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Multi-scale gradient expansion of the turbulent
stress tensor
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Turbulent stress is the fundamental quantity in the filtered equation for large-scale
velocity that reflects its interactions with small-scale velocity modes. We develop an
expansion of the turbulent stress tensor into a double series of contributions from
different scales of motion and different orders of space derivatives of velocity, a
multi-scale gradient (MSG) expansion. We compare our method with a somewhat
similar expansion that is based instead on defiltering. Our MSG expansion is proved
to converge to the exact stress, as a consequence of the locality of cascade both
in scale and in space. Simple estimates show, however, that the convergence rate
may be slow for the expansion in spatial gradients of very small scales. Therefore,
we develop an approximate expansion, based upon an assumption that similar or
‘coherent’ contributions to turbulent stress are obtained from disjoint subgrid regions.
This coherent-subregions approximation (CSA) yields an MSG expansion that can
be proved to converge rapidly at all scales and is hopefully still reasonably accurate.
As an important first application of our methods, we consider the cascades of energy
and helicity in three-dimensional turbulence. To first order in velocity gradients, the
stress has three contributions: a tensile stress along principal directions of strain, a
contractile stress along vortex lines, and a shear stress proportional to ‘skew-strain’.
While vortex stretching plays the major role in energy cascade, there is a second,
less scale-local contribution from ‘skew-strain’. For helicity cascade the situation is
reversed, and it arises scale-locally from ‘skew-strain’ while the stress along vortex
lines gives a secondary, less scale-local contribution. These conclusions are illustrated
with simple exact solutions of three-dimensional Euler equations. In the first, energy
cascade occurs by Taylor’s mechanism of stretching and spin-up of small-scale vortices
owing to large-scale strain. In the second, helicity cascade occurs by ‘twisting’ of small-
scale vortex filaments owing to a large-scale screw.

1. Introduction
It is recognized that turbulent cascades are essentially multi-scale phenomena, and

involve the coupling of modes at distinct scales. The property of locality implies that
these interactions are mainly between adjacent scales (Eyink 2005). Of course, this
locality is rather weak and modes at scales differing by an order of magnitude from
a fixed scale can make a substantial contribution to transfer across that scale. In
the filtering approach (Germano 1992), the nonlinear interaction between scales is
embodied in the turbulent stress tensor τ that appears in the equation for the velocity
u, low-pass filtered at length scale �. This stress is the contribution to spatial transport
of large-scale momentum generated by quadratic self-coupling of the subfilter scales.
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160 G. L. Eyink

Because of the locality property, the subfilter modes that contribute most to the
stress are those at scales only somewhat smaller than �. This raises the hope that a
constitutive relation may be constructed for the stress, if the adjacent small scales can
be somehow estimated from the resolved modes. Unfortunately, it is not hard to see
that eliminating the small scales produces a stress whose dependence upon the large-
scale velocity u is, in general, spatially non-local, history-dependent and stochastic
(Lindenberg, West & Kottalam 1987; Eyink 1996). Thus, an exact constitutive relation
for the turbulent stress is formally available, but it is quite unwieldy and not of direct
practical use.

In apparent contradiction to these remarks, several authors have developed a closed
constitutive formula for the turbulent stress (Yeo & Bedford 1988; Leonard 1997;
Carati, Winckelmans & Jeanmart 2001). The basic idea of their approach is to defilter
u to obtain the unfiltered velocity field u and then to use the latter to calculate
the stress. For many common filter kernels, it is possible to evaluate the resulting
formula as a concrete expansion in powers of the filtered velocity gradients. Although
nothing is proved about the convergence of this series, it seems, in principle, to provide
a solution to the ‘closure problem’ of turbulence. However, as we argue at length
below, this solution is illusory for several reasons. Most obviously, defiltering is not
defined for all filter kernels. Furthermore, the defiltering operator, even when defined,
is unbounded on the natural function spaces for the velocity field (e.g. finite-energy
functions). Thus, the convergence cannot hold in general.

Nevertheless, it is an extremely attractive idea to develop an expansion for the stress
in powers of the filtered velocity gradients. Similar expansions have proved useful in
many areas of physics, e.g. for one-particle distribution functions in the solution of
the Boltzmann equation (Enskog 1917; Chapman & Cowling 1939) or for Ginzburg–
Landau free energies of superconductors (Gorkov 1959; Tewordt 1965). We shall here
develop a convergent gradient expansion for the turbulent stress. It is somewhat more
intricate than the expansion developed in Yeo & Bedford (1988), Leonard (1997) and
Carati et al. (2001), since it is expressed by a summation simultaneously over the
order of space gradients and over an integer index indicating the scale of motion
involved. Thus, it is a multi-scale gradient expansion. This series expansion will be
proved below to converge, as a consequence of the locality of the turbulent cascade
both in space and in scale. Of course, the rate of convergence may be slow, especially
for the Taylor expansion in space of small scales, so that very high-order gradients
could be required to obtain an accurate result. We diagnose the reasons for potentially
poor convergence, and, on that basis, develop also an approximate expansion which
will converge rapidly at all scales. This approximation may give reasonable accuracy
with just a few low-order gradients.

Because it is multi-scale, the expansion considered here does not by itself give
a closed ‘constitutive’ relation for the stress. However, it may be a useful point of
departure in developing a closure for the stress, if supplemented with a scheme to
estimate subfilter velocity gradients in terms of filtered velocity gradients. This is
in line with some large-eddy simulation (LES) approaches which construct subgrid-
stress models by creating ‘surrogate’ subgrid modes. See Domaradzki & Saiki (1997),
Misra & Pullin (1997), Scotti & Meneveau (1999), Burton et al. (2002), and, for an
extensive review, Domaradzki & Adams (2002). Our emphasis in this paper is on
fundamental physics rather than on closure models, but we hope to pursue this in
future work. Even without a closure prescription, the formula we develop for the
stress makes many testable predictions. Concrete conclusions will be deduced here for
the joint cascade of energy and helicity in three space dimensions and, in a following
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Multi-scale gradient expansion 161

paper Eyink (2006), for the inverse energy cascade predicted in two dimensions by
Kraichnan (1967).

The contents of this paper are as follows. In § 2, we briefly review the filtering
approach to turbulence. In § 3, we develop our multi-scale gradient (MSG) expansion
for the turbulent stress. In § 4, we develop a more rapidly convergent but less
systematic approximation, which we call the coherent-subregions approximate multi-
scale gradient (CSA-MSG) expansion. In § 5, we present the application of our method
to three-dimensional energy and helicity cascades. Technical proofs and calculations
are given in four Appendices.

2. Filtering approach and turbulent stress
We first give a general discussion of the mechanics of energy transfer between

scales in a turbulent flow. Following Germano (1992), we resolve turbulent fields
simultaneously in space and in scale using a simple filtering approach. We consider
initially an arbitrary dimension d of space. Thus, we define a low-pass filtered velocity

u(x) =

∫
dd r G�(r)u(x + r), (2.1)

where G is a smooth mollifier or filtering function, non-negative, spatially well-
localized, with unit integral

∫
dd r G(r) = 1. The function G� is rescaled with �, as

G�(r) = �−dG(r/�). Likewise, we can define a complementary high-pass filter by

u′(x) = u(x) − u(x). (2.2)

If the above filtering operation is applied to the incompressible Navier–Stokes
equation

∂t u + (u · ∇)u = −∇p + ν�u, (2.3)

with ∇ · u = 0 determining the pressure p, then we obtain

∂t u + (u · ∇)u = −∇ · τ − ∇p + ν�u, (2.4)

where

τ = uu − u u (2.5)

is the stress tensor from the scales <� removed by the filtering.
The equation for energy balance in the large scales is (Piomelli et al. 1991; Eyink

1995):

∂te + ∇ · J = −Π − ν|∇u|2, (2.6)

with large-scale energy density e = (1/2)u2, spatial energy transport vector in the large
scales J = (e + p)u + u · τ − ν∇e, and scale-to-scale energy flux

Π = −∇u : τ . (2.7)

The latter quantity is the rate of work done by the large-scale velocity gradient against
the small-scale stress. Of course, it may be rewritten in various equivalent forms as

Π = −∇u : τ
◦
= −S : τ = −S : τ

◦
. (2.8)

The first follows from incompressibility of the velocity field, where

τ
◦
= τ − (Tr τ )I/d (2.9)
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162 G. L. Eyink

is the so-called deviatoric stress (with I the d × d identity matrix). The second follows
from symmetry of the stress tensor, where

Sij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
(2.10)

is the large-scale strain rate. The third follows from both properties combined.
The formula

τ =

∫
dd r G�(r)δu(r)δu(r) −

∫
dd r G�(r)δu(r) ·

∫
dd r G�(r)δu(r) (2.11)

represents the stress as a tensor product of velocity increments δu(r; x) = u(x+r)−u(x)
averaged over the separation vector r with respect to filter function G�(r) at length-
scale �. It is easily verified by multiplying out the increments and integrating
(Constantin, E & Titi 1994; Eyink 1995). This expression implies, as a direct
consequence, the matrix positivity of the stress (Vreman, Geurts & Kuerten 1994). It
was also the crucial point of departure in our discussion of scale locality properties
in Eyink (2005). This same formula plays a central role in our development of the
multi-scale gradient expansion in this work. A decomposition of (2.11) that we find
useful is

τ = � − u′u′, (2.12)

where

�(x) =

∫
dd r G�(r)δu(r; x)δu(r; x), (2.13)

and

u′(x) = −
∫

dd r G�(r)δu(r; x). (2.14)

It is easy to check that u′(x) in (2.14) coincides with the high-pass filtered field in
(2.2), so that −u′u′ represents a ‘fluctuation’ contribution to the subscale stress, while
� represents a ‘systematic’ contribution from the spatially averaged positive-definite
tensor product of velocity increments.

3. Convergent expansion in scale and space
In this section, we develop our convergent expansion for the turbulent stress. The

key to this convergence is the locality of the stress both in scale and in space.
Therefore, we discuss in turn these two properties, develop from them the resulting
expansions, and establish their convergence properties.

3.1. Locality in scale

Scale-locality is the property that only modes from length scales near the filter
scale � contribute predominantly to the stress. We have given a rigorous proof
of this property, assuming only the inertial-range scaling laws that are observed
in experiment and simulations (Eyink 2005) and we refer to that work for a more
complete discussion. Here, we merely recall that locality properties were demonstrated
there by introducing a second ‘test filter’ Γ and an additional small length scale δ < �.

A low-pass filtered velocity at scale δ was then defined by

u>δ(x) =

∫
dd r Γδ(r)u(x + r), (3.1)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

05
00

78
95

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112005007895
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and likewise a stress contribution τ >δ, arising only from modes at length scales >δ,
by

τ>δ = u>δu>δ − u>δ u>δ. (3.2)

The property of ultraviolet (UV) locality of the stress is that

lim
δ→0

τ>δ = τ . (3.3)

This limit means that modes at extreme subfilter scales (δ � �) make little contribution
to the stress at scale �. The result (3.3) was proved in Eyink (2005), with convergence in
a strong Lp-norm sense for any p � 1, under suitable spatial regularity assumptions on
the velocity field. (In addition, some very mild moment-conditions must be satisfied
by the filter kernels G and Γ ; see Eyink 2005.) A sufficient condition is that the
scaling exponent ζ2p of the (absolute) (2p)th-order moment of the velocity-increment
δu should satisfy the bound ζ2p > 0. There is also a similar property of infrared (IR)
locality, which requires an oppposite condition ζ2p < 2p (see Eyink 2005). However,
we need not make use of IR locality in the present context.

3.1.1. Multi-scale decomposition

We can now reformulate the UV locality property as a multi-scale expansion of
the stress tensor. First, we consider a corresponding multi-scale decomposition of the
velocity field itself. Let us chose some parameter λ< 1, e.g. λ=2 will be our standard
choice. Then, consider a geometric sequence of lengths �n = λ−n�, for n= 0, 1, 2, . . . .

with �0 = � and �n ↘ 0 as n → ∞. For each of these we can define the corresponding
low-pass filtered velocity field u(n) = u <�n , or

u(n)(x) =

∫
dd r Γ�n

(r)u(x + r). (3.4)

This field includes modes at all length-scales down to �n. We can also define a
contribution to the velocity u[n] that arises, roughly speaking, from the length-scales
between �n−1 and �n, by

u[n] = u(n) − u(n−1), n � 1. (3.5)

It is convenient to set u[0] = u(0). In that case, u(n) =
∑n

k = 0 u[k] for n � 0 and, taking
the limit as n → ∞, we obtain:

u =

∞∑
n=0

u[n]. (3.6)

This is the multi-scale decomposition of the velocity field. It is closely related to
other similar scale decompositions, such as multi-resolution expansions in wavelet
bases, Paley–Littlewood decompositions, etc. Kraichnan (1974) used a multi-scale
decomposition defined by banded Fourier series in order to discuss locality properties
of the turbulent cascade. The series (3.6) will converge in an Lp norm, if, for example,
the pth-order scaling exponent ζp of the absolute velocity increment |δu(r)| is positive.
In fact, in that case, the series (3.6) has at least a geometric rate of convergence.

The scale locality proved in Eyink (2005) can be restated in the present terms by
defining the stress τ (n) = τ >�n, or

τ (n) = u(n)u(n) − u(n) u(n), (3.7)

which includes the contributions from all length scales > �n. If we substitute
the expansion u(n) =

∑n

k =0 u[k] and take the limit n → ∞, then we obtain a
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164 G. L. Eyink

doubly-infinite series

τ =

∞∑
n=0

∞∑
n′=0

τ [n,n′], (3.8)

with τ [n,n′] = u[n]u[n′] − u[n] u[n′]. This is the desired multi-scale expansion of the stress
tensor. The term τ [n,n′] represents a stress contribution from one velocity mode at
length scale �n and another at length scale �n′ . The series (3.8) converges absolutely in
the Lp-norm (and, in fact, at a geometric rate) under the same condition as mentioned
in the UV locality statement, namely, the positivity of the scaling exponent of order
2p, ζ2p > 0. This is a direct consequence of the concrete estimates in Eyink (2005).

A remark should be made concerning the limit n → ∞ in the expansions (3.6)
and (3.8). For a finite (but arbitrarily large) Reynolds number, this limit need not be
taken, practically speaking, because the stress contribution from the scales below the
dissipative microscale is negligibly small. Instead, the series can be truncated at some
n= nd corresponding to the length scale of the viscous cutoff. However, for precisely
this reason, there is also no difficulty in taking the limit n → ∞ at a finite Reynolds
number. In fact, the convergence rate of the expansion for n in the dissipation range
of scales is greater than in the inertial range. As shown in Eyink (2005), the UV-
locality of the stress depends upon the condition that the Hölder exponent of the
velocity satisfies α > 0, and, the larger α is, the better this property holds. Since the
velocity field is smooth in the dissipation range (α =1), the UV-locality property is
correspondingly stronger there than in the inertial range where α < 1.

3.1.2. Leading terms and strong UV-locality

Truncation of the series (3.8) at its leading term corresponds to making a strong
UV-locality assumption. In that case, the exact stress is approximated as

τ ≈ τ [0,0] = u[0]u[0] − u[0] u[0]. (3.9)

This approximation neglects all interactions with modes at subfilter lengths <�0 = �.

However, all interactions are retained between the modes at length scales above the
filter scale (both scale-local and IR scale-non-local ones). This approximation achieves
closure for the stress in terms of u[0], essentially what is called the similarity model
or Bardina model in the large-eddy simulation (LES) literature (Meneveau & Katz
2000). To simplify our discussion of this leading-order approximation, we may use a
special notation for the low-pass filter of the velocity at scale � with respect to the
test kernel Γ , namely, ũ = Γ� · u. Thus, ũ and u[0] are different notations for the same
quantity. We introduce also a simplified notation for the complementary high-pass
filter, u′′ = u − ũ.

The approximation (3.9) is rather extreme and the results in Eyink (2005) show
that subfilter scale modes can give a non-negligible contribution to the stress.
Without repeating all the details from that work, we would like to consider briefly
the magnitude of the error in making the strong UV-locality assumption. This
approximation corresponds to replacing the exact velocity increment δu(r) in the
formula (2.11) for the stress by δu(0)(r) = δũ(r). Let us assume that the velocity field has
a Hölder exponent α, that is, δu(r) = O(rα) with 0 <α < 1. (This notation means, as
usual, that there exists a constant A so that |δu(r)| � Arα, or, in a more dimensionally
correct form, |δu(r)| � CU (r/L)α, with L the integral length, U the r.m.s. velocity,
and C a dimensionless constant.) Then, it is not hard to prove that u′′(x) = O(�α);
see Eyink (2005) for details. An error of this magnitude is made for all r in replacing
δu(r) by δũ(r). However, δu(r) = δũ(r) + δu′′(r) = δũ(r)[1 + O((�/r)α)] ≈ δũ(r) for
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r 	 �. Therefore, the substitution of δũ(r) for δu(r) will be relatively accurate
for increments over large separations r 	 �. Of course, this substitution will not
be accurate in the opposite case of small separations, because ũ is smooth and
thus δũ(r) ≈ O(r) � δu(r) ≈ O(rα) when r � �. Thus, a relatively large underestimate
results when the strong UV-locality assumption is applied to velocity-increments at
small separations.

Similar results hold for higher-order truncations, for example, for τ (n) defined by
(3.7) with n � 1, or equivalently,

τ ≈ τ (n) =

n∑
k=0

n∑
k′=0

τ [k,k′]. (3.10)

This approximation assumes also UV-locality, but more weakly. It corresponds to
replacing the exact velocity increment δu(r) in the formula (2.11) for the stress by
δu(n)(r), with an error O(�α

n). This substitution will be relatively accurate when r � �n,

but not for r � �n. Here, let us note that (3.10) does not yield a closed formula in
quite the same sense as does (3.9), since it involves all of the components u[k] for
k = 0, . . . , n. If we assume that G =Γ, then u[0] = ũ = u. However, even if G = Γ, we
cannot in general obtain the higher terms u[1], . . . , u[n] uniquely from knowledge of
u.

3.2. Locality in space

The turbulent stress is a priori non-local in space. The formula (2.11) expresses the
stress as an average of velocity increments over separation vectors, which involves
points, in principle, arbitrarily far away from the considered point. Nevertheless, the
stress has some spatial locality properties, by virtue of the UV scale-locality discussed
in the previous section. The latter property allows us to replace u by u(n), with an
error O(�α

n) that becomes arbitrarily small for large enough n. The origin of the
localness in space is then the smoothness of the filtered velocity field u(n), which will
be even analytic if the filter kernel Γ has a compactly supported Fourier transform.
This smoothness allows us to represent filtered increments, such as δu(n)(r), by a
convergent Taylor expansion in the separation vector r . The result is a formula that
involves local gradients of the filtered velocities, i.e. velocity gradients at the point
where the stress is to be evaluated.

3.2.1. Gradient expansion

Here we develop the gradient expansion for the stress, once contributions have been
omitted from arbitrarily small scales. Let us first note the corresponding expansion
of the filtered velocity u(n) itself. This field is smooth and thus the Taylor polynomial
of degree m,

δu(n,m)(r; x) =

m∑
p=1

∑
p1+···+pd=p

r
p1

1 · · · rpd

d

p1! · · · pd!

(
∂

p1

1 · · · ∂pd

d u(n)
)
(x) =

m∑
p=1

1

p!
(r · ∇)pu(n)(x),

(3.11)

converges to the increment δu(n)(r; x) as m → ∞. If the Taylor polynomial δu(n,m) is
substituted into (2.11), then it yields

τ (n,m) =

∫
dd r G�(r)δu(n,m)(r)δu(n,m)(r) −

∫
dd r G�(r)δu(n,m)(r)

∫
dd r G�(r)δu(n,m)(r),

(3.12)
which is our basic approximation to the stress.
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An explicit expression is simplest to derive if we assume that the filter kernel G

is spherically symmetric, as we shall do hereinafter. In that case, averages over the
directions of the increment vector r can be evaluated by a standard formula for
averages of a product of an even number of vector components over the unit sphere
in d space dimensions. The result, which is easily proved by induction, is that∫

Sd−1


 (dn)ni1ni2 · · · ni2p−1
ni2p

=
1

d(d + 2) · · · [d + 2(p − 1)]

∑
{i ′

1,i
′′
1 },...,{i ′

p,i ′′
p}

δi ′
1,i

′′
1

· · · δi ′
p,i ′′

p
.

(3.13)

where summation is over all of the (2p − 1)!! pairings {i ′
1, i

′′
1 }, . . . , {i ′

p, i ′′
p} of the 2p

indices i1, i2, . . . , i2p−1, i2p. An average of a product of an odd number of unit-vector
components is equal to zero. Particular cases are for p = 1:∫

Sd−1


 (dn)ninj = (1/d)δij , (3.14)

and p = 2: ∫
Sd−1


 (dn)ninjnknl =
1

d(d + 2)
[δij δkl + δikδjl + δilδjk]. (3.15)

We thus obtain a stress approximation for m = 1:

τ
(n,1)
ij =

C2

d
�2 ∂u

(n)
i

∂xk

∂u
(n)
j

∂xk

, (3.16)

where C2 =
∫

dd r G(r) |r |2 is the second-moment of the spherically symmetric filter
function G. Likewise, for m =2:

τ
(n,2)
ij =

C2

d
�2 ∂u

(n)
i

∂xk

∂u
(n)
j

∂xk

+
C4

2d(d + 2)
�4 ∂2u

(n)
i

∂xk∂xl

∂2u
(n)
j

∂xk∂xl

+
dC4 − (d + 2)C2

2

4d2(d + 2)
�4�u

(n)
i �u

(n)
j , (3.17)

where C2 is as before and C4 =
∫

dd r G(r) |r |4 is the fourth-moment of the spherically
symmetric filter function G. In these expressions, we may further substitute the
multi-scale decomposition u(n) =

∑n

k = 0 u[k] to obtain expansions such as for m =1

τ
(n,1)
ij =

C2

d
�2

n∑
l=0

n∑
l′=0

∂u
[l]
i

∂xk

∂u
[l′]
j

∂xk

, (3.18)

and similarly for τ (n,m) with m > 1. Thus, we obtain a multi-scale gradient (MSG)
expansion of the stress simultaneously in scale and in space.

In Appendix A, we prove that τ (n,m) converges to τ (n) in the limit as m → ∞. To
keep the proof simple, we establish convergence in the spatial L1-norm, requiring
just finite energy for the velocity field u. We assume also for the filter kernels that

G decays faster than exponentially in space and that the Fourier transform Γ̂ has
compact support. These specific assumptions can doubtless be modified in various
ways, but they simplify the details of the proof. From our discussion of scale-locality
in the preceding section, we recall that τ (n) also converges to τ in the L1-norm as
n → ∞, if the scaling exponent of the second-order structure function satisfies ζ2 > 0.
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Thus, under these various assumptions, τ (n,m) converges in the L1-norm to the exact
stress τ in the double limit taking first m → ∞ and then n → ∞.

It is rare to be able to show that a systematic turbulence approximation scheme
is convergent. For example, Kraichnan (1970) has discussed previous attempts to
construct expansion schemes based upon Reynolds number, where convergence has
proved elusive. A case in point is the gradient expansion for the subscale stress
proposed in Yeo & Bedford (1988), Leonard (1997) and Carati et al. (2001), based
upon defiltering. As we discuss in Appendix B, there are many fluid velocity fields with
finite energy – even infinitely smooth ones – for which the expansion (B 4) does not
converge. The problem becomes more severe the more rapidly the Fourier transform

of the filter kernel, Ĝ(k), decays at large k. Our present study was motivated, in
part, by the desire to overcome this difficulty. As we have shown (Appendix A and
Eyink 2005), the multi-scale gradient expansion that we have elaborated does indeed
converge, under realistic and rather mild conditions on the turbulent velocity field
and with very modest regularity assumptions on the filter kernels. However, a price
has been paid for this achievement. Unlike the expansion in Yeo & Bedford (1988),
Leonard (1997) and Carati et al. (2001), our multi-scale gradient expansion is not
closed in terms of the filtered field ũ = u[0], but involves also the subscale fields
u[1], u[2], . . . . Thus, closure of our expansion requires an algorithm for estimating
these unknown fields.

3.2.2. Leading terms and strong space-locality

Truncation of the gradient expansion τ (n,m) at small m values – e.g. approximating
τ (n) ≈ τ (n,1) to first-order in gradients, as in (3.18) – corresponds to making a strong
space-locality assumption. If the expansion is truncated also at small values of n, then
both UV scale-locality and space-locality are assumed in a strong sense; for example
setting n= 0, m =1 gives

τ
(0,1)
ij =

C2

d
�2 ∂ũi

∂xk

∂ũj

∂xk

, (3.19)

which is the standard first-order nonlinear model for the stress (Leonard 1974, 1997;
Borue & Orszag 1998; Meneveau & Katz 2000). This observation gives some insight
into the physical approximations underlying that model.

We would like to make an estimate of the error involved in truncating the gradient
expansion to a given order m of space gradients. As in our discussion of scale-locality,
we shall assume that the velocity field is Hölder continuous, so that δu(r) = O(rα) for
some 0 <α < 1. Then, it is not hard to show that the pth-order term in the Taylor
expansion (3.11) of δu(n,m)(r) scales as (r · ∇)pu(n) = O(�α

n(r/�n)
p) for each p � 1 (e.g.

see Eyink 2005). Compared with the exact increment δu(r), we see that each term is
an underestimate for r � �n and an overestimate for r � �n, and the error is greater
for larger p. Truncated to a given small order m, the Taylor approximation has the
correct order of magnitude only for r ≈ �n. If we sum over all values of p, to infinite
order in m, then we recover the approximation δu(n)(r), which we have seen is an
underestimate for r � �n, but relatively accurate for r � �n.

Although this gradient expansion converges, there is no small parameter involved
(except for r � �n). The series (3.11) converges only because of the inverse factorials
1/p! that make coefficients of higher-order terms quite small. Thus, we can expect that
very large values of m will be required to make δu(n,m)(r) ≈ δu(n)(r) ≈ δu(r) for r 	 �n.

Because the filter G�(r) is assumed to decay very rapidly, increments with r 	 � give
little contribution to the stress, and thus their poor approximation is not an issue.
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168 G. L. Eyink

However, increments for separations �n � r � � will give a significant contribution. In
this interval, the effective expansion parameter, r/�n, takes values in the range from
1 for r = �n up to �/�n = λn for r = �. For small n, say n= 0 or 1, the expansion
parameter is always O(1) in the relevant interval of r, and the series converges quite
rapidly. However, as n increases, the rate of convergence in m degrades rather quickly.
A crude estimate of the size of m required for an accurate approximation is m 	 λn,

in order for the terms O(λnp/p!) to be small for p ≈ m. This estimate is probably
too pessimistic, since it ignores cancellations that will occur in the average over r
(cf. (3.13)). However, we can be sure that the m required to obtain τ (n,m) ≈ τ (n) will
increase with increasing n.

4. The coherent-subregions approximation
We have proved that limm→∞ τ (n,m) = τ (n), but also argued that larger orders of space

gradients m are required to achieve this limit for increasing n. This stands to reason,
because increasing the scale index n corresponds to adding finer small-scale structure
to the velocity field. As the velocity field becomes rougher, higher-order terms in the
spatial Taylor expansion become necessary in order to represent velocity increments
accurately across fixed separations. On the other hand, even a first-order expansion
of increments, δu(n)(r) ≈ (r · ∇)u(n), is correct on order of magnitude for separations
r ≈ �n. Therefore, we should be able to obtain a reasonably accurate approximation
by low-order gradients, if we use such expansions only for this range of separations
where they are order-of-magnitude correct. In the present section, we shall use this
strategy in order to construct an approximate multi-scale representation τ

(n,m)
∗ for

the turbulent stress. Although this modified expansion is no longer convergent to
the exact stress, it may be more practically useful than the systematic approximation
τ (n,m), because it should be more accurate for smaller orders m.

Although it turns out not to be the most serviceable approach, a natural first idea
is to represent increments r of length r 	 �n as the sum of end-to-end increments
across separations of length �n and then to Taylor expand each of the individual
increments. Thus, defining the unit vector r̂ = r/r, we could write

δu(n)(r; x) ≈
K∑

k=0

δu(n)(�n r̂; x + k�n r̂) ≈ �n

K∑
k=0

(r̂ · ∇)u(n)(x + k�n r̂), (4.1)

where K is the greatest integer less than or equal to r/�n. The formula (4.1) is likely
to be fairly accurate, since the expansion parameter is O(1) for each term in the sum.
However, this expression involves velocity gradients evaluated at points x + k�n r̂ on
spheres of radius k�n about x for k = 0, 1, . . . , λn and spatially local expressions do not
result for integrals over r when (4.1) is substituted into formula (2.11) for the stress.
In order to obtain a simple local expression, we should instead Taylor-expand always
about point x. Thus, this approach does not lead to the desired result. However, at
least it shows that an accurate representation of the stress is possible entirely in terms
of filtered velocity gradients of low-order, although the representation is spatially
non-local.

To obtain a local representation, we use Taylor expansions around x, but only for
displacements where they are both rapidly convergent and accurate. Let us decompose
the integrals in (2.11) into contributions from ‘shells’

Sk = {r : �k−1 > |r | > �k} (k � 1). (4.2)
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�1

�2

�3

�2 �1 �0

Figure 1. Shell decomposition of integration region. The figure illustrates the integration region
over increment vectors in the stress formula (2.11). Most of the contribution comes from the ball of
radius �0 = � around the point x. This ball is decomposed into ‘shells’ S1, S2, S3, . . . . The Taylor
expansion of the k-scale contribution to the stress is accurate and rapidly convergent in the shell
Sk. However, these shells have a smaller portion of the total volume as k increases.

See figure 1. Let us also define an ‘outer shell’

S0 = {r : |r | > �0} (4.3)

and ‘balls’

Bk = {r : |r | < �k−1} (k � 1), (4.4)

formed from unions of the ‘shells’ Sk′ with k′ � k. From our earlier discussion we
expect that, for r ∈ Sk,

δu(r) ≈ δu[k](r) ≈ δu[k],(m)(r), (4.5)

for any Taylor polynomial of degree m, since the expansion parameter is here r/�k ≈ 1.

Thus, we can obtain a rapidly convergent Taylor series expansion if we replace δu(r)
by δu[k](r) for r ∈ Sk. However, this replacement implies that modes at length scales
� �k are now represented only for the increments with r ∈ Bk . Furthermore, this
ball Bk of radius �k−1 occupies only a fraction ∼ λ−kd of the total volume of the
region B1 which effectively contributes to the stress. Therefore, such a replacement
omits important subscale contributions to the stress. To compensate for this, we
can use the calculated stress contribution from the shell Sk to estimate crudely
the missing part, by multiplying the calculated contribution with an enhancement
factor of Nk = λkd . This factor represents the number of subregions of volume ∼ �d

k

inside the ball B1 of radius �. Multiplying each k-scale contribution in the shell Sk

by the factor Nk amounts to the assumption that each of the subregions gives a
similar or ‘coherent’ contribution to the stress. We shall therefore call this heuristic
estimate the coherent-subregions approximation (CSA). Let us proceed to develop it
more systematically.

It is useful here to employ (2.12) which decomposes the stress into a ‘systematic’
part � and a ‘fluctuation’ part −u′u′. These can be represented further by multiscale
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decompositions

� =

∞∑
k=0

∞∑
k′=0

�[k,k′], u′ =

∞∑
k=0

u′ [k], (4.6)

analogous to (3.6), (3.8). Thus, �[k,k′] represents the contribution from one velocity
mode at length scale �k and another at length scale �k′ . The multiscale decomposition
of � can be re-organized as

� =

∞∑
k=0

�[k], (4.7)

where

�[k] = �[k,k] +

∞∑
l>k

{
�[k,l] + �[l,k]

}
. (4.8)

The term �[k] represents the contribution arising from a pair of modes, at least one
at length scale �k and the second at an equal or smaller length scale. On the basis of
these decompositions we can develop the desired approximation.

First, let us consider the ‘systematic’ part �. The contributions �[k,k′] scale as
O(�α

k �
α
k′), when the velocity field has Hölder exponent α. It follows that the dominant

term in �[k] is the first one on the right-hand side of (4.8), or �[k,k]. It is possible that
the remaining terms sum to a contribution of similar order. However, the first term,
�[k,k], is the average over space of positive-definite matrices, whereas the remaining
terms have no definite sign and cancellations can be expected in the summation in
(4.8). Thus, we expect that

�[k] ≈ �[k,k] =

∫
dd r G�(r)δu[k](r)δu[k](r). (4.9)

This motivates us to define the CSA value of �[k], mth-order in gradients, as

�[k],(m)
∗ = Nk

∫
Sk

dd r G�(r)δu[k],(m)(r)δu[k],(m)(r). (4.10)

As discussed earlier, the factor Nk on the right-hand side of (4.10) corresponds
to making the assumption that each subregion of B1 gives a contribution to the
integral (4.9) similar to that of the kth ‘shell’ Sk. This is reasonable, since the inte-
grand is positive-definite and thus there will be little cancellation between the
contributions from the different subregions, which can be expected to add together
coherently. Using then the replacement (4.5) in the integral over Sk gives (4.10). As
an additional argument in favour of the enhancement by Nk , let us note that �

[k],(m)
∗

defined in (4.10) with this factor gives an O(�2α
k ) contribution to the stress, of the

correct order of magnitude. See Appendix C.
Similar considerations apply also to the ‘fluctuation’ velocity u′. The kth-scale

contribution u′ [k] in (4.6) is written exactly as

u′ [k] = −
∫

dd r G�(r)δu[k](r). (4.11)

We then propose the CSA value of u′ [k], mth-order in gradients, as

u′ [k],(m)
∗ = −N

1/2
k

∫
Sk

dd r G�(r)δu[k],(m)(r). (4.12)
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Note the change in the enhancement factor to N
1/2
k . The integrand in (4.11) has no

definite sign and the Nk different subregions should not be expected to contribute
coherently. In a work on analytical closures, Kraichnan (1971) made a similar
argument about the shear contribution from small scales, writing that ‘random
cancellation effects over the domain 1/k in linear dimension should reduce the
effective shear of the high wavenumbers according to the

√
N law.’ Analogous

reasoning motivates us to multiply the right-hand side of (4.12) by N
1/2
k .

This set of approximations altogether yields the CSA-MSG expansion for the stress,
nth-order in scale index and mth-order in gradients:

τ (n,m)
∗ =

n∑
k=0

�[k],(m)
∗ −

n∑
k,k′=0

u′ [k],(m)
∗ u′ [k′],(m)

∗ , (4.13)

Using the results for m =2 as illustration, we can write

�[k],(2)
∗ =

C
[k]

2

d
�2

k

∂u[k]

∂xl

∂u[k]

∂xl

+
C

[k]

4

2d(d + 2)
�4

k

∂2u[k]

∂xl∂xm

∂2u[k]

∂xl∂xm

+
C

[k]

4

4d(d + 2)
�4

k�u[k]�u[k] (4.14)

and

u′ [k],(2)
∗ =

1

2d
√

Nk

C
[k]

2 �2
k �u[k]. (4.15)

As in (3.16), (3.17), we have used (3.13) in order to average over the directions of
separation vectors r in (4.10), (4.12). Note that (4.14) has the same form as (3.17)

for τ (k,2) except that the coefficients are different. The constants C
[k]

p for p = 2, 4, . . .

are the partial pth moments of the kernel G over the kth ‘shell’ Sk , multiplied by
the factor λ(d+p)k. Expressions are given for these constants in Appendix C, with G a
Gaussian filter.

Our estimates are rough and are intended to be accurate qualitatively, but
not more than order-of-magnitude accurate quantitatively. There is clearly ample
room to improve the accuracy of the scheme, and many variants and refinements
might be fruitfully considered. The basic approximation in the ‘coherent-subregions’
assumption, i.e. estimating missing small-scale contributions to the stress from their
effects in subvolumes, will tend to enhance the level of fluctuations. However, the CSA
stress τ

(n,m)
∗ in (4.13) is still likely to be superior to the systematic MSG expansion

τ (n,m) when n � 1 and m is relatively small. The approximate stress τ
(n,m)
∗ converges

rapidly in the limit m → ∞, to some value τ
(n)
∗ which is, hopefully, a reasonable

approximation of τ (n), requiring only moderately large values of m uniformly in n.
It achieves our goal of providing a local expression for the stress which involves
only filtered velocity gradients of low order. However, like τ (n,m), it is not a proper
constitutive relation, because it is not closed in terms of ũ = u[0]. Of course, it already
makes testable predictions for the stress, if the smaller-scale velocity fields u[k] for k � 1
are determined from experiment or DNS and then substituted into the model. We
report results of such a study elsewhere. Nevertheless, an a priori closure procedure
would be useful for modelling purposes. This could be accomplished by a stochastic
mapping which estimated the velocity gradients ∇u[k], ∇∇u[k], etc. for k � 1 from the
corresponding gradients for k =0. We hope to make this the subject of a future work.
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5. The multi-scale gradient expansion in three dimensions
As an application of the general scheme, we shall consider here the turbulent

cascades of energy and helicity in three space dimensions. In Eyink (2006), we
discuss the MSG expansion of the stress for the inverse energy cascade in two space
dimensions. Many other applications can be considered, such as turbulent vorticity
transport in the two-dimensional enstrophy cascade (Eyink 2001; Chen et al. 2003b),
or the turbulent stress tensor and electromotive force in three-dimensional
magnetohydrodynamic cascades. The technical aspects of the expansion are similar
in all of these cases. As we shall see in this section, our method yields a number of
interesting predictions for the turbulent stress in three dimensions that may be tested
either numerically or experimentally.

5.1. The expansion of the turbulent stress

We shall confine ourselves here to considering just the first-order (m = 1) term in
the gradient expansion, or τ (n,1) in (3.16). We have already noted that this first-order
approximation is unlikely to be very accurate for larger n. On the other hand, because
of the scale-locality of the energy cascade, only relatively small values of n need be
considered and thus a first-order approximation may be adequate. Furthermore,
except for the coefficient, τ (n,1) has the same form as the term �

[n],(m)
∗ in (4.13) for

m =1:

�[n],(1)
∗ =

C
[n]

2

d
�2

n

∂u[n]

∂xl

∂u[n]

∂xl

, (5.1)

and, in addition, the ‘fluctuation’ term in (4.13) vanishes for m =1. Thus, the first-order
CSA expansion has the closely similar form

τ (n,1)
∗ =

1

d

n∑
k=0

C
[k]

2 �2
k

∂u[k]

∂xl

∂u[k]

∂xl

. (5.2)

We expect that τ
(n,1)
∗ in (5.2) for large n will be reasonably accurate in the three-

dimensional inertial range. For example, the estimates in Appendix C show that
the kth term in (5.2) scales ∼ O(�2α

k ) when the velocity field has Hölder exponent
0 <α < 1. This is the correct order of magnitude for the contribution to the stress from
scale k and illustrates the UV locality of the stress. The series in (5.2) then converges at
a geometric rate in the limit n → ∞ and has the correct overall magnitude ∼ O(�2α).
By contrast, τ (n,1) in (3.16) does not have the correct order of magnitude as n → ∞,
but is too large by a factor of (�/�n)

2. This is due to an overestimate in τ (n,1) of
velocity-increments at large spatial separations, arising from the first-order Taylor
expansion. Thus, our concrete results below for τ (n,1) in three dimensions should be
more properly reinterpreted, when n is large, for the approximation τ

(n,1)
∗ in (5.2)

instead.
In any case, we have in three dimensions the formula for the filtered velocity

gradient,

∂u
(n)
i

∂xj

= S
(n)
ij − 1

2
εijkω

(n)
k , (5.3)

in terms of the filtered strain tensor S(n), the filtered vorticity vector ω(n) and the
antisymmetric Levi–Civita tensor εijk. If (5.3) is substituted into (3.16), it yields
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τ
(n,1)
ij = 1

3
C2�

2
{
S

(n)
ik S

(n)
jk + 1

2

[(
ω(n) × S(n)

)
ij

+
(
ω(n) × S(n)

)
ji

]
+ 1

4

(
δij

∣∣ω(n)
∣∣2 − ω

(n)
i ω

(n)
j

)}
. (5.4)

The separate terms in this expression have interesting physical interpretations. The
first term is proportional to the strain-matrix squared:

[
S(n)

]2
=

3∑
p=1

∣∣σ (n)
p

∣∣2e(n)
p e(n)

p , (5.5)

where σ (n)
p and e(n)

p are the eigenvalues and eigenvectors of the strain matrix S(n),
satisfying σ

(n)
1 + σ

(n)
2 + σ

(n)
3 = 0. This term represents a tensile stress of magnitude

C2(σ
(n)
p �)2/3 exerted along each of the principal strain directions e(n)

p for p = 1, 2, 3.

The last term in (5.4) quadratic in the vorticity likewise represents a tensile stress
along the two directions orthogonal to the filtered vorticity. However, the first part
of that term proportional to the Kronecker delta function is an isotropic stress or
turbulent pressure, which does not contribute to the deviatoric stress. The other half
of the term, proportional to ω

(n)
i ω

(n)
j , is equivalent to a contractile stress of magnitude

−(1/12)C2(ω
(n)�)2 exerted along vortex lines. Thus, one of the important effects of

subscale modes is an induced tendency for lines of filtered vorticity ω(n) to resist
lengthening. This ‘elastic response’ of vortex lines is well known in other contexts – for
example, turbulence under rapid-distortion (Crow 1968). However, the most novel of
the stress terms in (5.4) is the middle one, which is given by a certain ‘cross-product’ of
strain and vorticity. More precisely, we have defined (ω(n) × S(n))ij = εiklω

(n)
k S

(n)
lj . Note

that this tensor is orthogonal to the strain at the same scale, S(n) : (ω(n) × S(n)) = 0,

so that we call it the skew-strain. The middle term of (5.4), proportional to this
skew-strain, is a sum of shear stresses,

1
6
C2

3∑
p=1

ω(n)σ (n)
p sin θ (n)

p

[
ẽ(n)

p e(n)
p + e(n)

p ẽ(n)
p

]
, (5.6)

where θ (n)
p is the angle between ω(n) and e(n)

p and ẽ(n)
p is the unit vector orthogonal to

both ω(n) and e(n)
p , given by the right-hand rule. If we introduce the new unit vectors

e(n)
p± =[e(n)

p ± ẽ(n)
p ]/

√
2, then (5.6) becomes

1
6
C2

3∑
p=1

ω(n)σ (n)
p sin θ (n)

p

[
e(n)

p+e(n)
p+ − e(n)

p−e(n)
p−
]
. (5.7)

Hence, there are both tensile and contractile stresses exerted along the vectors e(n)
p±.

These are obtained from the strain eigenvector e(n)
p by rotating it ±π/4 radians around

the normal component of the vorticity vector ω(n).

The above vector formalism helps to make clear the geometry of the various stress
contributions. However, it is perhaps more conventional to write these stresses in terms
of the fluid deformation matrix D(n), defined by D

(n)
ij = ∂u

(n)
i /∂xj , and its symmetric

part S(n) and antisymmetric part Ω (n). Of course, S(n) is the strain tensor and Ω (n)

is related to the vorticity vector ω(n) by the standard relation Ω
(n)
ij = − εijkω

(n)
k /2. In

terms of the deformation matrix the first-order term (3.16) in the MSG expansion
can be written (in fact, in any dimension d) as

τ (n,1) =
1

d
C2�

2D(n)
[
D(n)

]�
. (5.8)
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The decomposition analogous to (5.4) is then

τ (n,1) =
1

d
C2�

2
{
S(n)S(n) +

[
Ω (n), S(n)

]
− Ω (n)Ω (n)

}
, (5.9)

where [Ω (n), S(n)] = Ω (n)S(n) − S(n)Ω (n) is the commutator matrix. Thus, in three
dimensions, S(n)S(n) is the strain-squared as in (5.5), −Ω (n)Ω (n) gives the tensile stress
in the plane normal to vortex lines, and [Ω (n), S(n)] is the ‘skew-strain’.

5.2. Energy cascade in three dimensions

Consider the consequences of the stress in formula (5.4) for the energy cascade. When
(5.4) is substituted into equation (2.8) for the energy flux, we obtain the following
result to first-order in gradients:

�(n,1) = 1
3
C2�

2
{

− Tr
(
S(S(n))2

)
+ 1

4

(
ω(n)

)�
S
(
ω(n)

)
+ S :

(
S(n)×ω(n)

)}
. (5.10)

The middle term has an obvious physical meaning. It represents the rate of work
done by the filtered strain S in order to stretch the lines of vorticity ω(n) against
the resisting contractile stress of the subscales. This remarkable relationship between
energy flux and vortex stretching was observed by Borue & Orszag (1998) using the
nonlinear model, which is a special case of our result for n= 0 and G = Γ :

Π (0,1) = 1
3
C2�

2
{
−Tr (S

3
) + 1

4
ω�Sω

}
. (5.11)

Vortex stretching was suggested by Taylor (1938) as the basic dissipation mechanism
of three-dimensional turbulence. Note that the first term in (5.11) proportional
to the strain skewness can also be related to vortex stretching, on average,
using a relation of Betchov (1956). His result states that for an incompressible
fluid −〈Tr (S

3
)〉 = (3/4)〈ω�Sω〉, where 〈·〉 denotes either ensemble average over a

statistically homogeneous turbulence or any volume average where boundary terms
from integration-by-parts can be ignored. According to Betchov’s relation, precisely
75 % of the mean energy flux in the nonlinear model comes from strain skewness and
25 % from vortex stretching. Betchov’s relation can be generalized as follows:

−
〈
Tr
(
S
(
S(n)

)2)〉
= 1

2

〈
(ω)�S(n)

(
ω(n)

)〉
+ 1

4

〈
(ω(n)

)�
S
(
ω(n)

)〉
. (5.12)

This result is proved in our Appendix D under the same assumptions as Betchov’s. By
using (5.12), the first term in (5.10) can be related to vortex stretching in general for all
n. However, the last term in (5.10) appears to be fundamentally different. It appears
only due to contributions of subscales and there is no analogue in the nonlinear model
(5.11) for n= 0. Some additional insight on that term can be obtained by rewriting
S : (S(n)×ω(n)) = ω(n) · (S×S(n)), where S×S(n) is the dual vector corresponding to the
antisymmetric commutator matrix [S, S(n)], i.e. (S×S(n))i = (1/2)εijk([S, S(n)])jk. Thus,

this new term arises from rotation of the subscale strain S(n) relative to the filtered
strain S, and vanishes if the orthogonal eigenframes of these two symmetric matrices
coincide.

Using the CSA stress in (5.2), we obtain a result similar to (5.10):

�(n,1)
∗ = 1

3

n∑
k=0

C
[k]

2 �2
k

{
−Tr

(
S
(
S[k])2

)
+ 1

4

(
ω[k]

)�
S
(
ω[k]

)
+ S :

(
S[k]×ω[k]

)}
. (5.13)

The remarks we have made above on physical interpretation of �(n,1) apply equally
here. However, the sum in (5.13) also has a limit for large n and we expect that it gives
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a quite reasonable model for energy flux in three dimensions. Using the generalized
Betchov relation (5.12), the CSA mean flux can be written as〈

�(n,1)
∗

〉
= 1

3

n∑
k=0

C
[k]

2 �2
k

{
1
2

〈
(ω)�S[k]

(
ω[k]

)〉
+ 1

2

〈(
ω[k]

)�
S
(
ω[k]

)〉
+
〈
S :

(
S[k]×ω[k]

)〉}
.

(5.14)

The first two terms in each summand arise from vortex stretching and will tend to
be positive, certainly for small k when S[k] ∝ S, ω[k] ∝ ω. On the other hand, the third
term from skew-strain then nearly vanishes. For the latter term to be important, there
must be some characteristic rotation of S[k] relative to S as k increases. Of course, it
is not hard to see that each term is zero on average when S[k], ω[k] are uncorrelated
with S, which must be expected in the limit as k → ∞. Therefore, it is only for
intermediate values of k that the third term can contribute to mean energy flux.

The physical mechanism of energy cascade by these stress terms can be illustrated
by the following:

Example 1. Vortex tube stretched by a constant strain

We consider a small-scale cylindrical vortex tube, parallel to the z-axis, with circular
cross-section of radius R = �k and with vorticity magnitude ω0 = ω[k]. This is an exact
stationary solution of the three-dimensional Euler equation with two-dimensional
symmetry. Thus, it may be described by a pseudoscalar streamfunction

ψ [k](x, y) =

{
1
4
ω0[R

2 − r2], r < R,

− 1
2
ω0R

2 ln(r/R), r > R,
(5.15)

where r is the radial distance from the z-axis in cylindrical coordinates (r, θ, z). The
corresponding velocity field is

u[k](x, y) =

{
1
2
ω0 ẑ×r, r < R,

1
2
ω0(R/r)2 ẑ×r, r > R,

(5.16)

where ẑ is the unit vector in the z-direction (see figure 2). This small-scale field is now
superimposed with a large-scale velocity

u =

−(σ/2)x
−(σ/2)y

σz

 , (5.17)

with deformation matrix D

D =

−σ/2 0 0
0 −σ/2 0
0 0 σ

 . (5.18)

This is a pure large-scale strain D = S with vorticity ω = o. If σ > 0, then this
corresponds to an axisymmetric stretching along the z-direction and compression in
the other two directions (figure 2). The combination of the large-scale and small-
scale fields gives an exact solution of the three-dimensional Euler equation (∂t +
u · ∇)ω[k](t) = (ω[k](t) · ∇)u = 0, where u = u + u[k](t) and where ω[k](t) is the same as
the initial vorticity field, made time-dependent by the substitutions ω(t) = eσ tω0 and
R(t) = e−σ t/2R. For example, see Neu (1984), who considers a more general set of

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

05
00

78
95

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112005007895


176 G. L. Eyink

u(t)

ω(t)ω0S

(c)(b)(a)

Figure 2. Energy cascade by vortex-stretching. (b) A cylindrical tube of parallel vortex lines
in (a) a constant strain field with stretching direction along the vortex axis. (c) The result is
that the vortex is stretched and its cross-sectional area shrunken. The ‘spin-up’ of the vortex
increases its energy and generates more positive (tensile) stress in the plane perpendicular to
the vortex axis.

solutions. In the present case, the small-scale vortex is stretched along its axis and,
by incompressibility, its cross-section shrinks. To conserve the circulation around the
tube, the vorticity and the velocity in the small scales correspondingly increase (see
figure 2). This ‘spin-up’ by the large-scale strain results in a transfer of energy to the
small scales.

The process can be understood from our general formulae above. Without loss of
generality, we can focus on the instantaneous transfer at the initial time t = 0. The
velocity-gradient tensor in the small scales is then

D[k](x, y) =



1
2
ω[k]

0 −1 0
1 0 0
0 0 0

 , r < �k,

1
2
ω[k]

(
�k

r

)2

 sin(2θ) − cos(2θ) 0
− cos(2θ) − sin(2θ) 0

0 0 0

 , r > �k.

(5.19)

This is purely rotational for r < �k and is a pure strain for r > �k. Substituting into
(5.1) gives the stress

τ [k],(1)
∗ = 1

12
C

[k]∣∣ω[k]�k

∣∣2 1 0 0
0 1 0
0 0 0

 ×
{

1, r < �k,

(�k/r)4, r > �k,
(5.20)

to first order in gradients. This result represents the −Ω [k]Ω [k] term for r > �k and the
S[k]S[k] term for r > �k . The ‘skew-strain’ vanishes identically for this right cylindrical
vortex tube. We see that the net stress is tensile in the two-dimensional plane
perpendicular to the vortex tube, set up by the velocity circulating around the
vortex axis. Its deviatoric part includes a contractile stress along the vortex axis.
These stresses oppose the axial stretching and lateral compression by the large-scale
strain, and increase in magnitude as the vortex spins up. The work of the large-scale
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strain against these resistive stresses is the basic mechanism of energy transfer to the
small scales.

If σ < 0, then the energy flux corresponding to (5.20)

Π [k],(1)
∗ = 1

12
C

[k]
σ
∣∣ω[k]�k

∣∣2 ×
{

1, r < �k,

(�k/r)4, r > �k,
(5.21)

is negative and the large-scale strain ‘spins down’ the small-scale vortex, by the
time-reverse of the process considered above. What is crucial for foward energy
transfer is that the vortex should align with a stretching direction of the large-scale
strain rather than with a shrinking direction. We know from the relation of Betchov
(1956) that, in an incompressible flow, mean vortex-stretching requires that there be
typically two positive strain eigenvalues and one negative eigenvalue. This tendency
has been confirmed for dissipation-range velocity gradients by DNS (Ashurst et al.
1987) and for inertial-range (filtered) velocity gradients by experiment (Tao, Katz &
Meneveau 2002; Van der Bos et al. 2002). Furthermore, these empirical studies have
shown that the vorticity vector tends to align with the intermediate weakly stretching
eigendirection of the strain at the same scale, rather than with the strongest stretching
direction. Some theoretical understanding of how this occurs can be obtained from
simple Lagrangian dynamical models of the velocity gradients (Vieillefosse 1982, 1984;
Cantwell 1992; Chertkov, Pumir & Shraiman 1999). Thus, the situation in turbulence
is slightly different from that which we imagined in our simple example above.
However, the mechanism of the energy transfer process appears to be essentially the
same.

5.3. Helicity cascade in three dimensions

It is well-known that three-dimensional smooth solutions of the inviscid, incompres-
sible fluid equations have in addition to the energy a second quadratic invariant, the
helicity (Moreau 1961; Moffatt 1969):

H (t) =

∫
d3xu(x, t) · ω(x, t). (5.22)

When helicity is input at large scales together with energy, then there is in three
dimensions a joint cascade of both invariants to high-wavenumber (Brissaud et al.
1973; Kraichnan 1973). The flux of helicity can be expressed quite similarly to the
flux of energy in (2.7), as

Λ = −2∇ω : τ . (5.23)

See Chen, Chen & Eyink (2003a). Equation (5.23) implies that the stress τ must be
correlated simultaneously with both the velocity gradient and the vorticity gradient
in a joint cascade of energy and helicity. Our work sheds some light on how this is
achieved.

A vorticity gradient may be decomposed into symmetric and antisymmetric parts,
as:

∂ωi

∂xj

= Rij + Ξij = Rij − 1
2
εijkξk, (5.24)

where R = (1/2)[(∇ω) + (∇ω)�], Ξ = (1/2)[(∇ω) − (∇ω)�] and ξ = ∇×ω. We may
write the helicity flux also as Λ = −2R : τ , because of the symmetry of the stress
tensor. Therefore, if we substitute the first-order stress formula (5.4), then we obtain
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the expression for helicity flux analogous to (5.10):

Λ(n,1) = 2
3
C2�

2
{

−Tr
(
R
(
S(n)

)2
)

+ 1
4

(
ω(n)

)�
R
(
ω(n)

)
+ R :

(
S(n)×ω(n)

)}
. (5.25)

This is the exact expression to first-order in gradients. Of course, we can also write
down a CSA expansion for helicity flux,

Λ(n,1)
∗ = 2

3

n∑
k=0

C
[k]

2 �2
k

{
−Tr

(
R
(
S[k]

)2
)

+ 1
4

(
ω[k]

)�
R
(
ω[k]

)
+ R :

(
S[k]×ω[k]

)}
, (5.26)

analogous to (5.13) for energy flux. All the stress components – from strain-squared,
from vortex contraction, and from skew-strain – contribute to the helicity flux. Note
that the generalized Betchov relation from Appendix D can be applied to give

−
〈
Tr

(
R(S[k]

)2)〉
= 1

2

〈
ξ

�
S[k]ω[k]

〉
+ 1

4

〈(
ω[k]

)�
Rω[k]

〉
, (5.27)

where 〈·〉 denotes a homogeneous average. Thus, the strain-squared contribution can
be replaced on average with the above two terms.

It is known that the helicity cascade is local in scale (Eyink 2005). Therefore, it
is interesting to consider the n = 0 contribution, which, assuming G = Γ, coincides
with the helicity flux for the nonlinear model of the stress. Now, it is not hard to see
that

ω�Rω = ∇ ·
[

1
2
|ω|2ω

]
, (5.28)

which is a total derivative. Thus,

1
4
〈ω�Rω〉 = 0, (5.29)

and the contractile stress along vortex lines gives no contribution to the UV-local part
of mean helicity flux. Combining (5.29) and the generalized Betchov relation (5.27)
gives also

−〈Tr (R(S)2)〉 = 1
2
〈ξ�

Sω〉. (5.30)

Therefore, the total UV-local (n = 0) contribution to mean helicity flux is〈
Λ(0,1)

〉
= 2

3
C2�

2
{

1
2
〈ξ�

Sω〉 + 〈R : (S×ω)〉
}
. (5.31)

Equivalently, this is the nonlinear model expression for mean helicity flux. The first
term arises from the stress proportional to strain-squared and the second term from
the stress proportional to skew-strain.

The two terms in (5.31) can be related by the following identity

1
2
ξ

�
Sω = −Ξ : (S×ω). (5.32)

This is easily proved by substituting on the right Ξij = −(1/2)εijkξ k, then using
the definition of the skew-strain and the identity εmij εmkl = δikδjl − δilδjk. Since

(∇ω)� = R − Ξ , using (5.32) in (5.31) gives〈
Λ(0,1)

〉
= 2

3
C2�

2〈(∇ω)� : (S×ω)〉. (5.33)

Thus we see that both the symmetric and antisymmetric parts of the vorticity gradient
can contribute to helicity flux. The result (5.33) also makes clear the important role
of the skew-strain in the three-dimensional helicity cascade. It is noteworthy that
skew-strain makes no UV-local contribution to energy flux at all and is thus free to
adjust as necessary to maintain the helicity flux in a joint cascade of both invariants.
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If we use the result (1/2)ξ
�
S[k]ω[k] = −Ξ : (S[k]×ω[k]) analogous to (5.32), the

generalized Betchov relation (5.27), and the expression (5.26), then we obtain

〈
Λ(n,1)

∗
〉

= 2
3

n∑
k=0

C
[k]

2 �2
k

{〈
(∇ω)� :

(
S[k]×ω[k]

)〉
+ 1

2

〈
(ω[k])�R(ω[k])

〉}
, (5.34)

for the CSA expansion of mean helicity flux. This is analogous to the similar result
(5.14) for the mean energy flux. However, note that it is now the first term which
makes a UV-local contribution while the second only contributes for intermediate
values of k.

We now consider a simple example to illustrate the mechanism of helicity cascade
by these stress terms:

Example 2. Vortex tube twisted by a constant screw

We take as our model of the small scales an exact stationary solution of three-
dimensional Euler equations which was previously considered by Moffatt (1969) as
an example of a helical flow with continuous vorticity distribution. It is a two-
dimensional but three-component velocity field, closely related to our Example 1.
Indeed, the horizontal components (u[k], v[k]) of the velocity field are the same as
those in (5.16), obtained from the two-dimensional streamfunction ψ [k] in (5.15).
However, this is now supplemented with a vertical velocity component

w[k](x, y) =

{
1
4
ω0p[R2 − r2], r < R,

0, r > R.
(5.35)

It can easily be shown that the resulting total velocity field is a stationary Euler
solution (e.g. see Moffatt 1969, § 6(a).) If p = 0, then this solution coincides with
that in our Example 1. The meaning of the parameter p can best be understood
by considering the associated vorticity vector ω[k] = (α[k], β [k], γ [k]). Of course, the
vertical component γ [k] is the same as in Example 1, γ [k] = ω0 for r < R and γ [k] = 0
for r >R. The horizontal components are obtained using the vertical velocity as a
‘streamfunction’: [

α[k]

β [k]

]
=

[
∂w[k]/∂y

−∂w[k]/∂x

]
= 1

2
ω0p

[
−y

x

]
, (5.36)

for r <R and is equal to 0 for r >R. The vortex lines are helices winding around the
z-axis with ‘pitch’ 4π/p, i.e. making one counterclockwise revolution in that vertical
distance. It is not hard to check that the solution given by (5.15), (5.16), (5.35) and
(5.36) has a constant helicity density h[k] = u[k] · ω[k] = (1/4)ω2

0R
2p for r < R and is

equal to 0 for r > R.

We shall take as our model of the large scales the velocity

u =

−ρyz/2
ρxz/2

0

 . (5.37)

This corresponds to a constant screw, i.e. solid-body rotation in each plane parallel
to the (x, y)-plane with an angular velocity ρz/2 that grows linearly in z. It is a
right-hand screw for ρ < 0 and a left-hand screw for ρ < 0. This velocity field has
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u(t)

u(t)

ω(t)ω0R

(a) (b) (c)

Figure 3. Helicity cascade by vortex twisting. (b) A cylindrical tube of parallel vortex lines in
(a) a constant screw field with twisting direction along the vortex axis. (c) The result is that the
vortex lines are twisted into helices. The tilting of the small scale vorticity vector and the solenoidal
generation of an axial velocity create helicity at small scales. A positive (tensile) stress occurs, in the
plane perpendicular to the vortex axis at loose winding and along the twist axis at tight winding.

both non-vanishing strain and vorticity:

S =

 0 0 −ρy/4
0 0 ρx/4

−ρy/4 ρx/4 0

 , ω =

−ρx/2
−ρy/2

ρz

 . (5.38)

Furthermore, the vorticity-gradient matrix is constant and symmetric:

∇ω =

−ρ/2 0 0
0 −ρ/2 0
0 0 ρ

 = R. (5.39)

It is not hard to check that the small-scale velocity field defined previously becomes
an exact time-dependent solution of the ‘rapid-distortion equation’ (∂t +u · ∇)ω[k](t) =
(ω[k](t) · ∇)u = 0, with u = u + u[k](t), if the parameter p = ρt. (This is no longer
equivalent to the full three-dimensional Euler equation, since the large scales also
have vorticity, neglected here.) The small scales begin as the undisturbed vortex tube
of Example 1, whose filaments are then twisted into helices by the large-scale screw.
The resulting vorticity field of coiled helices generates the axial velocity w[k] of (5.35)
by solenoidal action, producing a net helicity in the small-scales (see figure 3).

Let us now consider the helicity transfer process, based upon our general formulae
for the stress. We shall only consider the space region r <R, since the small-scale
fields outside the tube are the same as for Example 1. Inside the small-scale vortex
tube the velocity-gradient tensor is

D[k](x, y) = 1
2
ω[k]

 0 −1 0
1 0 0

−px −py 0

 . (5.40)
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Substituting into (5.1) gives the stress,

τ [k],(1)
∗ = 1

12
C

[k]∣∣ω[k]�k

∣∣2  1 0 py

0 1 −px

py −px p2r2

 , (5.41)

to first order in gradients. Unlike Example 1, all three terms in the stress formula (5.4)
(or (5.9)) are present, including that from ‘skew-strain’. When p is small (p�k � 1),
then this is essentially the same result as in Example 1, but when p is large (p�k 	 1),
the dominant stress is tensile along the screw axis. The resulting helicity flux has the
form

Λ[k],(1)
∗ = 1

6
C

[k]
ρ
∣∣ω[k]�k

∣∣2[1 − p2r2]. (5.42)

When p is small, there is a net transfer of helicity to the small scales of the same
sign as the large-scale screw. This arises from the weakly local transfer produced
by the large-scale vorticity gradient acting against the contractile stress along the
small-scale vortex. However, for large p, the sign of helicity flux reverses, as the
more tightly wound vortex lines produce a net tensile stress along the screw axis by
solenoidal action. The contributions to helicity flux of the separate S(n)S(n), [Ω (n), S(n)],
and −Ω (n)Ω (n) stress terms in (5.9) are

− 1
48

C
[k]

ρ
∣∣pω[k]�k

∣∣2r2, − 1
8
C

[k]
ρ
∣∣pω[k]�k

∣∣2r2, 1
6
C

[k]
ρ
∣∣ω[k]�k

∣∣2 [1 − 1
8
p2r2

]
, (5.43)

respectively. We see that the flux comes mainly from the −Ω (n)Ω (n) term for p�k � 1,
as claimed above. For p�k 	 1, all three terms contribute, with the flux contribution
from the ‘skew-strain’ six times bigger than that of either of the other terms.

This example also illustrates the cascade of energy. Indeed, as was observed by
Brissaud et al. (1973), the transfer of helicity necessarily involves also the transfer
of energy. The formula (5.41) for the small-scale stress and (5.38) for the large-scale
strain yield the following result for energy flux:

Π [k],(1)
∗ = 1

24
C

[k]
ρp

∣∣ω[k]�k

∣∣2r2. (5.44)

There is a net forward transfer of energy if the signs of ρ and p are the same. In
that case, the large-scale screw winds the small-scale helical vortex lines more tightly,
and kinetic energy is generated in the axial velocity component by the resulting
solenoidal action. The contributions to energy flux of the separate S(n)S(n), [Ω (n), S(n)],
and −Ω (n)Ω (n) stress terms in (5.9) are

0, 1
48

C
[k]

ρp
∣∣ω[k]�k

∣∣2r2, 1
48

C
[k]

ρp
∣∣ω[k]�k

∣∣2r2, (5.45)

respectively. Inside the vortex, there is no energy transfer from the strain-squared
and, instead, equal amounts of the energy flux are due to the contractile stress along
vortex lines and the stress proportional to ‘skew-strain’.

6. Conclusions
In this paper we have developed a novel approximation for turbulent stress, via

a multi-scale gradient (MSG) expansion. This scheme represents the stress by an
expansion in scales of motion and in orders of space gradients. A major result
(Appendix A) is that this expansion converges and furthermore at a rapid rate
for the ‘strongly local’ part of the stress from the resolved scales and adjacent
subscales. However, the convergence of the spatial Taylor expansion is expected
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to be much slower for stress contributions from scales further below the filtering
scale. Therefore, we have developed a more approximate expansion, which should
give a reasonable result at all scales with just a few low-order velocity gradients.
This ‘coherent-subregions approximation’ (CSA) is based on the assumption that the
velocity increments across all the subscale separation vectors should give a similar
result, at a given scale, as those for separation vectors in a ‘shell’ where the gradient
expansion is accurate and rapidly convergent.

An important application of our methods has been presented to the three-
dimensional turbulent cascades of energy and helicity. Our main results are the
formulae (5.4) for the stress, (5.10) for the energy flux, and (5.25) for the helicity
flux, exact to first-order in gradients. We have also developed the corresponding CSA
expressions, (5.2), (5.13) and (5.26), which are more heuristic, but which should give
a better representation of the very small-scale contributions than the exact first-order
results. We have generalized Betchov’s well-known relation, which relates mean vortex-
stretching and strain-skewness at the same scale, to a similar relation between different
scales ((5.12) and Appendix D). This relation allowed us to derive expression (5.14)
for mean energy flux and (5.34) for mean helicity flux, and to analyse the expected
contributions at different scales. Finally, we have discussed the physical mechanisms
of energy and helicity cascade, in terms of our analytical formulae. We have shown by
means of simple exact solutions of three-dimensional Euler equations that our results
are consistent with energy transfer by Taylor’s mechanism of ‘vortex-stretching’ and
with helicity transfer by a mechanism of ‘vortex-twisting’.

There are many implications of the present work for experiment and simulation,
for theory, and for modelling.

A host of testable predictions have been provided for laboratory experiment and
for numerical simulation by our detailed formulae for turbulent stress, energy flux
and helicity flux. The expansions in scale and in space have been proved to converge,
but the rate of convergence could be even faster than what has been rigorously
established and empirical studies can determine this. The very distant subscales have
been proved in Eyink (2005) to give decreasing contributions to stress, and analytical
closures make further quantitative predictions about the mean amount of energy and
helicity transfer from each scale of motion (e.g. see Kraichnan 1971; André & Lesieur
1977). Our multiscale formalism provides a convenient framework within which to
check these predictions, particularly for experimentalists who cannot easily calculate
spectral transfers. As to the gradient expansion, our first-order expressions (5.4),
(5.10) and (5.25) should give good results for the strongly local contributions, without
further approximations. Experiment and simulation can also check the validity of our
CSA expansion, which is based upon a bolder assumption. Assuming that our results
are empirically confirmed, experiment and simulation can also determine the relative
magnitudes of the various terms in our formulae. This will help to shed further light
on the detailed physical mechanisms which underlie the turbulent cascades.

Our results suggest several further fruitful directions for theory. Previous dyna-
mical models of velocity gradients (Vieillefosse 1982, 1984; Cantwell 1992; Chertkov
et al. 1999) have investigated only alignments between objects at the same scale.
However, as our results should make evident, alignments between velocity gradients
at distinct scales are also of great importance in supporting turbulent cascades and
these inter-scale relations have received scant attention so far. Improvement of our
various approximations is another important avenue for theory, particularly the CSA
scheme, where many possible refinements are apparent. Finally, theoretical methods
to estimate subscale velocity gradients from the resolved ones are strongly motivated
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by our work. This would lead to LES modelling schemes, similar to those reviewed
in Domaradzki & Adams (2002), but based upon a clearer picture of the physical
processes involved. If there is a universal mechanism which generates small scales
from large scales, then modelling this generation process should lead to the most
robust and generally applicable LES models.

A virtue of our approach is its wide range of potential applications. Since it
is based upon a very general feature of turbulent cascades – i.e. their locality in
scale and in space – the same scheme of approximation can be exploited in many
different situations, with, of course, differing results depending upon the particular
circumstances. For example, in Eyink (2006), we apply our methods to the cascade
of energy in two-dimensions and obtain results consistent with an inverse cascade.
In this case, it is a weakly local interaction via the ‘skew-strain’ which plays the
fundamental dynamical role. We anticipate many other useful applications, such as
passive scalar cascades and magnetohydrodynamic cascades of energy and magnetic
helicity. We hope that our method will be useful for all these cases in illuminating
the physical mechanisms involved.

I wish to thank S. Chen, B. Ecke, M. K. Rivera, M.-P. Wang and Z. Xiao for a
very fruitful collaboration on two-dimensional turbulence which helped to stimulate
the development of the general expansion method presented here. I would also like to
thank D. Carati, J. Domaradzki, A. Leonard, C. Meneveau and E. Vishniac for very
useful discussions and an anonymous referee for many suggestions which helped to
improve the paper. This work was supported in part by NSF grant ASE-0428325.

Appendix A. Convergence of the gradient expansion
We establish here the convergence of the stress approximation τ (n,m) in the limit

m → ∞, for the space L1-norm. The advantage of this norm is that it allows us to
give the proof by entirely elementary methods (although convergence can doubtless
be established also using other Lp norms for p > 1). We also give the proof, again for
simplicity, in infinite volume in d-dimensions without flow boundaries.

Our argument uses the formula

τ (n,m) =

∫
dd r G�(r)δu(n,m)(r)δu(n,m)(r) −

∫
dd r G�(r)δu(n,m)(r)

∫
dd r G�(r)δu(n,m)(r),

(A 1)
with

δu(n,m)(r; x) =

m∑
p=1

1

p!
(r · ∇)pu(n)(x). (A 2)

If Γ has a compactly supported Fourier transform, then u(n)(x) is real-analytic
and thus δu(n,m)(r; x) → δu(n)(r; x) as m → ∞, pointwise in x and also, as we see
below, in the L1 norm. Therefore, it is enough to establish absolute integrability and
summability: ∫

dd r G�(r)
∞∑

p,p′=0

1

p!p′!

∥∥(r · ∇)pu(n) (r · ∇)p
′
u(n)

∥∥
1
< ∞ (A 3)
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and ∫
dd r G�(r)

∫
dd r ′ G�(r ′)

∞∑
p,p′=0

1

p!p′!

∥∥(r · ∇)pu(n) (r ′ · ∇)p
′
u(n)

∥∥
1
< ∞. (A 4)

In that case, the integrations and infinite summations commute and

lim
m→∞

τ (n,m) =

∫
dd r G�(r)δu(n)(r)δu(n)(r) −

∫
dd r G�(r)δu(n)(r)

∫
dd r G�(r)δu(n)(r)

= τ (n). (A 5)

Let us establish the bound (A 3). By the Cauchy–Schwartz inequality,∥∥(r · ∇)pu(n) (r · ∇)p
′
u(n)

∥∥
1

� |r |p+p′∥∥∇pu(n)
∥∥

2

∥∥∇p′
u(n)

∥∥
2
. (A 6)

Thus, (A 3) is implied by∫
dd r G�(r)

[ ∞∑
p=0

1

p!
|r |p

∥∥∇pu(n)
∥∥

2

]2

< ∞. (A 7)

By a similar argument, we see that (A 4) holds, if∫
dd r G�(r)

[ ∞∑
p=0

1

p!
|r|p

∥∥∇pu(n)
∥∥

2

]
< ∞. (A 8)

To proceed we must have an estimate of ‖∇pu(n)‖2. This is easy to obtain by going
over to Fourier transforms using the Plancherel identity:∥∥∇pu(n)

∥∥2

2
=

∫
dd k

∣∣∣(ik)p Γ̂ (�nk) û(k)
∣∣∣2 . (A 9)

Since Γ̂ has compact support, the integral over k involves only the wavenumbers
with |k| <c1/�n for some constant c1. Thus,∥∥∇pu(n)

∥∥2

2
� c2

2(c1/�n)
2p

∫
dd k |û(k)|2, (A 10)

for another constant c2 = supk |Γ̂ (k)|, or∥∥∇pu(n)
∥∥

2
� c2(c1/�n)

p‖u‖2. (A 11)

With this estimate we obtain

∞∑
p=0

1

p!
|r |p

∥∥∇pu(n)
∥∥

2
� c2 exp(c1|r |/�n)‖u‖2. (A 12)

Thus, we see that (A 7) and (A 8) hold, if the filter kernel G(r) decays faster than
exponentially in space. For example, G could be Gaussian. Notice that Γ (r) can also
decay very rapidly in space – for example, faster than any inverse power – since the

Fourier transform Γ̂ (k) may be both compactly supported and C∞. For any such
filter kernels G and Γ , we conclude finally that the absolute summability/integrability
conditions (A 3),(A 4) both hold, and thus the limit relation (A 5) is valid, as claimed.
QED.
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Appendix B. Comparison with the defiltering approach
As mentioned in § 1, Yeo & Bedford (1988), Leonard (1997), and Carati et al. (2001)

have developed a somewhat similar gradient expansion for the turbulent stress. Here
we would like to compare and contrast the two approaches and, in particular, indicate
our reasons for dissatisfaction with the expansion constructed by those authors. Their
approach is based upon defiltering, which is the inverse to the filtering operator,
defined spectrally by

G�v(x) =

∫
dd k Ĝ(k�)v̂(k)eik · x . (B 1)

Thus, the defiltering operator is given similarly by

G−1
� v(x) =

∫
dd k [Ĝ(k�)]−1v̂(k)eik · x . (B 2)

In terms of these operators, Yeo & Bedford (1988); Leonard (1997) and Carati et al.
(2001) define a tensor-valued functional

T [v] ≡ G�

{
G−1

� v G−1
� v

}
− v v. (B 3)

A little thought shows that if u = G�u is substituted into this functional, then we
recover the turbulent stress as τ = T[u]. Hence, this formula provides, seemingly,
an exact closure of the stress in terms of the filtered velocity u. Furthermore, the
functional T has a formal gradient expansion:

Tij [v] =
∑
p,q

c p,q∇ pvi ∇qvj , (B 4)

where the summation is over multi-indices p = (p1, . . . , pd), q = (q1, . . . , qd) with
integer components. Note that ∇ p = ∂

p1

1 · · · ∂pd

d for the multi-index p. The coefficients
in the expansion (B 4) can be obtained from a generating function (Carati et al. 2001):

F [φ, ψ] ≡ Ĝ(−i(φ + ψ))

Ĝ(−iφ)Ĝ(−iψ)
=

∑
p,q

c p,qφ
pψ q .

Here φ p = φ
p1

1 · · · φpd

d . Thus, the expansion (B 4) for τ = T[u] seems to yield a closed
constitutive formula for the turbulent stress in terms of the gradients of the filtered
velocity.

To see the problem with this approach, note that the defiltering operator is not
even defined if the filter kernel has a compactly supported Fourier transform. In
this case, all the subscale modes cannot be recovered from knowledge of the filtered
velocity u. However, this is only an extreme form of a general difficulty. For any filter
kernel G, the defiltering operator G−1

� is unbounded on the natural function spaces
for the velocity field, such as the Lp spaces. This means that defiltering is not defined
for every element of those spaces, but instead only for a (dense) subspace, called the
‘domain’ of the operator. The natural, maximal domain of the defiltering operator in
any of these spaces is the range of the corresponding filtering operator on that space,
or Dom(G−1

� ) = Ran(G�). This means that, to defilter a function in the space, that
element must have been obtained by filtering another member of the space. However,
this is not the case for most functions in the space, even infinitely smooth ones.

For example, consider the most natural space of L2 or finite-energy fields, and a
Gaussian filter kernel G. Most v ∈ L2, even those with very rapidly decaying Fourier
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coefficients v̂(k), have no Gaussian defilter. Formally,[
G−1

� v
]̂(k) = exp[+(k�)2/2σ 2]v̂(k) (B 5)

for a Gaussian kernel with Fourier transform Ĝ(k) = exp(−k2/2σ 2). Thus, the Fourier
coefficients v̂(k) might decay very rapidly, e.g. exponentially in |k|, and yet the
defiltered field has infinite energy or G−1

� v /∈ L2. For such a velocity field, the stress
T[v] defined by (B 3) does not exist. This poses a real difficulty for an LES closure
equation based upon a constitutive relation τ = T(m)[u] obtained by truncating the
expansion (B 4) at finite order m. There is nothing to guarantee that the solution u of
such a closure equation will have Fourier coefficients decaying fast enough for (B 5)
to remain in L2. In that case, the expansion (B 4) will not converge and there is no
reason to expect that the solution of the mth-order LES equation will converge in
the limit m → ∞ to the exact filtered velocity, even though the closure then becomes
formally ‘exact’. Of course, even worse, the LES equation may itself be ill-posed and
its solution could blow up at finite time. The ‘exactness’ of the closure as m → ∞ does
not provide any guarantee of good behaviour at finite m.

Such difficulties with defiltering are not unknown in the LES literature.
Domaradzki & Adams (2002) have reviewed various approaches to subgrid stress
modelling by defiltering and have pointed out the related fact that defiltering is
generally an ill-posed operation in function space. In particular, multiplication by
the inverse filter transform, as in our equation (B 5), magnifies the effects of noise
and round-off error at high wavenumbers. Thus, the defiltering operation, even
when it exists, is not stable to small perturbations in the input velocity field. As in
any ill-posed problem, various regularizations may be considered to render it well-
posed. Most of the existing approaches have employed an approximate regularized
defiltering together with an ‘eddy-viscosity’ or dissipative term at high wavenumbers
(see Domaradzki & Adams 2002). Needless to say, our approach is quite different.
We have constructed an approximation scheme which is proved to converge under
very modest assumptions, but which is not closed. Our present goal is to develop a
tool to explore the basic physics and not to construct turbulence models directly. Our
expressions for turbulent stress may be useful in modelling efforts, but we must defer
to future work the important problem of estimating the unknown subscale gradients
that appear.

Appendix C. CSA expansion coefficients for Gaussian kernel
We give here the coefficients that appear in the CSA expansion, for the special case

of an isotropic Gaussian filter:

G�(r) =
1

[2π(σ�)2]d/2
exp

[
− r2

2(σ�)2

]
.

In general, one would like to have σ ≈ 1, so that this really corresponds to a filter at
scale �. However, this is often not true; for example, the conventional choice made
by Leonard (1974) was σ 2 = 1/12 (so that the second moment of the Gaussian and
box filters would agree). In such cases, it is better to define the ‘shells’ in the model
formulation as

S0 = {r : |r | > σ�0}, (C 1)

Sk = {r : σ�k−1 > |r | > σ�k}, k = 1, . . . , n. (C 2)
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In this way, increments for separations r ≈ σ�n are calculated from fields u(n) filtered
at the same length scale. We must calculate the partial averages of |r |p, p = 2, 4, 6 . . .

with respect to the Gaussian filter, over each of these shells. Introducing a
dimensionless variable ρ = r/�, these moment averages may be written as C[k]

p �p

for shell Sk, k = 0, 1, . . . , n.

The integrals for coefficients C[k]
p are evaluated by substituting t = ρ2/(2σ 2), σ 2dt =

ρdρ, and using Sd−1 = 2πd/2/Γ (d/2) for the (d − 1)-volume of the unit sphere in
dimension d:

C[0]
p = Sd−1

∫ ∞

σ

ρd+p−1 e−ρ2/2σ 2

(2πσ 2)d/2
dρ

=
(2σ 2)p/2

�(d/2)

∫ ∞

1/2

t (d+p)/2−1e−t dt =
2p/2

�(d/2)
�

(
d + p

2
,
1

2

)
σp, (C 3)

and

C[k]
p = Sd−1

∫ σλ−(k−1)

σλ−k

ρd+p−1 e−ρ2/2σ 2

(2πσ 2)d/2
dρ

=
2p/2

�(d/2)

[
γ

(
d + p

2
,

1

2λ2(k−1)

)
− γ

(
d + p

2
,

1

2λ2k

)]
σp, (C 4)

for k = 1, . . . , n. Here, we have introduced the incomplete gamma functions
�(a, x) and γ (a, x) = �(a) − �(a, x), as they are defined in the standard literature
(Abramowitz & Stegun 1964).

The asymptotics of these coefficients for large k are obtained using γ (a, x) ∼ xa/a

as x → 0 (e.g. Abramowitz & Stegun 1964, 6.5.4 and 6.5.29). Thus,

C[k]
p ∼ C(d, p, λ)λ−(d+p)kσ p, k → ∞,

with C(d, p, λ) = (λd+p − 1)/[(d + p)Γ (d/2)2(d−2)/2]. If we define C
[k]

p = λ(d+p)kC[k]
p ,

then this new constant becomes independent of k as k → ∞:

C
[k]

p ∼ C(d, p, λ)σp. (C 5)

It is not hard to prove that these same asymptotics hold, at least as big-O bounds,
for much more general filter kernels than Gaussian.

An interesting application of (C 5) is to establish the order of magnitude of the
‘systematic’ stress term �

[k],(m)
∗ that appears in equation (4.13) for τ

[k],(m)
∗ . We assume

that the velocity field u has the Hölder exponent 0 <α < 1. From the definition (4.10),
it is obvious that �

[k],(m)
∗ is a sum over p, p′ = 0, . . . , m of terms proportional to

C
[k]

p+p′�
p+p′

k

(
∂pu[k]

)(
∂p′

u[k]
)
. (C 6)

Here, ∂pu[k] indicates a pth-order space derivative of u[k] with component indices
suppressed. It is not hard to show (e.g. see Eyink 2005) that ∂pu[k] = O(�α−p

k ). On the
other hand, (C 5) implies that C

[k]

p+p′ is asymptotically constant as k → ∞. It follows
that each term p, p′ of the Taylor expansion contributes a term for �

[k],(m)
∗ that scales

as O(�2α
k ). In fact, this is the correct order of magnitude for the contribution to

the stress from length scale �k (Eyink 2005). It is worth pointing out that the term

u′ [k],(m)
∗ u′ [k′],(m)

∗ in (4.13) would likewise scale as O(�α
k �

α
k′), if the correction factor Nk had

been used in the definition (4.12) rather than N
1/2
k . Indeed, so defined, u′ [k],(m)

∗ u′ [k′],(m)
∗

is from (4.10) a sum over p, p′ of terms proportional to C
[k]

p C
[k′]

p′ �
p
k �

p′

k′ (∂pu[k])(∂p′
u[k′]).
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In that case, the previous argument carries through. It might seem that this alternative
definition of u′ [k],(m)

∗ therefore has some merit, except that it ignores the cancellations
that we expect to occur in the integrals over volume.

Appendix D. Generalized Betchov relation in three dimensions
We here give briefly the proof of the generalized Betchov relation (5.12). Let

us suppose that a, b, c are three solenoidal (divergence-free) vector fields in three
dimensions. Then, it is trivial to verify from the product rule of differentiation that

ai,j bj,kck,i + ck,j bj,iai,k = ∂i(ai,j bj,kck) − ∂k(ai,j bj,ick) + ∂j (ai,kbj,ick), (D 1)

where we use the notation ai,j = ∂ai/∂xj , etc. Because the right-hand side is a total
space derivative, the ensemble average of the left-hand side is zero if we assume space
homogeneity:

〈ai,j bj,kck,i + ck,j bj,iai,k〉 = 0. (D 2)

This same relation holds for space averages, if boundary conditions on a, b, c are
such that boundary terms from integration by parts can be ignored. With either of
these assumptions, let us then apply (D 2) for b = u and a = c = u(n). This gives〈

Tr
[
D(D(n))2

]〉
= 0, (D 3)

with Dij = ui,j the deformation matrix associated to a velocity field u.

Now, using D
(n)
ij = S

(n)
ij − (1/2)εijkω

(n) (equation (5.3)) gives(
D(n)

)2
=

(
S(n)

)2 − 1
4

(
I
∣∣ω(n)

∣∣2 − ω(n)ω(n)
)

+ 1
2

(
ω(n) × S(n) + S(n) × ω(n)

)
. (D 4)

Note that the matrices on the first line of the right-hand side are symmetric and the
matrix on the second line is antisymmetric. (I is the identity matrix.) Thus, if we use
the relation analogous to (5.3) for Dij , then the only contribution to the trace of D

with (D(n))2 is from the trace of Sij with the first line in (D 4) and from the trace

of εijkωk/2 with the second line. Using tracelessness of the strain matrix S and the
identity εijkεilm = δjlδkm − δjmδkl gives

Tr
[
D
(
D(n)

)2]
= Tr

(
S
(
S(n)

)2
)

+ 1
4

(
ω(n)

)�
S
(
ω(n)

)
+ 1

2
(ω)�S(n)

(
ω(n)

)
. (D 5)

Substituting (D 5) into (D3) gives (5.12). QED.
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