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Abstract. Let π be a group satisfying the Farrell–Jones conjecture and assume that
Bπ is a 4-dimensional Poincaré duality space. We consider topological, closed, connected
manifolds with fundamental group π whose canonical map to Bπ has degree 1, and show
that two such manifolds are s-cobordant if and only if their equivariant intersection forms
are isometric and they have the same Kirby–Siebenmann invariant. If π is good in the
sense of Freedman, it follows that two such manifolds are homeomorphic if and only if
they are homotopy equivalent and have the same Kirby–Siebenmann invariant. This shows
rigidity in many cases that lie between aspherical 4-manifolds, where rigidity is expected
by Borel’s conjecture, and simply connected manifolds where rigidity is a consequence of
Freedman’s classification results.
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1. Introduction. The classification of closed 4-manifolds remains one of the most
exciting open problems in low-dimensional topology. In the topological category, clas-
sification is only known for closed 4-manifolds with trivial [4], cyclic [3, 13, 7] or
Baumslag-Solitar [8] fundamental group. Here, we give a partial answer in the case where
the fundamental group π satisfies the Farrell–Jones conjecture and is such that Bπ is a
4-dimensional Poincaré duality space. For the definition of a Poincaré duality space, we
refer to [21, Chapter 1]. The condition on the Farrell–Jones conjecture is, by extensive work
of Bartels–Reich–Lück and collaborators, by now a rather weak assumption [16, Theorem
14.1]. For example, one can consider π being Z4 or an extension of a surface group by
a surface group [16, 14.23]. In this paper, all 4-manifolds are assumed to be topological,
closed and connected unless specified otherwise. For the formulation of our main theorem,
we recall that a manifold is almost spin if its universal cover is spin.

THEOREM 1.1. Let π be the fundamental group of an aspherical 4-dimensional
Poincaré duality space with orientation character w and assume that π satisfies the
Farrell–Jones conjectures. Let M and N be 4-manifolds with fundamental group π and
orientation character w such that the classifying maps M → Bπ and N → Bπ have
degree ±1, that is, that the induced maps H4(M; Zw) → H4(Bπ; Zw) and H4(N; Zw) →
H4(Bπ; Zw) are isomorphisms.
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Then M and N are s-cobordant if and only if their equivariant intersection forms are
isometric and they have the same Kirby–Siebenmann invariant. In the case that M and N
are almost spin, they are s-cobordant if and only if their equivariant intersection forms are
isometric.

Here, Zw refers to the π -module obtained from the sign representation of C2 = {±1}
on Z by restricting along the orientation character w : π → C2.

REMARK 1.2. We note that the classifying map M → Bπ has degree ±1 if and only
if π2(M) is a projective Zπ -module [6, Theorem 6]. Hence, it follows directly from [6,
Theorem 11] that under the assumptions of Theorem 1.1 M and N are homotopy equivalent,
and we will use this in the proof. Moreover, we note that M is almost spin if and only if the
Z-valued intersection form on π2(M) ∼= H2(˜M; Z) is even.

If we furthermore assume that π is good in the sense of Freedman, then the topolog-
ical s-cobordism theorem holds in dimension four and we obtain the following corollary.
Note that the class of good groups includes all solvable groups [5, 12], which in particular
includes the fundamental groups of torus bundles over tori.

COROLLARY 1.3. As in Theorem 1.1, let π be the fundamental group of a 4-
dimensional Poincaré duality space with orientation character w and assume that π

satisfies the Farrell–Jones conjecture. Let M and N be 4-manifolds with fundamental group
π and orientation character w such that the classifying maps M → Bπ and N → Bπ have
degree ±1. Assume in addition that π is good in the sense of Freedman.

Then M and N are homeomorphic if and only if their equivariant intersection forms
are isometric and they have the same Kirby–Siebenmann invariant. If M and N are almost
spin, then they are homeomorphic if and only if their equivariant intersection forms are
isometric.

The following corollary is an immediate consequence. The first part was previ-
ously obtained in [10, Theorem 0.11]. Using this, the second part also follows from [2,
Theorem 1.2].

COROLLARY 1.4. Let X be a topological 4-manifold which is aspherical and whose
fundamental group π is a good Farrell–Jones group, for example, a solvable group, and
let L be a simply connected 4-manifold. Let M be a 4-manifold with fundamental group π

and orientation character w1(M) = w1(X ).

(1) If M is homotopy equivalent to X #L, then it is homeomorphic to X #L or X # � L.1

(2) If the equivariant intersection form of M is induced from an integral form λ, then M is
homeomorphic to X #K for a simply connected 4-manifold K whose intersection form
is λ.

Proof. We first prove Assertion (2). By Freedman’s classification of simply connected
4-manifolds [4, Theorem 1.5], there is a simply connected 4-manifold K with intersection
form λ, such that λM

∼= λ ⊗Z Zπ . We wish to apply Corollary 1.3 to M and X #K. By
Remark 1.2, M is almost spin if and only if M#K is almost spin, which is the case if and
only if K is spin. In this case, Corollary 1.3 applies immediately since the collapse map

1Recall that a star partner �L of the simply connected 4-manifold L is a closed 4-manifold which is homotopy
equivalent to L and has opposite Kirby–Siebenmann invariant. Such a star partner exists if and only if L is not
spin [3, Section 10.4], and in case L is spin, we simply set �L = L.
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X #L → X has degree ±1. If M is totally non-spin, then K is not spin. Hence, there exists
a star partner �K with opposite Kirby–Siebenmann invariant. Then either X #K or X # � K
has the same Kirby–Siebenmann as M , so we may apply Corollary 1.3.

The same argument gives Assertion (1), noting that if M is homotopy equivalent to
X #L, then its intersection form is induced from the (integral) intersection form of L.

We interpret this as saying that manifolds of the kind X #L as in the corollary are weakly
rigid, that is, that any two such manifolds which are homotopy equivalent (equivalently
whose intersection forms are isomorphic), are already homeomorphic. A variant of such
weak rigidity properties was studied in [10] and [9]. This builds a bridge between the
rigidity phenomena envisioned by Borel for aspherical manifolds and the rigidity present
in simply connected topological 4-manifolds by Freedman’s results.

Besides [6, Theorem 11] the main tool is the surgery sequence. Even though it is not
exact in general, it suffices for proving Theorem 1.1. In a previous version, we deduced
Theorem 1.1 from Kreck’s modified surgery and we thank an anonymous referee for
pointing out the current approach which shortens the proof considerably.

2. L-theoretic preliminaries. We will denote by Lq(R) the quadratic (free) L-theory
spectrum of a ring, and let Lq

n(R) := πn(Lq(R)) denote the nth quadratic L-group of R.
Following [11], we set L = Lq(Z) and let L〈1〉 be its connected cover.

Since we work in the possibly non-orientable situation, the surgery obstruction groups
are w-twisted L-groups, that is, the quadratic L-groups Lq

∗(ZG, w) of the ring ZG whose
involution is induced by g 	→ w(g) · g−1, for some orientation character w : G → C2. In the
geometric situation, the group G is the fundamental group of a manifold M and w = w1(M)

is its orientation character. The surgery obstruction map is, as in the oriented case, equiv-
alent to a map induced by the assembly map in L-theory, but now taking the orientation
character w into account, see [19, Appendix A]. More precisely, the surgery obstruction
map is isomorphic to the composite

L〈1〉w
∗ (BG) −→ Lw

∗ (BG) −→ Lq
∗(ZG, w)

where L〈1〉w∗ (BG) and Lw∗ (BG) denote the w-twisted L〈1〉- and L-homology of BG, respec-
tively. The first map in the composite is induced by the canonical map L〈1〉 → L and
the second map is the assembly map. Here, the twist comes from pulling back a partic-
ular C2-action on L along the orientation character w : G → C2, see Remark 2.1 for more
information on this C2-action.

REMARK 2.1. The C2-action on L is in fact given by Sσ−1 ⊗ L, where the C2-action
on Sσ−1 will be recalled below and the action on L is trivial2. Discarding the C2-action,
we have Sσ−1 ⊗ L = L since Sσ−1 = S once we discard the C2-action. The above iden-
tification of the C2-action becomes relevant when one identifies normal invariants of
non-orientable manifolds with twisted L-homology, as needed when showing that the Borel
conjecture follows from the Farrell–Jones conjectures also for non-orientable manifolds. In
addition, it can be used to determine differentials in the equivariant Atiyah–Hirzebruch
spectral sequence for twisted L-homology, see Remark 3.2. The rest of this remark is
intended to give some context on C2-actions on L. It will not be used in this paper and
may therefore safely be skipped at first reading.

2We follow the convention of writing ⊗ for the symmetric monoidal structure of spectra which is often also
denoted ∧.
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So let us explain a bit more about C2-actions on L. Denote by Sσ the one-point com-
pactification of the sign representation of C2 on R, in other words, the space S1 with
C2-action given by complex conjugation. Let Sσ be its suspension spectrum, and Sσ−1 its
one-fold desuspension. This is a spectrum with an action of C2, whose underlying spectrum
is just the usual sphere spectrum S and where the generator of C2 acts by multiplication
by −1. While in algebra, a C2-action is determined by this property, this is not the case in
topology. For instance, denote by nσ the one-point compactification of an n-fold direct sum
of the sign representation σ , and consider Snσ−n. This is also a spectrum with C2-action
whose underlying spectrum is S and where the generator acts by (−1)n, and thus by a sign
if n is odd. However, as spectra with C2-action, all of these turn out to be pairwise inequiva-
lent. Indeed, there is a functor, the C2-Tate construction, which sends Snσ−n to S−n. Unlike
in algebra, one therefore has to be more careful in general when talking about a C2-action
“by a sign” on a spectrum X , as for odd n, any Snσ−n ⊗ X is a reasonable such object. We
remark here that for specific X , the family of spectra with C2-action Snσ−n ⊗ X simplifies:
if M is an MU-module spectrum3, it turns out that for any complex representation V of C2,
there is an equivalence SV ⊗ M � S|V | ⊗ M of spectra with C2-action, where the latter is
given the trivial action. Here, |V | denotes the real dimension of V , and the equivalence is a
form of a Thom isomorphism for the complex representation V . Since 2σ is a complex rep-
resentation, we therefore find that S2nσ−2n ⊗ M is equivalent to M with the trivial action,
and that S(2n+1)σ−2n−1 ⊗ M is equivalent to Sσ−1 ⊗ M . The spectrum L is a module spec-
trum over Ls(Z) which in turn comes with ring maps MU → MSO → Ls(Z). Therefore,
L is also a module spectrum over MU and thus there is a well-defined “sign-action” of
C2 on L.

Following [8], we consider the following conditions on a group π equipped with an
orientation character w:

(W) The Whitehead group Wh(π) vanishes.
(A1) The assembly map L〈1〉w

4 (Bπ) → Lq
4(Zπ, w) is injective.

(A2) The assembly map L〈1〉w
5 (Bπ) → Lq

5(Zπ, w) is surjective.

DEFINITION 2.2 ([8]). A group is said to satisfy property

(W-AA): if it satisfies the three conditions above.

LEMMA 2.3. Let π be a group satisfying the Farrell–Jones conjectures and admitting
a CW-model of Bπ of dimension at most 4. Then π has property (W-AA):.

Proof. First note that the existence of a finite-dimensional model for Bπ implies that
π is torsion-free. In this case, the K-theoretic Farrell–Jones conjecture implies property
(W) as well as the vanishing of ˜Kn(Zπ) for n ≤ 0, see, for example, [15, 7.2.2]. Indeed,
the K-theoretic Farrell–Jones conjecture in the case of a torsion free group asserts that the
assembly map

K(Z)n(Bπ) −→ Kn(Zπ)

is an isomorphism for all n ∈ Z. Moreover, in non-positive degrees the cokernels of these
maps are the groups ˜Kn(Zπ), and the cokernel in degree 1 is Wh(π). Using the long exact
Rothenberg sequences [18, §16], the L-theoretic Farrell–Jones conjecture implies that the
assembly map

3That is, M is equipped with a homotopy unital and homotopy associative multiplication map MU ⊗ M → M ,
where MU denotes the complex cobordism spectrum.

https://doi.org/10.1017/S0017089521000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089521000215


458 DANIEL KASPROWSKI AND MARKUS LAND

Lw
n (Bπ) −→ Lq

n(Zπ, w)

is an isomorphism for all n ∈ Z. Now, consider the following long exact sequence:

· · · → (τ≤0L)w
n+1(Bπ) → L〈1〉w

n (Bπ) → Lw
n (Bπ) → (τ≤0L)w

n (Bπ) → . . .

where τ≤0L denotes the cofibre of the canonical map L〈1〉 → L. We note that the nth homo-
topy group (τ≤0L)n vanishes for n > 0. As in the untwisted case, this long exact sequence
is induced by a fibre sequence of spectra parametrised over Bπ

L〈1〉w −→ Lw −→ τ≤0Lw

where the parametrisation is via the orientation character w. Hence, for showing properties
(A1) and (A2) it suffices to show that (τ≤0L)w

5 (Bπ) = 0. This follows from the twisted
Atiyah–Hirzebruch spectral sequence calculating the w-twisted τ≤0L-homology of Bπ .
Indeed, its E2-page is given by E2

p,q = Hp(Bπ; (τ≤0L)w
q ), which vanishes for p + q = 5 as π

has a 4-dimensional model for Bπ by assumption.

Property (W-AA): is what we will actually use in the proof of Theorem 1.1.

REMARK 2.4. Condition (W) implies that the comparison maps from the simple
L-groups of Zπ to the (free) L-groups of Zπ are isomorphisms since the canonical com-
parison maps sit inside canonical comparison map sits inside the long exact Rothenberg
sequence whose third term is ̂H∗(C2; Wh(π)) [20]; see also [17, §1.10]. Likewise, under
condition (W), the simple structure set Ss(M) agrees, via the canonical map, with the non-
simple version S(M). We may therefore always work with the non-simple versions in what
follows.

3. Proof of Theorem 1.1. We will need the following theorem, which follows imme-
diately from [14, Theorem 4 and its addendum]. For convenience of the reader, we briefly
explain the proof. We follow the idea from the proof of [8, Theorem 2.6].

THEOREM 3.1. Assume π satisfies property (W-AA):. Let M and N be as in Theorem
1.1. Let f : N → M be a homotopy equivalence with trivial normal invariant. Then N and
M are s-cobordant.

Proof. The vanishing of the Whitehead group implies that every homotopy equiva-
lence is simple and, as explained in Remark 2.4, that we do not have to distinguish between
simple L-theory and free L-theory. By assumption, f and idM are normally bordant, so
applying surgery in the interior of the normal bordism we obtain a normal bordism W
between f and idM with a 2-equivalence to M and surgery obstruction in Lq

5(Zπ, w). Let
N (M × I, M × {0, 1}) be the set of degree one normal maps to M × I that are the identity
on both boundary components. Given an element V from N (M × I, M × {0, 1}), we can
glue it along a boundary component of the bordism W . The surgery obstruction is addi-
tive under stacking cobordisms since the surgery kernel of the stacked cobordism is the
orthogonal sum of the surgery kernels of the individual cobordisms. Therefore, glueing V
to W changes the surgery obstruction by the image of V in Lq

5(Zπ, w). Hence, if the map
N (M × I, M × {0, 1}) → Lq

5(Zπ, w) is surjective, the surgery obstruction can be assumed
to be zero, and so there is an s-cobordism between M and N .

It remains to show that N (M × I, M × {0, 1}) → Lq
5(Zπ, w) is surjective. Under the

identification of N (M × I, M × {0, 1}) with L〈1〉w
5 (M), the map to Lq

5(Zπ, w) agrees with
the assembly map L〈1〉w

5 (M) → Lq
5(Zπ, w) which factors through L〈1〉w

5 (Bπ). The map
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L〈1〉w
5 (Bπ) → Lq

5(Zπ, w) is surjective by property (A2). Hence, it remains to show that
L〈1〉w

5 (M) → L〈1〉w
5 (Bπ) is surjective. Indeed, it is an isomorphism. To see this, we con-

sider the twisted Atiyah–Hirzebruch spectral sequences for M and Bπ and obtain the
following commutative diagram:

H4(M; Z/2) H1(M; Zw) L〈1〉w
5 (M) H3(M; Z/2) H0(M; Zw)

H4(Bπ; Z/2) H1(Bπ; Zw) L〈1〉w
5 (Bπ) H3(Bπ; Z/2) H0(Bπ; Zw)

∼= ∼= ∼= ∼=

Since M → Bπ is degree 1 and a π1-isomorphisms, we find that all vertical maps except for
the middle one are isomorphisms. It follows that also the middle one is an isomorphism.

REMARK 3.2. In [14], it is observed that L〈1〉w
5 (X ) ∼= H1(X ; Zw) ⊕ H3(X ; Z/2), but

we shall not make use of this. One way to see this is to use that the C2-action on L used
for the twisted homology is given by Sσ−1 ⊗ L as described in Remark 2.1. Then it fol-
lows that τ[1,4]L is, as a C2-object, also given by Sσ−1 ⊗ τ[1,4]L. From the fact that τ[1,4]L
unequivariantly splits into the product �2HZ/2 ⊕ �4HZ, one therefore finds that there
is an equivariant splitting of τ[1,4]L into �2HZ/2 ⊕ �4HZ−, where Z− denotes the sign
representation of C2 acting on Z.

We need two more lemmas to prove Theorem 1.1.

LEMMA 3.3. If f : N → M is a homotopy equivalence such that N(f ) is represented
by an immersed sphere with trivial w2, then there exists a homotopy equivalence f ′ : N →
M with trivial normal invariant.

Proof. By [1], more precisely by the proof of [1, Theorem 5.1], for every element ι of
H2(M; Z/2) which is represented by an immersed S2 with w2(ι) = 0, there exists a self-
homotopy equivalence ϕ of M with N(ϕ) = ι; see also [14, Theorem 18]. Explicitly, this
homotopy equivalence is given by the Novikov pinch

M
pinch−→ M ∨ S4 id∨η2−→ M ∨ S2 id+ι−→ M .

In particular, there exists a self-homotopy equivalence ϕ of M with N(ϕ) = N(f ) so that ϕ

is normally bordant to f . Hence, ϕ−1 ◦ f is a homotopy equivalence from N to M which is
normally bordant to idM as needed.

LEMMA 3.4. Let M be totally non-spin and M ′ a manifold homotopy equivalent but
not s-cobordant to M. Then ks(M) �= ks(M ′).

Proof. Let f : M ′ → M be a homotopy equivalence such that M ′ is not s-cobordant
to M . Lemma 3.3 implies that its normal invariant N(f ) is represented by an immersed
sphere α with non-vanishing w2. Consider a homotopy equivalence g : � CP

2 → CP
2,

where �CP
2 is the Chern manifold. Then the normal invariant N(g) ∈ H2(CP

2; Z/2) ∼=
Z/2 is non-trivial and thus represented by CP

1 ⊆ CP
2. Considering the homotopy

equivalence M ′# � CP
2 f #g−→ M#CP

2, we find that N(f #g) is represented by α + CP
1 ∈

H2(M ′#CP
2; Z/2). Using the result from [1] again and the fact that w2(α + CP

1
) = 0, it

follows that M ′# � CP
2 is s-cobordant to M#CP

2 and thus ks(M ′) + 1 = ks(M ′# � CP
2
) =

ks(M#CP
2
) = ks(M) as claimed.
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Proof of Theorem 1.1. As mentioned in Remark 1.2, the classifying map M → Bπ

has degree ±1 if and only if π2(M) is projective, [6, Theorem 6]. Hence, it follows
directly from [6, Theorem 11] that under the assumptions of Theorem 1.1 there is a homo-
topy equivalence f : N → M . We view f as an element in S(M). Using (A1), the normal
invariant N(f ) of f lies in the kernel of L〈1〉w

4 (M) → L〈1〉w
4 (Bπ). Using a similar argu-

ment at the end of the proof of Theorem 3.1 with the twisted Atiyah–Hirzebruch spectral
sequence, we find that the kernel of L〈1〉w

4 (M) → L〈1〉w
4 (Bπ) is isomorphic to the kernel of

H2(M; Z/2) → H2(Bπ; Z/2). The Serre spectral sequence for the fibration ˜M → M → Bπ

shows that H2(˜M; Z/2) ∼= H2(˜M; Z) ⊗Z Z/2 ∼= π2(˜M) ⊗Z Z/2 surjects onto the kernel of
H2(M; Z/2) → H2(Bπ; Z/2). Thus, every element in this kernel can be represented by an
immersed sphere.

If M and N in Theorem 1.1 are almost spin, all immersed spheres in M have trivial w2

by assumption. In this case, Lemma 3.3 together with Theorem 3.1 proves Theorem 1.1.
Note that no appeal to Kirby–Siebenmann invariants was necessary up to this point.

If M is almost spin, Theorem 1.1 follows from Lemma 3.4 since we assumed that N
has the same Kirby–Siebenmann invariant as M .

REMARK 3.5. If M is totally non-spin and π = π1(M) is good, one can give a different
argument for Lemma 3.4 making use of the existence of a star partner �M of M , that
is, a manifold homotopy equivalent to M but with opposite Kirby–Siebenmann invariant.
Indeed, if such a star partner exists, it follows immediately from the observation that the
orbit space S(M) under the action of the self-homotopy equivalences of M consists of 2
elements, that they must be represented by idM and some homotopy equivalence �M →
M . Therefore, any N homotopy equivalent to M and with the same Kirby–Siebenmann
invariant is in the same orbit as idM under the action of the self-homotopy equivalences
of M .
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