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Abstract. Making use of the dielectric permitivitty of a solid state plasma obtained
from linearizing a quantum hydrodynamic equation, volume and surface waves
in cold semibounded plasma-like media and thin layers of solid state plasmas are
investigated in the presence and absence of an external magnetic field. It is shown
that quantum oscillation of free charged particles and its spatial dispersion even
in cold plasmas lead to new spectra of collective oscillations. Furthermore, a new
volume ion-acoustic-type wave is obtained with a quadratic dependence on the
wavenumber in the long-wavelength limit. Moreover, it is shown that quantum
oscillation affects the surface wave spectrum and extends it to a wider frequency
region.

1. Introduction
The degenerate electron gas has been a subject of great activity [1–3]. A com-
prehensive treatment of the quantities related to this system, such as inelastic
particle–solid and particle–plasma interactions, can be formulated in terms of the
dielectric response function, obtained from the electron-gas model. The results have
important applications in radiation and solid state physics [4], and in studies of
energy deposition by ion beams in plasmas fusion targets [5,6]. Moreover, quantum
effects may be very important in nondegenerate and degenerate plasmas [7–12].

On the other hand, it has been shown that, starting from the quantum hydro-
dynamics of cold plasmas, one can describe the linear kinetics of a collisionless
quantum plasma and obtain the dielectric permittivity of a cold quantum plasma-
like medium [13]. Moreover, it has been shown that in a cold plasma, taking into
account free quantum oscillation, the effect of quantum spatial dispersion may be
important [13]. Therefore, it is expected that it can change the spectra of volume
and surface waves in degenerate and nondegenerate plasmas.

Furthermore, it is very important to know that, even in a cold plasma, spatial
dispersion in the dielectric permittivity of a medium, due to single-particle quantum
oscillations, may result in new spectra of collective oscillations, especially for surface
and volume waves.

In the present paper, starting from the quantum hydrodynamics of cold plas-
mas, we first study the validity of this description and then describe the effect of
quantum spatial dispersion on volume and surface waves spectra in semibounded
plasmas and plasma layers in the short-wavelength limit.

It should be noted here that we expect that quantum oscillation and the diffusion
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mode of particles play the same role. In other words, even in cold plasma-like media,
spatial dispersion, arising from quantum oscillation, plays the same role that the
thermal motion of particles plays in warm plasmas.

This paper is presented in six sections. In Sec. 2, we study the validity of the
abovementioned description. In Sec. 3, we treat the effect of quantum oscillation
on volume waves in the presence and absence of an external magnetic field. In
Sec. 4, we consider the abovementioned effect on surface waves and in Sec. 5 its
effect on plasma-layer modes in the absence and presence of an external magnetic
field. Finally, a summary and conclusions are presented in Sec. 6.

2. Validity conditions
2.1. Unmagnetized plasmas

Making use of the linearized quantum hydrodynamic equation obtained from the
Schrödinger equation for free spinless electrons (and holes or light ions) and taking
into account the quantum oscillation of free electrons (and holes or light ions), one
can obtain the following relation between the dielectric permittivity of a quantum
and classical isotropic collisionless electron (multicomponent) plasma [13]:

εq(ω, k) = εcl(ω, k)− ω2
q

ω2
Le

[δεcl(ω, k)]2

1 + (ω2
q/ω

2
Le)δεcl(ω, k)

, (1)

where εq(ω, k) = 1 + δεq(ω, k) and εcl(ω, k) = 1 + δεcl(ω, k) are the dielectric permit-
tivity of a quantum and classical collisionless electron (multicomponent) plasma;
δεq and δεq are the charged-particle contributions to the classical and quantum
dielectric permittivity, respectively. In addition, ωqe = ~k2/2m is the frequency of
quantum oscillation of a free electron with effective mass m and wave vector k; ωLe
is the plasma frequency of electrons. From the latter equation, we can obtain the
longitudinal and transverse dielectric permittivities of an isotropic cold collisionless
electron plasma [13,14]:

εlq = 1− ω2
Le

ω2 − ω2
qe

, εtr
q = 1− ω2

Le

ω2 . (2)

As expected, the pole of the longitudinal dielectric permittivity shows the quan-
tum oscillation of electrons. Moreover, the quantum effect is not manifested in the
transverse dielectric permittivity. Here the plasma is cold because the dielectric
permittivity, obtained from the linearized hydrodynamic equation, may also be
obtained from quantum kinetic considerations when thermal motion is negligible
[13].

It is important to know the extent to which this description is appropriate and
when (2) is valid. To answer these questions, we first consider the longitudinal
dielectric permittivity of an isotropic electron plasma, obtained from the Wigner
kinetic equation [15].

εl(ω,k) = 1 + 3
ω2
Le

k2v2
Fe

− 3
8

ω2
Le

ωqk3v3
Fe

{
[(ω + ωq)2 − k2v2

Fe] ln
(
ω + ωq + kvFe
ω + ωq − kvFe

)

−[(ω − ωq)2 − k2v2
Fe] ln

(
ω − ωq + kvFe
ω − ωq − kvFe

)}
. (3)
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It is well known that the longitudinal modes can be obtained from the dispersion
equation εl(ω, k) = 0 [14]. Therefore, from (3), when the spatial dispersion is weak,
we find

ω2 = ω2
Le +

(
~k2

2m

)2

+
3
5
k2v2

Fe. (4)

This spectrum without the final term could be obtained from (2). Therefore, if
the energy of quantum oscillation of a free electron is greater than its thermal
energy (or Fermi energy), we consider the plasma to be cold. On the other hand,
the second term in (4) should be a small correction to the plasma frequency (the
first term). But, in this case, the gas approximation is not valid. Therefore, (2)
cannot describe the screening of the static electric field in this plasma. Screening of
the longitudinal field arises when ~2k4/4m2 ≈ ω2

Le and is given by the usual Debye
radius rDe = 3vFe/ωLe where, vFe is the electron Fermi velocity.

We can study longitudinal surface waves in an isotropic electron plasma to ex-
plain the validity condition of the abovementioned description. This will be done
in Sec. 4, where, by comparing the quantum correction with the classical spectrum
of a surface wave, one can show that, under the condition ω� kvFe, the plasma
can be assumed to be cold.

2.2. Magnetized plasmas

We consider a strongly magnetized plasma, i.e. Ωe = eB0/mc� ωLe > ω, where Ωe
is the electron Larmor frequency and B0 is the external magnetic field. The longi-
tudinal dielectric permittivity can be obtained from the quantum hydrodynamic
equations [13] and (1):

ε(ω, k) =
kikj
k2 εij(ω, k) = 1− ω2

Lek
2
z/k

2

ω2ω2
qk

2
z/k

2 . (5)

If we average this equation with respect to the Fermi distribution, we find the
quantum longitudinal dielectric permittivity [14]:

εl(ω, k) = 1 +
3
2
ω2
Le

k2v2
Fe

− 3
8

ω2
Le

ωqk3v3
Fe

{[(
ω + ωq

kz
k

)2

− k2
zv

2
Fe

]

× ln
(
ω + ωq(kz/k) + kvFe
ω + ωq(kz/k)− kvFe

)
−
[(

ω − ωq kz
k

)2

− k2
zv

2
Fe

]
× ln

(
ω − ωq(kz/k) + kvFe
ω − ωq(kz/k)− kvFe

)}
. (6)

From this equation, under the weak-spatial-dispersion condition, we find the fol-
lowing spectrum:

ω2 = ω2
Le

k2
z

k2 + ω2
q

k2
z

k2 +
3
5
k2
zv

2
Fe. (7)

As seen, here again when ~ωq�EFe, the quantum correction may be important in
the dispersion of longitudinal volume waves. Here EFe is the electron Fermi energy.
Moreover, the screening of the static longitudinal field in magnetized plasmas, as
in unmagnetized plasmas, does not depend on the quantum dispersion effect.
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3. Volume waves
From the preceeding section, we study the quantum dispersion effect in the volume-
wave spectrum in both unmagnetized and magnetized plasma-like media, respec-
tively.

3.1. Unmagnetized plasmas

We first consider an unbounded cold plasma-like medium in the absence of an
external magnetic field. Therefore, from (2), we find the following spectrum for the
volume longitudinal waves in an unbounded quantum isotropic collisionless electron
plasma-like medium:

ω2 = ω2
Le + ω2

q. (8)

This expression is valid when ~ω > kv0, where v0 =
√
Te/m is the thermal velocity

for a nondegenerate plasma and v0 = vFe is the Fermi velocity for a degenerate
plasma. This leads to the condition ~ωLe > Te orEfe. Here Te is the thermal energy
of electrons.

Compared with the frequency spectra of a classical plasma, this spectrum shows
that quantum oscillation of electrons in a cold plasma plays the same role as ther-
mal motion of electrons in a warm plasma. It should be noted that the quantum
correction is important when the quantum oscillation has the same order of mag-
nitude as the collective plasma frequency. Starting from (1), we can write it as

(1 + δεcl)(1 + δεq) =
ω2
qe

ω2
Le

ε2
cl. (9)

This relation shows the coupling of classical and quantum modes due to the spatial
dispersion arisen from quantum oscillations.

In order to estimate the effect of quantum oscillation, we first consider metals,
where the particle density n > 1021 cm−3. In this case, the quantum dispersion
effect is negligible. However, in semiconductors such as InSb where n 6 1017 cm−3

and the ratio of effective mass to mass is about 1
30 , we find that when k 6 107 cm−1,

ωqe� ωLe, and consequently quantum effects become important.
We consider a two-component cold plasma. In this case, we have

εlq = 1− ω2
Le

ω2 − ω2
qe

− ω2
Lh

ω2 − ω2
qh

, (10)

where ωqh and ωLh are the quantum oscillation and plasma frequencies of holes or
ions. In this case, due to the large mass difference between charged-particle species,
a new spectrum may arise. This new spectrum is very similar to the ion-acoustic
wave in a plasma. But this type of acoustic wave arises due to the difference between
the hole or ion quantum oscillation and the electron quantum oscillation. Therefore,
in the intermediate region where ω � ωqe, we find a new ion-acoustic type wave
with frequency spectrum

ω2 =
ω2
Lhω

2
qe

ω2
Le + ω2

qe

. (11)

Here it is clear that this acoustic-type wave, in contrast to the usual ion-acoustic
wave, has a quadratic dependence on k in the long-wavelength limit, i.e. ω2 =
(m/M )ω2

qe ∼ k4, where M is the ion or hole mass.
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3.2. Magnetized plasmas

We impose an external magnetic field. For a longitudinal wave in an unbounded
pure electron plasma, we find the following dispersion equations, assuming the
magnetic field to be along the Z axis and the X axis to be across it:

δεlcl =
ω2
Le

ω2

k2
z

k2 −
ω2
Le

ω2 − Ω2
e

k2
x

k2 , δεqcl =
ω2
qe

ω2

k2
z

k2 −
ω2
q

ω2 − Ω2
e

k2
x

k2 , (12)

where kz and kx are the longitudinal and transverse wave vectors, respectively.
Making use of (1), (6) and (12), we find the following dispersion equation for the

longitudinal quantum volume wave in a cold magnetoactive plasma-like medium:

εl = 1− ω2
Le

ω2

k2
z

k2 −
ω2
Le

ω2 − Ω2
e

k2
x

k2

−~
2ω2
Le

4m2

k4
z

ω4 +
k2
x

(ω2 − Ω2
e)2 +

2k2
zk

2
x

ω2(ω2 − Ω2
e)

1− ~
2k2

4m2

(
k2
z

ω2 +
k2
x

ω2 − Ω2
e

) = 0. (13)

From (13), we find the following spectra:

ω2 =



~2k4
z

4m2 + ω2
Le + Ω2

e,

Ω2
e

~2k4
z

4m2 + ω2
Le

k2
z

k2

~2k4
z

4m2 + ω2
Le + Ω2

e

.
(14)

When the magnetic field strength is infinite, we find

ω2 =
~2k2

z

4m2 k
2 + ω2

Le

k2
z

k2 . (15)

This shows that, in a cold plasma-like medium, the pressure due to the quantum
oscillation acts like the kinetic pressure in warm plasmas.

4. Surface waves on semibounded plasma-like media
Here we consider the quantum dispersion effect on the frequency spectrum of sur-
face waves propagating on a semibounded cold plasma-like medium. In the classical
case, the spectrum of surface waves has already been obtained [16,17]. It is obvious
that the character of surface waves depends essentially on the properties of the
plasma surface. As we are interested in solid state plasmas, the structure of surface
waves is determined by the crystal lattice surface, where it is assumed that the
plasma has a sharp surface [16,17].

4.1. Unmagnetized semibounded plasmas

As with the quantum effect on the frequency spectrum of surface waves, for an
isotropic plasma-like medium, assuming the Z axis to be along the surface of the
plasma medium and the X axis to be across it, we find the following dispersion
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Figure 1. Plot of Ω = ω/ωLe as a function of ϕ in one period.

equation for surface waves [16,17]:√
k2
z −

ω2

c2 +
1
π

∫ ∞
−∞

dkx
k2

[
k2
z

εl(ω, k)
− k2

xω
2

k2c2 − ω2εtr(ω, k)

]
= 0. (16)

Substituting (1) into (16), we find√
k2
zc

2 − ω2

(
1− ω2

Le

ω2

)
− ω2

Le

ω2 | cosϕ|1/2 cos
ϕ

2
|kz|c +

√
k2
zc

2 + ω2
Le − ω2 = 0, (17)

where tan2 ϕ = (ω2
Le − ω2)/(~2k4

z/4m
2). From (17), we find the following spectra:

ω2 =


ω2
Le

2

[
1 + | cosϕ|1/2 cos

ϕ

2

]
� k2

zc
2,

k2
zc

2

[
1− 1√

2

mc2

~ωLe
k2
zc

2

ω2 − cosϕ cos2 ϕ

2

]
� ωLe.

(18)

As can be seen, for long waves, quantum oscillation plays a very small role, and
consequently one can neglect it. But, for short waves, the quantum effect increases
the frequency of surface waves from the classical value ωLe/

√
2, and thus manifests

itself. The behavior of the upper equation in (18) is illustrated in Fig. 1.
If we consider only longitudinal surface waves, i.e. go to the limit c→∞, from

the dispersion equation (17) and under the condition ω2
Le� ~2k4

z/4m
2 (near to the

classical limit), we obtain

ω2 =
ω2
Le

2

[
1 +

1
21/4

(
~k2

z

2mωLe

)1/2
]
. (19)

It is clear that the quantum oscillation affects the classical surface wave spec-
trum, i.e. it extends the classical surface wave spectrum to the region ω > ωLe/

√
2.

Therefore, comparing this quantum correction with the classical spectrum of surface
waves, we conclude that, under the condition ~ωqe�EFe, cold quantum hydrody-
namics can be used. The behavior of (19) is illustrated in Fig. 2.

4.2. Magnetized semibounded plasmas

In this subsection, we consider the previous case in the presence of an external
magnetic field. It should be noted that for the classical case, in this circumstances,
there is no any surface wave. As with the quantum surface wave, in the presence of
an external magnetic field another situation arises. Making use of (16) in the limit
c→∞ and substituting (13) into it, we find the following spectrum for surface
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Figure 2. Plot of Ω = ω/ωLe as a function of κz = 107kz.

waves in the presence of an infinitely strong magnetic field:

ω2 = 2ωLe
~

2m
k2
z. (20)

However, this spectrum is not valid because it contradicts the gas approximation.
Therefore, surface waves also do not appear in the presence of the magnetic field.

5. Plasma-like layers
Generalizing earlier work [16,17], we now study the quantum oscillation effect in
the frequency spectrum of a thin plasma layer with thickness a. Here we suppose
that the geometry of this layer is similar to what was used in the semibounded case
in the previous section.

5.1. Longitudinal surface modes

First, we investigate only longitudinal modes. Starting from the dispersion equation
for longitudinal surface wave in a plasma-like medium [16,17],

1 +
2

a|kz|
∞∑
n=0

′[1± (−1)n]
k2
z

k2εl(ω, k)
= 0, (21)

and substituting (1) into it, we find the following dispersion relation for symmetric
(with sign +) and antisymmetric (with sign −) modes, respectively:

1 +
2a|kz|
π2

{
ω2

ω′2

[
1
η2 +

π

2η

(
cothπη +

1
sinhπη

)]
− ω2

Le

2ω′2

[
1
ξ2

1
+

1
ξ2

2
+

π

2ξ1

(
cothπξ1 +

1
sinhπξ1

)
+

π

2ξ2

(
cothπξ2 +

1
sinhπξ2

)]}
= 0, (22)

1 +
2a|kz|
π2

{
π

2η

(
cothπη − 1

sinhπη

)
− ω2

Le

2ω′2

[
π

2ξ1

(
cothπξ1 − 1

sinhπξ1

)
+

π

2ξ2

(
cothπξ2 − 1

sinhπξ2

)]}
= 0, (23)
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where

η2 =
a2k2

z

π2 , ξ2
1,2 =

a2k2
z

π2

(
1±

√
ω′2

βk4
z

)
,

β =
~2

4m2 , ω′2 = ω2 − ω2
Le, (24)

and the prime on the summation symbol means that for n = 0 it should be divided
by 2.

We now study (22) and (23) in different frequency limits to obtain the frequency
spectrum of a thin plasma-like layer where η � 1, i.e. where the surface effect is
important. At first it should be noted that when η� 1, we return to the frequency
spectrum of the semibounded case. Therefore, we assume that η� and ξ2

1,2� 1. In
this case, we find the following frequency spectrum for symmetric modes:

ω2 =
~2k4

z

4m2 + ω2
Le

a|kz|
4

. (25)

As with antisymmetric modes, due to the quantum correction terms, no valid fre-
quency spectrum can be obtained. In other words, the quantum effect prevents
antisymmetric modes from appearing.

We now go to the other limit where ξ2
1,2� 1. In this case, we find the classical

result [17]:

ω2 = ω2
Le

a|kz|
4

(26)

for symmetric longitudinal modes, and again antisymmetric modes cannot appear.

5.2. Transverse surface modes

Finally, we study the general case with the dispersion equation [16,17]

√
k2
z −

ω2

c2 +
2
a

∞∑
n=0

′ [1± (−1)n]

k2
z +

n2π2

a2

 k2
z

εl(ω, k)
−

n2π2

a2 ω2

k2
zc

2 +
n2π2

a2 c2 − ω2εtr(ω, k)

 = 0. (27)

Making use of this equation, we can investigate transverse modes as well. Substi-
tuting εl and εtr from (1) into (27), we find that, due to the presence of the last
term, showing transverse modes, only transverse antisymmetric modes ω = kzc
may appear, apart from longitudinal modes. Therefore, we find that in this case,
only longitudinal symmetric modes with spectra (25) and (26) and a transverse
antisymmetric mode ω = kzc may appear. Moreover, we can conclude that the pres-
ence of the quantum effect prevents the formation of transverse symmetric modes.
Consequently, any significant relation between the quantum dispersion effect and
boundedness of a plasma-like layer has no basis in our linear approximation.

6. Summary and conclusions
Making use of the dielectric permittivity of a solid state plasma obtained from a
linearized quantum hydrodynamic equation and taking into account the quantum
spatial dispersion of free charged particles, we have obtained a quantum collec-
tive effect in the frequency spectrum of volume and surface waves on semibounded
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plasma-like media and thin plasma-like layers in the presence and absence of an ex-
ternal magnetic field. In addition, we have found that in a cold plasma-like medium
the pressure related to the quantum oscillation acts as a kinetic pressure. Further-
more, a new volume ion-acoustic type wave has been obtained with a quadratic
dependence on the wavenumber in the long-wavelength limit. Moreover, it has been
shown that the quantum oscillation affects the surface waves spectrum and extends
it to a wider frequency region. Also, it has been found that quantum oscillation
prevents antisymmetric surface modes from appearing. Finally, it has been shown
that there is no significant relation between the quantum dispersion effect and the
boundedness of a plasma-like medium in the linear approximation.
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