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The problem of asymmetric water entry of a wedge with the vortex sheet shed from
its apex is considered within the framework of the ideal and incompressible fluid. The
effects due to gravity and surface tension are ignored and the flow therefore can be
treated as self-similar, as there is no length scale. The solution for the problem is
sought through two mutually dependent parts using two different analytic approaches.
The first one is due to water entry, which is obtained through the integral hodograph
method for the complex velocity potential, in which the streamline on the body surface
remains on the body surface after passing the apex, leading to a non-physical local
singularity. The second one is due to a vortex sheet shed from the apex, and the
shape of the sheet and the strength distribution of the vortex are obtained through
the solution of the Birkhoff–Rott equation. The total circulation of the vortex sheet
is obtained by imposing the Kutta condition at the apex, which removes the local
singularity. These two solutions are nonlinearly coupled on the unknown free surface
and the unknown vortex sheet. This poses a major challenge, which distinguishes the
present formulation of the problem from the previous ones on water entry without a
vortex sheet and ones on vortex shedding from a wedge apex without a moving free
surface. Detailed results in terms of pressure distribution, vortex sheet, velocity and
force coefficients are presented for wedges of different inner angles and heel angles,
as well as the water-entry direction. It is shown that the vortex shedding from the
tip of the wedge has a profound local effect, but only weakly affects the free-surface
shape, overall pressure distribution and force coefficients.

Key words: flow–structure interactions, interfacial flows (free surface), vortex dynamics

1. Introduction
In a wide context, water entry refers to that in which a solid body penetrates

through the free surface of a liquid at large relative speed, in the sense of either
the body moving towards the liquid or the other way round. This problem has
a wide range of applications in many engineering fields. Slamming of marine
vehicles, impact of green water on ship decks or offshore platforms and extreme
waves including tsunamis on the coastline are well-known examples (Faltinsen 2005).
Impact is typically characterized by a short duration, during which velocity and the
free surface shape change rapidly both temporally and spatially. It may generate high
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Water entry of a wedge 513

pressure peaks and large pressure gradients. The severe fluid loading on the structure
can lead to its damage or even destruction.

Water-entry problems have been extensively investigated using wedge geometry.
In addition to direct applications of its results to improve the design of ship
hulls, half-submerged propellers, high-speed planing boats and seaplanes etc., the
investigations of such a geometry can also reveal some important features and
provide better understanding of fluid flows in more general situations. When a
symmetric wedge enters a horizontal water surface vertically, the generated flow
will be also symmetric, and no flow will cross the tip of the wedge. In other cases,
including asymmetric wedges or oblique entries, the cross-flow will occur at the tip of
the wedge and the physics of the flow will be changed. Experiments done by Judge,
Troesch & Perlin (2004) revealed that, under certain conditions, flow detachment can
occur, and this could change flow features completely, especially in the local area.
Another important effect of flow asymmetry is that a vortex sheet is shed from the
tip, which significantly changes the configuration of the flow near the apex. As in
the case without a free surface (Pullin 1978; Xu 2016), the shed vortex leads to
the formation of a recirculation region. These aspects are expected to have some
important consequences, especially in the area near the wedge apex. However, these
effects have not been carefully considered in the previous works on water entry and
they are the main purpose of the present study.

There is a large body of work on water entry of a wedge without taking account
of vortex shedding. The theories based on the incompressible velocity potential for
solid-body impact with a liquid were first proposed by von Karman (1929) and
Wagner (1932). The former assumed an undisturbed free surface while the latter
introduced a correction for the contact point of the body surface and the free surface.
Many practical problems have been solved on the basis of these theories. A particular
feature in the Wagner theory is that a body is usually replaced by an equivalent
plate. The width of the plate is obtained from the horizontal distance between the
two contact points of the body with the free surface. This changes with time and
needs to be found as part of the solution. The Wagner theory has been found
to be very effective in many cases. However, it predicts an infinite velocity and
pressure at the contact point and a jet is usually absent. This drawback has been
corrected in further development of the Wagner theory in the framework of the
matched asymptotic method. Various impact problems have then been solved through
this method by Armand & Cointe (1987), Howison, Ockendon & Wilson (1991),
Korobkin & Puknachov (1988), Korobkin (2004), Howison, Ockendon & Oliver
(2004) and Oliver (2007). A different modification for the conventional Wagner
theory is to take into account the body shape and not to replace it with an equivalent
plate as is done by Zhao, Faltinsen & Aarsnes (1996) using a boundary-integral
equation method and Mei, Liu & Yue (1999) using a conformal mapping technique.

Water-entry problem has also been solved based on a fully nonlinear model. For a
wedge at constant entry speed, when the flow is assumed to be potential, gravity and
surface tension effects are ignored, the problem becomes self-similar. Mathematically,
the temporal variable can be incorporated into the spatial variables. The boundary
conditions on the unknown free surface no longer involve explicitly time but they
remain fully nonlinear. The complete solution for such a formulation was obtained
by Dobrovol’skaya (1969) for a symmetric wedge entering the free surface vertically.
Chekin (1989) generalized Dobrovol’skaya’s approach to the problems of oblique
water entry of a wedge and an inclined flat plate. More recently, this problem was
considered by Semenov & Iafrati (2006) and Semenov & Yoon (2009), Semenov
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514 Y. A. Semenov and G. X. Wu

& Wu (2012) using integral hodograph method (IHM), and by Iafrati (2000) and
Xu, Duan & Wu (2008, 2010) using a numerical method. In all these works, the
streamline from the tip is attached to the wedge surface and no vortex shedding
is taken into account. As a result, a singularity in velocity and pressure at the
wedge apex appeared. This is obviously a consequence of the pure irrotational flow
assumption. In real fluids, the streamline will not bend over the corner. Instead, it
will separate from the tip and create a recirculation region. This is obviously due
to the viscous effect which is not included in the pure irrotational flow. In order to
resolve the velocity singularity at the tip Chekin (1989) proposed a model with a
cavity at the tip, however, no numerical results were provided. Riccardi & Iafrati
(2004) included a pointed vortex shedding from the apex of the wedge during water
entry. However, the free surface was kept flat and the potential on the free surface
remained at zero.

In the present study we address the problem of asymmetric water entry of a wedge
with attached flow on the leeward side and vortex shedding from the wedge apex.
The problem is solved within certain ranges of the wedge heel angle and the direction
of the incoming velocity relative to the body, confined by some constraints. The first
constraint is an obvious geometrical one, which requires that the deadrise angles
on both sides of the wedge are positive, or the wedge surface is not in touch with
water before the wedge apex. The second one is that the angle between the incoming
flow direction and the leeward side of the wedge should not exceed a critical value.
Beyond this critical value the liquid will no longer be in touch with the surface of
the leeward side, or the flow becomes detached, as was observed in the experiment
by Judge et al. (2004). Within these constraints a mathematical model with fully
nonlinear free surface conditions at their exact position together with vortex shedding
from the wedge apex is adopted. The vortex shedding is considered in the form of
a vortex sheet, or vortex line in the present two-dimensional case, starting from the
wedge apex. The tangential velocity across the vortex line is discontinuous. The total
complex velocity potential is split into two components. The first one is principally
about the irrotational flow generated by the body motion during water entry. The
IHM developed previously for free-surface flows (Semenov & Wu 2012) without a
vortex is used. However, such a solution alone leads to a singularity at the wedge
apex. Thus the second part of the solution is due to the vortex sheet started from
the wedge apex. The method for the vortex sheet follows the formulation of Moore
(1975), whose detailed application to a wedge without the free surface was made by
Pullin (1978). Unlike the work of Pullin, however, the incoming flow to the wedge
here is not a prescribed one but is the one due to water entry. Due to the nonlinearity
of the boundary condition, these two components of the problem cannot be solved
separately, and they have to be solved simultaneously. In particular, using the dynamic
and kinematic boundary conditions on the free surface, the problem is reduced to
a system of an integral and an integro-differential equation in the parameter plane,
in terms of the velocity magnitude and the velocity angle to the fluid boundary,
respectively. The motion of the vortex sheet is governed by the Birkhoff–Rott (B–R)
integro-differential equation (Rott 1956; Birkhoff 1962), which expresses the fact
that the points of the vortex sheet move with the induced fluid velocity and the
circulation corresponding to each of these points remains unchanged. The coupled
systems of equations from the free surface boundary conditions and B–R equation
are then solved numerically through successive approximations.

In the following sections the derivation of the integro-differential equations based
on the IHM and B–R equations are first presented, followed by the numerical method
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(a)

i

(b)

FIGURE 1. (a) Asymmetric water entry of a wedge: (a) similarity plane z= x+ iy; (b) the
parameter plane.

for solving these equations. Results are then provided, in particular near the wedge
apex, through the streamlines, vortex sheet shape, size and location of the recirculation
region and the pressure distribution along the wedge. The effects of the shedding
vortex on the local flow and the free surface are then discussed, aiming to give some
insights into the flow structure and pressure distribution near the wedge apex when
the vortex shedding effect is included.

2. Formulation of the problem and the solution procedure

We consider the flow of an ideal incompressible fluid, generated by water entry of
a wedge of inner angle 2α. Gravity and surface tension effects are neglected. The
pressure on the free surface is assumed to be constant and equal to the atmospheric
pressure Pa. The definitions of the geometric parameters are shown in figure 1(a). The
origin of the Cartesian coordinate system xy is fixed at the wedge apex. The liquid
is assumed to move toward the stationary solid wedge with velocity V which forms
an angle γ∞ with the x-axis. Then, the free-surface elevation at x=±∞ approaches
Y∞=Vt sin γ∞. The symmetry line of the solid wedge forms a heel angle δh with the
y-axis. It follows from the geometry of the problem that the right and left sides of
the solid wedge form angles βR = π/2− α + δh and βL = π/2+ α + δh, respectively,
with the x-axis. The problem is symmetric only when γ∞ = 90◦ and δh = 0.

Stagnation point A is expected to appear on the windward side of the wedge,
where the incoming zero streamline splits into two along the body surface, moving
in opposite directions. In the case without a vortex sheet (Semenov & Wu 2012),
when the flow moves towards the apex C of the wedge, the liquid accelerates to an
infinite speed and turns around the sharp corner. Then, it decelerates on the leeward
side. Although such flow configuration is mathematically possible in an ideal fluid, it
does not reflect the real physics locally. For a real liquid with viscosity, the boundary
layer will lead to vorticities shed from the body and both the velocity and pressure
at the apex will remain finite. To model this in an ideal liquid, a free shear layer
starting from the apex can be introduced (Rott 1956). Across the layer, the tangential
velocity will be discontinuous. The vortex sheet will roll up into a spiral-like shape,
as observed in the problem of an infinite wedge in an unbounded flow domain (Pullin
1978).
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516 Y. A. Semenov and G. X. Wu

Here, we will consider the spiral vortex effect during water entry. The problem is
self-similar since there is no length scale. Therefore, the time-dependent problem in
the physical plane Z=X+ iY can be written in the stationary plane z= x+ iy in terms
of the self-similar variables x = X/(Vt) and y = Y/(Vt), where t is the time starting
from the moment of impact. The complex velocity potential W(Z, t) = Φ(Z, t) +
iY(Z, t) for the self-similar flow is written in the form

W(Z, t)= V2tw(z)= V2t[φ(x, y)+ iψ(x, y)], (2.1)

where φ(x, y) and ψ(x, y) are the velocity potential and the streamfunction in the
similarity plane. We may decompose the complex potential of such a flow into two
components

w(z)=w1(z)+w2(z), (2.2)

where w1(z) is the complex potential due to water entry without a vortex sheet and
w2(z) is the complex potential due to the spiral vortex sheet. The complex potential
w1(z) has a singularity at the apex of the wedge. Introduction of the complex potential
w2(z) is to ensure that there will be no singularity in w(z), and the velocity at the apex
will be finite. This means that a singularity at point C exists in w2(z), which has the
same order as that in w1(z).

2.1. General approach for solving free-surface problems
In order to determine the function w(z) we introduce a parameter plane, or ζ plane,
as suggested by Joukovskii (1890) and Michell (1890). Then, the complex velocity, or
strictly speaking the conjugate of the complex velocity, dw/dz, and the derivative of
the complex potential, dw/dζ , are found as functions of the parameter ζ in the form

w(ζ )=w(0)+
∫ ζ

0

dw
dζ

dζ , z(ζ )= z(0)+
∫ ζ

0

dw
dζ

/
dw
dz

dζ . (2.3a,b)

Further development of this method was done by Chaplygin (see chap. 4 in
Gurevich 1965), who suggested analysis of the singular points of a complex function
followed by finding the function using Liouville’s theorem, instead of using conformal
mapping in an explicit form. We choose the first quadrant of the ζ plane as the
parameter region corresponding to the physical domain to derive expressions for
the complex velocity, dw/dz, and the derivative of the complex potential, dw/dζ ,
as functions of the variable ζ = ξ + iη. Conformal mapping allows us to fix three
points in the parameter region arbitrarily, which are chosen as O, B and D in the
present problem, as shown in figure 1(b). The first two are the intersections of the
free surface with the body surface and the last one is at infinity. In this parameter
plane, the positive imaginary axis (η > 0, ξ = 0) corresponds to the free surface, and
the positive real axis (ξ > 0, η= 0) corresponds to the wetted part of the wedge. The
points ζ = a and ζ = c are the images of the stagnation point A and the wedge apex
C in the similarity plane, respectively. The values of a and c are not known and have
to be determined as part of the solution.

According to (2.2), we may write

dw
dz
=

dw1

dz
+

dw2

dz
=

dw1

dz
F(z), (2.4)
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Water entry of a wedge 517

dw
dζ
=

dw1

dζ
+

dw2

dζ
=

dw1

dζ
F(z), (2.5)

where

F(ζ )=
(

1+
dw2

dz

/
dw1

dz

)
=

(
1+

dw2

dζ

/
dw1

dζ

)
. (2.6)

This indicates that the potential w1 is chosen as the reference potential, since dw1/dz
and dw1/dζ can be obtained from the solution of the problem without a vortex sheet
(Semenov & Wu 2012). Moreover, from (2.4) and (2.5) it follows that the derivative
of the mapping function,

dz
dζ
=

dw
dζ

/
dw
dz
=

dw1

dζ

/
dw1

dz
(2.7)

is directly linked to the reference potential w1 only.
In order to derive an expression for the derivative of the complex potential, dw/dζ ,

we analyse the behaviour of the velocity potential along the free surface. It is useful
to introduce the unit vectors n and τ in the normal and tangential directions of the
fluid boundary, respectively. The normal vector points out of the fluid region while the
spatial arc length coordinate s points along the surface and increases in the direction
of τ , along which the fluid region is on the left (figure 1a). With this notation,

dw= (vs + ivn) ds, (2.8)

where vs and vn are the tangential and normal velocity components, respectively. Let
θ be the angle between the velocity vector on the surface and τ , which means θ =
arg(vs + ivn). Taking the magnitude of (2.4) and the argument of equation

dw
ds
=

dw1

ds
+

dw2

ds
=

dw1

ds
F(ζ ), (2.9)

we can obtain

v(η)=

∣∣∣∣dw
dz

∣∣∣∣
ζ=iη

= v1(η)vF(η), (2.10)

θ(η)= arg
(

dw
ds

)
= arg

(
dw1

ds

)
+ arg[F(ζ )ζ=iη] = θ1(η)+ θF(η), (2.11)

where

v1(η)=

∣∣∣∣dw1

dz

∣∣∣∣
ζ=iη

, θ1(η)= arg
(

dw1

ds

)
ζ=iη

,

vF(η)= |F(ζ )|ζ=iη, θF(η)= arg[F(ζ )]ζ=iη.

 (2.12)

2.2. Complex potential due to water entry
The problem of the impact between the liquid wedge and solid wedge without a vortex
sheet, in which a singularity exits at the wedge apex, has been solved by Semenov
& Wu (2012). There, the expressions for the complex velocity and the derivative of
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the complex potential as well as the mapping function z= z(ζ ) were derived, and the
flat free-surface problem was treated as a special case of a liquid wedge with an inner
angle π. In the present notation, the expression for the complex velocity, dw1/dz, takes
the form

dw1

dz
= v0

(
ζ − a
ζ + a

)(
ζ + c
ζ − c

)1−2α/π

exp
[
−

i
π

∫
∞

0

d ln v1

dη
ln
(

iη− ζ
iη+ ζ

)
dη− iβL

]
,

(2.13)

where v0= v(η)η=0 is the velocity magnitude at point O. It can be clearly seen that the
complex velocity has a singularity of the order of (ζ − c)2α/π−1 at point ζ = c which
corresponds to the wedge apex. Through analysing the behaviour of the angle of the
velocity, θ1 = arg(vs + ivn), relative to the boundary, the derivative of the complex
potential, dw1/dζ , was obtained in the form

dw1

dζ
=Kζ 2µ1/π−1 ζ

2
− a2

(ζ + 1)2
exp

[
1
π

∫
∞

0

dθ1

dη
ln(ζ 2

+ η2) dη
]
, (2.14)

where K is a real factor.
From (2.13) and (2.14) the derivative of the mapping function can be obtained as

dz
dζ
=

K
v0
ζ 2µ1/π−1 (ζ + a)2

(1+ ζ )2

(
ζ − c
ζ + c

)1−2α/π

exp
[

1
π

∫
∞

0

dθ1

dη
ln(η2

+ ζ 2) dη

+
i
π

∫
∞

0

d ln v1

dη
ln
(

iη− ζ
iη+ ζ

)
dη+ iβL

]
. (2.15)

Equations (2.13)–(2.15) contain the parameters a, c, K and the functions v1(η) and
θ1(η), which are to be determined from physical considerations and the dynamic and
kinematic boundary conditions on the free surface. At infinity, the complex velocity
tends to exp(−iγ∞). Taking the argument of (2.4) and accounting for (2.13), we have

arg
(

dw
dz

)
ζ=i

= arg
(

dw1

dz

)
ζ=i

+ arg[F(ζ )]ζ=i = arg
(

dw1

dz

)
ζ=i

+ θF(η)η=1 =−γ∞.

(2.16)

By letting ζ = i in (2.13), which corresponds to infinity in the self-similar plane, the
following equation is obtained

−2 tan−1 1
a
+

(
2−

4α
π

)
tan−1 1

c
−

1
π

∫
∞

0

d ln v1

dη
ln
∣∣∣∣η− 1
η+ 1

∣∣∣∣ dη

+ θF(1)+ α − δh −
π

2
+ γ∞ = 0. (2.17)

In the physical plane, the wetted length of the right side of the wedge in the self-
similar flow is v0Vt. The length of the segment OC in the similarity plane is then
|zO| = v0. Hence, the following equation is obtained∫ c

0

∣∣∣∣ dz
dζ

∣∣∣∣
ζ=ξ

dξ = v0. (2.18)
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Water entry of a wedge 519

An additional condition is obtained by enforcing the fact that the y-coordinates of the
free surface on the right- and left-hand sides have to be the same at infinity. This
gives

Im
(∮

ζ=i

dz
dζ

dζ
)
= Im

(
πi Res

ζ=i

dz
dζ

)
= Im

[
πi lim

ζ→i

d
dζ

(
dz
dζ
(ζ − i)2

)]
= 0. (2.19)

By taking into account (2.15) and performing the integration through the residue
method we get

−

(µ1

π
− 1
)
−

1
1+ a2

+
1
π

∫
∞

0

dθ1

dη
dη

η2 − 1
= 0. (2.20)

From (2.17)–(2.20) the parameters a, c, K can be found if the functions v1(η) and
θ1(η) are specified.

2.2.1. Dynamic boundary condition on the free surface
The Bernoulli equation in the physical plane linking point O and an arbitrary point

in the flow domain gives

∂Φ

∂t

∣∣∣∣
Z

+
V ′2

2
+

P
%
=
∂Φ

∂t

∣∣∣∣
Z=0

+
V2

0

2
+

Pa

%
, (2.21)

where P and V ′ are the pressure and velocity at an arbitrary point of the fluid domain,
% is the density of the liquid. By taking advantage of the self-similarity of the flow
defined in (2.1), and using the spatial coordinate of arc length, s= S/(Vt), Semenov
& Iafrati (2006) reduced this equation to the following

v2
∗
− v2
− 2(φ − φ∗)+ 2

dφ
ds

s= 0. (2.22)

Here, the subscript ∗ together with s = 0 refers to the intersection points O and B
respectively for the right and left free surfaces. By taking the derivative of (2.22) with
respect to s, and using dφ/ds= vs and vs= v cos θ , the following differential equation
is obtained

dθ
ds
=
v + s cos θ

s sin θ
d ln v

ds
. (2.23)

Multiplying both sides of (2.23) by ds/dη and taking into account that θ(η)= θ1(η)+
θF(η), v(η)= v1(η)vF(η), we obtain the following integro-differential equation:

dθ1

dη
=
v1vF + s cos(θ1 + θF)

s sin(θ1 + θF)

(
d ln v1

dη
+

d ln vF

dη

)
−

dθF

dη
. (2.24)

where the arc length coordinate s= s(η) can be obtained by integrating (2.15)

s(η) = −
∫ η

0

∣∣∣∣ dz
dζ

∣∣∣∣
ζ=iη′

dη′ =−K
∫ η

0

η′(2µ1−1)

v1(η′)

η′2 + a2

(1− η′2)2

× exp
[

1
π

∫
∞

0

dθ1

dη′′
ln |η′′2 − η′2| dη′′

]
dη′, 0<η < 1, (2.25)

for the free surface on the right-hand side and

s(η)=
∫
∞

η

∣∣∣∣ dz
dζ

∣∣∣∣
ζ=iη′

dη′, 1<η <∞, (2.26)

for the free surface on the left-hand side.
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2.2.2. Kinematic boundary condition on the free surface
The kinematic boundary condition in terms of the velocity magnitude v and angle

β = −arg(dw/dz) for this kind of self-similar flow problem has the following form
(Semenov & Iafrati 2006)

1
tan θ

d ln v
ds
=

d
ds

[
arg
(

dw
dz

)∣∣∣∣ . (2.27)

This equation is obtained using the fact that the acceleration of the fluid particle is
orthogonal to the free boundary of constant pressure. Substituting the complex velocity
in (2.13) into (2.27) and multiplying both sides of the result by ds/dη = |dz/dζ |ζ=iη,
the following integral equation for the function d ln v1/dη is obtained

−
1

tan(θ1 + θF)

d ln v1

dη
+

1
π

∫
∞

0

d ln v1

dη′
2η′

η′2 − η2
dη′

=
1

tan(θ1 + θF)

d ln vF

dη
−

dθF

dη
+

2a
a2 + η2

+

(
2α
π
− 1
)

2c
c2 + η2

. (2.28)

The integral equations (2.24) and (2.28) together with equations (2.17), (2.18) and
(2.20) make it possible to determine the functions θ1(η) and v1(η), and the parameters
a, c and K if the functions θF(η) and vF(η) are known. Once these functions are found,
the contact angles between the wedge sides and the free surface, µ1 and µ2, can be
determined as follows:

µ1 = lim
η→0

θ1(η), µ2 =π− lim
η→∞

θ1(η). (2.29a,b)

The former is explicitly required in the expression for the derivative of the complex
potential in (2.14).

2.3. Complex potential of the vortex sheet
We consider the vortex sheet as a cut in the fluid domain. The liquid on both sides
of the cut has the same normal velocity component but the tangential components are
different. Similar to that proposed by Moore (1975), we describe the position of the
vortex sheet in the similarity plane by a complex function Z0(Γ , t), where Γ is the
circulation obtained by integration of the vortex strength from the centre of the spiral
(point E in figure 1a) to point Z0, and Γ =ΓC at point C is the total circulation. This
formulation has made use of the fact that point Z0 can be written as a function of
Γ , as when Z0 is followed, since dΓ /dt= 0 (e.g. p. 30, Saffman 1993), or Z0 always
corresponds to the same Γ . We may introduce the parameter λ = 1 − Γ /ΓC which
changes from λ = 0 at point C to λ = 1 at point E. Then, the vortex sheet in the
similarity plane can be written as z0(λ)= Z0/(Vt). The line ζ0(λ) is the image of the
vortex sheet z0(λ) in the parameter plane.

We will build such an expression for the complex potential w2(ζ ) whose imaginary
part equals zero along the real and imaginary axes of the parameter plane. Then, the
normal velocity due to w2(ζ ) on the fluid boundary is zero, which means that the
required impermeable condition on the wedge surface is satisfied.

A concentrated vortex of circulation γ ∗ at point ζ0= ξ0+ iη0 in the parameter plane
creates the logarithmic complex potential w∗(ζ , ζ0)= γ

∗/(2πi) ln(ζ − ζ0). Due to the
simple geometry of the parameter region, we can obtain the potential w∗total(ζ , ζ0),
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which has constant imaginary part along the positive real and imaginary axes, by
adding the image vortexes of the same strength at points −ζ0, ζ0 and −ζ0, or

w∗total(ζ , ζ0)=w∗(ζ , ζ0)+w∗(ζ ,−ζ0)+w∗(ζ , ζ0)+w∗(ζ ,−ζ0). (2.30)

For vortex distribution γ ′ along a segment ds, γ ∗ in the above equation can be
replaced by γ ′ ds. Following this principle, for a sheet with varying strength, the
complex potential can be written as

w2(ζ )=−
J

2πi

∫ 1

0
{ln[ζ − ζ0(λ)] − ln[ζ − ζ0(λ)] − ln[ζ + ζ0(λ)] + ln[ζ + ζ0(λ)]} dλ

(2.31)

in which dλ = −γ ′ds has been used and therefore the integration is performed with
respect to λ. This gives

dw2

dζ
=−

J
2πi

∫ 1

0

(
1

ζ − ζ0(λ)
−

1
ζ − ζ0(λ)

−
1

ζ + ζ0(λ)
+

1
ζ + ζ0(λ)

)
dλ, (2.32)

where J = ΓC/(V2t). It is well known that the right-hand side of (2.32) is
discontinuous across the vortex sheet. It takes different values according to the
Plemelj formula

dw2

dζ

∣∣∣∣
ζ=ζ0(λ)

= −J

[
±

1
2

(
dζ0

dλ

)−1

+
1

2πi
P
∫ 1

0

(
1

ζ − ζ0(λ)
−

1
ζ − ζ0(λ)

−
1

ζ + ζ0(λ)
+

1
ζ + ζ0(λ)

)
dλ
]
,

(2.33)

as a point ζ0(λ) on the sheet is approached by ζ from the ± side. Symbol P in (2.33)
indicates the Cauchy principal value integral.

2.4. Kutta condition
From (2.4) and (2.13) it can be seen that the complex velocity has a singularity of
the form (ζ − c)2α/π−1 as ζ→ c,

dw
dζ
=

(
dw1

dζ
+

dw2

dζ

)/
dz
dζ
=
(ζ − c)2α/π−1

fz(ζ )

(
dw1

dζ
+

dw2

dζ

)
, 0<α <π/2, (2.34)

where fz(ζ ) = (ζ − c)2α/π−1 dz/dζ is an analytical function at point ζ = c. This
singularity in the complex velocity is to be removed by the vortex sheet, which leads
to a finite value of dw/dz as ζ → c. Therefore, substituting (2.32) into (2.33), we
should impose

dw1

dζ

∣∣∣∣
ζ=c

−
J

2πi
P
∫ 1

0

(
1

c− ζ0(λ)
−

1
c− ζ0(λ)

−
1

c+ ζ0(λ)
+

1
c+ ζ0(λ)

)
dλ= 0. (2.35)

This is the well-known Kutta condition from which the total circulation, J, is
determined.
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2.5. Birkhoff–Rott integral equation for the evolution of the vortex sheet
Following the formulation of Moore (1975) and also that in Pullin (1978), the equation
of motion of the two-dimensional vortex sheet, Z0(Γ , t), in the physical plane is

∂Z0

∂t

∣∣∣∣
Γ

=
1
2

[(
∂W
∂Z

)+
+

(
∂W
∂Z

)−]
, (2.36)

in which the left-hand side is the Lagrangian velocity of the sheet and the right-hand
side is the induced Eulerian complex velocity at the same point Z0. It differs from the
complex velocity of the liquid particles at the point Z0 on both sides of the sheet. In
other words, the induced velocity of the sheet equals the average of the local particle
velocities on both sides of the sheet. As the vortex strength remains constant when
following the movement of the same point Z0 on the vortex sheet, (2.36) automatically
satisfies the continuity conditions of normal velocity and pressure across the sheet
(Saffman 1993). Substituting z0(λ) = Z(Γ , t)/(Vt) and w = W/(V2t) into (2.36), we
have in the similarity plane

z0(λ)+ (1− λ)
dz0

dλ
=

(
dw
dz

)
ind

, (2.37)

where(
dw
dz

)
ind

=
(ζ0(λ)− c)2α/π−1

fz[ζ0(λ)]

(
dw1

dζ

∣∣∣∣
ζ=ζ0

−
J

2πi
P

×

∫ 1

0

(
1

ζ0(λ)− ζ0(λ′)
−

1
ζ0(λ)− ζ0(λ′)

−
1

ζ0(λ)+ ζ0(λ′)
+

1
ζ0(λ)+ ζ0(λ′)

)
dλ′
)
,

(2.38)

and fz0(ζ0)= fz(ζ )ζ=ζ0 is the average speed corresponding to right-hand side of (2.37)
in the self-similar plane. This integro-differential equation will then be solved in the
parameter plane in which the shape of the vortex sheet z0 is written as z0[ζ0(λ)].

Equation (2.38) contains a singular factor (ζ0(λ) − c)2α/π−1. However, due to the
Kutta condition in (2.35), the complex velocity at the wedge apex is finite when
approaching on the windward side, and is zero on the leeward side, which will be
shown later. Equations (2.35) and (2.37) determine the circulation and the shape of the
vortex sheet, which subsequently completely determine the derivative of the complex
potential, dw2/dζ . Thus, it gives a closed system of equations derived in § 2.2 for the
problem of water entry of the wedge with the vortex sheet.

2.6. Leading order of the B–R equation at the wedge apex
In order to determine velocities of the liquid on both the windward and leeward sides
of the sheet near the wedge apex, we consider the leading order of (2.37). Following
Rott (1956) and Pullin (1978), we use (2.35) to replace (dw1/dζ )ζ=c and to rewrite
(2.37) and (2.38) in the following form

z0(λ)+ (1− λ)
dz0

dλ
=
(ζ0(λ)− c)2α/π

fz[ζ0(λ)]

×
J

2πi

{
P
∫ 1

0

(
1

[c− ζ0(λ′)][ζ0(λ)− ζ0(λ′)]
−

1
[c− ζ0(λ′)][ζ0(λ)− ζ0(λ′)]

)
dλ′

+

∫ 1

0

(
−

1
[c+ ζ0(λ′)][ζ0(λ)− ζ0(λ′)]

+
1

[c+ ζ0(λ′)][ζ0(λ)+ ζ0(λ′)]

)
dλ′
}
. (2.39)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

76
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.766


Water entry of a wedge 523

Here, the terms in the integrand have been combined and as a result, the term (ζ −
c)−1 has been cancelled in the equation. We also notice that the second integral is
non-singular.

Near ζ0= c or λ= 0, we seek a solution valid to the leading order of λ, which we
assume is of a form similar to that in Pullin (1978)

ζ0 = c+K∗λµ + higher-order terms, (2.40)

where K∗ is a complex constant and µ > 0. Then, keeping the leading orders in λ
on the left- and right-hand sides of (2.39) and focusing attention on the first integral
containing the singular terms, we obtain

dz0

dζ0

dζ0

dλ
=
(ζ0(λ)− c)2α/π

fz(ζ0)
JG[ζ0(λ)], (2.41)

where dz0/dζ0 = dz/dζ |ζ=ζ0 and

G[ζ0(λ)] =−
J

2πi
P

×

∫ 1

0

(
1

[c− ζ0(λ′)][ζ0(λ)− ζ0(λ′)]
−

1
[c− ζ0(λ′)][ζ0(λ)− ζ0(λ′)]

)
dλ′. (2.42)

Substituting λ=λ(ζ0) from (2.40) in (2.42), the two integrals can be written as below∫ ζ ∗

0

dλ
dζ ′0

dζ ′0
(ζ ′0 − c)(ζ ′0 − c− (ζ0 − c))

=
1
µ

(
1

K∗

)1/µ ∫ ζ ∗c

0

dζ ′c
ζ ′c

2−1/µ(ζ ′c − ζc)
, (2.43)∫ ζ ∗

0

dλ
dζ ′0

dζ ′0
(ζ ′0 − c)(ζ ′0 − c− (ζ0 − c))

=
1
µ

(
1

K∗

)1/µ ∫ ζ ∗c

0

dζ ′c
ζ ′c

2−1/µ
(ζ ′c − ζc)

, (2.44)

where ζc= ζ0− c, ζ ∗c = ζ
∗
− c and ζ ∗ is close to c since we consider the leading order

and use (2.40). Following Gakhov (1990) the leading order of the function G(ζ0) can
be obtained as

G(ζ0) =
1

2iµ
(ζ0 − c)1/µ−2

{
cot[(2− 1/µ)π]

(
1

K∗

)1/µ

−
exp[−i(2− 1/µ)π]

sin[(2− 1/µ)π]

(
1

K∗

)1/µ
}
+G∗(ζ0), (2.45)

where (ζ0 − c)2−1/µG∗(ζ0)→ 0 for ζ0→ c. The first term in curl brackets of (2.45)
corresponds to (2.43) and the second to (2.44). Substituting this result into (2.41),
using (2.40) and (2.15) and equating powers of the leading order in λ we can obtain
1/µ= 2(1− α/π) and

K∗ =
[

2J(1− α/π)2

|fz(ζ )ζ=c|
2

]1/(4−4α/π)

× exp
(

iπ
2− 2α/π

)
. (2.46)

Substitution of (2.46) into (2.35) gives

G(ζ0)=
1
√

2J
(ζ0 − c)−2α/π

|fz(ζ0)| +G∗(ζ0). (2.47)
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The complex velocity on the ± sides of the vortex sheet near ζ = c, given by (2.34),
can be expressed in terms of function G(ζ0)(

dw
dζ

)±
=
(ζ − c)2α/π−1

fz(ζ0)
J

[
±

1
2

(
dζ0

dλ

)−1

+ (ζ0 − c)G(ζ0)

]
. (2.48)

By using (2.40) and (2.46), the first term in the brackets can be determined as
(dζ0/λ)

−1
= −(ζ0 − c)1−2α/π

|fz(ζ0)|
√

2/J. Substituting this into (2.48), we obtain
velocity near the apex on the leeward and windward sides of the wedge respectively
as (

dw
dζ

)+
=
(ζ0 − c)2α/π

fz(ζ0)
JG∗(ζ0), (2.49)(

dw
dζ

)−
=

√
2
J
| fz(ζ0)|

fz(ζ0)
+
(ζ0 − c)2α/π

fz(ζ0)
JG∗(ζ0)=

√
2J e−iβL +

(ζ0 − c)2α/π

fz(ζ0)
JG∗(ζ0).

(2.50)

From (2.49) it follows that the leeward side of the wedge apex is a stagnation point
while the non-dimensional speed on the windward side is

√
2J. This result in fact

satisfies the Bernoulli equation. From (2.50) it can also be seen that the vortex sheet
leaves the wedge apex tangentially to the windward surface, as found by others for
similar problems (Pullin 1978; Jones 2003).

The leading order of the function ζ0 = ζ0(λ) for small λ is

ζ0(λ)= c+
[

2J(1− α/π)2

|fz(ζ )ζ=c|
2

]1/(4−4α/π)

eiπ/(2−2α/π)λ1/(2−2α/π)
+ · · · , (2.51)

which is to be used to determine the position of the first node in the numerical
solution of the integral equation (2.37), as discussed below.

3. Results and discussion
3.1. Numerical method

The system of equations derived in § 2 is solved numerically by iteration through the
method of successive approximations. By following the formulation of the problem,
the numerical procedure divides the equations into two blocks. The first block contains
(2.17)–(2.20) and integral equations (2.24) and (2.28) determining the flow potential
w1(ζ ) at a given potential of the vortex sheet, w2(ζ ). The second block contains (2.35)
and (2.38), (2.39) determining the flow potential of the vortex sheet, w2(ζ ), at a given
potential w1(ζ ). It has been found in the calculation that starting with w2(ζ ) ≡ 0,
5–10 iterations are usually required between these two blocks to reach a tolerance
of max |λ(s)k+1

− λ(s)k|< 10−4 between two successive iterations, where s is the arc
length variable along the vortex sheet.

The first block of equations, including integral equations (2.24) and (2.28), is solved
numerically through an internal iteration procedure. Conditions in (2.17), (2.18) and
(2.20) are imposed at each iteration. In discrete form, the solution is sought on two
sets of points. The first set, 0 < ηj 6 1, j = 1, . . . , N, corresponds to the segment
OD of the free surface and the points are distributed in such a way that the segment
size increases geometrically away from O. The second set of points 1<ηj <η2N , j=
N+ 1, . . . , 2N, corresponding to BD, is chosen in a similar way starting from point B.
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Typical values η1 = 10−5 and η2N = 105 are chosen. The successive approximations
used here follow those in Semenov & Iafrati (2006) and Semenov & Wu (2012) for
solving self-similar water-entry problems without a vortex sheet.

The solution at the intersection of the free surface and body surface is computa-
tionally very challenging due to the singularity in the derivative of the complex
potential at point O (η = 0) with the order 2µ1/π− 1< 0, as can be seen in (2.14),
and due to the improper integral with upper limit at η=∞ corresponding to point B.
The singular natures at these intersection points depend on the values of the contact
angles µ1 and µ2, respectively, which in turn depend on the function θ(η), or its
limits at η→ 0 and η→∞, respectively. For a given discretization along the η-axis
discussed above, the corresponding arc length coordinates s1 = s(η1) and s2N = s(η2N)
nearest to contact points O and B in the similarity plane can be obtained using (2.25)
and (2.26), respectively as

s1 =−πKa2 exp
(

2
π

∫ η2N

η1

dθ1

dη
ln η dη

)
η

2µ1/π
1

2v0µ1
(3.1)

s2N =πK
η
−2µ2/π
2N

2vBµ2
, (3.2)

where vB is the velocity magnitude at point B. Then, the arc length coordinates sj =

s(ηj), j= 2, . . . , 2N − 1 are obtained by using (2.25) and (2.26).
Equation (2.37) in the second block of equations is the integral equation with

respect to the complex function ζ0(λ) determining the vortex sheet location in the
parametric plane, and in the similarity plane z0 = z[ζ0(λ)]. Equation (2.37) also
determines the circulation distribution along this line. It is a rather complex problem
to solve (2.37) and (2.38) directly. Instead, we split this equation in the complex
domain into two equations in the real domain. For this purpose, it is useful to
introduce the angle

δv = βv + θv, (3.3)

where δv is the slope of the vortex line, βv =−arg(dw/dz)ζ=ζ0(λ) is the angle of the
induced velocity to the x-axis obtained from (2.38) and θv is the angle of the induced
velocity to the vortex line. By using the fact that dw/ds = vτ + ivn and dz/ds =
exp(iδv), the induced velocity can be presented in terms of its tangential and normal
components as follows

eiδv

(
dw
dz

)
ind

= vτ + ivn. (3.4)

By multiplying the left-hand side of (2.37) eiδv and separating the real and imaginary
parts, we can obtain the following equation

dλ
ds
=

1− λ
vτ −Re(z0eiδv )

, (3.5)

and the equation for the angle of the induced velocity to the vortex line

θv = arctan
(
vn

vτ

)
= arctan

(
Im(z0eiδv )

(1− λ)ds/dλ+Re(z0eiδv )

)
, (3.6)

where s is the arc length coordinate of the vortex line starting from the wedge apex.
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For the vortex sheet given by the function δv(s), its position in the similarity plane
can be determined by the following equation

z0(s)=
∫ s

0
eiδv(s′) ds′. (3.7)

The image function ζ0= ζ
−1(z0) in the parameter plane, where ζ−1(z) is the inverse

mapping function, is determined from the following differential equation

dζ0

dz0
=

1
(dz/dζ )ζ=ζ0

. (3.8)

When the functions δv(s), z0(s) and ζ0 = ζ−1(z0) are found, the variation of the
circulation along the vortex sheet, λ(s), is obtained from the internal iteration
procedure involving (3.4) and (3.5) only. A new approximation for the function
δv is then obtained from (3.3) and (3.6) to continue the iterations.

When solving (3.5) and (3.6) we may use the method in Smith (1968) which was
also adopted by Pullin (1978) for flow passing the tip of a wedge in an unbounded
fluid domain. The method divides the spiral vortex sheet, which turns infinitely about
a centre zE, into two parts. The first external part is the vortex sheet with 0< λ< λm,
where (1− λm)J is the circulation at the end point of this part, and the second inner
part with λm < λ < 1 for which the circulation (1 − λm)J is lumped into an isolated
concentrated vortex at point zE, or at point ζE in the parameter plane.

In the discrete form, the solution is sought on a set of points si, i = 1, . . . , M
distributed along the spiral, the initial shape of which is chosen as

δvi =

{
δv0 + δvM1(si/sM1)

0.25, i= 1, . . . ,M1,

δvM1 + 2πNc[(si − sM1)/(sM − sM1)]
2, i=M1 + 1, . . . ,M, (3.9)

to get a tight spiral, as suggested by Pullin (1978). Here, δv0 = βL − π, Nc is the
number of coils of the sheet, sM is the length of the spiral and points si = sM[1 −
cos(π/2(i− 1)/(M− 1))] are distributed in such a way to provide a higher density of
the points si close to the apex. The angle δM1 value M1 determining the intermediate
length sM1 and the total spiral length, sM vary depending on the flow configuration.
The initial length of the spiral varies in the range sM = (0.05–0.5)lO, depending on
the angles δh, α and γ∞. Here, lO is the wetted length of the leeward side of the
wedge. The initial points z0i and ζ0i are set from (3.7) and (3.8)

The position of the lumped isolated vortex is determined from the centroid of the
last coil of the sheet, i.e.

zE =
1

sM − s∗

∫ sM

s∗
z0(s′) ds′, (3.10)

where arc length coordinate s∗ is chosen to satisfy the equation δvM − δv(s∗)= 2π. By
following Pullin (1978), the integral in (2.38) may be approximated as(

dw
dz

)
ind

=
(ζ0(λ)− c)2α/π−1

fz(ζ0)

[
dw1

dζ

∣∣∣∣
ζ=ζ0

−
J

2πi

M∑
j=1

∫ λj

λj−1

(
1

ζ0 − ζ0(λ′)
−

1
ζ0 − ζ0(λ′)

−
1

ζ0 + ζ0(λ′)
+

1
ζ0 + ζ0(λ′)

)
dλ′

−
J(1− λM)

2πi

(
1

ζ0 − ζE
−

1
ζ0 − ζE

−
1

ζ0 + ζE
+

1
ζ0 + ζE

)]
. (3.11)
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FIGURE 2. Convergence of the vortex sheet for the wedge 2α= 60◦ and heel angle δh=

20◦: (a) the initial shape (solid line) and after k = 1500 iterations (dashed line); (b) the
same for k= 6000 (dotted line), k= 13 000 (dashed line) and k= 26 000 (solid line).

Each of the M integrals are evaluated at midpoints ζ k−1,k
0 = (ζ k−1

0 + ζ k
0 )/2 using the

trapezoidal rule. The Cauchy principal value of the integral at j= k in the first term
is of higher order as 1/(ζk−1,k − ζ0)/2 is an odd function, and it can then be ignored
as it is a higher-order term.

An under relaxation procedure is adopted to achieve the convergence of the iteration
process determining the slope of the sheet. At the k+ 1 iteration, we have

δ
k+1
vi = rδk+1

vi + (1− r)δk
vi, (3.12)

where the relaxation parameter is chosen in the range from r = 0.001 ÷ 0.01. Then,
the shape of the vortex sheet at the (k+ 1)th iteration is obtained as

zk+1
0i = zk

0i + exp[i(δ
k+1
vi + δ

k+1
vi−1)/2](s

k
i − sk

i−1), (3.13)

and the arc length of each segment sk+1
i − sk+1

i−1 of the sheet is determined from sk+1
i =

sk+1
i−1 + |z

k+1
0i − zk+1

0i−1|. At each kth iteration of the vortex sheet, the parameters λk
i are

determined from (3.4) and (3.5).

3.2. Convergence of the numerical method
The solution of the system of integral equations (2.24) and (2.28) is obtained with the
number of nodes N= 100 on the free surface, and M= 700 on the vortex sheet. These
two numbers have been found sufficiently large through comparison with the results
from N = 200 and M = 1400. The convergence process of the solution for 2α = 60◦
and 2δh = 20◦ is shown in figure 2. Iteration starts from the initial shape given by
(3.9) with M1 =M/4 and δvM1 = βR. The inner part of the vortex sheet is chosen to
be tight and is expected to expand during the iteration. It can be seen that after 1500
iterations the rings have expanded and the shape of the inner spiral part becomes more
elliptical than circular. The shapes at k= 13 000 and 26 000 almost coincide, as can be
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FIGURE 3. Effect of the number of coils, Nc, (a) on the shape of the vortex sheet and (b)
the pressure distribution for the wedge angle 2α= 60◦ and the heel angle δ= 20◦: Nc= 6,
J= 0.354, λM = 0.684 (solid line and solid circle); Nc= 5, J= 0.355, λM = 0.654 (dashed
line and opened circle); Nc = 4, J = 0.355, λM = 0.592 (dotted line and solid square.)

seen from figure 2(b). A large number of iterations is required due to the small value
of the relaxation parameter r = 0.001 chosen to prevent self-crossing of the vortex
sheet, which can lead to the breakdown of the calculation.

The number of coils of the vortex sheet, Nc, is another parameter of the
numerical procedure. It should be chosen large enough to minimize the effect of
the approximation of the inner part of the vortex sheet by lumping the vortex at
the centre of the spiral. Figure 3 shows the shape of the vortex sheets and pressure
distribution on the wedge sides corresponding to Nc = 4, 5 and 6. The sheet shapes
are in good agreement overall. Some difference may be still visible when approaching
the centre of the spiral. This is obviously caused by the truncation of the coil number,
and larger error is expected at the place where the truncation is made. The difference
of the sheet shape near the coil centre does not have a visible effect on the pressure
distribution. In fact, the pressure distributions from Nc= 5 and 6 are almost the same,
as can be seen in figure 3(b). In further computations Nc = 5 is chosen, which is
satisfactory for the purpose of the study below.

The behaviour of the vortex strength, in the form of γ ′ = −dλ/ds, and velocity
magnitudes on both sides of the sheet are shown in figure 4 as functions of the polar
angle χ about the centre of the spiral (point E) measured from the x-axis. It can be
seen that these results exhibit oscillatory behaviour. As may be seen in the figure, at
the maxima of the sheet strength the velocity magnitudes on both sides of the sheet
take their minimum values, while at the minima of the sheet strength, the velocity
magnitudes reach their maximum values. The same behaviour was observed by Pullin
(1978) for flow over a wedge without a free surface. Following Moore (1975), Smith
(1968) and Pullin (1978), wherein details can be found, the oscillatory behaviour of
the vortex strength is also related to the shape of the sheet, which exhibits ellipticity
that may be defined as the ratio of the largest radius to the smallest one over one
complete turn. This may be seen in figure 3 and in other results given below.
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FIGURE 4. Variation of vortex strength along the vortex sheet (solid line) and velocity
magnitude on the ‘+’ (dashed line) and ‘−’ sides of the sheet for the case shown in
figure 3.

3.3. Numerical results for asymmetric water entry of the wedges
In the context of figure 1(a), the flow is symmetric with respect to axis of the wedge
for γ∞ = 90◦ and δh = 0, and is asymmetric in all other cases. The wedge heel angle
may vary in the range bounded by some constraints. For a positive δh, the deadrise
angle on the left-hand side, π− βL > 0, should remain positive, or π/2− α − δh > 0.
The deadrise angle on the right-hand side of the wedge, βR, should be less than
a critical angle β∗R, beyond which the fully attached solution, i.e. the solution for
which the leeward side remains in contact with water, might not exist or might not be
physical. Semenov & Yoon (2009) found that the critical angle β∗R = γ∞ ±∆, where
the value ∆ is of the order of a few degrees, and that its exact value depends on the
flow configuration. If we use β∗R ≈ γ∞ then the constraint is α − δh > 0 for the case
of vertical entry, and the range of the heel angle is approximately 0< δh <α.

The free streamlines and vortex sheet for wedge angle 2α = 30◦ are shown
in figure 5 for the heel angles δh = 5◦ and 14.2◦. The second case corresponds
approximately to the limit heel angle β∗R. The enlargement near the apex clearly
shows the streamline separation from the wedge apex and the spiral vortex sheet.
There are also two stagnation points. One is point A on the windward side, as
shown in figure 1(a), from which the zero streamline splits into two streamlines
and one of them moves towards the wedge apex and then separates from the apex,
enclosing the recirculation region. The other stagnation point occurs on the leeward
side. This is generated by reattachment of the zero streamline the wedge side. The
zero streamline and some of the closed streamlines inside the re-circulation region
almost coincide with some parts of the vortex sheet line. In fact, the zero streamline
leaves the windward side tangentially, which is the same as the vortex sheet. Along
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FIGURE 5. Streamline pattern (solid line) and the vortex sheet (dashed line) for the wedge
2α = 30◦: (a) δh = 5◦, J = 0.064, λM = 0.257 and (b) δh = 14.2◦, J = 0.429, λM = 0.431.

the streamline the normal velocity is zero by definition. From (3.4) and (2.50), we
can have the velocity normal to the vortex line near the apex and it tends to zero at
the apex. This leads to two lines almost coincide near the apex, as shown in figure 5.
In fact, figure 5 further shows that these two lines remain close to each other near
the leeward surface of the wedge. This suggests that the normal velocity of the vortex
sheet has remained small. Near the body surface, the zero streamline reattaches to
the wedge surface while the vortex line bends to form a spiral line. For flow without
the vortex sheet (Semenov & Wu 2012), the zero streamline will always stay on the
body surface even when it turns at the wedge apex. There are no closed streamlines
and the streamlines near the y-axis from y=−∞ will bend near the wedge apex and
then move to y=∞.

The size of the spiral vortex region in figure 5(b) for the heel angle α = 14.2◦ is
approximately twice as large as that in figure 5(a) for α = 5◦. The distance between
the stagnation point on the windward side and the wedge apex is also larger in the
latter. This is clearly because the flow will be more asymmetric at large δh. A large

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

76
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.766


Water entry of a wedge 531

–10
–2 –1 0

s s
1 –2–3 –1 0 1

–8

–6

–4

–2

0

2

–10
0 0.05 0.10 –0.2 –0.1 0 0.1 0.2 0.3 0.4

–8

–6

–4

–2

0

2

–10

–8

–6

–4

–2

0

2

–10

–8

–6

–4

–2

0

2(a) (b)

FIGURE 6. Pressure coefficient along (a) (s< 0) and (b) (s> 0) hand sides of the wedge
for the wedge 2α = 30◦: (a) δh = 5◦ and (b) δh = 14.2◦. The dashed lines correspond to
the flow model without a vortex sheet.

cross-flow then leads to a larger circulation. This is reflected in figure 5 by J= 0.064
for case (a) and J=0.429 for case (b). A common feature for both cases in figure 5 is
that the size of the spiral vortex region is much smaller than the wetted length of the
leeward side of the wedge. This is because, even though the magnitude of the velocity
leaving the windward in (2.50) may be comparable with the entry speed, especially in
case (b), it turns very fast and forms a spiral with small radius. As the vortex sheet
is far away from the free surface, its effect on the free surface is rather small. In
figure 5 the free surface for the flow with a vortex sheet is shown by the solid line,
while for the attached flow without a vortex sheet it is shown by the dashed line with
symbols. The difference between them is hardly visible, and they virtually coincide.

In figure 6 the pressure distributions on the wedge corresponding to the flow with
and without a vortex sheet are compared for the cases shown in figure 5. It is clearly
seen that pressure distributions coincide almost everywhere except for a small region
near the apex. Together with the small effect of the vortex sheet on the free surface
considered above, the effect of the spiral vortex is very much limited to the local area.
However, precisely in the local area near the apex, the presence of the vortex sheet
is crucial. It has completely changed the flow pattern, discussed previously. Here the
vortex-free solution gives infinite pressure at the apex, or the solution is singular there.
The inclusion of the vortex sheet removes this unphysical singularity, and the pressure
at the apex becomes finite, as shown in figure 6 for both cases. In the enlargement
it can be seen through the fact that, as s increases from s = 0 on the leeward side,
the pressure drops to its minimal value and then increases. From the analysis of the
results it is found that the point of the minimal pressure coefficient on the leeward
side is nearest to the centre of the spiral. By comparing figure 6(a,b) it is seen that
the larger the heel angle, the larger the drop of the local pressure on the leeward side.

In figure 6(b), the vortex-free solution with a singularity at the apex (dashed line)
predicts negative pressure coefficient on the whole leeward side (s> 0) of the wedge.
We should notice that this is in the context that δh = 14.2◦ corresponds to the limit
discussed above. In contrast to this, the solution with a vortex sheet predicts a local
positive maximum near the stagnation point on the leeward side of the wedge, where
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2α δh cpC cp min J

30 0 1.30 — 0
30 5 1.06 −5.80 0.0637
30 10 0.785 −7.10 0.181
30 14.2 0.398 −8.90 0.429
60 0 1.780 — 0
60 10 1.28 −3.51 0.0826
60 20 0.442 −6.36 0.336
60 27 -0.253 −10.2 0.724
90 0 2.71 — 0
60 10 2.20 −2.33 0.0397
90 20 1.29 −8.75 0.169
90 30 0.320 −16.5 0.415
60 37 -1.23 −26.2 0.801

TABLE 1. Some detailed results for vertical water entry of various wedges.

the zero streamline reattaches to the body surface at a right angle, which can be seen
through the enlargement of the streamline patterns in figure 5(b). The pressure on
the leeward side is very sensitive to the heel angle near its limit value. Therefore,
a slight increase of the heel angle decreases the pressure coefficient rapidly, making
the pressure coefficient negative along the whole leeward side of the wedge. In such
a case no converged solutions could be obtained. For wedge angles 2α= 60◦ and 90◦
the free-surface shape and streamline patterns are shown in figure 7. For the larger
wedge and heel angles, the stagnation point on the windward side moves further away
from the apex. There is also a larger cross-flow at the wedge apex. This results in a
larger size of the separation region with a larger overall circulation on the leeward side.
The shape of the closed streamlines inside the separated zero streamline look similar
in figure 7(a,b), but the radius is larger for the larger heel angle. The effect of the
vortex sheet on the free-surface shape remains small and the difference between the
solutions with and without a vortex sheet are virtually invisible. Figure 8 shows the
pressure distributions on the wedge for the cases shown in figure 7. For the larger
wedge and heel angles, the pressure drops rapidly on the leeward side and reaches
its minimum near the centre of the spiral. Away from apex, the pressure distribution
virtually coincides with that obtained from the previous solution of the water-entry
problem without a vortex sheet (Semenov & Wu 2012).

The values of the pressure coefficient at the apex, cpC, minimal pressure on the
leeward side of the wedge, cp min, the total circulation, J, and the parameter λM are
shown in table 1 for wedges of different inner angles and heel angles. It can be seen
from the table that the pressure coefficient at the wedge apex and the minimal pressure
coefficient on the leeward side decrease while the total circulation increases as the heel
angle increases.

The force on the wedge is evaluated through integration of the pressure distribution
along its sides. The drag is defined as the force component along the incoming
velocity direction. Its coefficient, Cd, can be written as:

CD =CR sin(γ∞ − βR)+CL sin(βL − γ∞), (3.14)

where

C{R,L} =
2

ρV2
y H2

∫ V{O,B}t

0
P(S) dS=

1
h

∫
{c,∞}

{0,c}
cp[s(ξ)] dξ, (3.15)
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FIGURE 7. Streamline pattern (solid line) and the vortex sheet (dashed line) for the wedge
angles: 2α = 60◦ (a) δh = 10◦, J = 0.083, λM = 0.436 and (b) δh = 27◦, J = 0.724, λM =

0.592; 2α=90◦ (c) δh=20◦, J=0.169, λM=0.535 and (d) δh=37◦, J=0.801, λM=0.627.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

76
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.766


534 Y. A. Semenov and G. X. Wu

–10
–3 –2 –1 0 1 –4 –3–5 –2 –1 0 12

–8

–6

–4

–2

0

2

–10
–0.1 0 0.1 0.2

–0.1 0 0.1 0.2 0.3

–0.1–0.2

–0.4 0 0.4 0.8

0 0.1 0.2 0.3 0.4 0.5

–8

–6

–4

–2

0

2

–10

–8

–6

–4

–2

0

2

–10

–8

–6

–4

–2

0

2

4

–16
–4 –3 –2

s
–1 0 1 2 3 –20 –12 –10

s
–8 –6 –4 0–2 2

–12

–8

–4

0

4

8

–20

0

–20

–30

0

–10

20

40

60

80

100

–10

–8

–6

–4

–2

0

2

4
(a) (b)

FIGURE 8. Pressure coefficient along the windward (s< 0) and leeward (s> 0) sides of
the wedge at 2α= 60◦, (a) δh= 10◦ and (b) δh= 27◦. The dashed lines correspond to the
flow model without vortex sheet.

are the coefficients of the forces normal to the right- and left-hand sides of the wedge,
respectively. The y-component of the incoming velocity, or Vy = V sin γ∞, has been
used as a reference velocity. The moment coefficient, CM, about the wedge apex is

CM =
2

ρV2
y H2

∫ VOt+VBt

0
(SO − S)P(S) dS=

1
h2

∫
∞

0
[v0 − s(ξ)]cp[s(ξ)]

ds
dξ

dξ, (3.16)

where

H = Vyth, SO = v0Vt, h= sin γ∞[cot βR + cot βL], cp =
2(P− Pa)

ρV2
y sin γ∞

. (3.17a−d)

It can be seen from figure 9 that the vortex sheet also has a small effect on the force
coefficients. This is of course expected taking into account the fact that the effect of
the vortex sheet on the pressure distribution is very much localized.

The free-surface shape and streamline patterns are shown in figure 10 for the case of
oblique entry at 2α= 90◦ and 2α= 120◦. The wedges are symmetric about the y-axis.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

76
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.766


Water entry of a wedge 535

0

–12

–10

–8

–6

–4

–2

0

0 0.2 0.4 0.6 0.8 1.0

4

8

12

16

20

24

FIGURE 9. Drag force coefficient (left axis) and moment about the wedge apex (right axis)
versus normalized heel angle δh/δ

∗

h , where δ∗h = 14.2◦, 27◦ and 37◦ for the wedge angles
2α= 30◦, 60◦ and 90◦, respectively. The solid and dashed lines correspond to results with
and without vortex sheet respectively.

The stagnation point on the windward side can be clearly seen, and it moves further
away from the apex for the larger oblique angles. The cross-flow over the apex creates
a separation region similar to that observed for vertical entry of the heeled wedge. For
the wedge of angle 2α = 90◦ the inflow velocity angle γ = 45◦ is close to the limit
oblique angle for which the attached solution might be found. For larger oblique angle,
or larger horizontal component of the velocity, the separation region becomes larger.
However, its size remains relatively small in comparison with the wetted length of
the wedge. Similar results are shown for the wedge angle 2α = 120◦ and the inflow
velocity angles γ = 70◦ and 30◦. The latter is close to the limit oblique angle. At
a given wedge angle the size of the separation region increases as the horizontal
component of the inflow velocity increases, and it becomes largest at the limit oblique
angle γ∞. The size is of course also affected by the wedge angle itself. If we compare
these two limiting cases in figure 10 (cases (b) and (d)), it can be seen that the size of
separation region for the wedge of angle 2α= 90◦ at γ = 45◦ is approximately twice
that for 2α = 120◦ at γ = 30◦. This is partly because the effort for the flow to turn
around the apex decreases when the wedge angle 2α→ 180◦, and is also related to
γ∞. The pressure distributions corresponding to the cases in figure 10 are shown in
figure 11. In all of the cases the effect of the vortex sheet is localized near the apex,
and away from the apex the pressure almost coincides with that corresponding to the
attached flow.

The pressure coefficient at the apex and the minimal pressure coefficient on the
leeward side as well as the total circulation are shown in table 2.

4. Conclusions
The problem of asymmetric flow due to water entry of a wedge with the rolled-up

vortex sheet shed from the apex is considered. The integral hodograph method has
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FIGURE 10. Streamline pattern (solid line) and the vortex sheet (dashed line) for the
oblique water entry of the wedge: 2α = 90◦ (a) γ∞ = 60◦, J = 0.737, λM = 0.477 and
(b) γ∞ = 45◦, J = 1.245, λM = 0.600; 2α = 120◦ (c) γ∞ = 70◦, J = 0.444, λM = 0.629 and
(d) γ∞ = 30◦, J = 1.303, λM = 0.512.
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FIGURE 11. Pressure distribution along the windward (s< 0) and leeward (s> 0) sides of
the wedge for oblique entry at 2α = 90◦, (a) γ∞ = 60◦ and (b) γ∞ = 45◦, and 2α = 120◦,
(c) γ∞ = 70◦ and (d) γ∞ = 30◦. The dashed lines correspond to the flow model without
vortex sheet.

been employed to determine in an explicit form the complex potential and the flow
singularities corresponding to vortex-free flow. This provides an incoming flow for the
vortex sheet shed from the wedge apex, whose solution is obtained from the Birkhoff–
Rott integral equation which determines the vortex sheet dynamics. Numerical results
are obtained for wedges of a range of inner, heel and oblique angles.

The obtained flow patterns show the formation of the recirculation/separation region
with a stagnation point on the leeward side of the wedge due to the reattachment of
the streamline shed from the apex to the body surface. The size of the separation
region is estimated based on the area bounded by the zero streamline linking the
wedge apex and the stagnation point on the leeward side. The region inside this
streamline increases when the overall flow is more asymmetric and the velocity at
the apex on the windward side becomes larger. However, the size of the separation
region is relatively small, compared with the wetted length of the leeward side of
the wedge. Thus, the vortex sheet has a small effect on the free surface and its
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2α γ∞ cpC cp min J

90 90 2.70 — 0
90 80 2.36 0.229 0.211
90 70 2.08 −4.75 0.399
90 60 1.40 −11.3 0.737
90 50 0.724 −15.5 0.973
90 45 -0.291 −20.9 1.245
120 90 4.59 — 0
120 80 4.29 4.21 0.199
120 70 3.87 3.76 0.444
120 60 3.48 −3.54 0.628
120 50 3.03 −12.3 0.773
120 40 1.79 −19.9 1.026
120 30 0.907 −48.5 1.303

TABLE 2. Some detailed results for oblique water entry of various wedges.

principal effects are on the velocity and the pressure near the apex, as well as the
flow configuration inside the flow separation region. The vortex sheet removes the
singularity in the attached flow solution, leading to a finite pressure and velocity at
the apex. The location of the minimal pressure is found to be on the leeward side of
the wedge near the apex, and is near the point with minimal distance to the centre
of the spiral sheet.

The vortex sheet shed from the apex exhibits a shape more elliptical than circular,
which is similar to that found by Pullin (1978) for flow past a wedge in an unbounded
fluid domain without a free surface. The vortex strength along the spiral sheet
undergoes an oscillatory process together with the velocity magnitudes on the both
sides of the sheet, and the magnitudes of their oscillations decay toward the centre
of the spiral.
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