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This paper looks at the stimulus given by the practice and theory of navigation to certain
problems in mathematical astronomy. The need for more accurate techniques of finding
latitude and longitude, brought about largely by the great voyages of discovery and exploration
as well as an increase in sea trade, gave rise to navigational instrument makers who produced
devices of increasing accuracy. These craftsmen also made better measuring devices for the
new observatories. Improvements in measurements led not only to new discoveries, but also
made greater demands of theories underlying the practice of navigation. This gave impetus to
the search for solutions to related problems in mathematical astronomy. Methods and special
functions developed in this context were eventually to find application in a much wider range
of problems in theoretical physics and engineering.

1. INTRODUCTION. Mathematical astronomy was a major stimulus to the
development of certain areas of mathematics : mathematical astronomy itself was
sharpened by the need to solve the longitude problem. In many large enterprises
the required scientific understanding often develops side by side with the
technology necessary to put the science to practical purposes. Two recent
examples are the development of the atomic bomb, and the commitment to land
a man on the Moon. More than three hundred years ago, the need to find
longitude at sea was just such an undertaking. Although many possible solutions
were proposed, it was the astro-navigational approach that was to prove the most
promising. The longitude problem provides an interesting case of how the
progress of abstract sciences can be driven by practical considerations.

The major part of this paper will be concerned with the mathematical spin-
off that resulted from theoretical demands of the need to produce almanacs
which could be used by mariners to find longitude. However, there was an earlier
requirement for improved angular measuring devices and methods of calculatin
necessary nautical tables to find latitude. There were some very early links
between astronomy, navigation and lunar almanacs.

2. VOYAGING STARS AND THE ORIGINS OF THE CONSTELLATIONS.
The constellations provided the first framework against which movements of the
Sun, Moon and planets could be analysed. It is not known when constellations
were first drawn up in the form we know them today, but some speculations on
the origins of the constellations link them with navigational practices of the
Minoans who sailed about the Aegean sometime between 1600 and 1400 B.C.

Professor Alexander Gurshtein, a Russian historian of science, has recently
discussed the origin of the zodiac constellations, and speculated that they arose
from changes in the constellations in which the equinoxes and solstices occurred,
brought about by the precession of the equinoxes over a period of five thousand
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years.' Thus he claims that in gooo B.c. the winter solstice, the spring equinox,
the summer solstice and the autumn equinox occurred in Pisces, Sagittarius,
Virgo and Gemini respectively. By 2700 B.c. these points had shifted to
Aquarius, Scorpio, Leo and Taurus, as a result of precession, and to Capricorn,
Libra, Cancer and Aries by 1200 B.c. He does not discuss the origin of the
constellations that do not lie along the ecliptic. However, other astronomers
have written on the origins of all the constellations.

In 1965 Ovenden, then from Glasgow University, analysed the poem
The Phaenomena by Aratus (315—250 B.C.) in his attempts to find out when the
constellations were first put down in systematic form.? Aratus was a poet and not
an astronomer, but his poem was a celebration of the astronomical work of
Eudoxus (409—356 B.C.), whose book on astronomy, by the same name, did not
survive. Eudoxus was what we today would call a theoretical astronomer. He
made very few observations of his own but tried to formulate theories explaining
the observations of others. Aratus’s The Phaenomena contains a description of the
sky and from this we can work out the latitude of the location and the date to
which the description applies. Ovenden, and later Roy,” also from Glasgow
University, concluded that the sky was consistent with what would have been
visible from the Cyclades and Crete sometime between 1600 and 1400 B.C.

Roy speculates that the constellations were drawn up to act as navigation aids
by Minoan navigators as they sailed from one island to the next. It is well known
that a set of stars with nearly the same angular distance from the celestial equator
can be used at rising and setting to mark compass directions. This method of
navigation is still used by the inhabitants of the Caroline Islands in the Pacific.*

3. THE ORIGINS OF LUNAR ALMANACS. The method of lunar distances for
finding longitude naturally makes use of lunar almanacs, and the drawing up of
such tables provided a strong spur to the general improvement of mathematical
methods which could be used to calculate ephemerides of the Moon and the
planets. The need to produce such sets of tables goes back to the time of ancient
Babylon, and even at this earlier stage in the history of science we find that lunar
almanacs also provided the motivation for developing a very basic form of
mathematical astronomy.

At first the Babylonians started their lunar month on the day when the thin
crescent of the Moon was sighted in the west just after sunset. The purpose of
their theoretical astronomy was to free themselves of the necessity of making the
actual observation, and to allow them to calculate when, in principle, such a
sighting would be possible. In order to do this they had to find a way to describe
in numerical terms the varying angular speeds of Sun and Moon against the zodiac
constellations, the angles which their respective paths made with each other and
the angle between the line joining their centres and the horizon.

They used the arithmetical equivalent of our graphical zig-zag and step
functions. This was later extended to predict when eclipses were likely to occur
and to calculate relative positions of the planets with respect to each other and
to the stellar background. It should be stressed that their approach was not based
on any geometrical model of how the planets, Earth, Sun and Moon were
arranged in space.
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Professor Aaboe,” nevertheless, considered their methods important to
subsequent work in theoretical predictions:

Thus the astronomical tradition in the West is linked to Babylonian astronomy.
Mathematical astronomy was, however, not only the principal carrier and generator
of certain mathematical techniques, but it became the model for the new exact
sciences which learned from it their principal goal : to give a mathematical description
of a particular class of natural phenomena capable of yielding numerical predictions
that can be tested against observations.

4. LATITUDE, ANGULAR MEASURING DEVICES AND NAUTICAL
TABLES. The need to find latitude more accurately made greater demands on
those who made angular measuring devices than requirements of terrestrial
surveying had done. So this was an important stimulus to the growth of the
instrument-making industry. Although observatories were beginning to be
established, they were far less numerous than ships and each ship required
instruments for navigational purposes. Greater accuracy in measurements had to
be matched by improvements in the precision of nautical tables, in particular
Pole Star tables and declination tables for the Sun. The Portuguese, inspired by
the great voyages of discovery, made important contributions in this direction.
However, it was the longitude problem that was to tax the ingenuity of the
craftsmen, instrument makers and the astronomers.

£. FOUNDING OF OBSERVATORIES AT PARIS AND GREENWICH. Two
possible methods of finding longitude had been proposed before the founding of
the two great observatories at Paris and Greenwich. Soon after his discovery of
Jupiter’s moons, Galileo suggested they could be used as a celestial clock for the
purposes of finding longitude. Part of the early work of the Paris Observatory,
founded in 1667, was to use the moons of Jupiter to determine the longitude of
places along the coastline and boundaries of France. However, this method
obviously could not be used at sea because of the difficulties of using a telescope
to find the positions of these moons, with respect to the planet, on board a ship.
Nevertheless, the method required a detailed study of the movements of the
moons and this led Olaus Roemer to discover the fact that light had a finite and
measurable speed.

The Greenwich Observatory was founded in 1675 to seck a way of finding
longitude using our own Moon. This was made very clear in the Royal Warrant
issued by Charles II (June 22, 1675):

Whereas, in order to the finding out of the longitude of places for perfecting
navigation and astronomy, we have resolved to build a small observatory within our
park at Greenwich...

An earlier warrant, issued on March 4, 1675, concerned the appointment of
the first Astronomer Royal, the Rev. John Flamsteed:

Whereas, we have appointed our trusty and well-beloved John Flamsteed, ..., our
astronomical observator, forthwith to apply himself with the most care and diligence
to rectifying the tables of motions of the heavens, and the places of the fixed stars,
so as to find out the so much-desired longitude of places for perfecting the art of
navigation.6
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The wording of the Royal Warrants was most probably the work of
Christopher Wren. It was this careful wording that focused the attention of
astronomers at Greenwich, and thus Greenwich was to become one of the most
important observatories in the world, for its work on positional astronomy. Two
astronomical problems needed to be solved to make the method of lunar distances
at sea practicable. The first problem was to determine positions of stars with a
greater accuracy than that found in any previous catalogues, because the stellar
background would provide the reference system against which navigators could
measure the Moon’s position. The second was to study movements of the Moon
and to develop a theory of the Moon’s motion which could be used to produce
necessary tables of the Moon’s position on the celestial sphere.

6. THE MATHEMATICAL PROBLEMS POSED BY THE MOON’'S MOTION.
The motion of the Moon is really a special example of the gravitational three-
body problem, because the Moon is moving in the combined gravitational fields
of the Earth and the Sun, and the distances between these bodies are continually
varying. Newton tried to solve this problem but his solution was not accurate
enough for calculating tables which could be used to find longitude at sea via lunar
distances.” Several outstanding European mathematicians were to address this
problem, and they made important contributions to the methods of mathematical
astronomy and physics.

(a) Leonhard Euler (1707—83). The Swiss mathematician Leonard Euler was the
first to produce an approximate solution to the Moon’s motion with sufficient
accuracy to be used to calculate the lunar tables for the nautical almanac. For this
purpose he invented the method of perturbation theory. This method, as applied
to the Moon, starts by ignoring the gravitational force of the Sun on the Moon,
and simply works out the orbit of the Moon around the Earth. It then considers
the effects that the Sun has on this orbit, and uses this to calculate a new orbit.
The whole process can then be repeated. This method of successive
approximation can be continued until the desired precision is achieved. It seems
that this was the first time that the method of perturbation theory was applied
to a physical or astronomical problem, although it is now used in many different
applications in physics, astronomy and engineering.

Euler first addressed the problem of the lunar perigee. It was well known at
the time that observations did not match available theory. Some astronomers and
mathematicians, including Euler, thought the problem lay with Newton’s law of
gravitation. Clairaut, in 1749, found a mistake in the calculation methods that
most researchers had been using, and realised that by including the second
approximation term, the size of the discrepancy between theory and observation
could be considerably reduced.® This stimulated Euler to do more work on the
problem.

In 1753 he published an outstanding treatise on the motion of the Moon called
Theoria motus lunae exhibens omnes eius inequalitates,” which included the method of
the variation of the elements, now accepted as a very powerful tool in treating
perturbations in physics and astronomy. Perhaps the most important con-
sequence of this work was that it showed it to be possible to account for the
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major irregularities of the Moon’s movement entirely within the framework of
Newtonian celestial mechanics.

At this time another problem concerning the Moon’s motion had began to
manifest itself. By comparing observed times of ancient lunar eclipses and the
calculation of such times working backward, using the best methods available in
1749, Dunthorne was able to show that the average motion of the Moon was
actually changing at the rate of about 10 seconds per century. (This change is
referred to as the secular acceleration of the Moon, although it is a decrease in
the orbital velocity of the Moon.) Euler wrote another essay on this problem in
1772, proposing that there must be an ethereal fluid in space which offered
resistance to the motions of Earth and Moon.'” It was an unsatisfactory
explanation, but this particular problem had to await further developments in
mathematics before it could be solved.

(b) Tobias Mayer (1723—62). Despite the fact that there were still discrepancies
between theory and observations of the Moon’s motion, the theory was
sufficiently well developed by 1755 for Mayer, a German mathematical
astronomer, to work out reasonably accurate solar and lunar tables, which he
published in that year. For the lunar tables he used Euler’s method of
perturbations.

For the method of lunar distances to work at sea, it was necessary to know the
position of the Moon to an accuracy of about 1 minute. Such an error would allow
geographical longitude accuracy of approximately 27 minutes. Acting on
instructions from the Admirality, James Bradley, 3rd Astronomer Royal,
compared Mayer’s tables with the Greenwich observations of the Moon and
found that their accuracy was of this order of magnitude. In 1770 these tables
were published by the Admiralty, together with methods and instructions which
had been prepared by Mayer, as an important aid to navigation. By then Mayer
had died, but the British Government recognised his contribution by awarding
a grant of £3000 to Mayer’s widow.''"'?

By this time other astronomers and mathematicians were beginning to
consider related problems in planetary and cometary science. These researches
also gave a further stimulus to certain mathematical techniques and the
development of some special functions.

(c) Lagrange (1736—1813). Lagrange was another mathematician to address
some important astronomical problems. He is best known for his more general
work on the analytical approach to mechanics which brought to a climax the
move away from the Newtonian geometrical approach. The methods he
developed opened up the way to dealing with more complicated problems in
classical mechanics: they also provided, in the twentieth century, the basis for
the formal development of quantum mechanics from the earlier quantum theory.
Although there is no evidence that this work was undertaken specifically to deal
with astronomical problems, he nevertheless used analytical techniques to make
notable contributions to cometary perturbations and to the three-body problem.

In 1780 Lagrange again won a prize from the French Academy of Sciences for
his work on the perturbations of comets by the planets. In 1772 he had shared
this prize with Euler, for some of his work on the three-body problem, and in
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1774 he had won it for his work concerning the effects of the shapes of the
Earth and Moon on the orbit of the Moon. However, his attempts to find an
explanation for the secular acceleration of the Moon ended in failure, and he
concluded that the historical evidence for this change in the Moon’s motion was
in doubt.

In astronomy Lagrange is best known for work on a restricted version of the
three-body problem, for which he found an exact analytical solution. In this
problem we have two bodies with large gravitational fields and a third, much less
massive body, all in synchronous orbit with respect to each other. Lagrange
showed that there were five stable points at which the smaller body could orbit
with respect to the other two. Two of these points, called the Lagrangian points,
would form two equilateral triangles, with the two larger bodies at two of the
apexes and the smaller body at the third. These conditions are very nearly
fulfilled by the Sun-Jupiter system and a group of minor bodies, called the Trojan
asteroids. These are the same distance from the Sun as Jupiter, and their
heliocentric longitudes differ from that of Jupiter by sixty degrees on either side
of the planet.13

(d) Laplace (1749—1827). Laplace was an outstanding mathematician who made
contributions to a wide variety of mathematical topics. He did, however, make
major contributions to the celestial mechanics of the solar system. Much of his
work in this respect is contained in successive volumes of Mecanique Celeste which
were published between 1799 and 1825.

One of the many problems tackled by Laplace was that of the gravitational field
of a non-spherical body. It seems now that this problem was first addressed by
Legendre14 who had restricted himself to the special case of a body that was a
solid of revolution. This meant that the deviation from a simple sphere depended
only on latitude, but was independent of longitude. In his investigations Legendre
had introduced a class of polynomials that are now known by his name. Laplace
extended this work by considering the more general case in which the mass
distribution was a function of latitude and longitude. In this work he introduced
a new function now known as spherical harmonics, in which the Legendre
polynomials are modulated by series of functions composed of sines and cosines.

In his work on the gravitational fields of non-spherical bodies, Laplace also
used the concept of gravitational potential from which one can derive the
components of the gravitational field. Although the general idea of a potential
function had already been used by Bernoulli in hydrodynamics, this was the first
time it had been used in connection with a field in free space. It is now a powerful
tool in the general theory of fields.

Laplace made a very detailed study of planetary perturbations, including the
effects of the other planets on the orbit of our Earth. He was able to show that
these perturbations would cause the eccentricity of the Earth’s orbit to decrease
over a period of about ten thousand years. This would result in an increase of the
mean distance of the Earth from the Sun, and a consequent decrease in the effect
of the Sun on the orbit of the Moon. The net result of this is that it explained,
as precisely as it was then possible to do, the secular acceleration of the Moon,
which was a problem that had baffled many of Laplace’s predecessors.15
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Although much of the work on celestial mechanics seemed removed from the
original purpose of solving the longitude problem, it was entirely necessary in
order to improve the accuracy of the Nautical Almanac, to which the Board of
Longitude and the Admiralty were committed. Laplace’s theory was used in the
calculation of the Almanac for 1808. In later years John Couch Adams (1819—92),
whose theoretical work on the perturbations of Uranus eventually led to the
discovery of Neptune, was able to show that Laplace’s work on the Moon did not
explain all of the lunar secular acceleration.'® However, at the time, this
important result obtained by Laplace was seen as one of the great achievements
of Newtonian celestial mechanics.

(e) Bessell (1784-1846). Bessell was another mathematician who concerned
himself with problems in mathematical astronomy. One biographer said that
most of Bessell’s mathematical work had some application to astronomical
problems. One could well question whether this was the case, but his work on
the functions now named after him was definitely inspired by astronomy.

The functions we now call Bessell functions first occurred in the astronomical
work of Legendre, and in the work of Bernoulli and Euler on some problems in
physics. However, the properties of these functions were more thoroughly
investigated by Bessell in his work on planetary perturbations.

Bessell made his debut into the world of astronomy with his analysis of
Harriot’s observations of Halley’s comet, which was discovered by Edmund
Halley — second Astronomer Royal at Greenwich. He secured himself a place in
the history of astronomy with his outstanding reduction of the observations of
James Bradley — third Astronomer Royal — which was published in 1818 as
Fundamenta Astronomiae.'” Thus the work of the Greenwich Observatory and that
of the astronomers that worked at this institution proved to be an inspiration to
astronomers on the Continent.

This fact was well summed up by Delambre :

One can truly say that, if in some great revolution the sciences came to be lost, and
we this collection alone preserved...one would find in it the wherewithal to
reconstruct almost in its entirety the whole edifice of modern astronomy....

The collection that Delambre!® was referring to comprised the Greenwich
observations made by Bradley and Maskelyne.

7. APPLIED MATHEMATICAL SPIN-OFF FROM CELESTIAL MECHANICS.
Fourier, the French mathematician who invented Fourier analysis, once said that

The profound study of nature is the most fecund source of mathematical discovery.19

In the decades following the publication of Newton’s Principia, the application of
mechanics to the dynamics of the solar system was one of the most important
parts of the ‘profound study of nature’. We have seen that the problems posed
by this grand enterprise attracted many of the best mathematicians in Europe, and
gave rise to mathematical functions and techniques that have proved of lasting
value.

Newton’s own work on differential calculus came from his need to deal with
the mathematical problems posed by the elliptical orbits of Kepler’s laws of
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planetary motion. His work on integral calculus was inspired, at least in part, by
his investigations on the gravitational fields of extended spherical bodies — his law
of gravitation being formulated only for point masses.

Pannckock?® offered a reasoned explanation for the interest of mathematicians
in astronomical problems:

...But astronomy received a large share of their exertions, first, because of the
difficulty of the problems posed, which was a stimulus to ingenuity, and secondly,
because the results of a fascinating theory in solving time-honoured problems could
be verified by accurate observations....
The methods of perturbation theory21 are now used in a variety of engineering
and scientific contexts, including the quantum theory of complex atoms.
Legendre polynomials are used in certain problems in quantum mechanics, and
spherical harmonics are used to discuss the shape of planets as well as their
gravitational fields and the magnetic fields of those planets that have extended
magneto-spheres. Seymour22 used them to discuss the magnetic field of the Milky
Way Galaxy. Bessel functions have been used to deal with problems in vibrating
circular membranes® and in atomic theory.** This list is, of course, far from
exhaustive, but it gives some indication of the mathematical legacy of celestial
mechanics.

8. DISCUSSION AND coNcLUsION. The accuracy of astronomical
observations and the theory developed to deal with problems posed by these vast
improvements in previous observations came mainly from three separate but
related circumstances.

The first came from the establishment of the Paris and Greenwich
Observatories. These state-funded institutions provided a secure environment in
which to develop long-term projects dedicated to the quest for accuracy. The
Royal Observatory at Greenwich was specifically charged with improving the
tables of motions of the heavens for ‘perfecting navigation and astronomy’. This
gave an important focus to the work of England’s first scientific institution, and
thus it became the most important centre for the study of positional astronomy,
and of lunar and planetary motion.

Navigation also demanded more accurate measuring instruments for finding
position at sea. The instrument makers who were to supply these needs were the
same ones who improved equipment for the observatories. North,** in his book
The Fontana History of Astronomy and Cosmology, pointed out that their work for
observatories was not economically sufficient to keep the industry going, but they
found good trade from other sources:

It would be foolish to pretend that this trade was economically as important as... the
London trade in clocks and watches of the same period, nor should one forget the
rapid expansion in the trade in sextants used for astronomical navigation.
Ramsden ... with a staff of sixty artisans, had produced a thousand sextants by 1789....

For the first one hundred years of the Greenwich Observatory’s existence,
lunar tables were not accurate enough to make the lunar distance method a
practical possibility for ﬁnding longitude at sea. The mathematicians who worked
on the problems of the Moon’s motion could not have been unaware of the
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possible practical applications of their work. Although this work continued lon
after the required accuracy had been achieved, there can be little doubt that the
initial stimulus for observations on the Moon’s motion, and the theories to
explain these movements, came from navigational considerations.

Several people who worked at Greenwich and others who have written
extensively on its history, have been aware of the guiding role which navigation
played.

Maunder,*® in his book The Royal Observatory Greenwich, published in 1900,

said :

Fundamentally, Greenwich Observatory was founded and has been maintained for
distinctly practical purposes, chiefly for the improvement of the eminently practical
science of navigation. Other enquiries relating to navigation, as, for instance,
terrestrial magnetism and meteorology, have been added since. The pursuit of these
objects has of necessity meant that the Observatory was equipped with powerful and
accurate instruments, and the possession of these again has led to their use in fields
which lay outside the domain of the purely utilitarian, fields from which the only
harvest that could be reaped was that of the increase of our knowledge.

McCrea®’ said, in 1975:

Astronomers interested in navigation were bound to be interested in geomagnetism,
and the study of the geomagnetic field soon leads to that of solar-terrestrial
relationships and to solar physics.

As we have already seen, North was well aware of the importance of navigation
to the instrument-making industry. He also made the following comment on
Delambre’s assessment of the importance of the Greenwich observations of
Bradley and Maskelyne :

Delambre was exaggerating, but mildly, when he wrote that if all other materials of
the kind were to be destroyed, the Greenwich records alone would suffice for the
restoration of astronomy.

His inclusion of the phrase *...but mildly...” seems to indicate that he generally
agreed with this statement. His book also shows that he was well aware of the
reasons for the establishing of the Royal Observatory at Greenwich. It seems
inconsistent then that he should make the following statement:

The history of the astronomical part of navigation is one in which the most advanced
of all the exact sciences offers help in solving a practical problem. There is a myth
prevalent in some quarters that the debt was owed by astronomy, which was driven
and refined in response to the practical needs of navigation... Astronomers were
rarely driven by mariners’ needs, except when they had hope of gain, moral or
financial, from solving points of theory (say in regard to Jupiter’s satellites or the
Moon’s longitude) that would help in the problem of finding terrestrial longitude.

North discusses at some length the astrological motive in the history of
astronomy, and yet he underplays the role of navigation. Throughout its very long
history, astronomers have responded to some of the needs of societies and
cultures that patronized it. The main social motives before the great voyages of
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discovery were provided by calendar-making, time-keeping and astrology.
However, none of these social applications of astronomy demand the high level
of accuracy required to find longitude at sea. As Bernal®® said in Science in History :

These [the great voyages of discovery] were the fruit of the first conscious application
of astronomical and geographical science to the service of glory and profit... The
motions of the stars now had a cash value and astronomy stood in no danger of being
neglected, even after astrology had gone out of fashion.

[ believe Pannekoek?® gives a more balanced appraisal of the impact of
navigation on the history of theoretical science:

Navigation no longer needs the Moon... The problem of the longitude at sea was an
episode in the history of astronomy, but highly important for the progress of science
now closed. It greatly stimulated celestial mechanics as an important branch in the
general theoretical knowledge of mankind.
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