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Integral relations for the skin-friction coefficient
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We show that the Fukagata et al.’s (Phys. Fluids, vol. 14, no. 11, 2002, pp. 73–76)
identity for free-stream boundary layers simplifies to the von Kármán momentum integral
equation relating the skin-friction coefficient and the momentum thickness when the
upper bound in the integrals used to obtain the identity is taken to be asymptotically
large. If a finite upper bound is used, the terms of the identity depend spuriously on
the bound itself. Differently from channel and pipe flows, the impact of the Reynolds
stresses on the wall-shear stress cannot be quantified in the case of free-stream boundary
layers because the Reynolds stresses disappear from the identity. The infinite number of
alternative identities obtained by performing additional integrations on the streamwise
momentum equation also all simplify to the von Kármán equation. Analogous identities
are found for channel flows, where the relative influence of the physical terms on the
wall-shear stress depends on the number of successive integrations, demonstrating that the
laminar and turbulent contributions to the skin-friction coefficient are only distinguished
in the original identity discovered by Fukagata et al. (Phys. Fluids, vol. 14, no. 11,
2002, pp. 73–76). In the limit of large number of integrations, these identities degenerate
to the definition of skin-friction coefficient and a novel twofold-integration identity is
found for channel and pipe flows. In addition, we decompose the skin-friction coefficient
uniquely as the sum of the change of integral thicknesses with the streamwise direction,
following the study of Renard & Deck (J. Fluid Mech., vol. 790, 2016, pp. 339–367). We
utilize an energy thickness and an inertia thickness, which is composed of a thickness
related to the mean-flow wall-normal convection and a thickness linked to the streamwise
inhomogeneity of the mean streamwise velocity. The contributions of the different terms
of the streamwise momentum equation to the friction drag are thus quantified by these
integral thicknesses.
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1. Introduction

Wall-bounded turbulent flows play a crucial role in an immense range of technological and
industrial fluid systems, e.g. over vehicles moving in air and water, through pipes and ducts
used for oil and gas transport and inside combustion and jet engines. Free-stream turbulent
boundary layers are particularly relevant in aerodynamics applications and, with respect to
flat-wall channel flows and circular pipe flows, they present an additional difficulty because
the streamwise direction is statistically inhomogeneous as the shear-layer thickness grows
downstream. A major research objective is the accurate computation or measurement of
the streamwise evolving wall-shear stress in turbulent boundary layers. This task is more
challenging than in pressure-driven channel and pipe flows because the wall friction cannot
be determined conveniently through the streamwise pressure gradient, but only through the
mean-velocity gradient at the wall.

A breakthrough in this research area has been the discovery of the Fukagata–Iwamoto–
Kasagi identity (FIK) (Fukagata, Iwamoto & Kasagi 2002), which relates the wall-shear
stress to a simple integral involving the Reynolds stresses in channel and pipe flows, with
the addition of other integral terms in the case of free-stream boundary layers because of
their streamwise inhomogeneity. The integrals in the FIK identity are performed along the
wall-normal direction from the wall to an upper integration bound, i.e. the flow centreline
for channels and pipe flows, and the boundary-layer thickness for boundary layers. Another
relevant identity was discovered by Renard & Deck (2016) (hereafter referred to as the
RD decomposition), for which the skin-friction coefficient is expressed as the sum of
integral terms belonging to the mechanical energy equation. Alternative identities for the
skin-friction coefficients of these flows, derived from the vorticity equation, was obtained
by Yoon et al. (2016), and variants for open-channel flows were studied by Nikora et al.
(2019) and Duan et al. (2021).

The utilization of the FIK decomposition for turbulent channel flows has been
significant. It has also been used in the context of drag reduction techniques, for which
it is important to understand the contribution of various quantities to the skin friction. It
appeared in the studies of Xia et al. (2015) and Stroh et al. (2015) on boundary layers with
opposition control, Kametani & Fukagata (2011), Kametani et al. (2015) and Kametani
et al. (2016), where blowing and suction were used as the control mechanism, and Bannier,
Garnier & Sagaut (2015), who analysed flows with drag reduction by riblets. The influence
of the large scale structures in the boundary layer was investigated with the aid of FIK
decomposition by Deck et al. (2014). Monte, Sagaut & Gomez (2011) studied the flow
over a cylinder to investigate the influence of the curvature ratio on the skin friction using
the FIK identity.

The RD decomposition has recently become more popular in the study of
boundary-layer flows. Fan, Li & Pirozzoli (2019) used it to investigate incompressible and
compressible turbulent boundary layers, focussing on the Reynolds-number behaviour of
the different terms of the decomposition. Fan et al. (2020) utilized the RD decomposition
to study an adverse-pressure-gradient boundary layer while Fan et al. (2022) investigated
the flow over the suction and pressure sides of an airfoil. Zhang et al. (2020) compared the
application of the FIK and RD decompositions in channel flows with drag reduction due
to viscoelastic fluids.

The interesting study by Elnahhas & Johnson (2022) is particularly worth mentioning
because their identity expresses the skin-friction coefficient of free-stream boundary layers
as the sum of the Blasius friction coefficient and an integrated contribution of the Reynolds
stresses, thereby distinguishing the contribution of the laminar flow and the nonlinear
fluctuations in transitional or turbulent boundary layers.

943 A50-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

44
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.444


Integral relations for the skin-friction coefficient

The choice of the boundary-layer thickness as the upper integration bound in the FIK
analysis in the case of free-stream boundary layers was questioned by Renard & Deck
(2016) because the definition of the thickness is arbitrary and the contribution of the
turbulent fluctuations above that wall-normal location, albeit small, is thus neglected
without justification. The impact of the upper integration limit on the terms of the identity
was discussed by Mehdi et al. (2014) and Wenzel, Gibis & Kloker (2022).

We show herein that, in the case of free-stream boundary layers, a finite upper bound
of integration in the free stream generates a spurious dependence of the terms of the FIK
identity on the bound itself. It follows that the upper bound has to be taken asymptotically
large, a step that simplifies the FIK identity to the well-known von Kármán momentum
integral equation relating the wall-shear stress and the momentum thickness. The influence
of the Reynolds stresses on the wall friction cannot thus be quantified, as in the cases of
channel and pipe flows. We also find that the infinite number of identities obtained by
successive integration all reduce to the von Kármán momentum equation for boundary
layers, while, for channel flows, only the original FIK identity possesses a clear physical
meaning. By asymptotic analysis, it is revealed that the family of identities for channel
flows collapses to the definition of skin-friction coefficient when the number of iterations
increases to infinity. We interpret the skin-friction coefficient decomposition for boundary
layers by Renard & Deck (2016) in terms of integral thicknesses, by utilizing an energy
thickness and an inertia thickness, the latter composed of two thicknesses related to the
mean-flow wall-normal convection and the streamwise inhomogeneity.

2. Flow systems

We consider a free-stream boundary layer flowing past a flat plate in the absence of a
streamwise pressure gradient. Unless otherwise stated, the Navier–Stokes equations are
scaled by using the free-stream velocity U∗∞ as the reference velocity and ν∗/U∗∞ as the
reference length scale, where ν∗ is the kinematic viscosity of the fluid. Quantities denoted
by ∗ are dimensional, while quantities without any symbol are non-dimensional. The
Cartesian coordinates x, y, z denote the streamwise, wall-normal and spanwise directions,
respectively. The velocity components along x, y and z are u, v and w, respectively. The flat
plate is at y = 0 and the flow is unconfined along the wall-normal direction. It is assumed
that the flow has reached fully developed conditions and the direction z and the time t
are statistically homogeneous. Averaging a quantity q over z along a distance Lz and over t
for a time interval T is defined as q̄(x, y) = L−1

z T−1 ∫ T
0

∫ Lz
0 q(x, y, z, t) dz dt. Each quantity

is decomposed as q(x, y, z, t) = q̄(x, y) + q′(x, y, z, t) and {ū, v̄, 0} is the mean flow. The
data obtained by Sillero, Jiménez & Moser (2013) via direct numerical simulations are
used. We also study integral relations for channel flows by using the data computed by
Hoyas & Jiménez (2006) via direct numerical simulations.

3. Results

3.1. Derivation of the momentum-thickness law
It is first useful to review the derivation of the relationship between the skin-friction
coefficient and the momentum thickness for free-stream boundary layers. The
Reynolds-averaged x-momentum equation is

∂

∂y

(
u′v′ − ∂ ū

∂y

)
+ Ix = 0, where Ix(x, y) = ∂uu

∂x
+ ∂ ūv̄

∂y
− ∂2ū

∂x2 . (3.1)
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Integrating (3.1) along y from 0 to ∞ leads to

∂ ū
∂y

∣∣∣∣
y=0

= −
∫ ∞

0
Ix dy = −

∫ ∞

0

∂

∂x

(
uu − ∂ ū

∂x

)
dy, (3.2)

because u′v′ → 0, v̄ → 0 and ū → 1 as y → ∞. The limit of vanishing free-stream
wall-normal velocity is discussed in Appendix A. In this section and in § 3.4, it is assumed
that ∂u′u′/∂x � ∂u′v′/∂y because in a turbulent boundary layer the correlations u′u′ and
u′v′ are both comparable to the square of the wall-friction velocity u2

τ = (ν∗/U∗2∞) dū∗/dy∗
and the derivative with respect to x is negligible relative to the derivatives with respect
to y in the limit of large Reynolds number. This assumption has been amply verified
numerically ever since the first direct numerical simulation of a spatially developing
boundary layer by Spalart & Watmuff (1993). By using the continuity equation, it follows
that:

∂ ū
∂y

∣∣∣∣
y=0

= −
∫ ∞

0

∂

∂x

(
uu + ∂v̄

∂y

)
dy = −

∫ ∞

0

(
∂ ūū
∂x

+ ∂u′u′

∂x

)
dy = −

∫ ∞

0

∂ ūū
∂x

dy.

(3.3)
By using the definition of momentum thickness

θ =
∫ ∞

0
ū(1 − ū) dy, (3.4)

one finds
∂ ū
∂y

∣∣∣∣
y=0

= d
dx

∫ ∞

0
ū(1 − ū) dy = dθ

dx
. (3.5)

Equation (3.5) can be written in terms of the skin-friction coefficient,

Cf = 2ν∗

U∗2∞

∂ ū∗

∂y∗

∣∣∣∣
y∗=0

= 2
dθ∗

dx∗ , (3.6)

more commonly referred to in the literature as the von Kármán momentum integral
equation (Pope 2000). Further details of the derivation are found in Appendix A. By
integrating (3.6) along x∗, one finds

D∗ = μ∗
∫ x∗

2

x∗
1

∂ ū∗

∂y∗

∣∣∣∣
y∗=0

dx∗ = ρ∗U∗2
∞(θ∗

2 − θ∗
1 ), (3.7)

where D∗ is the drag per unit spanwise width along a streamwise interval x∗
2 − x∗

1, μ∗ is
the dynamic viscosity of the fluid and ρ∗ is the density of the fluid.

3.2. Simplification of the FIK identity
We rederive the FIK identify for a free-stream boundary layer following Fukagata et al.
(2002) with two important differences. The first difference is that Fukagata et al. (2002)
scaled y∗ by the boundary-layer thickness δ∗

99, i.e. the wall-normal distance where the
streamwise mean velocity u∗ reaches 99 % of the free-stream velocity U∗∞, while we scale
y∗ with ν∗/U∗∞. The second difference is that Fukagata et al. (2002) performed integration
along y from the wall to δ99, while we integrate from the wall to an unspecified location h
in the free stream and then take the limit h → ∞.
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Integral relations for the skin-friction coefficient

Integrating (3.1) from 0 to y leads to

u′v′ − ∂ ū
∂y

+ ∂ ū
∂y

∣∣∣∣
y=0

+
∫ y

0
Ix dŷ = 0. (3.8)

By further integrating (3.8) from 0 to y, one finds

y
∂ ū
∂y

∣∣∣∣
y=0

= −
∫ y

0
u′v′ dŷ + ū −

∫ y

0

∫ ỹ

0
Ix dŷ dỹ. (3.9)

Integration of (3.9) from 0 to h, where ū = 1 and v̄ = 0, gives

h2

2
∂ ū
∂y

∣∣∣∣
y=0

= −
∫ h

0

∫ y

0
u′v′ dŷ dy +

∫ h

0
ū dy −

∫ h

0

∫ y

0

∫ ỹ

0
Ix dŷ dỹ dy, (3.10)

and, by integrating by parts the first and the last term on the right-hand side of (3.10), one
finds

Cf = 4
h2

∫ h

0
( y − h)u′v′ dy︸ ︷︷ ︸
term 1

+ 4
h2

∫ h

0
ū dy︸ ︷︷ ︸

term 2

− 2
h2

∫ h

0
( y − h)2Ix dy. (3.11)

Equation (3.11) coincides with the steady version of (15) in Fukagata et al. (2002) if the
wall-normal distance is scaled as y99 = y∗/δ∗

99 and the upper bound h is set equal to δ99,
i.e.

Cf = 4
Rδ

∫ 1

0
ū dy99 + 4

∫ 1

0
( y99 − 1)u′v′ dy99 − 2

∫ 1

0
( y99 − 1)2Ix dy99

= 4(1 − δd)

Rδ

+ 4
∫ 1

0
( y99 − 1)u′v′ dy99 − 2

∫ 1

0
( y99 − 1)2Ix dy99, (3.12)

where Rδ = δ∗
99U∗∞/ν∗ and the definition of displacement thickness, δd = ∫ 1

0 (1 − ū) dy99,
has been used.

The terms on the right-hand side of (3.11) must not depend on the integration bound h
because the skin-friction coefficient on the left-hand side does not. The only requirement
is that the integration be conducted up to a sufficiently large location for the mean-flow
velocity to match the free-stream flow {U∗∞, 0, 0}. The bound h can therefore be taken
asymptotically large. By comparing the integration bounds in the original FIK identity
(3.12) with those in (3.11), it is evident that the choice of scaling y∗ with ν∗/U∗∞ instead of
δ∗

99 allows us to perform the limit h → ∞. In the limit h → ∞, term 1 in (3.11) is null as
the integral involving the Reynolds stresses is finite because u′v′ is null in the free stream
and term 2 in (3.11) is null because the integral grows ∼ h as y → ∞ because ū → 1.
Figure 1 shows the dependence of terms 1 and 2 on h. Term 1 in figure 1(a) decays to zero
for an h value that is much larger than the boundary-layer thickness because of the growth
of y − h inside the integral, although u′v′ is mostly contained within the boundary layer.
It follows that

Cf = − lim
h→∞

⎡
⎢⎢⎢⎣ 2

h2

∫ h

0
y2Ix dy︸ ︷︷ ︸

term 3

− 4
h

∫ h

0
yIx dy︸ ︷︷ ︸

term 4

+ 2
∫ h

0
Ix dy︸ ︷︷ ︸

term 5

⎤
⎥⎥⎥⎦ . (3.13)

Only term 5 in (3.13) is finite as h → ∞ because terms 3 and 4 in (3.13) are null in this
limit as their integrals are finite because Ix is null in the free stream. The graphs (a–c) of
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Figure 1. Dependence of term 1 (graph a) and term 2 (graph b) in (3.11) on the upper integration bound h for
free-stream boundary layers at two Reynolds numbers. The inset of graph (a) shows the decay of term 1 at large
h values. In this figure and in figure 2, the data are from the direct numerical simulations of Sillero et al. (2013)
and the vertical lines indicate the wall-normal locations where h = δ99.

figure 2 display the change of terms 3, 4 and 5 with h. Terms 3 and 4 show an intense
dependence on h for h values comparable to the boundary-layer thickness, although term
5 plateaus to a constant value as soon as the integration is performed up to the free stream.

Equation (3.13) therefore simplifies to (3.2), which proves that, in the case of a
free-stream boundary layer, the FIK identity reduces to the von Kármán momentum
equation between the skin-friction coefficient and the momentum thickness, (3.6). The
identity therefore loses its power of revealing the contribution of the different terms
of the x-momentum equation to the wall friction. Most notably, the Reynolds stresses
disappear from the identity. In the derivation of the FIK identity in channel or pipe flows,
no ambiguity exists about the integration bounds, which are fixed by the walls and the
centreline in the channel-flow case or the pipe axis in the pipe-flow case. In the case of
a free-stream boundary layer, the upper bound of integration is instead not defined by the
system geometry because the flow is unconfined. If a finite h value is used as the upper
integration bound, as performed in Fukagata et al. (2002) and subsequent studies where
the boundary-layer thickness δ∗

99 was chosen, the contributions of the different terms to the
wall friction depend on h. However, this dependence is spurious because their influence on
the skin-friction coefficient must obviously be independent of h. When h = δ99, one may
be led to confirm the established result that the Reynolds stresses impact significantly
on the wall-shear stress by noting that the Reynolds-stress term 1 is comparable to
the skin-friction coefficient (Cf = 3.03 × 10−3 for θ = 4000 and Cf = 2.71 × 10−3 for
θ = 6500), as shown in figure 1(a). However, the non-physical dependence of term 1 on h
precludes the quantification of the effect of the Reynolds stresses on the wall friction.

Xia et al. (2015) and Wenzel et al. (2022) performed only two wall-normal integrations,
instead of three as in Fukagata et al. (2002), stating that a twofold repeated integration
is more suitable for a physical interpretation. Wenzel et al.’s (2022) (3.7) in the
zero-Mach-number limit coincides with our (3.9) by setting y = h. Similarly to (3.11),
the twofold-integration identity also shows the spurious dependence on h and reduces to
the von Kármán momentum equation (3.6) as h → ∞.

Sbragaglia & Sugiyama (2007) proved that, in the case of channel and pipe flows, the
weighing function 1 − y in the integral involving the Reynolds stresses in the FIK identity
can be interpreted physically as the velocity gradient of the corresponding Stokes-flow
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Figure 2. Dependence of terms 3, 4, 5 in (3.13) (a–c, respectively) on the upper integration bound h for
free-stream boundary layers at two Reynolds numbers.

solution (this result was also used by Modesti et al. 2018). As the corresponding
Stokes-flow solution cannot be obtained in the case of free-stream boundary layers,
Sbragaglia & Sugiyama’s (2007) result confirms our finding that the Reynolds-stress
integral in (3.11) does not possess a precise physical meaning for free-stream boundary
layers.

3.3. Alternative FIK identities
Bannier et al. (2015) remarked that a third integration along y could be performed before
the final integration (3.10) up to y = h, thereby obtaining an alternative FIK identity. As
shown by Wenzel et al. (2022), an infinite number n of successive integrations between 0
and y can in fact be performed before the final integration between 0 and h. The result is

Cf = −2n
hn

∫ h

0
(h − y)n−1u′v′ dy + 2n(n − 1)

hn

∫ h

0
(h − y)n−2ū dy − 2

hn

∫ h

0
(h − y)nIx dy.

(3.14)
The identities (3.14) are valid for n ≥ 2. For n = 2, (3.14) is (3.11). For every n, the
identities (3.14) simplify to (3.2) as h → ∞. In this limit, the first term on the right-hand
side of (3.14) is null because hn appears at the denominator and the integral is finite,
and the second term is null because the integral always grows more slowly than the
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denominator hn. The third term in (3.14) is expanded by using the binomial theorem,

− 2
hn

∫ h

0
(h − y)nIx dy = −2

n∑
k=0

(
n
k

)
(−1)k

hk

∫ h

0
ykIx dy. (3.15)

As h → ∞, the terms on the right-hand side of (3.15) for k /= 0 vanish because the
integrals are finite, while the term for k = 0 in (3.15) is finite because it is independent of
h. This remaining term is (3.2). Further alternative formulas are found by multiplying (3.8)
by ym (m > 0) before performing the subsequent integrations and again the final result is
(3.2) in the limit h → ∞. The existence of alternatives to the original FIK identity for
finite h and the simplification of all of them to the von Kármán momentum equation (3.6)
further raises questions on the validity of this approach. The role of the terms in (3.1) on
the generation of the wall-shear stress cannot be quantified because the weighed influence
of the terms in (3.14) depends on n. This dependence on n is spurious because n is not a
physical parameter.

Identities analogous to (3.14) can be found for confined flows. For fully developed
channel flows, one finds

Cf ,c

8(n + 1)
= −

∫ 1

0
(1 − yc)

n−1u′
cv

′
c dyc + n − 1

Rb

∫ 1

0
(1 − yc)

n−2ūc dyc, (3.16)

where yc = y∗/h∗
c , h∗

c is the half-channel height, the velocity components are scaled by
2U∗

b , where U∗
b is the bulk velocity, Rb = 2U∗

bh∗
c/ν

∗ and Cf ,c = (8/Rb) dūc/dyc|yc=0. The
identity (3.16) is valid for n ≥ 2. The identity found by Fukagata et al. (2002) is obtained
for n = 2 (they integrate to the upper wall in their (16)). In the laminar case, for which
u′

cv
′
c = 0 and ūc = 3yc(2 − yc)/4, (3.16) is independent of n as the term containing ūc

simplifies and the identity reduces to the laminar Cf ,c = 12/Rb. Amongst the n-family of
identities (3.16), only the identity obtained by Fukagata et al. (2002), found for n = 2,
possesses a clear physical meaning in the turbulent-flow case because the term involving
the mean velocity ūc in (3.16) reduces to the part of the skin-friction coefficient that
pertains to a laminar channel flow by using the definition of bulk velocity (this distinction
does not emerge directly in the case of a turbulent boundary layer as the wall friction of the
Blasius boundary layer is not retrieved in a single term in (3.11), as pointed out by Fukagata
et al. 2002). For n = 2, the term involving u′

cv
′
c in (3.16) therefore univocally distils the

effect of the turbulence on the skin-friction coefficient. For n > 2, the term containing
ūc cannot be simplified and the laminar and turbulent contributions to the skin-friction
coefficient cannot be distinguished.

In order to study the asymptotic behaviour of (3.16) as n → ∞, we write (3.16) as

Cf ,c = −8(n + 1)

∫ ∞

0
u′

cv
′
ce−ns ds + 8(n2 − 1)

Rb

∫ ∞

0
ūc es e−ns ds, (3.17)

where s = − ln(1 − yc). Appendix B shows that the limit of the integrals in (3.17) as
n → ∞ can be moved inside the integrals because the integrands converge uniformly.
We expand u′

cv
′
c ∼ sα1

∑∞
k=0 a1kskβk as s → 0+,

u′
cv

′
c ∼ Auv3y3

c + Auv4y4
c + O( y5

c) = Auv3(1 − e−s)3 + Auv4(1 − e−s)4 + · · ·

= s3
[

Auv3 +
(

Auv4 − 3Auv3

2

)
s
]

+ O(s5), (3.18)
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Integral relations for the skin-friction coefficient

where Auv3(Rb) and Auv4(Rb) are determined numerically. We expand ūces ∼
sα2
∑∞

k=0 a2kskβ2 as s → 0+,

ūces ∼ [Aū1yc + Aū2y2
c + Aū3y3

c + Aū4y4
c + O( y5

c)]e
s

= Aū1(es − 1) + Aū2(es + e−s − 2) + Aū3(es + 3e−s − e−2s − 3)

+ Aū4(es + 6e−s − 4e−2s + e−3s − 4) + · · ·

= s
[

Aū1 +
(

Aū1

2
+ Aū2

)
s +

(
Aū1

3
+ Aū3

)
s2

+
(

Aū1

24
+ Aū2

12
− Aū3

2
+ Aū4

)
s3
]

+ O(s5), (3.19)

where Aū1 = dū/dyc|yc=0, Aū2 = 0.5d2ū/dy2
c |yc=0, Aū3 = (1/6)d3ū/dy3

c |yc=0 and Aū4 =
(1/24)d4ū/dy4

c |yc=0. It follows that α1 = 3, β1 = 1, a10 = Auv3, a11 = Auv4 − 3Auv3/2,
α2 = 1, β2 = 1, a20 = Aū1, a21 = Aū2 + Aū1/2, a22 = Aū3 + Aū1/3 and a23 = Aū1/24 +
Aū2/12 − Aū3/2 + Aū4. According to Watson’s lemma (Bender & Orszag 1999), as n →
∞,

Cf ,c ∼ −8(n + 1)

[
Γ (4)Auv3

n4 +
(

Auv4 − 3Auv3

2

)
Γ (5)

n5 + · · ·
]

+ 8(n2 − 1)

Rb

[
Γ (2)Aū1

n2 +
(

Aū2 + Aū1

2

)
Γ (3)

n3 +
(

Aū3 + Aū1

3

)
Γ (4)

n4

+
(

Aū4 − Aū1

2
+ Aū2

12
+ Aū1

24

)
Γ (5)

n5 + · · ·
]

∼ 8
Rb

dū
dyc

∣∣∣∣
yc=0

, (3.20)

where Γ is the gamma function. The asymptotic analysis is useful because it proves that, as
n grows, the integral in (3.16) involving the Reynolds stresses impacts less and less on the
skin-friction coefficient because it behaves ∼ −48Auv3/n3, while the term containing the
mean flow becomes more and more relevant because it behaves ∼ (8/Rb) dū/dyc|yc=0 +
4(d2ū/dy2

c |yc=0 + dū/dyc|yc=0)/(Rbn). Figure 3 shows the skin-friction terms as functions
of n at two Reynolds numbers, computed numerically via (3.16) and asymptotically via
(3.20). As n → ∞, no information on the physics of a turbulent channel flow emerges
from (3.16) as the Reynolds stresses vanish and the identity degenerates to the definition
of the skin-friction coefficient, Cf ,c = (8/Rb) dūc/dyc|yc=0. The asymptotic behaviour
(3.20) further proves that the channel-flow identity (3.16) only possesses a defined physical
meaning when n = 2.

Motivated by the studies of Xia et al. (2015) and Wenzel et al. (2022) on free-stream
boundary layers, we perform a twofold integration in the fully developed channel-flow
case. The result is

Cf ,c = 16
Rb

ūc( yc = 1) − 16
∫ 1

0
u′

cv
′
c dyc. (3.21)

The identity (3.21) reduces to Cf ,c = 12/Rb in the laminar case, i.e. when u′
cv

′
c = 0 and

ūc = 3/4 at the centreline. Differently from the original FIK identity, relation (3.21) lacks
the virtue of univocally distinguishing the laminar and the turbulent contributions to
the skin-friction coefficient because ūc( yc = 1) is the mean velocity at the centreline.
Nevertheless, it can be useful for checking numerical calculations and experimental
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Rb = 87 300

Rb = 5650

0 300 600 900 1200 1500

0.002

0.004Cf,c

0.006

0.008

n

Figure 3. Dependence of the skin-friction terms of (3.16) (solid lines) and the asymptotic results of (3.20)
(dashed lines) on the iterations n for Rb = 5650 (thick lines, Rτ = u∗

τ h∗
c/ν

∗ = 180, where u∗
τ is the wall-friction

velocity) and for Rb = 87300 (thin lines, Rτ = 2004). The black, blue and red lines indicate Cf , the terms
depending on u′v′ and the terms depending on ū, respectively. The solid lines are computed using the direct
numerical simulation data of Hoyas & Jiménez (2006).

measurements of Cf , computed directly via the wall-normal velocity gradient at the wall
or the mean streamwise pressure gradient, and indirectly via the u′

cv
′
c profile and the

mean centreline velocity. It is found that (3.21) is also valid for pipe flows, in which
case yc = r∗/R∗, r∗ is the radial coordinate, R∗ is the pipe radius and Rb = 2U∗

bR∗/ν∗

(Cf ,c = 16/Rb is found in the laminar case as u′
cv

′
c = 0 and ūc = 1 at the pipe axis).

As the Reynolds number increases, it is progressively more difficult to measure the
wall-shear stress via direct measurement of the wall-normal velocity gradient at the wall
because the near-wall turbulent length scales become smaller and the viscous sublayer
thinner. In the limit of large Reynolds number, it is instead easier to compute the
skin-friction coefficient via (3.21) because the measurements of the bulk velocity and the
integrated Reynolds stresses suffer progressively less from the large near-wall velocity
gradients. Furthermore, the identity (3.21) allows for a local skin-friction measurement,
while computing the wall-shear stress via the streamwise pressure gradient may require
wall-pressure measurements distributed along a long streamwise stretch. These comments
are also valid for the original identities by Fukagata et al. (2002). During the final revision
stages of the present work, we became aware that (3.21) was also discovered by Elnahhas
& Johnson (2022) for channel flows.

The FIK identity for planar Couette flow was obtained by Kawata & Alfredsson (2019).
It is worth noting that, in that case, the laminar and turbulent contributions to the
skin-friction coefficients were distinguished by integrating twice, while such a result is
attained by integrating thrice in the case of channel and pipe flows.

3.4. Skin-friction coefficient as a function of integral thicknesses
After verifying that the FIK identity (3.11) simplifies to the von Kármán momentum
equation (3.6), we follow the study of Renard & Deck (2016), who obtained an integral
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Integral relations for the skin-friction coefficient

identity for free-stream boundary layers where the interval of integration is unbounded.
The central idea is to decompose the momentum thickness (3.4) as the sum of integral
thicknesses in order to quantify the impact of each term in the mechanical energy
balance on the skin-friction coefficient, via (3.6), and on the wall-friction drag, via
(3.7). Differently from Renard & Deck (2016), we do not adopt the boundary-layer
approximation, i.e. the term ∂2ū/∂x2 is kept in the x-momentum equation (3.1). We
multiply (3.1) by ū − 1 and integrate along y from 0 to ∞ to find

Cf = 2
∫ ∞

0

∂ ū
∂y

(
∂ ū
∂y

+ ∂v̄

∂x

)
dy + 2

∫ ∞

0
−u′v′ ∂ ū

∂y
dy

+ 2
∫ ∞

0
−ūv̄

∂ ū
∂y

dy + 2
∫ ∞

0
(ū − 1)

∂ ū2

∂x
dy, (3.22)

which may be written as

Cf = E + P + C + S. (3.23)

The five terms in (3.23) can be interpreted from the perspective of an energy balance
(per unit time), by multiplying (3.23) by ρ∗U∗3∞ , or, as a force balance, by multiplying
(3.23) by ρ∗U∗2∞ . In the former case, the meaning of the terms is clear if the absolute
frame of reference is adopted, i.e. where the wall moves and the free stream is stationary
(Renard & Deck 2016). The left-hand side is the energy imparted by the moving wall on
the fluid, while the first term on the right-hand side is the energy dissipated into heat by
the viscous action of the mean flow, and the second term is the energy spent on creating
turbulence. The third and fourth terms represent the uptake of kinetic energy of the fluid
by the moving wall and are related to the growth of the boundary layer. The convection
term (C) is negative, which explains why blowing through the wall (positive v̄) decreases
the drag, while suction (negative v̄) increases the drag. The fourth term (S) is named the
streamwise-heterogeneity term (Fan et al. 2020).

In order to interpret the terms

E + P = 2
∫ ∞

0

∂ ū
∂y

(
∂ ū
∂y

+ ∂v̄

∂x

)
dy + 2

∫ ∞

0
−u′v′ ∂ ū

∂y
dy, (3.24)

we multiply (3.1) by ū and integrate from zero to ∞. Following Schlichting & Gersten
(2003), we obtain

E + P = dE

dx
, (3.25)

where

E =
∫ ∞

0
ū(1 − ū2) dy, (3.26)

is the energy thickness. Note that E may be written as 2/Δ, where Δ is the dissipation
thickness (Hinze 1975), which is

Δ =
[∫ ∞

0

(
∂ ū
∂y

)2

dy

]−1

, (3.27)

when the boundary-layer approximation (∂v̄/∂x � ∂ ū/∂y) is used in (3.24).
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For the convection term

C = 2
∫ ∞

0
−ūv̄

∂ ū
∂y

dy, (3.28)

we use continuity and integration by parts to find

C = 2
∫ ∞

0
ū
∂ ū
∂y

∫ ŷ

0

∂ ū
∂x

dŷ dy =
∫ ∞

0
(1 − ū2)

∂ ū
∂x

dy. (3.29)

Equation (3.29) can be written as

C = dC

dx
where C =

∫ ∞

0
ū
(

1 − 1
3

ū2
)

dy. (3.30)

For the streamwise-heterogeneity term,

S = 2
∫ ∞

0
(ū − 1)

∂ ū2

∂x
dy, (3.31)

we note that

(ū − 1)
∂ ū2

∂x
= ∂

∂x

[
ū2
(

2
3

ū − 1
)]

. (3.32)

Hence

S = dS

dx
where S = 2

∫ ∞

0
ū2
(

2
3

ū − 1
)

dy. (3.33)

By adding C and S, one finds

I = C + S =
∫ ∞

0
ū(1 − ū)2 dy, (3.34)

which we term the inertia thickness. To summarize, we have

E + P = dE

dx
and C + S = dI

dx
. (3.35)

It is verified that
2θ = E + I = E + C + S, (3.36)

and

Cf = 2
dθ

dx
= dE

dx
+ dI

dx
= dE

dx
+ dC

dx
+ dS

dx
, (3.37)

which is therefore a decomposition of the von Kármán momentum equation (3.6). The
terms of (3.23) and the integral lengths E, I and θ , extracted from the numerical data
of Sillero et al. (2013), are shown in figure 4. The first part of the relation (3.36), i.e. the
decomposition of θ into E and I, was found by Drela (2009) in the context of aerodynamics
of vehicles. In Drela (2009), the term I was not related to the boundary-layer inertia terms,
but it was instead linked to the kinetic-energy excess of the wake behind a vehicle.

Similarly to the study of Renard & Deck (2016), (3.37) can be interpreted in the absolute
frame of reference, i.e. where the wall is in motion. Equation (3.37) thus describes how
the energy given by the wall motion to the fluid, measured by twice the change of θ with
the streamwise direction, is divided into the change of E, representing the losses of mean
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Figure 4. (a) Decomposition of the skin-friction coefficient Cf into the terms in (3.23): E (red), P (blue),
C (green) and S (orange). The magenta circles indicate the sum of all four components on the right-hand side
of (3.23). The black crosses indicate Cf obtained directly from the wall-shear stress data of Sillero et al. (2013).
(b) Integral lengths in (3.36): energy thickness E (cyan), inertia thickness I (red) and momentum thickness θ

(black crosses). The magenta circles indicate (E + I)/2. The x-axis is scaled by x1, the coordinate of the first
point. The momentum thickness θ at the six points is 4000, 4500, 5000, 5500, 6000, 6500. The data in this
figure are obtained by post-processing the results of the direct numerical simulations of Sillero et al. (2013).

kinetic energy due to the mean-flow viscous dissipation into heat and to the production
of turbulence, and the change of I, representing the change in convective transport of the
mean kinetic energy due to the mean velocity. The change of I can in turn be expressed as
the sum of the changes of the thicknesses C and S, which represent the change in transport
due to the wall-normal mean velocity and the streamwise mean velocity, respectively.
Referring to (3.7), we can now utilize the streamwise integral of (3.37) to investigate what
percentage of the different terms in the RD decomposition contributes to the total drag by
taking differences in the corresponding integral thicknesses.

It is noted, however, that the RD decomposition (3.22) and identities emerging from
it, such as (3.37), do not distinguish the laminar and the turbulent contributions to
the skin-friction coefficient for any flow, while the FIK identity achieves this task for
confined flows and the identity discovered by Elnahhas & Johnson (2022) does so for
free-stream boundary layers. As demonstrated by Renard & Deck (2016), the difference in
the skin-friction coefficient between a laminar and a turbulent boundary layer at the same
Reynolds number based on Δ (for which E is identical) is dominated by P .

4. Conclusions

We have shown that the identity discovered by Fukagata et al. (2002) which expresses the
skin-friction coefficient of free-stream boundary layers as a function of integrated terms
of the Reynolds-averaged streamwise momentum equation, simplifies to the von Kármán
momentum integral equation relating the skin-friction coefficient and the momentum
thickness. This simplification arises as the upper integration bound along the wall-normal
direction is taken asymptotically large. If the upper bound is finite, the weighted
contributions of the terms of the streamwise momentum equation depend spuriously on
the bound itself. The family of infinite identities obtained by successive integrations also
reduces to the von Kármán momentum integral equation. The identities for free-stream
boundary layers with a finite integration bound, (3.14), are still useful for checking,
numerically or experimentally, that the integrated x-momentum terms equate to the
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skin-friction coefficient computed via the wall-normal mean-velocity gradient at the wall.
A further check is to verify that such equality holds irrespectively of the upper bound h,
as long as the latter is located in the free stream, and of the number of integrations n, as
we have shown for channel flows in figure 2(d).

For channel flows, only the original identity found by Fukagata et al. (2002) possesses a
physical meaning and we have proved that the infinite family degenerates to the definition
of skin-friction coefficient as the number of integrations grows asymptotically. By a
twofold integration, we have found an identity, valid for channel and pipe flows, that
links the skin-friction coefficient with the integrated Reynolds stresses and the centreline
mean velocity (the identity for channel flows was also discovered by Elnahhas & Johnson
(2022)).

In the formula of the momentum thickness written as the sum of an energy thickness
and an inertia thickness, we have expressed the latter as the sum of a thickness related to
the mean-flow wall-normal convection and a thickness linked to the mean-flow streamwise
inhomogeneity. This decomposition has been useful to further interpret the skin-friction
decomposition of Renard & Deck (2016) physically and for quantifying the role of the
different momentum-equation terms on the friction drag.
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Appendix A. Mean wall-normal velocity in the free stream

In the derivation of (3.2), the mean wall-normal velocity vanishes in the free stream,
i.e. v̄ → 0 as y → ∞. The von Kármán momentum integral equation (3.6) is instead
obtained in Hinze (1975) by assuming that the wall-normal velocity approaches a constant
value (refer to his (7–8) on p. 594 derived from the continuity equation). Hinze’s (1975)
assumption refers, however, to the first-order wall-normal velocity in the free stream: a
wall-normal pressure gradient exists in the free stream to allow v̄ → 0 as y → ∞. This
adjustment is analogous to the second-order outer expansion in the case of a laminar
boundary layer, where the solution is given in terms of a streamfunction obtained by
complex-variable theory, as discussed in Van Dyke (1975) on page 135.

Nevertheless, either choice for v̄ in the free stream leads to (3.6). Integrating (3.1)
along y from 0 to ∞ without adopting the boundary-layer approximation and by assuming
limy→∞ v̄ = v̄∞ /= 0 leads to

∂ ū
∂y

∣∣∣∣
y=0

+ d
dx

∫ ∞

0
uu dy + v̄∞ − d

dx

∫ ∞

0

∂ ū
∂x

dy = 0. (A1)

Using the continuity equation and assuming that ∂u′u′/∂x � ∂ ū ū/∂x, the second term
and the third term in (A1) merge and the fourth term is written using v̄∞, as follows:

∂ ū
∂y

∣∣∣∣
y=0

= d
dx

∫ ∞

0
ū(1 − ū) dy − dv̄∞

dx
. (A2)
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Although Hinze (1975) assumed that v̄∞ /= 0, the last term in (A2) can be neglected
because it derives from ∂2ū/∂x2 in (3.1), which is negligible if the boundary-layer
approximation is adopted, as on page 589 in Hinze (1975). In our analysis, (A1) simplifies
because v̄∞ = 0 and, although ∂2ū/∂x2 is not neglected, the fourth term is null because
it is equal to the last term in (A2). Equation (A1) reduces to (A2) because the second
term in (A1) becomes the first term on the right-hand side of (A2) as the null term
−(d/dx)

∫∞
0 ū dy can be reintroduced in (A1).

Appendix B. Uniform convergence of integrands in integral relation (3.16)

In order to take the limit of (3.17) as n → ∞, we prove that the limiting operation
can be transferred inside the integrals by using the dominated convergence theorem
(Zeidler 2012; Pryce 2014). Since the integration interval is finite and both integrand
functions are bounded in this interval, it is sufficient to prove that the integrands
converge uniformly. We first define fn = ( yc − 1)n−1u′

cv
′
c. It is found that limn→∞ fn =

f = 0 because ( yc − 1)n−1 → 0 for every yc /= 0 and u′
cv

′
c( yc = 0) = 0. It follows that

‖fn − f ‖∞ = supy∈[0,1] |fn| → 0 as n → ∞ because fn does so for every yc. The proof
for the integrand ( yc − 1)n−2uc is analogous as ( yc − 1)n−2 → 0 for every yc /= 0 and
uc( yc = 0) = 0.
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