Magnetic footprint in the LMN map when δM = 10−3 .

Figure 12. Comparison of the areas of magnetic footprints as a function of the amplitude of
perturbation in the flux-preserving TWM and the LMN.

footprints for the flux-preserving TWM and the map show remarkable agreement
in size (relative to the respective widths of stochastic layer), shape, and structure.
In Fig. 12, we compare the dependence of the area of the footprint on the strength
of the perturbation for the flux-preserving TWM with that of the map. Here we see
good agreement between the flux-preserving TWM and the LMN except for some
difference in the y scale.

4.5. Speed and accuracy

The maximum accuracy in the flux-preserving TWM is 10−9 for 0� δT � 10−3 . The
maximum accuracy in the LMN is 10−14 for 0� δM � 10−3 . With these accuracies,
the CPU time taken for 20 000 field lines to strike the plate after at most 10 000
toroidal circuits of the tokamak before striking the plate for the LMN is 1533 CPU
seconds on a Dell Precision 340 work tower with a single Pentium 4 CPU. The CPU
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time for the flux-preserving TWM is 3774 CPU seconds. So the LMN is faster and
more accurate.

5. Conclusions
We have added an equation to the TWM equations for divertor tokamaks. The
additional equation allows the accuracy in the preservation of the magnetic flux in
numerical integration of the TWM equations to be controlled. We call the TWM
with the additional equation the flux-preserving TWM. Most of our results are for
the typical levels of field errors. The phase portrait near the X point has a single,
regular, large-scale magnetic structure corresponding to the n= 1, m = 1 mode.
The Boozer–Rechester scaling is a topological result. The flux-preserving TWM,
LMN, and Boozer–Rechester all agree with the 0.5 power scaling of stochastic layer
width with the amplitude of the magnetic perturbation when the perturbation is
sufficiently large. The flux-preserving TWM gives a larger stochastic layer width
when the perturbation is small, but this may be due to numerical errors. For
sufficiently small perturbations, the stochastic layer width will be dominated by
numerical errors. For the smallest perturbations that we have considered, the
numerical errors may produce a measurable enhancement of stochastic layer width.
The deviation from the square root scaling does not seem to occur until we get
below one part in 100 000. Changes in the safety factor, length, toroidal angle, and
the poloidal angle with distance from the last good surface are calculated. This
is done both for the stochastic layer and for the footprint. These graphs show
self-similarities at smaller scales. The n= 1, m = 1 and 3 modes form the regular,
large-scale structures seen in these graphs. These structures bunch the field line
trajectories together toroidally and poloidally, and connect the stochastic layer to
the plate. The magnetic footprint is a toroidally spiraling, large-scale structure.
Footprints in the flux-preserving TWM and the LMN have a similar shape and
structure, and are roughly the same size relative to the respective widths of the
stochastic layer. The LMN preserves the topological invariance and also has the
advantage of computational efficiency. So, for the analytic representation of field
errors in the TWM, the structure and area of the magnetic footprint due to field
errors in divertor tokamaks are largely formed by the asymmetric n= 1, m = 1
mode, and the magnetic perturbations with higher m numbers have a marginal
effect on the magnetic footprint.
The flux-preserving TWM does not give correct scaling for small amplitudes,

while the map gives correct scaling for all values of amplitude considered. So it
is safer to use maps to integrate field lines rather than using numerical schemes
such as the Runge–Kutta scheme. The reason this happens is that Hamiltonian
systems are not generic in the set of dynamical systems. Hamiltonian systems are
not structurally stable against non-Hamiltonian perturbations. Standard numerical
schemes for integration of ordinary differential equations are not ideal for solv-
ing Hamiltonian equations. Numerical approximation introduces non-Hamiltonian
perturbations giving a completely different long-term behavior. We can address
this problem if we use maps for integration. Area-preserving maps preserve the
features of Hamiltonian structure. If we arrange each step of integration to be a
canonical or symplectic transformation, we get a map. Maps preserve the symplectic
form. If the symplectic form is preserved, then it is mathematically equivalent to
preservation of the operation of the Poisson bracket. A consequence of the latter
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is Louiville’s theorem [17]. The KAM theorem [18–20] tells us that most of the
invariant tori will survive. In addition to these invariant tori, the perturbation will
also create island chains surrounded by stochastic layers. If the system is close
to being integrable, and has less than two degrees of freedom, then we know that
there exist invariant tori that the trajectories cannot cross. The energy of the system
can only undergo bounded oscillations, and no Arnold diffusion can occur [18–20].
TWM is the simplest model that has the topology of divertor tokamaks, and even
for such a model, numerical integration schemes (with an extra equation for flux
preservation) do not give us correct scaling for small amplitudes. So an estimate
of the size of the stochastic layer and the footprint will also be off the mark.
Maps preserve the Hamiltonian structure, and in addition have the advantages
of computational efficiency and correct scaling of the stochastic layer.
In summary, here we have addressed the question of magnetic field structure

in the vicinity of the separatrix in divertor tokamaks. We have investigated this
problem earlier in a series of papers, using various mathematical techniques. In the
present paper, we have studied the TWM. The TWM is the simplest physical model
for divertor tokamaks.We have added an extra equation to the TWM. This equation
expresses magnetic flux conservation in the TWM. This equation is derived from the
TWM equations. So the equation does not add any new information to the TWM.
The equation is useful in controlling the step size in the numerical integration
of the TWM equations. Nevertheless, the technique is apparently still plagued by
numerical inaccuracies when the perturbation level is low, resulting in an incorrect
scaling of the stochastic layer width. Boozer–Rechester scaling is an asymptotic
result, valid for small amplitudes. On the other hand, the map gives correct scaling
for the entire range of amplitudes considered here. Maps respect the Hamiltonian
structure. Maps are computationally fast. For a 11

2 -degree-of-freedom Hamiltonian
system such as field lines, maps also do not give Arnold diffusion.

Acknowledgement

This work is supported by the US DOE OFES under grants DE-FG02-01ER54624
and DE-FG02-04ER54793.

References

[1] Cordey, J. D., Goldston, R. J. and Parker, R. R. 1992 Phys. Today 45(1), 22.
[2] Boozer, A. and Rechester, A. 1978 Phys. Fluids 21, 682.
[3] Luxon, J. L. and Davis, L. E. 1985 Fusion Technol. 8, 441.
[4] Evans, T. E. et al. 2006 Nature Phys. 2, 419.
[5] Boozer, A. 1983 Phys. Fluids 26, 1288.
[6] Cary, J. R. and Littlejohn, R. G. 1983 Ann. Phys. (N.Y.) 151, 1.
[7] Post, D. E. et al. 1991 ITER Documentation Series No. 21. Vienna: IAEA.
[8] Reiman, A. 1996 Phys. Plasmas 3, 906.
[9] Lau, Y. and Finn, J. 1991 Astrophys. J. 366, 577.
[10] Stern, D. P. 1973 J. Geophys. Res. 78, 7292.
[11] Greene, J. M. 1988 J. Geophys. Res. A 93, 8583.
[12] Snipes, J. A., Campbell, D. J., Hender, T. C., Hellermann, M. V. and Weisen, H. 1990

Nucl. Fusion 30, 205.
[13] Zohm, H., Kallenbach, A., Bruhns, H., Fussmann, G. and Klueber, O. 1990 Europhys.

Lett. 11, 745.

https://doi.org/10.1017/S0022377808007526 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377808007526


318 H. Ali, A. Punjabi and A. Boozer

[14] LaHaye, R. J. and Scoville, J. T. 1991 Rev. Sci. Instrum. 62, 2146.
[15] Punjabi, A., Verma, A. and Boozer, A. 1992 Phys. Rev. Lett. 69, 3322.
[16] Punjabi, A., Ali, H., Evans, T. E. and Boozer, A. 2007 Phys. Lett. A 364, 140.
[17] Cartwright, J. and Piro, O. 1992 Int. J. Bifurcation Chaos 2, 427.
[18] Kolmogorov, A. N. 1954 Dokl. Akad. Nauk SSSR 98, 527.
[19] Arnold, V. I. 1962 Sov. Math. Dokl. 3, 136.
[20] Moser, J. 1962 Nachr. Akad. Wiss. Gottingen, Math. Phys. K1 12, 1.
[21] Ali, H., Punjabi, A., Boozer, A. and Evans, T. E. 2004 Phys. Plasmas 11, 1908.
[22] Punjabi, A., Ali, H. and Boozer, A. 1997 Phys. Plasmas 4, 337.
[23] Punjabi, A., Ali, H. and Boozer, A. 2003 Phys. Plasmas 4, 3992.
[24] Eich, T., Herrmann, A., Neuhauser, J. and the ASDEX Upgrade Team 2003 Phys. Rev.

Lett. 91, 195003.
[25] Eich, T. et al. Plasma Phys. Control. Fusion 47, 815.

https://doi.org/10.1017/S0022377808007526 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377808007526

