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We consider redundant binary joint digital expansions of integer vectors. The redundancy

is used to minimize the Hamming weight, i.e., the number of non-zero digit vectors. This

leads to efficient linear combination algorithms in abelian groups, which are used in elliptic

curve cryptography, for instance.

If the digit set is a set of contiguous integers containing zero, a special syntactical

condition is known to minimize the weight. We analyse the optimal weight of all non-

negative integer vectors with maximum entry less than N. The expectation and the variance

are given with a main term and a periodic fluctuation in the second-order term. Finally,

we prove asymptotic normality.

2010 Mathematics subject classification: Primary 11A63

Secondary 94A60, 68W40, 60F05

1. Introduction

We deal with integer representations of vectors of integers called joint representations.

Definition 1.1. For base 2, dimension d and a digit set D ⊆ Z, the dimension-d joint

representation of a vector n ∈ Zd is a word (εL · · · ε0) with εi ∈ Dd and n = value(εL · · · ε0)
with value(εL · · · ε0) =

∑L
i=0 εi2

i.
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Such representations can be used for computing a linear combination m1P1 + · · · + mdPd
of points Pi of an elliptic curve, or more generally an abelian group (see [9]). For every

non-zero digit εi, an elliptic curve addition is performed. Since these are expensive, we

want to minimize the number of non-zero digits. On the other hand, every non-zero

column vector ε ∈ Dd corresponds to a precomputed point. The number of doublings

corresponds to the length of the expansion. Each εi in the expansion (εL · · · ε0) is called a

column vector of the expansion.

Example 1.2. A dimension-3 digit expansion with digit set {0, 1, 2} is⎛⎝1011

0020

2001

⎞⎠.
It is a representation of (11, 4, 17)T , because⎛⎝11

4

17

⎞⎠ = value

⎛⎝1011

0020

2001

⎞⎠ =

⎛⎝1

0

2

⎞⎠ 23 +

⎛⎝0

0

0

⎞⎠ 22 +

⎛⎝1

2

0

⎞⎠ 21 +

⎛⎝1

0

1

⎞⎠ 20.

Definition 1.3. The Hamming weight h(εL · · · ε0) of a digit expansion (εL · · · ε0) is the

number of non-zero columns εi �= 0.

Example 1.4. Continuing with Example 1.2, we have the Hamming weight

h

⎛⎝1011

0020

2001

⎞⎠ = 3.

The Hamming weight of an integer depends on the representation we use. For example,

we have two representations of 4 = value(12) = value(100) with Hamming weight h(12) =

2 and h(100) = 1. But since we always use a specific digit expansion in this paper, we just

write h(n) for the Hamming weight of this digit expansion.

This specific digit expansion is the asymmetric joint sparse form (or AJSF) as

presented by Heuberger and Muir in [7]. The AJSF is the unique dimension-d joint

integer representation in base 2 with digit set Dl,u = {a ∈ Z | l � a � u} described in

Theorem 2.3 (see [7, Theorem 6.1]). There, Heuberger and Muir proved that the AJSF is

colexicographically minimal and has minimal Hamming weight among all representations

with this digit set Dl,u.

The width-w non-adjacent form [8, 1] and the simple joint sparse form [5] are special

cases of the asymmetric joint sparse form. For the width-w non-adjacent form, we use

l = −2w−1 + 1, u = 2w−1 − 1 and dimension 1. The simple joint sparse form has digit

set D−1,1 and dimension 2. The special case of Theorem 1.5 for the simple joint sparse

form has been proved in [5]. For further results on syntactically defined optimal digit

expansions, we refer to [7] and the references therein.
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We compute the expected value, the variance and the asymptotic distribution of the

Hamming weight of the AJSF. We obtain a main term plus a periodic fluctuation and

an error term, similar to the asymptotic estimates of digital sums in [3]. The definitions

and algorithms of the AJSF are recalled in Section 2. In Section 3, we construct a

transducer from this algorithm. In Theorem 3.6, we explicitly describe this transducer to

compute the Hamming weight. In Section 4, we prove the following Theorem 1.5 about the

asymptotic normal distribution of the Hamming weight. We use the discrete probability

space {n ∈ Z | 0 � n < N}d with uniform distribution as a probabilistic model, in contrast

to [7]. There, only residue classes modulo powers of 2 have been considered in the ‘full

block-length’ analysis.

Theorem 1.5. The Hamming weight h(m1, . . . , md) of the AJSF of an integer vector

(m1, . . . , md)
T over the digit set Dl,u in dimension d, with equidistribution of all vectors

(m1, . . . , md)
T with 0 � mi < N for an integer N, is asymptotically normally distributed. There

exist constants el,u,d, vl,u,d ∈ R and δ > 0, depending on u, l and d, such that the expected

value is

el,u,d log2N + Ψ1(log2N) + O(N−δ logN)

and the variance is

vl,u,d log2N − Ψ2
1(log2N) + Ψ2(log2N) + O(N−δ log2N),

where Ψ1 and Ψ2 are continuous, 1-periodic functions on R. In particular, we have

P

(
h(m1, . . . , md) − el,u,d log2N√

vl,u,d log2N
< x

)
=

∫ x

−∞
e−y2/2dy + O

(
1

4
√

logN

)
for all x ∈ R. For d = 1, we have

el,u,1 =
1

w − 1 + λ
and vl,u,1 =

(3 − λ)λ

(w − 1 + λ)3
,

where

λ =
2(u− l + 1) − (−1)l − (−1)u

2w

and w is the unique integer such that 2w−1 � u− l + 1 < 2w . Furthermore, for d = 1, the

function Ψ1(x) is nowhere differentiable. General formulas for el,u,d for d = 2 are given in

[7, Table 3]. For d ∈ {1, 2, 3, 4}, general formulas for el,u,d and vl,u,d are given in [6].

For higher dimension or the variance, the question of non-differentiability of the

periodic fluctuations remains open.

In the last Section 5, we further investigate the error term of the expected value and

the variance of the Hamming weight in the case of the width-w non-adjacent form. In

this case, we have δ = log2

(
1 + 3π2/w3

)
for sufficiently large w: see Theorem 5.1.

2. Preliminaries

First, we define some properties of the digit set.
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Definition 2.1. Let Dl,u = {a ∈ Z | l � a � u} for l � 0 and u � 1 be the digit set. It

contains u− l + 1 digits. We define w to be the unique integer s.t. 2w−1 � u− l + 1 < 2w .

Because 0, 1 ∈ Dl,u, we have w � 2. The digit set contains at least a complete set of

residues modulo 2w−1. However, some residues modulo 2w are not contained. Thus we

define the following sets:

Definition 2.2. Let

unique(Dl,u) = {a ∈ Dl,u | u− 2w−1 < a < l + 2w−1},
nonunique(Dl,u) = Dl,u \ unique(Dl,u),

upper(Dl,u) = {a ∈ Dl,u | u− 2w−1 < a � u}.

The sets unique(Dl,u) and nonunique(Dl,u), respectively, contain the unique and nonunique

residues modulo 2w−1. The set upper(Dl,u) is a complete set of representatives modulo

2w−1.

Without loss of generality, we can restrict l to be greater than −2w−1. Otherwise,

we would take the digit set D−u,−l where we have −2w−1 < −u � −1. Then every

representation of a vector n of integers with digit set Dl,u would correspond to a

representation of −n with digit set D−u,−l by changing the sign of each digit. By this

transformation, the weight of the representation does not change.

Theorem 2.3 ([7]). Let Dl,u be a digit set and n ∈ Zd (with n � 0 if l = 0). Then there

exists exactly one representation (εL · · · ε0) (up to leading zeros) of n, such that the following

conditions are satisfied.

(1) Each column εj is 0 or contains an odd digit.

(2) If εj �= 0 for some j, then εj+w−2 = · · · = εj+1 = 0.

(3) If εj �= 0 and εj+w−1 �= 0 for some j, then:

(a) there is an i ∈ {1, . . . , d} such that εj+w−1,i is odd and εj,i ∈ unique(Dl,u),

(b) if εj,i ∈ nonunique(Dl,u), then εj+w−1,i �≡ u+ 1 mod 2w−1,

(c) if εj,i ∈ upper(Dl,u) ∩ nonunique(Dl,u), then εj+w−1,i ≡ u mod 2w−1.

Definition 2.4. The digit expansion described in Theorem 2.3 is called the asymmetric

joint sparse form (or AJSF) of n with digit set Dl,u.

Example 2.5. The AJSF of (7, 11)T with digit set D−2,3 is(
1001̄

1003

)
,

where 1̄ is the digit −1. Thus its Hamming weight is h(7, 11) = 2.
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We also consider the width-w non-adjacent form (see [8, 1]).

Definition 2.6. The width-w non-adjacent form (or w-NAF) of an integer n is a radix-2

representation (εL · · · ε0) of n with the digit set Dw := {0,±1,±3, . . . ,±(2w−1 − 3),±(2w−1 −
1)} and the following property:

If εi �= 0, then εi+1 = · · · = εi+w−1 = 0.

The AJSF is a generalization of the w-NAF. In the one-dimensional case, only odd

digits and 0 are used in the AJSF due to Theorem 2.3. After a non-zero digit, there are

w − 1 zeros. Thus, for l = −2w−1 + 1 and u = 2w−1 − 1, we obtain the w-NAF.

It is known that the w-NAF representation exists and is unique for every integer (see

[8]).

In [7] Heuberger and Muir introduce the AJSF, provide an algorithm to compute it,

and prove its minimality with respect to the Hamming weight.

Theorem 2.7 ([7]). The AJSF has minimal Hamming weight among all digit expansions of

an integer vector n with digit set Dl,u. Algorithm 3 in [7] computes the AJSF in dimension d

for an integer vector n.

We present a slightly modified version of Algorithm 3 in [7] as Algorithm 1. The

modification takes into account that we are only interested in the weight. Furthermore,

those iterations of the while loop where the output is already predetermined are skipped.

For simplicity, we write n+ a, for a vector n and an integer a, to denote that we add a

to every coordinate of the vector n.

The if branch in line 3 of Algorithm 1 makes the digit at the current position a

zero column if possible. If this is not possible, the else branch in line 6 chooses the

smallest digit in each component which is congruent to the input. In the inner if and else

branches, the algorithm checks whether we should change any non-unique digits. In the if

statement in line 12, we check whether we can make the (w − 1)st digit after the current

digit 0. Otherwise, in the else statement in line 17, we check whether we can increase

the redundancy at the (w − 1)st digit after the current digit by changing any non-unique

digits at the current position.

In the one-dimensional case, we can simplify Algorithm 1 further:

If Iunique �= ∅, then Inonunique = ∅.

Thus the else branch in line 17 will not be processed. Algorithm 2 is the simplified version

for the one-dimensional case.

3. Construction of the transducers

In this section we describe the construction of the transducers for the computation of

the Hamming weight. We start with the easiest case, the w-NAF. We will then modify
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Algorithm 1 Algorithm to compute the weight of the AJSF with digit set Dl,u

Input: A vector of integers n ∈ Zd, integers l � 0, u > 0, n � 0 if l = 0

Output: Weight h(n)

1: h = 0

2: while n �= 0 do

3: if n ≡ 0 mod 2 then

4: a = 0, h = h+ 0

5: m = n/2

6: else

7: a = l + ((n− l) mod 2w−1)

8: h = h+ 1

9: m = (n− a)/2w−1

10: Iunique = {j ∈ {1, 2, . . . , d} | aj ∈ unique(Dl,u)}
11: Inonunique = {j ∈ {1, 2, . . . , d} | aj ∈ nonunique(Dl,u)}
12: if mj ≡ 0 mod 2 for all j ∈ Iunique then

13: for j ∈ Inonunique such that mj is odd do

14: aj = aj + 2w−1

15: mj = mj − 1

16: end for

17: else

18: for j ∈ Inonunique such that mj ≡ u+ 1 mod 2w−1 do

19: aj = aj + 2w−1

20: mj = mj − 1

21: end for

22: end if

23: end if

24: n = m

25: end while

26: return h

the ideas to deal with the asymmetric case of Dl,u-expansions in dimension 1. We finally

generalize the approach to the d-dimensional Dl,u-expansions.

All transducers and automata take a (joint) binary expansion as input and read from

right to left. The output of the transducers is a sequence of zeros and ones. Then the

computed Hamming weight is the number of ones in this output.

Lemma 3.1. Let w � 2. The transducer in Figure 1 calculates the weight h(n) of the w-NAF

of an integer n.

Proof. Let n = value(nL · · · n0) with nj ∈ {0, 1} be the standard binary expansion of n

and (εK · · · ε0) be the w-NAF representation of n. If n ≡ 0 mod 2, then ε0 = 0 and we

stay in the initial state. Otherwise, we have ε0 �= 0 and the weight is h(ε0) = 1. Since we

have a w-NAF representation, the next w − 1 digits fulfil ε1 = ε2 = · · · = εw−1 = 0, no
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Algorithm 2 Algorithm to compute the weight of the one-dimensional AJSF with digit

set Dl,u

Input: Integers n, l � 0, u > 0, n � 0 if l = 0

Output: h(n)

1: h = 0

2: while n �= 0 do

3: if n ≡ 0 mod 2 then

4: a = 0

5: h = h+ 0

6: m = n/2

7: else

8: a = l + ((n− l) mod 2w−1)

9: h = h+ 1

10: m = (n− a)/2w−1

11: if m ≡ 1 mod 2 and (n− l) mod 2w−1 � u− l − 2w−1 then

12: a = a+ 2w−1

13: m = m− 1

14: end if

15: end if

16: n = m

17: end while

18: return h

matter what the corresponding nj , j = 1, . . . , w − 1 are. The sign of the digit ε0 depends

on nw−1 mod 2. If nw−1 ≡ 0 mod 2, then ε0 > 0 and we go to state w with the next input

(n− ε0)/2
w with carry 0. If nw−1 ≡ 1 mod 2, then ε0 < 0 and we therefore have a carry of

1 and go to state w + 1. There, reading an input of 1 and having a carry of 1 results in

the same outcome as reading 0, but the carry remains 1. Reading an input 0 with carry 1

is equivalent to reading an input 1 with a carry 0, so we are in state 1 again.

In the next step, we construct a transducer for the Hamming weight of the one-

dimensional AJSF. Therefore, we need the following automaton to compare integers.

Lemma 3.2. Automaton 2 in Figure 2 accepts the input of three integers a, b, c if and only

if a+ b � c. The binary expansions of a, b and c must have the same length, where leading

zeros are allowed.

Remark. Automaton 2 could be simplified by combining the input a+ b and merging

the states (1, 0) and (0, 1). But since we use this automaton in Theorems 3.3 and 3.6 with

the input of the transducer as a and some fixed parameter as b, this would complicate the

constructions in Theorems 3.3 and 3.6.
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1

w − 1

w w + 1
1 |1 0 |1

0 |0
1 |0

0 |0 1 |0

0 |0 1 |0

Figure 1. Transducer to compute the Hamming weight of a w-NAF representation.

0, 0 0, 1

1, 0 1, 1

(0, 1, 0)T
(1, 0, 0)T

(0, 0, 1)T

(1, 0, 1)T
(0, 1, 1)T

(1, 1, 0)T

(1, 1, 1)T
(1, 1, 0)T

(0, 0, 1)T

(0, 0, 0)T
(0, 0, 1)T

(1, 1, 0)T

(1, 1, 1)T(0, 0, 0)T

(0, 0, 0)T , (0, 0, 1)T
(0, 1, 1)T , (1, 0, 1)T

(1, 0, 1)T , (0, 1, 1)T
(1, 0, 0)T , (0, 1, 0)T

(1, 1, 1)T

(0, 1, 0)T , (1, 0, 0)T
(0, 1, 1)T , (1, 0, 1)T

(0, 0, 0)T

(1, 1, 1)T , (1, 1, 0)T
(1, 0, 0)T , (0, 1, 0)T

Figure 2. Automaton 2 to compare three integers a, b and c, accepts if a+ b � c.

Proof. The states are (s, t) with s, t ∈ {0, 1}. The label s signifies the carry of the addition

a+ b which still has to be processed. The label t corresponds to the truth value of the

expression (a+ b) mod 2i > c mod 2i, where i is the number of read digits up to now. So

the automaton accepts the input if it stops in state (0, 0) where there is no carry and

a+ b > c is false. The initial state is (0, 0).

Therefore, there is a path from (0, 0) to (s, t) in Automaton 2 with input label⎛⎝αi−1 · · · α0

βi−1 · · · β0

γi−1 · · · γ0

⎞⎠
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if and only if

s =

⌊
value(αi−1 · · · α0) + value(βi−1 · · · β0)

2i

⌋
and

t =
[(

value(αi−1 · · · α0) + value(βi−1 · · · β0)
)

mod 2i > value(γi−1 · · · γ0)
]
.

Here, we use Iverson’s notation, that is, [expression] is 1 if expression is true and 0

otherwise. From this, the rules for the transitions follow. There is a transition

(s, t)
(α,β,γ)T

−−−−→ (s′, t′)

if and only if s′ = (α+ β + s)/2� and t′ =
[
(α+ β + s) mod 2 > γ − t

]
.

Theorem 3.3. There exists a transducer with input and output alphabet {0, 1}, having less

than 4w − 2 states, where one state is initial and final, that computes the Hamming weight

of the AJSF from the binary expansion of an integer.

Proof. We construct a transducer performing the same calculation as Algorithm 2. It

will look similar to the transducer in Figure 1. We start at state 0. Then there is a vertical

block of states with w − 1 rows having states (0, 0)i, (1, 0)i, (0, 1)i and (1, 1)i in each row

i = 1, . . . , w − 1. After this block, we either go back to state 0, or to a similar state 1, or

again to the block of states (see Figure 3). We call the states 0 and 1 the looping states.

Their labels signify the carry which is to be processed. The state 0 is also the final state.

The block of states corresponds to the if statement in line 11 in Algorithm 2. In this line,

we have to check the inequality (n− l) mod 2w−1 � u− l − 2w−1. A first step to this aim is

to compare n+ l̃ � ũ with l̃ := −l and ũ := u− l − 2w−1. Therefore, we use Automaton 2.

Next, we examine the binary expansions of ũ and l̃. Since we have assumed that

l > −2w−1, we know that the length of the binary expansion of l̃ is at most w − 1.

Furthermore, −1 � ũ < 2w−1. In the case ũ = −1, the set nonunique(Dl,u) is empty and

we have no choices for the digits. We will return to this case later. Then the length of

the binary expansion of ũ is at most w − 1. Let (lw−2 · · · l0) and (uw−2 · · · u0) be the binary

expansions of l̃ and ũ, respectively.

Now we can verify n+ l̃ mod 2w−1 � ũ by checking the label t of the state (s, t) after

reading w − 1 digits from the binary expansion of (n, l̃, ũ)T in Automaton 2. If t = 0, then

the inequality is true, otherwise it is false. Since the length of ũ is less than or equal to w − 1,

there are no digits of ũ left. Only a possible carry of the addition n+ l̃ is left. This carry

is the label s of the current state (s, t). Therefore, we have checked n+ l̃ mod 2w−1 � ũ.

To ensure that we read exactly w − 1 digits, the transducer in Figure 3 has w − 1 copies

of the four states of Automaton 2. The transitions start in a state of the ith copy and go

to an appropriate state of the (i+ 1)th copy while reading the ith digit of the expansion.

In the if statement in line 11 in Algorithm 2, we must also check the other condition

m ≡ 1 mod 2. Let (s, t)w−1 be the current state at the end of the block of states. We know

https://doi.org/10.1017/S0963548314000352 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548314000352


1096 C. Heuberger and S. Kropf

0 1

0, 01 1, 01 0, 11 1, 11

0, 0w−1 1, 0w−1 0, 1w−1 1, 1w−1

0 |1

0, 1 |0
0 |0

0 |0

1 |0

1 |0

1 |1

1 |1 0 |1

0 |0 1 |0

Figure 3. Transducer to compute the weight of the AJSF with digits in Dl,u.

The transitions into and inside the block of states depend on l and u.

that

m =
(n+ l̃) − (n+ l̃) mod 2w−1

2w−1
.

Therefore, the least significant digit of m is simply the next digit of the addition n+ l̃.

Since there are no digits of the expansion of l̃ left, we only have to look at the next digit

ε of n and consider the carry s. Thus we have m ≡ s+ ε mod 2.

If the inequality of the if statement is satisfied, that is if t = 0, then whatever digit ε

we read next, the transducer starts from a looping state again. If m is even, then the next

written digit is 0 in any case. If m is odd, we can change the digit in the representation

(because it is non-unique) and m becomes even too. We only have to remember the carry.

If s = 0 or s = 1 and we read ε = 0, then there will be no carry propagation and we

continue with state 0. If s = 1 and we read ε = 1, then there is a carry propagation and

we start at state 1.

If the inequality is not satisfied, that is if t = 1, and m ≡ s+ ε mod2 is odd, then

we have to start with the w − 1 transitions of Automaton 2 immediately. If m is even,

however, then the transducer starts from a looping state again. In both cases, we have to

consider the carry propagation as well.

At state s ∈ {0, 1}, we stay in state s as long as we read s. If we read 1 − s we start with

the w − 1 transitions of Automaton 2.

In the case ũ = −1, the set nonunique(Dl,u) is empty. Therefore, we have t = 1 in each

state, and the initial state of Automaton 2 has to be (0, 1). Let (uw−2 · · · u0) = (0w−1). Then

we have a transition from s to (s′, t′)1 with input label 1 − s if and only if there is a

transition from (s, 1) to (s′, t′) with input label (1 − s, l0, u0)
T in Automaton 2.

To summarize, we have the following transitions in the transducer in Figure 3 for s, s′,

t, t′, ε ∈ {0, 1} and i ∈ {1, . . . , w − 2}:

• s
ε|0
−→ s if s = ε,

• s
ε|1
−→ (s′, t′)1 if s �= ε and (s, [ũ = −1])

(ε,l0 ,u0)
T

−−−−→ (s′, t′) is a transition in Automaton 2,
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• (s, t)i
ε|0
−→ (s′, t′)i+1 if (s, t)

(ε,li ,ui)
T

−−−−→ (s′, t′) is a transition in Automaton 2,

• (s, t)w−1

ε|0
−→ s′ if t = 0 or ε+ s ≡ 0 mod 2, and s′ = (ε+ s)/2�,

• (s, t)w−1

ε|1
−→ (s′, t′)1 if t = 1, ε+ s ≡ 1 mod 2 and (s, [ũ = −1])

(ε,l0 ,u0)
T

−−−−→ (s′, t′) is a trans-

ition in Automaton 2.

We note that there is only one accessible state in the first row because the transitions

0
1|1
−→ (s, t)1 and 1

0|1
−→ (s, t)1 both have the same target state. This target state depends on

l and u.

Finally, we restrict the transducer to the states which are actually accessible from the

initial state.

Now we can describe the last state of the path with input label (εL · · · ε0), a binary

expansion. The following lemma can easily be proved by induction.

Lemma 3.4. Let ki, si, ti for i � 0 and ai, fi for i � 1 be sequences with s0 = 0, t0 = 1. The

states (si, ti)w−1 are the states in the last row of the path. The integers ki count how often

we circle in a looping state after the state (si, ti)w−1. The integers fi are the positions of the

non-zeros in the AJSF and ai is the digit at position fi. For ũ � 0, these sequences satisfy

the following recursions for i � 1:

ki =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
max{k ∈ N | (εfi+k+w−2 · · · εfi+w−1) = (0k−11) or (0k)} if si = ti = 0,

max{k ∈ N | (εfi+k+w−2 · · · εfi+w−1) = (1k) or (0k)} if si = 1, ti = 0,

max{k ∈ N | (εfi+k+w−2 · · · εfi+w−1) = (0k)} if si = 0, ti = 1,

max{k ∈ N | (εfi+k+w−2 · · · εfi+w−1) = (1k)} if si = ti = 1,

fi = k0 + · · · + ki−1 + (i− 1)(w − 1),

si =

⌊
value(εfi+w−2 · · · εfi+11) + l̃

2w−1

⌋
,

ti =
[(

value(εfi+w−2 · · · εfi+11) + l̃
)

mod 2w−1 > ũ
]
,

ai = −l̃ + (value(εfi+1−1 · · · εfi+11) + l̃ mod 2ki+w−1).

Then we have

value(εfi+w−2 · · · εfi+11) = ai + 2w−1si(1 − [si = 1 ∧ ti = 0 ∧ εfi+w−1 = 0]).

There is a path from 0 to (s, t)j with input label (εL · · · ε0) if and only if j = L− fi + 1,

fi � L � fi + w − 2 and

s =

⌊
value(εL · · · εfi+11) + value(lj−1 · · · l0)

2j

⌋
,

t =
[(

value(εL · · · εfi+11) + value(lj−1 · · · l0)
)

mod 2j > value(uj−1 · · · u0)
]
.

There is a path from 0 to s with input label (εL · · · ε0) if and only if fi + w − 1 � L �
fi+1 − 1 and s = si or s = 0, si = 1 and (εL · · · εfi+w−1) = (0L−fi−w+2).

For ũ = −1 the only difference is ti = 1 and t = 1.
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0 1

1, 01

0, 03 1, 03

1, 02

1 |1 0 |1

0, 1 |0
0 |0

1 |0

0, 1 |0
1 |0

0 |0

0 |0 1 |0

Figure 4. Transducer to compute the weight of the AJSF with digits in D−3,11. The non-accessible states are

grey.

Example 3.5. For l = −3 and u = 11, we have w = 4, l̃ = (011)2 and ũ = u− l − 2w−1 =

(110)2. The transducer can be seen in Figure 4, where all non-accessible states are grey.

We recall that a reset sequence of a transducer is a sequence (nL · · · n0) such that there

exists a state s with the following property. For all states t, if the transducer is in state t

and the next input is (nL · · · n0), then the transducer is in state s.

Now we generalize this transducer to arbitrary dimension d.

Theorem 3.6. There exists a transducer to compute the Hamming weight of the AJSF for

the joint binary expansion of a d-dimensional vector of integers as input. It has one state

which is initial and final, input alphabet {0, 1}d, output alphabet {0, 1} and less than 8dw

states.

The word 04w is a reset sequence of this transducer. It leads to the initial and final state

of the transducer.

Proof. We construct a transducer calculating the weight of AJSF. In order to explain

the structure of this transducer, we first consider a provisional transducer implementing

a simpler version of Algorithm 1, which omits the else branch in line 17; see also the

algorithm on page 306 of [7]. The resulting provisional transducer is similar to the

transducer in Figure 3.

For every vector s ∈ {0, 1}d, there is a state. These states are called looping states. The

vector s signifies the carry at each coordinate. The state (0, . . . , 0)T is the initial state.

Furthermore, there is a block of states. The states inside the block have the labels (s, t)i
where s, t ∈ {0, 1}d, and i is the row in the block. The coordinates of s and t have the

same meaning as in the proof of Theorem 3.3, that is, s is the carry of the addition n+ l̃

and t signifies whether the digit is in nonunique(Dl,u) or not.

If s ∈ {0, 1}d is a looping state, then there is a loop with label s | 0 at this state. Because

if we read ε = s, then we have ε+ s ≡ 0 mod 2, the output is 0 and the carry propagates

to the next step. If we read ε �= s, then we start with the w − 1 transitions of Automaton 2

in Figure 2 in each coordinate. These w − 1 transitions are processed independently for
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every coordinate. Therefore, we need 4d states in each row and w − 1 rows to process

exactly w − 1 transitions of Automaton 2.

After the last row of the block of states, we either go back to a looping state or again

start with the block of states immediately. Let (s, t)w−1 be the current state in the last row

and ε the next input digit. As in the one-dimensional case we have m ≡ ε+ s mod 2. If for

every coordinate j, tj = 1 implies that mj is even, then we have to process the if branch

in line 12. We write this condition as the scalar product t · (s+ ε mod 2) = 0. In this case,

the next output digit will be 0 and we go on to a looping state s′ where the new carry is

s′ = (s+ ε)/2�.
If t · (s+ ε mod 2) = 0 does not hold, then we would have to process the else branch

in line 17. But since we skip this part for now, we simply have to restart the transducer

with the input m in the case t · (s+ ε mod 2) > 0. We know that m is the original next

input ε plus the carry s. In this case, s �= ε, otherwise t · (s+ ε mod 2) > 0 would be false.

Therefore, there is a transition s
ε|1
−→ (s′, t′)1 in this transducer. This ensures that, when

restarting the transducer with input m, we immediately go on to the state (s′, t′)1. Hence,

we have a transition (s, t)w−1

ε|1
−→ (s′, t′)1 in the provisional transducer.

Altogether, for s, s′, t, t′ ∈ {0, 1}d, i ∈ {1, . . . w − 2}, j ∈ {1 . . . d} and ε ∈ {0, 1}d, we have

the following transitions in this provisional transducer:

• s
ε|0
−→ s if ε = s,

• s
ε|1
−→ (s′, t′)1 if ε �= s and ∀j : (sj , [ũ = −1])

(εj ,l0 ,u0)
T

−−−−−→ (s′
j , t

′
j) is a transition in Auto-

maton 2,

• (s, t)i
ε|0
−→ (s′, t′)i+1 if ∀j : (sj , tj)

(εj ,li ,ui)
T

−−−−−→ (s′
j , t

′
j) is a transition in Automaton 2,

• (s, t)w−1

ε|0
−→ s′ if t · (s+ ε mod 2) = 0 and s′ = (s+ ε)/2�,

• (s, t)w−1

ε|1
−→ (s′, t′)1 if t · (s+ ε mod 2) > 0 and s

ε|1
−→ (s′, t′)1 is a transition in this

transducer.

This transducer does the same as Algorithm 1 without the else branch in line 17. In

the case ũ = −1 we are finished because in the else branch nothing is done. Otherwise we

must consider the else statement.

Let (s, t)w−1 be the current state in the last row and let ε be the next input digit. To

process the else branch, t · (s+ ε mod 2) > 0 must hold in the state (s, t)w−1. Otherwise,

we would process the if branch. First let us examine one coordinate j. If tj = 1, nothing

is done in the else branch because the digit at this coordinate is unique. If tj = 0, we

have to decide whether mj ≡ u+ 1 mod 2w−1. Here, mj mod 2w−1 corresponds to the next

w − 1 input digits plus the carry sj from the current state (s, t)w−1. So we just have to

compare the input letters plus the carry with the binary expansion of u+ 1 mod 2w−1 or,

equivalently, we compare mj − l mod 2w−1 with ṽ = u− l + 1 mod 2w−1. If they are not

the same at some point, then we just go on as we did in the provisional transducer.

If they are the same, we have to process the else branch. There we would have taken

mj − 1 as the next input of the algorithm instead of mj . Therefore we have to decide

where we would be in the provisional transducer, when starting in (s, t)w−1 and the

input is the original input minus 1. This case only happens if initially the next non-zero
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digit is unique, but changing the current digit ensures that the next non-zero digit is

non-unique. Nevertheless, the next digit will not be 0, since this is the case when the if

branch is processed. Therefore we would start in (s, t)w−1 with original input minus 1 and

immediately go to the block of states again. Otherwise, the next digit would be 0. Thus

after w − 1 transitions, we are again in a state (s′, t′)w−1 in the last row. Since the next

digit is non-unique, we have t′j = 0.

To determine the value of s′
j , we have to decide whether there is a carry at position

w − 1 in the addition of mj − 1 and l̃. We have mj − 1 mod 2w−1 = u+ k2w−1 for k ∈ Z.

Since 0 � u � 2w − 1, we have k ∈ {0,−1}. Then the carry is

s′
j =

⌊
(mj − 1) mod 2w−1 + l̃ mod 2w−1

2w−1

⌋
=

⌊
u+ l̃ + k2w−1

2w−1

⌋
= 1 + k,

because 2w−1 � u+ l̃ < 2w . Therefore, we have

s′
j =

{
0 if u � 2w−1,

1 if u < 2w−1.

As a result, the state (s′, t′)w−1 where we would be in the provisional transducer has

(
[
u < 2w−1

]
, 0)

in the jth coordinate.

To remember that we can change the jth coordinate at the end of the block, we have

to use a second identical block {j}. Let ∅ be the first block, which already exists in the

provisional transducer. Let (s, t)Ci be a state in block C . At the end of block ∅, we go to

block {j} if t · (s+ ε mod 2) > 0 and tj = 0. Otherwise, we go to a looping state or to the

block ∅. If we find out that mj �≡ u+ 1 mod 2w−1 in block {j}, then we go back to

the appropriate state in block ∅. At the end of block {j} in the state (s, t)
{j}
w−1, we go to the

same states as we would go from the state with (
[
u < 2w−1

]
, 0)∅

w−1 in the jth coordinate.

So far we have only considered one coordinate. Now we combine this approach for

all coordinates. Since for each coordinate we have to remember whether we are allowed

to change it or not, we need one block for every subset of coordinates. Let block

C ⊆ {1, . . . , d} be the block where we can change the coordinates in C . The states in

block C are denoted by (s, t)Ci . The block ∅ is the block which already exists in the

provisional transducer. The block {1, . . . , d} is not accessible since we need at least one

unique coordinate and only non-unique coordinates can be changed.

If we are in block C �= ∅ and we find out that not every coordinate j ∈ C satisfies

mj ≡ u+ 1 mod 2w−1, we go to the appropriate state in block

C ′ = C \ {j ∈ {1, . . . , d} | mj �≡ u+ 1 mod 2w−1}.

At the end of block C in state (s, t)Cw−1, we can change the coordinates in C and all

other coordinates remain the same. Therefore, we go to the same states as we would go
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from (̃s, t̃)∅
w−1 where s̃j =

[
u < 2w−1

]
, t̃j = 0 for j ∈ C and all other coordinates stay the

same, that is s̃j = sj and t̃j = tj for j �∈ C .

Let (vw−2 · · · v0) be the binary expansion of ṽ. Further, let s, s′, t, t′ ∈ {0, 1}d, C ,

C ′ � {1, . . . , d}, j ∈ {1 . . . d}, i ∈ {1, . . . , w − 2} and ε ∈ {0, 1}d. Then altogether there are

the following transitions in the final transducer:

• s
ε|0
−→ s if s = ε,

• s
ε|1
−→ (s′, t′)∅

1 if s
ε|1
−→ (s′, t′)1 is a transition in the provisional transducer,

• (s, t)Ci
ε|0
−→ (s′, t′)C

′
i+1 if (s, t)i

ε|0
−→ (s′, t′)i+1 is a transition in the provisional transducer and

C ′ = C \ {j : sj + εj + li mod 2 �= vi},
• (s, t)∅

w−1

ε|0
−→ s′ if t · (s+ ε mod 2) = 0 and s′ = (s+ ε)/2�,

• (s, t)∅
w−1

ε|1
−→ (s′, t′)C

′
1 if t · (s+ ε mod 2) > 0, (s, t)w−1

ε|1
−→ (s′, t′)1 is a transition in the

provisional transducer and C ′ = {j : sj + εj + l0 mod 2 = v0 and tj = 0},
• (s, t)Cw−1

ε|1
−→ (s′, t′)C

′
1 if C �= ∅ and (̃s, t̃)∅

w−1

ε|1
−→ (s′, t′)C

′
1 is a transition in this transducer

with s̃j =
[
u < 2w−1

]
, t̃j = 0 for j ∈ C and s̃j = sj , t̃j = tj for j �∈ C ,

• (s, t)Cw−1

ε|0
−→ s′ if C �= ∅ and (̃s, t̃)∅

w−1

ε|0
−→ s′ is a transition in this transducer with s̃j =[

u < 2w−1
]
, t̃j = 0 for j ∈ C and s̃j = sj , t̃j = tj for j �∈ C .

Finally, we restrict the transducer to the states which are actually accessible from the

initial state.

Due to the construction of the transducer, the sequence 04w leads to the initial and final

state from any state.

It is possible to define similar sequences to those in Lemma 3.4, but since this requires

more than one page, we omit this here.

Example 3.7. In Figure 5 there is a sketch of the transducer computing the weight of

the AJSF over D−2,3 in dimension 2. The labels of transitions are omitted in the figure

and the transitions going back at the end of a block or inside a block are grey. We have

w = 3, ũ = (01), l̃ = (10) and ṽ = (10).

For example, the state
(
01
11

){2}
2

has transitions to the same states as the state
(
01
10

)∅
2

since

u < 2w−1.

4. Proof of Theorem 1.5

This section contains the proof of Theorem 1.5, which is a generalization of Theorem 6

in [5]. With the transducer in Theorem 3.6, we can compute the asymptotic Hamming

weight. Therefore we use the following lemma, which can be proved by induction on L.

Lemma 4.1. Let A0, A1 be matrices in Cn×n, H : N → Cn×n be any function and G : N →
Cn×n be a function which satisfies the recurrence relation

G(2N + ε) = AεG(N) + εH(N)
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10 ∅
00 1

00 ∅
10 1

0
1

1
1

11 ∅
01 2

11 ∅
10 2

10 ∅
11 2

01 ∅
11 2

10 {1}
00 1

11 {1}
10 2

11 {1}
01 2

00 ∅
00 1

1
0

0
0

10 ∅
10 2

10 ∅
01 2

01 ∅
10 2

01 ∅
01 2

00 {2}
10 1

10 {2}
11 2

01 {2}
11 2

Figure 5. Transducer to compute the Hamming weight of the AJSF in dimension 2 over the digit set D−2,3.

for N � 1 and ε ∈ {0, 1}. Then

G

( L∑
p=0

εp2
p

)
=

L∑
p=0

εp

(p−1∏
j=0

Aεj

)
H

( L∑
j=p+1

εj2
j−p−1

)
,

where we additionally set H(0) = G(1).

We define f(m1, . . . , md) := eith(m1 ,...,md). The matrices Mε1 ,...,εd for εi ∈ {0, 1} are defined as

follows. The (j, k)th entry of the matrix Mε1 ,...,εd is eith if there is a transition from state j to

k with input label (ε1, . . . , εd)
T and output label h. The entry is 0 if there is no transition

from state j to k with this input label. The ordering of states is considered to be fixed in
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such a way that the initial state is the last state. Then we have

f(m1, . . . , md) = vT
L∏
p=0

Mm1,p,...,md,pM
4w
0,...,0v (4.1)

for vT = (0, . . . , 0, 1) and mi =
∑L

p=0 mi,p2
p. The product describes all possible paths

between states, using edges with input labels corresponding to the input (m1, . . . , md).

The exponent of the entries of the matrix product is the sum of output labels on these

paths. Since we are interested in paths starting and ending in state (0, . . . , 0)T , we multiply

by vT from the left and v from the right. The factor M4w
0,...,0 is due to the reset sequence

from Theorem 3.6 and ensures that we stop at the final state.

We further define the following summatory functions

E(N) =
∑

0�m1 ,...,md<N

f(m1, . . . , md),

F(N) =
∑

0�m1 ,...,md<N

M(m1, . . . , md),

with

M(m1, . . . , md) =

L∏
p=0

Mm1,p,...,md,p .

In other words, this last equation says that the function M(m1, . . . , md) is 2-multiplicative

(see [2]). By (4.1), we have

E(N) = vTF(N)M4w
0,...,0v.

To write down a recursion formula for F(N), we need the matrices

BC,D :=
∑
εi=0,1
i�∈C∪D

∑
εi=0
i∈C

∑
εi=1
i∈D

Mε1 ,...,εd

for disjoint C , D ⊆ {1, . . . , d}. The first index C of BC,D is the set of coordinates where

the digit is 0. The second index D is the set of coordinates where the digit is 1. All other

coordinates in (C ∪ D)c can be any digit. By construction, we have ‖Mε1 ,...,εd‖1 = 1, where

‖ · · · ‖1 denotes the row sum norm of a matrix. We conclude that ‖BC,D‖1 � 2d−|C|−|D|. As

a special matrix we define A = B∅,∅.

Furthermore we define the functions

GC(N) :=
∑

0�mi<N
i�∈C

∑
mi=N
i∈C

M(m1, . . . , md)

for every set C ⊆ {1, . . . , d}.
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Then we have F(N) = G∅(N), and the functions satisfy the following recursion formulas

due to 2-multiplicativity:

GC(2N) =
∑
εi=0,1
i�∈C

∑
εi=0
i∈C

∑
2mi+εi<2N

i�∈C

∑
2mi+εi=2N

i∈C

M(2m1 + ε1, . . . , 2md + εd)

= BC,∅GC(N),

GC(2N + 1) =
∑
εi=0,1
i�∈C

∑
εi=1
i∈C

∑
2mi+εi<2N+1

i�∈C

∑
2mi+εi=2N+1

i∈C

M(2m1 + ε1, . . . , 2md + εd)

=
∑
D⊆Cc

∑
εi=0,1
i�∈C∪D

∑
εi=0
i∈D

∑
εi=1
i∈C

Mε1 ,...,εd

∑
mi<N
i�∈C∪D

∑
mi=N
i∈C∪D

M(m1, . . . , md)

=
∑
D⊆Cc

BD,CGC∪D(N).

From this recursion, we can determine GC(N) inductively because all functions GC ′

required for computing GC have C ′ � C . Therefore, we have the following recursion

formula for F(N) = G∅(N):

F(2N + ε) = AF(N) + εH(N)

for N � 1, ε ∈ {0, 1} and

H(N) =
∑

∅�=D⊆{1,...,d}

BD,∅GD(N).

If we define H(0) = G∅(1), we can use Lemma 4.1 and get

F

( L∑
p=0

εp2
p

)
=

L∑
p=0

εpA
pH

( L∑
j=p+1

εj2
j−p−1

)
. (4.2)

Here, H(N) is considered to be a known function because it is a sum of functions GC(N),

which are recursively known by Lemma 4.1.

From the definition of GC(N), we can derive the growth rates of the functions GC (N)

and H(N). We have ‖GC(N)‖1 = O(Nd−|C|) and ‖H(N)‖1 = O(Nd−1).

Next, we investigate the eigenvalues of the matrix A. We first consider the case t = 0.

In this case, A is the adjacency matrix of the underlying graph of the transducer in

Theorem 3.6. Therefore, it has an eigenvalue 2d with eigenvector (1, . . . , 1)T . By the

Perron–Frobenius theorem, there is a unique dominant eigenvalue μ(0) of A which is

easily seen to be primitive as every state is reachable from any other state in exactly

4w steps. As ‖A‖1 � 2d and the largest eigenvalue is always at most ‖A‖1, μ(0) = 2d is

the largest eigenvalue. We denote the modulus of the second largest eigenvalue by β(0).

Since eigenvalues are continuous, for t in a suitable neighbourhood of 0, A has a unique

dominant eigenvalue μ(t) and the modulus β(t) of the second largest eigenvalue fulfils

β(t) < |μ(t)|.
Now we want to split up (4.2) into two parts, one for the dominating eigenvalue and

one for the remaining eigenvalues. Therefore, let J = T−1AT be a Jordan decomposition
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of A where J has been sorted such that it has μ(t) in the upper left corner. We define

Λ := Tdiag(μ(t)−1, 0, . . . , 0)T−1 and R := T (J − diag(μ(t), 0, . . . , 0))T−1.

Then Ap = μLΛL−p + Rp holds for p � L. Further, we define

Λ(x0, x1, . . .) =

∞∑
p=0

xpΛ
pH

(p−1∑
j=0

xj2
p−1−j

)
, (4.3)

R

( L∑
p=0

εp2
p

)
=

L∑
p=0

εpR
pH

( L∑
j=p+1

εj2
j−p−1

)
.

The function Λ is well defined on the infinite product space {0, 1}N because it is dominated

by a geometric series. We extend Λ to a function on [1, 2) by setting

Λ

( ∞∑
p=0

xp2
−p

)
:= Λ(x0, x1, . . .)

with the standard binary expansion and choosing the representation ending on 0ω in the

case of ambiguity.

Then we have

F

( L∑
p=0

εp2
p

)
= μLΛ(εL, εL−1, . . . , ε0, 0

ω) + R(εL, . . . , ε0)

and

E(N) = μ(t)log2 NΨ(log2N, t) + R̃(N, t)

with

Ψ(x, t) = μ(t)−{x}vTΛ(2{x})M4w
0,...,0v and R̃(N, t) = vTR(N)M4w

0,...,0v.

Furthermore, there is a δ ∈ (0, 1] such that log2 β(t) < d− δ in a suitable neighbourhood

of 0. Then we have

|R̃(N, t)| = O(Nd−δ).

So we have

E(N) = Nd+a1t+a2t
2+O(t3)Ψ(log2N, t) + O(Nd−δ) (4.4)

with a1 and a2 depending on the Taylor expansion of log2 μ(t) at t = 0. If we insert t = 0

in (4.4), we obtain ψ0 = Ψ(log2N, 0) = 1 + O
(
N−δ).

The function Ψ(x, t) is periodic in x with period 1 and is well defined for all x ∈ R+. To

prove continuity in x, we first note that continuity for x ∈ [0, 1) with x = log2 y, where y

is not a dyadic rational follows from (4.3). To prove it for x = log2 y with y =
∑L

p=0 εp2
−p

a dyadic rational with εL = 1, we observe that the two one-sided limits exist due to (4.3).

https://doi.org/10.1017/S0963548314000352 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548314000352


1106 C. Heuberger and S. Kropf

Next, we prove that they are the same. Therefore, we look at the two sequences Nk = y2L+k

and Ñk = y2L+k − 1. Then

lim
k→∞

2{log2 Nk} = (ε0 � ε1 · · · εL−110ω) and lim
k→∞

2{log2 Ñk} = (ε0 � ε1 · · · εL−101ω).

If we insert these two sequences in (4.4), we get

O(Nd−1
k ) = E(Nk) − E(Ñk) = Nd

kΨ(log2Nk, t) − Ñd
kΨ(log2 Ñk, t) + O(Nd−δ

k ),

and hence limk→∞ Ψ({log2Nk}, t) = limk→∞ Ψ({log2 Ñk}, t). Therefore, Ψ(x, t) is continuous

in x.

In t, Ψ(x, t) is also continuous because the eigenvalues of a matrix are continuous.

Furthermore, the function Ψ(x, t) is arbitrarily often differentiable in t because it is

dominated by a geometric series. By the same argument as above, these derivatives are

continuous in x.

The first and second derivative of E(N) with respect to t at t = 0 imply that the

expected value of the Hamming weight is

1

Nd

∑
mi<N

h(m1, . . . , md) = el,u,d log2N + Ψ1(log2N) + O(N−δ logN) (4.5)

with el,u,d = −ia1 log 2 and

Ψ1(log2N) = −i ∂
∂t

Ψ(log2N, t)|t=0,

and

1

Nd

∑
mi<N

h2(m1, . . . , md) = vl,u,d log2N + e2l,u,d log2
2N + 2el,u,d log2NΨ1(log2N)

+ Ψ2(log2N) + O(N−δ log2N)

with vl,u,d = −2a2 log 2 and

Ψ2(log2N) = − ∂2

∂t2
Ψ(log2N, t)|t=0.

From that, we calculate the variance, which is

1

Nd

∑
mi<N

h2(m1, . . . , md) −
(

1

Nd

∑
mi<N

h(m1, . . . , md)

)2

=

vl,u,d log2N − Ψ2
1(log2N) + Ψ2(log2N) + O(N−δ log2N).

We first compute the characteristic function ĝN(t) of the random variable

Z =
h(m1, . . . , md) − el,u,d log2N√

vl,u,d log2N
,
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which is

ĝN(t) =
1

Nd

∑
mi<N

exp

(
it
h(m1, . . . , md) − el,u,d log2N√

vl,u,d log2N

)

= e−t2/2
(

1 + O

(
t3

log3/2N

))
ψ

(
log2N,

t√
vl,u,d log2N

)
+

1

Nd
R̃

(
N,

t√
vl,u,d log2N

)
exp

(
−it el,u,d√

vl,u,d

√
log2N

)
.

Since ĝN(t) is a characteristic function, we have 1 = ψ0 + r0 for r0 = (1/Nd)R̃(N, 0)

and ψ0 = Ψ(log2N, 0). We know that (1/Nd)R̃(N, t) = O(N−δ). Next, we can estimate the

difference from ĝN(t) to the characteristic function f̂(t) = e−t2/2 of the normal distribution

with mean 0 and variance 1, which is

|ĝN(t) − f̂(t)|

=

∣∣∣∣e−t2/2
(

1 + O

(
t3

log3/2N

))(
ψ0 + O

(
t√

logN

))
+

1

Nd
R̃

(
N,

t√
vl,u,d log2N

)
exp

(
−it el,u,d√

vl,u,d

√
log2N

)
− (ψ0 + r0)e

−t2/2
∣∣∣∣

= O

(
t√

logN

)
,

for t = o(
√

logN).

Therefore, the Berry–Esseen inequality (see [11]) implies

P

(
h(m1, . . . , md) − el,u,d log2N√

vl,u,d log2N
< x

)
=

1√
2π

∫ x

−∞
e−y2/2dy + O

(
1

4
√

logN

)
.

For a specific digit set and dimension, we can compute the constants el,u,d and vl,u,d
explicitly.

Example 4.2. We consider the digit set D−2,3 in dimension 2. See Example 3.7 and Figure 5

for the transducer. The adjacency matrix A of the underlying graph of this transducer is

given in Table 1, where z = eit.

The characteristic polynomial of A is

−(x− 1)x7
(
x2 − 2z

)(
x3 − x2 − xz − 2z

)2(
x5 − x4 − 7x3z − 20x2z + 6xz2 − 24z2

)
.

At t = 0, the dominating eigenvalue μ(0) = 4 is a root of the fourth factor. Therefore the

Taylor expansion of μ(t) around t = 0 is

μ(t) = 4 +
128i

89
t− 673216

2114907
t2 + O(t3).

Hence the expected value of the Hamming weight is

32

89
log2N + O(1)
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Table 1. Adjacency matrix of the transducer in Example 4.2

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0

3z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

z 0 0 0 z 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

z 0 0 z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

2z z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

z 0 0 0 z 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

z 0 0 z 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

2z 0 z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

z 0 0 z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

z 0 0 0 z 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

z z z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

2z 0 z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

2z z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

3z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and the variance is

63200

2114907
log2N + O(1).

In order to determine the constants el,u,d and vl,u,d giving mean and variance in general,

we rephrase the results of the ‘full block-length’ analysis in [7] in a probability model

which is easily compared with our main results.

Lemma 4.3. Let k � w be a positive integer. Let W̃k be the Hamming weight of the AJSF

of a random vector m = (m1, . . . , md)
T with equidistribution of all vectors m = (m1, . . . , md)

T

with 0 � mi < 2k .

Then

EW̃k = el,u,dk + O(1) and VW̃k = vl,u,dk + O(
√
k)

for the constants given in Theorem 1.5.

Proof. For j < k, we denote the jth digit of the AJSF of a random vector m =

(m1, . . . , md)
T by X̃j , where we assume equidistribution of all vectors m = (m1, . . . , md)

T

with 0 � mi < 2k .

In [7, § 6.2], the random variables Xj denoting the jth digit of a random AJSF has

been considered, where the probability measure was defined to be the image of the Haar

measure on the space of d-tuples of 2-adic integers under the AJSF, i.e., equidistribution

on all residue classes modulo 2l for all l has been assumed. Furthermore, Wj was defined

to be the weight of the first j digits.
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From Algorithm 1, it is clear that X̃j only depends on m modulo 2j+w . This implies

that X̃j and Xj are identically distributed for j < k − w. Therefore Wk−w and W̃k−w are

identically distributed, too. Furthermore, we always have |W̃k − W̃k−w| � w.

By [7, Theorem 6.7], we have

EW̃k−w = EWk−w = el,u,d(k − w) + O(1), VW̃k−w = VWk−w = vl,u,d(k − w) + O(1).

We conclude that

EW̃k = EW̃k−w + O(1) = EWk−w + O(1) = el,u,dk + O(1),

VW̃k = VW̃k−w + V(W̃k − W̃k−w) + 2Cov(W̃k−w, W̃k − W̃k−w) = VWk−w + O(
√
k),

where the Cauchy–Schwarz inequality has been used in the form

Cov(W̃k−w, W̃k − W̃k−w) �
√

VW̃k−wV(W̃k − W̃k−w).

In the next lemma, we prove that the function Ψ1(x) is non-differentiable at any

real number in the one-dimensional case. The proof uses the method presented by

Tenenbaum [10]; see also Grabner and Thuswaldner [4].

Lemma 4.4. Let d = 1. Then the function Ψ1(x) in Theorem 1.5 is nowhere differentiable.

Proof. Let g(N) = 2−1−4wNc/(c+1)� be a positive integer-valued function with c ∈ Z and

c > 1/δ − 1. We have g(N) = o(N) and N1−δ logN = o(g(N)).

Assume Ψ1 is differentiable at x ∈ [0, 1). Let 2x =
∑∞

p=0 εp2
−p be the standard binary

digit expansion choosing the representation ending on 0ω in the case of ambiguity. Further,

let xk , yk and Nk be such that 2xk =
∑k

p=0 εp2
−p, Nk = 2k(c+1)+xk ∈ Z and 2k(c+1)+yk =

Nk + g(Nk). Then we have

x− xk = O(2−k),

yk − xk = log2

(
1 +

g(Nk)

Nk

)
=

1

log 2

g(Nk)

Nk

+ O

(
g(Nk)

2

N2
k

)
,

lim
k→∞

yk = x.

Because of the choice of g(N), we have

g(Nk) < 2ck−4w,

g(Nk)

Nk

= Θ(2−k).

We have h(2p+4wn+ m) = h(n) + h(m) for p � 0 and m < 2p because 04w is a reset

sequence leading to the initial state (see Theorem 3.6). Due to (4.5) and the periodicity
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and continuity of Ψ1, we have∑
Nk�n<Nk+g(Nk)

h(n) (4.6)

= g(Nk)h(Nk) +
∑

n<g(Nk)

h(n)

= g(Nk)h(Nk) + el,u,1g(Nk) log2 g(Nk) + g(Nk)Ψ1

(
c

c+ 1
x

)
+ o(g(Nk)).

On the other hand, we have∑
Nk�n<N+g(Nk)

h(n) (4.7)

= el,u,1(Nk + g(Nk)) log2(Nk + g(Nk)) + (Nk + g(Nk))Ψ1(log2(Nk + g(Nk)))

− el,u,1Nk log2Nk −NkΨ1(log2Nk) + O(N1−δ
k logNk)

= el,u,1Nk(yk − xk) +Nk(Ψ1(yk) − Ψ1(xk)) + el,u,1g(Nk)(k(c+ 1) + yk)

+ g(Nk)Ψ1(yk) + o(g(Nk)).

If we divide by g(Nk) in (4.6) and (4.7), then we obtain

h(Nk) + el,u,1 log2 g(Nk) + Ψ1

(
c

c+ 1
x

)
= el,u,1(yk − xk)

Nk

g(Nk)
+

Nk

g(Nk)
(Ψ1(yk) − Ψ1(xk))

+ el,u,1(k(c+ 1) + yk) + Ψ1(yk) + o(1).

Now we can write the difference of the Ψ1 on the right-hand side in terms of the

derivative

Ψ1(yk) − Ψ1(xk) = Ψ′
1(x)(yk − xk) + o(x− xk) + o(|yk − x|),

and we get

h(Nk) = −Ψ1

(
c

c+ 1
x

)
+
el,u,1

log 2
+

Ψ′
1(x)

log 2
+ el,u,1

(
k +

x

c+ 1

)
+ Ψ1(x) + o(1).

Next, we take the difference of two subsequent terms

h(Nk+1) − h(Nk) = el,u,1 + o(1), (4.8)

where the left-hand side is an integer. We have el,u,1 �∈ Z since 0 < el,u,1 = 1/(w − 1 + λ) < 1.

Therefore the right-hand side of (4.8) is not an integer for k large enough. This

contradicts our assumption that Ψ1 is differentiable in x.

5. Asymptotic distribution of the w-NAF

In this section we specialize the result of Theorem 1.5 to the w-NAF.

Theorem 5.1. The weight h(n) of the w-NAF of the integer n with equidistribution on {n ∈
Z | 0 � n < N} is asymptotically normally distributed. There exists a δ > 0 such that the
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mean is

1

w + 1
log2N + Ψ1(log2N) + O(N−δ logN)

and the variance is

2

(w + 1)3
log2N − Ψ2

1(log2N) + Ψ2(log2N) + O(N−δ log2N),

where Ψ1 and Ψ2 are continuous, 1-periodic functions on R. If w is large enough, then

δ = log2

(
1 +

3π2

w3

)
.

In particular, we have

P

(
h(n) − log2N/(w + 1)√

2/(w + 1)3 log2N
< x

)
=

1√
2π

∫ x

−∞
e−y2/2dy + O

(
1

4
√

logN

)
for all x ∈ R.

This follows from the next lemma and Theorem 1.5.

Lemma 5.2. The characteristic polynomial of the matrix A of the transducer in Figure 1 is

(x− 1)(xw − xw−1 − 2w−1eit). The largest eigenvalue μ(t) is unique around t = 0 and μ(0) =

2. Furthermore, for large enough w and t = 0, there is exactly one simple eigenvalue in

Tk =

{
x ∈ C : |x| � 2

1 + 3
w

,

∣∣∣∣arg x− 2kπ

w

∣∣∣∣ � π

2w

}
for each k = 0, . . . , w − 1. Additionally, there is the obvious eigenvalue x = 1. The eigenvalues

with the second largest absolute value are in T1 and Tw−1. For each eigenvalue at t = 0, an

expansion in 1/w can be computed with arbitrarily small error term.

Proof. The characteristic polynomial of A is obtained by Laplace expansion. With

z = 2/x, the interesting factor of the characteristic polynomial is transformed into zw +

z − 2 = 0. The smallest root in absolute value of this polynomial is 1 because for |z| < 1

we have

|zw + z| = |z| · |zw−1 + 1| < 2|z| < 2.

We use the fixed-point equation fk(z) = z with

fk(z) = (2 − z)1/we2πik/w

for k = 0, . . . , w − 1. Here, we take the main branch of the wth root. After the substitution,

we have

T̃k =

{
z ∈ C : |z| � 1 +

3

w
,

∣∣∣∣arg z − 2kπ

w

∣∣∣∣ � π

2w

}
,
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which corresponds to T−k mod w . For w large enough and |z| � 1 + 3/w, we have

|f′
k(z)| =

1

w
|2 − z|1/w−1

� 1

w

(
1 − 3

w

)1/w−1

� 1

w − 3

and

|fk(z)| � |fk(z) − fk(1)| + |fk(1)|

� 1

w − 3
|z − 1| + 1 � 2 + 3/w

w − 3
+ 1 � 1 +

3

w
.

Furthermore, we have ∣∣∣∣arg fk(z) − 2kπ

w

∣∣∣∣ � π

2w
.

Thus, fk(T̃k) ⊆ T̃k , and fk is a contraction on T̃k with Lipschitz constant (w − 3)−1 < 1.

Therefore, there exists a unique fixed point of fk in T̃k for each k. Because T̃k for

k = 0, . . . , w − 1 only intersect in 0, which is certainly no root of the polynomial, we

found w distinct roots of the polynomial zw + z − 2. Thus, we have found all roots of

this polynomial. We only have to investigate 0 � k � w/2 because the coefficients of the

polynomial are real. Let z ∈ T̃k be the fixed point of fk . For ρ = exp(2πi/w), we have

|z − ρk| = O(1/w). Therefore, z = ρk + O(1/w).

For k � wα with a fixed α ∈
(
1/2, 1

)
, we have

z = f(z) = 1 +
2πik

w
+ O

(
k2

w2

)
.

Iterating, we successively get

z = 1 +
2πik

w
− 2π2k2

w2
− 2πik

w2
+ O

(
k3

w3

)
and

|z| = 1 +
4π2k2

w3
+ O

(
k3

w4

)
.

Therefore, for large w, only the fixed points for k = w − 1, 0, 1 are in the disk{
z ∈ C : |z| � 1 +

10π2

w3

}
.

For k � wα, we have

|2 − ρk| =

(
5 − 4 cos

(
2kπ

w

))1/2

�
(
5 − 4 cos(2wα−1π)

)1/2

= 1 + 4π2w2α−2 + O(w4α−4),

|2 − z| � |2 − ρk| − |z − ρk|
= 1 + 4π2w2α−2 + O(w4α−4 + w−1),

|fk(z)| = exp

(
1

w
log |2 − z|

)
� 1 + 4π2w2α−3 + O(w4α−5 + w−2).
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Thus for k � wα, the fixed point of fk is not in the disk{
z ∈ C : |z| � 1 +

10π2

w3

}
for large w.
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