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We present a theoretical and experimental study of viscous gravity currents introduced
at the surface of a denser inviscid fluid layer of finite depth inside a vertical Hele-
Shaw cell. Initially, the viscous fluid floats on the inviscid fluid, forming a self-similar,
buoyancy-driven current resisted predominantly by the viscous stresses due to shear
across the width of the cell. Once the viscous current contacts the base of the cell,
the flow can be considered in two regions: a grounded region in which the current
lies in full contact with the base; and a floating region. The subsequent advance of
the grounding line separating these regions is shown to be controlled by the thickening
of the current associated with balancing the local shear stresses. An understanding of
the flow transitions is developed using asymptotic and numerical analysis of a model
based on lubrication theory.
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1. Introduction

Ice sheets, such as those of Antarctica, flow viscously under their own weight at
rates of several hundreds of metres per year, spreading gradually from the interior of
the continent towards its periphery. Marine ice sheets are characterized by continuing
to flow into the ocean and eventually detaching from the bedrock to form a floating
ice shelf. Such configurations are common in West Antarctica, where the majority
of the ice sheet lies on bedrock below sea level. Separating the grounded ice sheet
and the ice shelf is the freely moving line of detachment called the grounding line,
whose position corresponds approximately to where the thickness of the ice sheet has
decreased to the depth of the ocean. Any thinning of the ice sheet at the grounding
line, caused, for example, by the natural stretching of the flow towards the ocean due
to buoyancy, leads to a retreat of the grounding line upstream. Such retreats have
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been observed in recent years (e.g. Wingham, Wallis & Shepherd 2009) and may be
indications of a large-scale instability of the ice sheet, such as those which are known
to have occurred in the geological past (Bamber et al. 2009).

Previous dynamical studies of marine ice sheets have focused predominantly on
idealized two-dimensional cases in which the flow is assumed not to vary across its
width (Weertman 1974; Wilchinsky & Chugunov 2000; Schoof 2007, 2011; Robison,
Huppert & Worster 2010). In these studies, the sheet is modelled as a viscous gravity
current whose flow is driven by gradients in hydrostatic pressure and resisted by
friction at its base. In contrast, the absence of any significant friction at the base
of the ice shelf implies that it instead forms an extensional viscous gravity current
whose motion is resisted predominantly by the viscous stresses associated with its
longitudinal extension (Weertman 1957; DiPietro & Cox 1979; Pegler & Worster
2012). Understanding the fluid mechanics associated with the transition between the
sheet and shelf is challenging because the simplified thin-layer models that can be
used to describe the leading-order flows of the sheet and shelf independently do not
apply near the grounding line. In particular, if the friction at the base of the ice
sheet is strong enough to induce significant vertical shear, then all the components
of the stress tensor can be expected to become important near the grounding line
(Nowicki & Wingham 2008; Schoof 2011). Attempts to model this system to date
have mostly focused on cases where the sheet undergoes small vertical shear (Schoof
2007, 2011), on conducting a full-Stokes calculation of the steady flow (Nowicki &
Wingham 2008), or on trying simplified descriptions of the dynamics in which certain
leading-order stresses are neglected (Robison et al. 2010; Pegler & Worster 2013).
In this paper, we demonstrate how additional viscous stresses that originate from the
lateral confinement of marine ice sheets can lead to a new, simpler description of
grounding-line migration.

When idealized to flow in two dimensions, an ice shelf simply transmits the
hydrostatic pressure of the ocean through to the grounding line, so that the dynamics
of the ice shelf itself have no influence on those of the sheet or grounding line
(Weertman 1974; Schoof 2007; Robison et al. 2010). However, observations of the
flow of ice following the collapse of an ice shelf have shown a subsequent acceleration
of the grounded ice sheet that supplied it (e.g. Rignot et al. 2004), which suggests
that ice shelves in fact play a role in buttressing the grounded ice sheet, resisting
the flow of ice into the ocean and acting to stabilize the position of the grounding
line. Such buttressing arises from the three-dimensional viscous stresses associated
with deforming ice shelves through the embayments or channels in which they flow
(Dupont & Alley 2005; Goldberg, Holland & Schoof 2009; Pegler & Worster 2012).

In this paper, our focus is to demonstrate how ice-shelf buttressing due to lateral
stresses can lead to a different form of grounding-line migration in which the
difficulties associated with the two-dimensional problem do not arise. To this end,
we consider the idealized flow of a marine ice sheet between parallel sidewalls
and develop a mathematical model for its evolution on the basis that the dominant
resistance to flow arises from the viscous stresses associated with shearing across
its width. Such flow regimes have been demonstrated to arise whenever an ice shelf
becomes sufficiently longer than the width of the channel in which it flows (Pegler
2012). This configuration is typical of some ice shelves like the Amery Ice Shelf,
which can be observed to undergo an approximately parabolic transverse velocity
profile characteristic of Poiseuille flow (Budd 1966). Although most ice shelves do not
flow in long channels, the fundamental controls identified in this paper relate to one
end of a spectrum of ice-shelf geometries, with the strongly confined cases considered
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FIGURE 1. Schematic of our experimental system.

here at one end, and the very wide, essentially two-dimensional, cases (e.g. Schoof
2007) at the other. By comparing our results with those of two-dimensional studies, we
elucidate the significant dynamical differences between these two extremes, with the
expectation that either may play a partial or dominant role in any given geophysical
setting.

We study the specific idealized system in which viscous fluid is supplied at a
constant rate into a vertical Hele-Shaw cell filled to a constant depth by an inviscid
fluid of greater density. The propagation of the viscous fluid through the cell is
driven by gravity and resisted by transverse shearing across the width of the cell.
Such flows have been studied previously in cases where the current remains in full
contact with the base of the cell, primarily as an analogue for gravity-driven flows in
porous media (Huppert 1986). Although this geometry leads to a flow that is much
thicker than it is wide, this does not invalidate its applicability to ice shelves, as the
regime of transverse-shear-dominated flow emerges for floating viscous layers of this
kind irrespective of the ratio between the thickness and the width of the flow (Pegler
2012). While glacial ice is typically modelled as a shear-thinning, power-law fluid, the
simpler Newtonian model we adopt describes the same fundamental fluid-mechanical
forces, whilst being relatively easy to characterize in the laboratory using simple
fluids.

We begin in § 2 by describing our experimental set-up and visual observations of
a viscous fluid layer injected into a Hele-Shaw cell filled with denser inviscid fluid.
In § 3, we develop a theoretical model of the flow and explore the model equations
using both numerical and asymptotic approaches. In § 4, we compare the data with
our theoretical predictions. Finally, in § 5 we discuss the implications of our results for
grounding-line dynamics in the geophysical setting.

2. Experimental observations

We developed an experimental analogue of a confined marine ice sheet using a
vertical Hele-Shaw cell formed of two Perspex sheets of length 200 cm and height
25 cm (see figure 1). The mean spacing w ≈ 1.35 cm of the cells was determined by
filling the cell with a known volume of water and dividing this by the length of the
cell and the depth of the water body. By also measuring the spacing directly at various
locations using a pair of callipers, we estimated that the spacing deviated slightly
from the mean value by a maximum of about 0.05 cm. We used glycerine of density
ρ ≈ 1.26 g cm−3, dyed with blue food colouring, to form the viscous current, and
solutions of potassium carbonate with larger densities of up to ρw ≈ 1.56 g cm−3 to
form the inviscid fluid layer. The viscosity of the glycerine was measured before each
experiment using a glass U-tube viscometer, and varied slightly between experiments
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FIGURE 2. Sequence of photographs showing the experimental evolution of the viscous current
of glycerine (dyed blue) above a denser solution of potassium carbonate at times t = 60, 240
and 480 s after the initiation of the injection. The theoretically predicted positions of the
surfaces of the current are shown as dashed curves in each panel. The experiment is also
shown in supplementary movie 1.

owing to differences in water content. The injection of glycerine into the cell was
achieved through a vertical steel tube connected to a suspended reservoir. The tube
was directed to supply glycerine above a weir secured inside the cell, with the
constancy of the injection rate maintained during each experiment by keeping the
head in the reservoir at a constant level.

To set up the experiment, the cell was initially filled with potassium carbonate
solution to a depth b, such that the top surface of the solution lay approximately 1 cm
below the top of the weir. The injection of glycerine was then initiated, causing it to
fill the space behind the weir and then spill over it – see figure 2 and supplementary
movie 1 (available at http://dx.doi.org/10.1017/jfm.2013.140) To counteract the rise in
the depth of the solution caused by its displacement by the glycerine, we extracted
solution manually through a syphon located at the opposite end of the cell to the
injection. The extraction was performed whenever the level could be determined by
eye to have exceeded its initial height, giving an accuracy of depth b to within 0.5 cm.
The experiment was recorded using a camera directed towards the front of the cell.
Note that any effects due to surface tension, which are most significant near the front
of the current, can be expected to be negligible once the current is much thicker than
the capillary length scale (Pegler, Lister & Worster 2012), which we estimate to be of
the order of millimetres for currents produced by our experimental system.

The evolution of one of our experiments is shown as a time-lapse sequence in
figure 2 and supplementary movie 1. The glycerine is first seen to float entirely over
the inviscid fluid, producing a dynamical analogue of a confined shelf. At a certain
time, the floating current makes contact with the base of the cell to form the grounded
sheet, which lies in full contact with the base. The contact line separating the sheet
and shelf, or grounding line, subsequently propagates along the base of the cell over
the course of the experiment.
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FIGURE 3. Schematic cross-section of a viscous fluid layer confined between vertical sidewalls
and above a lower boundary at z=−b.

3. Theoretical model

Consider a layer of viscous Newtonian fluid of density ρ and kinematic viscosity
ν flowing in a vertical Hele-Shaw cell of width w filled to a constant depth b by an
inviscid fluid of higher density ρw (see figure 3). Our experimental observations in § 2
indicated that the layer forms two regions: the floating shelf in xG < x < xN , and the
grounded sheet in 0 < x < xG, where xN(t) and xG(t) represent the frontal position of
the shelf and the grounding line, respectively. Let h(x, t) denote the height of the upper
surface of the current above the surface of the inviscid fluid z = 0, and let H(x, t)
denote the thickness of the current. These are related by

h= H − b (0< x< xG), (3.1a)
h= (1ρ/ρw)H (xG < x< xN), (3.1b)

where 1ρ ≡ ρw − ρ. Equation (3.1a) follows from the fact that the vertical position of
the base of the sheet is set simply by the geometry of the underlying surface. Equation
(3.1b) follows from the assumption that the vertical position of the shelf is set by
Archimedes principle (cf. Robison et al. 2010; Pegler & Worster 2013).

We develop a model of the flow under the assumption that the leading-order
resistance to flow originates from the viscous stresses associated with shearing across
the width of the cell. In such cases (cf. Huppert 1986), the horizontal and vertical
components of the Stokes equations with dynamic viscosity µ ≡ ρν can be simplified
to

µuyy = px, pz =−ρg, (3.2a,b)

respectively, where we have used subscripts to denote partial differentiation, a notation
which we also extend to derivatives of time t below. To this end, we assume that the
width of the cell is much less than both the thickness and extent of the current, so

w� H, w� xN . (3.3a,b)

Assumption (3.3a) has been applied previously to model the transverse-shear-
dominated flow of a fully grounded current (Huppert 1986), where it implies that
the vertical shear stresses that would dominate the dynamics in the case of a wide
channel are confined to a small boundary layer at the base of the cell (Happel &
Brenner 1991). By contrast, this assumption is not needed to ensure the dominance
of transverse shear stresses in the shelf, as the absence of any traction along
its lower surface implies that vertical shear stresses are automatically negligible.
Instead, transverse-shear-dominated flow in the shelf depends only on the assumption
(3.3b) that it is much longer than it is wide (Pegler 2012). This ensures that the
viscous extensional stresses that would dominate the dynamics of a wide shelf
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(cf. Robison et al. 2010) remain negligible compared with transverse shear stresses
(uxx � uyy). In particular, the shear-dominated regime of the shelf would then apply
even if its thickness were much less than its width (H � w), as is relevant to the
geophysical setting.

With the possible exception of narrow ice streams, stresses due to transverse shear,
assumed to be dominant in our model, are unlikely to provide the dominant resistance
to the flow of the grounded component of the ice sheet in the geophysical setting,
where stresses due to vertical shear are more likely to dominate (e.g. Robison et al.
2010). However, the dynamics of transverse- and vertical-shear-dominated viscous
gravity currents are physically similar, with only minor differences between the
nonlinear diffusion equations that govern them. Therefore, we do not expect this
distinction to affect the essential dynamics explored in this paper, which are more
closely tied to the ice shelf.

By integrating (3.2a) subject to no-slip conditions at the cell walls, and using the
integrated form of (3.2b) to substitute for the leading-order hydrostatic pressure, we
determine the volumetric flux per unit width of the cell as

q=−gw2

12ν
Hhx =− g̃w2

12ν
HHx, (3.4a,b)

where

g̃≡ g (0< x< xG), (3.5a)

g̃≡ g′ (xG < x< xN), (3.5b)

and g′ ≡ (1ρ/ρw)g is the reduced gravity. Equation (3.4a) has been developed
previously by Huppert (1986), while (3.4b) follows on using (3.1) to substitute for
h in (3.4a). Using (3.4b) to evaluate q in the depth-integrated form of the continuity
equation, we obtain the governing nonlinear diffusion equation

Ht = w2

12ν
(g̃HHx)x, (3.6)

where g̃ acts as a piecewise-constant coefficient of diffusion.
At the source, we impose a condition of constant volumetric flux, namely,

q= q0 (x= 0), (3.7)

where q0 is a constant. At the grounding line, we impose conditions of continuity on
the thickness and the flux

H+ = H− = d, q+ = q− (x= xG), (3.8a,b)

respectively, where d ≡ ρwb/ρ is the flotation thickness. Condition (3.8a) is a dynamic
condition, which describes a balance between the depth-integrated longitudinal stresses
across the grounding line, which are hydrostatic to leading order. This dynamic
condition is considerably simpler than those that have been developed previously in
two-dimensional models (e.g. Schoof 2007; Robison et al. 2010), where the transition
towards an extensional flow at the grounding line implies that the leading-order
longitudinal stress is not hydrostatic. Note that a condition of identical form to (3.8a)
is also applied in those models, but there it acts instead as an initial condition on
solutions to the higher-order hyperbolic equation that governs the evolution of the
shelf.
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Finally, we assume that the frontal thickness of the current vanishes and that its
position evolves kinematically according to

H = 0, ẋN =−g′w2

12ν
Hx (x= xN), (3.9a,b)

where we use a dot to denote d/dt.
We make the system (3.6)–(3.9) dimensionless by defining

x≡L x̂≡
(

gd2w2

12νq0

)
x̂, t ≡T t̂ ≡

(
gd3w2

12νq2
0

)
t̂, H ≡ d Ĥ. (3.10a,b,c)

The time scale T in (3.10b) characterizes the time on which the sheet thickens by d,
and the length scale L in (3.10a) characterizes the distance propagated by the sheet in
that time. In terms of (3.10a,b,c) and with hats dropped, (3.6) becomes

Ht = (HHx)x (0< x< xG), (3.11)
Ht = ε (HHx)x (xG < x< xN), (3.12)

and conditions (3.7)–(3.9) become

q= 1 (x= 0), (3.13)

H+ = H− = 1, H+x = εH−x (x= xG), (3.14a,b)

H = 0, ẋN =−εHx (x= xN), (3.15a,b)

respectively. The system above depends on the single dimensionless parameter

ε ≡ g′

g
≡ 1ρ
ρw
, (3.16)

which is a dimensionless density difference. For ice floating on water, ε ≈ 0.1.
An illustrative solution to the system (3.11)–(3.15) in the case ε = 0.1 is shown at

a progression of times as dashed curves in figure 2, and the corresponding evolutions
of the grounding line xG(t) and frontal position xN(t) are shown as solid curves
in figure 4 and compared with experimental data in figure 5. Once the injection
is initiated, the entire current initially floats over the inviscid fluid, as illustrated
in figure 2(a). During this initial phase, the flow is described entirely by the shelf
equations (3.12), (3.13) and (3.15). By suitably scaling t by ε, these equations reduce
to those developed previously to describe a fully grounded current (Huppert 1986), for
which they are found to support a similarity solution of the form

H = (t/ε)1/3 f (x/xN), xN = a (t/ε)2/3 (t < T), (3.17a,b)

where a≈ 1.48 and f (x/xN) is a nearly linear function, as indicated in figure 2(a).
The prediction of self-similar flow (3.17a,b) breaks down once the lower surface of

the current makes contact with the base of the cell or, equivalently, once H = 1. On
setting x= 0 and H = 1 in (3.17a), we determine the time of grounding as

T ≡ f (0)−3 ε ≈ 0.46ε. (3.18)

Once t > T , a sheet forms in the region 0 < x < xG, with the grounding line xG

advancing from x = 0, as illustrated in figure 2(b). The flow then conforms to the
intrinsic scales in (3.10a,b,c), precluding any subsequent self-similarity. To determine
the evolution for t > T , we solve (3.11)–(3.15) numerically using a second-order,
partially implicit finite-difference scheme in which the domains of the sheet and shelf
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FIGURE 4. Evolution of the grounding line xG(t), frontal position xN(t) (both thin curves) and
shelf length L(t) ≡ xN − xG (thick curve) for ε = 0.1, with the asymptotes (3.20b) and (3.21)
shown as dotted lines.

are each mapped onto fixed grids. To avoid numerical instabilities associated with the
changing of the domain, we employed a two-step method in which the first step is
used to predict the rates of change of the boundaries, ẋG and ẋN .

As shown by figures 4 and 5, the grounding line xG advances abruptly from x = 0
with a finite velocity, and the rate at which the length of the shelf L(t) ≡ xN − xG

increases is suddenly reduced. Beyond a time of order ε, the sheet occupies a
significantly larger proportion of the current than the shelf (L� xG) and the grounding
line becomes controlled kinematically by the rate at which fluid is supplied towards
it, so ẋG ∼ −H−x (xG, t). With ε � 1, this regime of kinematic control is established
rapidly on times of order unity (t & 1� ε). The shelf is then effectively pushed
forwards by the sheet, transitioning towards a state of uniform velocity U(t) = −εHx,
independent of x. Integrating this expression subject to (3.13), (3.14a) and (3.15a), we
determine the asymptotic relationships

H ∼ xN − x

L
, L∼ ε

q(xG, t)
(t� ε), (3.19a,b)

which show that the thickness (3.19a) becomes linearly distributed and the length
(3.19b) becomes inversely proportional to the flux q(xG, t) delivered to the grounding
line.

At later times (t � 1), the interior thickness of the sheet becomes much greater
than the flotation thickness (H � 1), so the sheet can be expected to approach the
asymptotic similarity solution of a fully grounded current (Huppert 1986), namely,

H ∼ t1/3f (x/xG), xG ∼ at2/3 (t� 1), (3.20a,b)

which is the same as (3.17), but with ε = 1. Using (3.14) and (3.20) to evaluate
the leading-order flux delivered to the grounding line as q(xG, t) = −HH−x ∼[−f ′(1)/a]t−1/3, and then substituting this expression into (3.19b), we determine the
late-time shelf length as

L∼ 1.01εt1/3 (t� 1). (3.21)

This confirms that the shelf grows with time, but at a slower rate than the sheet
(3.20b), as illustrated by the dotted lines in figure 4.

If the shelf were removed at any stage, then the forces exerted at the grounding line
would change dramatically. Specifically, with the sudden removal of the buttressing
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FIGURE 5. (a) Scaled experimental data for the frontal position xN(t) and grounding-line
position xG(t) for the experiments having dimensionless density difference ε ≈ 0.1, as listed
in table 1. (b) The same data as in panel (a) to larger times. The theoretical predictions are
shown as solid curves.

force associated with pushing the ice shelf forwards at the grounding line, there would
be an abrupt increase in the divergence of flux across it, causing the grounding line
to retreat temporarily while the shelf is re-formed. Indeed, while our results predict
that the grounding line advances indefinitely, models that involve no buttressing from
the shelf (e.g. Weertman 1974) predict that the grounding line can retreat indefinitely
upstream over horizontal bedrock, implying an instability of the ice sheet. Ice-shelf
buttressing can therefore dictate the stability of a marine ice sheet.

4. Experimental comparison

Our experimental parameters spanned viscosities of ν ≈ 4.8 to 9.0 cm2 s−1, reduced
gravities of g′ ≈ 13 to 190 cm s−2, input fluxes per unit width of q0 ≈ 1.0
to 14.8 cm2 s−1 and depths of the inviscid fluid of b ≈ 3.0 to 17.5 cm (see table 1).
The evolutions of the grounding line xG(t) and frontal position xN(t), determined by
digitally detecting the outline of the glycerine in our recorded images, are plotted in
terms of our dimensionless variables (3.10) in figure 5. We find good agreement with
the theoretical prediction (solid curves).

The strength of agreement is seen to vary between our experiments. We expect that
the discrepancy is due to a slight difference between the source flow produced by
our experimental system and that which is imposed in our idealized theoretical model.
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Symbol ν (cm2 s−1) g′ (cm s−2) q0 (cm2 s−1) b (cm) ε S

5.4 13 1.1 12.0 0.013 0.17
6.2 13 5.0 17.5 0.013 0.62
5.5 13 6.3 17.5 0.013 0.69
6.5 13 5.6 12.0 0.013 1.05
6.6 13 5.3 7.0 0.013 1.74
5.7 30 1.2 7.0 0.03 0.15
7.4 30 6.2 17.5 0.03 0.40
8.2 30 3.9 7.0 0.03 0.69
6.4 50 1.0 7.0 0.05 0.08
6.6 50 5.4 12.0 0.05 0.27
6.8 50 4.9 7.0 0.05 0.43
7.1 50 14.8 12.0 0.05 0.79

� 5.8 100 1.2 7.5 0.10 0.04
• 8.0 100 3.0 17.5 0.10 0.06
◦ 8.4 100 3.0 17.5 0.10 0.07
× 7.3 100 3.8 12.0 0.10 0.10
4 8.3 100 5.8 17.5 0.10 0.12
+ 9.0 100 3.4 10.0 0.10 0.14
∗ 8.5 100 3.9 7.0 0.10 0.21

4.8 190 2.5 7.0 0.19 0.04
6.5 190 5.3 7.0 0.19 0.12
6.3 190 7.1 7.0 0.19 0.15

TABLE 1. Parameter values used in our experiments.

Specifically, while our model presupposes that the flow is everywhere horizontal and
that the source flow is distributed uniformly over the full depth of the current, the
experimental source differed by distributing the injection through a small gap of
the order of 1 cm at the top of the weir (see figure 2). In effect, this imposed
a point source at the top of the weir, leading to an approximately radial velocity
ur ∼ 4(q0/2πr), where r is the distance from the top of the weir. The flow
therefore underwent a transition from a radial flow driven by a pressure gradient
∂p/∂r =−(12µ/w2)ur, towards a buoyancy-driven regime of predominantly horizontal
flow. By forming a scaling between ∂p/∂r and the hydrostatic pressure gradient of
the buoyancy-induced flow, ∂p/∂z∼ ρg′, we determine the characteristic extent of this
transition region as r ∼ R ≡ (24/π)(νq0/g′w2), beyond which the influence of the
radial pressure gradient at the source can be expected to be unimportant. To measure
the significance of R across our experiments, we consider its ratio with b, namely,

S≡ R

b
≡ 24
π

νq0

g′w2b
, (4.1)

which is listed for each of our experiments in table 1. To examine the relationship
between the discrepancy and S, we have plotted as circles the time of grounding T as
a function of ε across all our experiments in figure 6, where the area of each circle is
proportional to S, and we have plotted the theoretical prediction (3.18) as a solid line.
We observe a general trend of smaller S leading to smaller discrepancy, providing
confirmation that the source flow is indeed the likely cause of the discrepancy.
Moreover, the experimental values of T generally overshoot the predictions, reflecting
the fact that the isolation of the source at the top of the weir naturally leads to less
of the fluid plunging below the weir, as illustrated in figure 2(a). The progression of
errors in the times to grounding illustrated by figure 6 can also be seen between the
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0.05

0.10

T

0.02 0.04 0.06 0.08 0.12 0.14 0.16 0.180.100 0.20

FIGURE 6. Dimensionless time T for the current to make contact with the base plotted as a
function of the dimensionless density difference ε for each of our experiments (circles). The area
of each circle is proportional to the dimensionless source strength S defined by (4.1), as given in
table 1. The theoretical prediction (3.18) is shown as a solid line.

sets of data in figure 5. Here, the absolute error between the predicted and observed
positions of the grounding line are seen to remain approximately constant at larger
times, eventually becoming small relative to the position of the grounding line.

5. Conclusions

We have explored the dynamics of confined marine ice sheets by developing a
model in which the dominant resistance to flow originates from the stresses associated
with driving the flow through the geometry. In the specific case of a uniform ocean
depth, we showed that, after a preliminary self-similar regime in which the current
floats entirely over the inviscid fluid, a grounding line forms and proceeds to advance
indefinitely. Data from a series of laboratory experiments showed good agreement with
our theoretical predictions.

Our results suggest a new mechanism for how the position of the grounding line can
be established in situations where a marine ice sheet is confined laterally. Specifically,
given the volumetric flux entering the ice shelf at the grounding line, we found that
the position of the grounding line is determined simply by the point at which the
shear-dominated regime of the ice shelf, as modelled by the theory we have developed,
predicts that the ice shelf intersects the bedrock. Remarkably, and in strong contrast to
two-dimensional marine ice sheets (cf. Weertman 1974; Schoof 2007), the position of
the grounding line is determined independently of the dynamics of the sheet upstream
of the grounding line, and depends only on geometry and the flux delivered into the
ice shelf.
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