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In aggregation theory, index numbers are judged relative to their ability to track the exact
aggregator functions nested within the economy’s structure. We compare two statistical
index numbers—the Divisia monetary aggregate and the simple-sum monetary
aggregate—with the exact rational expectations monetary aggregate, using actual data.
Because we are not using simulated data, we estimate the parameters of the Euler
equations, and thereby of the nested monetary aggregator function, using the generalized
method of moments. We explore the tracking errors of the two index numbers relative to
the estimated exact aggregate. We investigate the circumstances under which risk
aversion increases tracking error. We also use polyspectral methods to test for the
existence of remaining nonlinear structure in the residual tracking errors.
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1. INTRODUCTION

In microeconomic aggregation theory, index numbers are judged relative to their
ability to track the exact aggregator functions nested within the economy’s struc-
ture. Relative to that criterion within the economy’s monetary sector, Barnett et al.
(1997b) compared two statistical index numbers: the Divisia monetary aggregate
(with and without CCAPM adjustment for risk) and the simple-sum monetary ag-
gregate. Barnett and colleagues (1997b) produced those comparisons using sim-
ulated data at various settings of the parameters of an Euler equation model of
monetary asset demand. We similarly compare the two statistical index numbers
with the exact rational expectations monetary aggregate, but we use actual data.
Because we are not using simulated data, we need to estimate the parameters of the
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Euler equations, and thereby of the nested monetary aggregator function. We do
so using the generalized method of moments (GMM). We then plot the time paths
of the resulting estimated exact aggregate and the two approximating statistical
index numbers.

We also compare the dynamic behavior of the two statistical index numbers with
the dynamic behavior of the estimated exact aggregator function in the frequency
domain using polyspectral methods. In particular, we investigate the ability of the
two statistical indexes to extract the nonlinear structure from the estimated exact
aggregate’s time series. In addition to using Hinich’s well-known asymptotic bis-
pectrum test, we bootstrap his test statistic to acquire a finite sample inference. The
objective is to determine whether there exists any unexplained residual nonlinear
structure in the tracking errors of the two statistical index numbers.

This line of research in monetary economics began with Barnett (1980) in the
perfect-certainty case. A long list of published papers and books have been moti-
vated by Barnett’s original perfect-certainty model, based upon consumer demand
theory. While the applications of the perfect-certainty approach are far more ex-
tensive than those of the recent extensions to a stochastic environment, there is
a small but growing literature on Euler equation estimation of nested aggregator
functions over monetary assets. That extended literature began with Poterba and
Rotemberg (1987) and Barnett et al. (1991c) for consumer demand. Analogous
research, in both the perfect-certainty and risk cases, recently has been applied
to manufacturing firms that demand monetary services and financial intermedi-
aries that produce monetary services. A collection of many of the most important
papers on this subject for all three categories of economic agents, with unifying
discussion, can be found in Barnett and Serletis (2000).1

According to the “Barnett critique,” as defined by Chrystal and MacDonald
(1994, p. 76), an internal inconsistency exists between the microeconomics used
to model private-sector structure and the aggregator functions implicitly used
to produce the monetary aggregate data supplied by most central banks. This
internal inconsistency can do considerable damage to inferences about private-
sector behavior, when central-bank monetary aggregate data are used. Chrystal
and MacDonald (1994, p. 76) have observed the following regarding “the prob-
lems with tests of money in the economy in recent years. . . . Rather than a problem
associated with the Lucas critique, it could instead be a problem stemming from
the ‘Barnett Critique.”’ In fact, Barnett-critique issues have been used to cast doubt
upon many widely held views in monetary economics, as emphasized by Barnett
et al. (1992), Belongia (1996), Chrystal and MacDonald (1994), and Barnett and
Serletis (2000). On the basis of this rapidly growing line of research, Chrystal and
MacDonald (1994, p. 108) conclude—in our opinion correctly—that “rejections
of the role of money based upon flawed money measures are themselves easy to
reject.”

In the current paper, we compare the behavior of the exact monetary aggre-
gate with that of the statistical index number approximations under risk, but
only for consumers. Comparable results for manufacturing firms and financial
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intermediaries already have been published by Barnett and Zhou (1994) and Barnett
et al. (1995b), but without frequency-domain tests of successful extraction of non-
linear dynamics from the tracking errors. The data used in this paper are those
supplied by Barnett et al. (1991c), to ensure comparability with the results in that
paper. In one case, we explore robustness to increased sample size, by extending
the sample to include the most recently available data.

2. CONSUMER DEMAND FOR MONETARY ASSETS

In this section, we formulate a representative consumer’s stochastic decision
problem over consumer goods and monetary assets. The consumer’s decisions
are made in discrete time over a finite planning horizon for the time intervals,
t, t + 1, . . . , s, . . . , t + T , wheret is the current time period andt + T is the
terminal planning period. The variables used in defining the consumer’s decision
are as follows:

xs = n-dimensional vector of real consumption of goods and services during periods,
ps = n-dimensional vector of prices of goods and services prices and of rental prices of

durable goods during periods,
as = k-dimensional vector of real balances of monetary assets during periods,
ρs = k-dimensional vector of nominal-holding-period yields of monetary assets,
As= holdings of the benchmark asset during periods,
Rs= one-period holding yield on the benchmark asset during periods,
Is= sum of all other sources of income during periods,
p∗s = p∗s(ps)= true cost-of-living index.

DefineY to be a compact subset of then + k + 2 dimensional nonnegative
orthant. The consumer’s consumption possibility set,S(s), for s ∈ {t, . . . , t + T},
is

S(s) =
{
(as, xs, As) ∈ Y:

n∑
i=1

pisxis =
k∑

i=1

[
(1+ ρi,s−1)p

∗
s−1ai,s−1− p∗sais

]
+ (1+ Rs−1)p

∗
s−1As−1− p∗s As + Is

}
. (1)

Under the assumption of rational expectations, the distribution of random variables
is known to the consumer. Because current-period interest rates are not paid until
the end of the period, they may be contemporaneously unknown to the consumer.
Nevertheless, observe that during periodt the only interest rates that enter into
S(t) are interest rates paid during periodt − 1, which are known at the start of
periodt . Similarly, pt and p∗t are determined and known to the consumer at the
start of periodt . Hence, (at , xt , At ) can be chosen deterministically in a manner
that ensures that(at , xt , At ) ∈ S(t)with certainty. However, that is not possible for
s> t , because at the beginning of time periodt , when the intertemporal decision
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is solved, the constraint setsS(s) for s> t are random sets. Hence, fors> t , the
values of (as, xs, As) must be selected as a stochastic process.

The benchmark asset,As, provides no services other than its yield,Rs. As a
result, the benchmark asset does not enter the consumer’s intertemporal utility
function except in the last instant of the planning horizon.2 The asset is held only
as a means of accumulating wealth to endow the next planning horizons. The
consumer’s intertemporal utility function is

U = U (at , . . . ,as, . . . ,at+T ; xt , . . . , xs, . . . , xt+T ; At+T ),

whereU is assumed to be intertemporally additively (strongly) separable, such
that

U = u(at , xt )+
(

1

1+ ξ
)

u(at+1, xt+1)+ · · ·

+
(

1

1+ ξ
)T−1

u(at+T−1, xt+T−1)+
(

1

1+ ξ
)T

u(at+T , xt+T , At+T )

=
t+T−1∑

s=t

(
1

1+ ξ
)s−t

u(as, xs)+
(

1

1+ ξ
)T

uT (at+T , xt+T , At+T ), (2)

and the consumer’s subjective rate of time preference,ξ , is assumed to be constant.3

The single-period utility functions,u anduT , are assumed to be increasing and
strictly quasi concave.

Given the price and interest-rate processes, the consumer selects the determinis-
tic point(at , xt , At ) and the stochastic processes(as, xs, As), s= t+1, . . . , t+T ,
to maximize the expected value ofU over the planning horizon, subject to the se-
quence of choice set constraints. Formally, the consumer’s decision problem is the
following.

Problem 1. Choose the deterministic point(at , xt , At ) and the stochastic pro-
cess(as, xs, As), s= t + 1, . . . , t + T , to maximize

u(at , xt )+ Et

[
t+T−1∑
s=t+1

(
1

1+ ξ
)s−t

u(as, xs)+
(

1

1+ ξ
)T

uT (at+T , xt+T , At+T )

]
(3)

subject to(as, xs, As) ∈ S(s) for s= t, . . . , t + T .
We useEt to designate the expectations operator conditionally upon the infor-

mation that exists at timet .
In the infinite-planning-horizon case, the decision problem becomes the fol-

lowing.
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Problem 2. Choose the deterministic point(at , xt , At ) and the stochastic pro-
cess(as, xs, As), s= t + 1, . . . ,∞, to maximize

u(at , xt )+ Et

[ ∞∑
s=t+1

(
1

1+ ξ
)s−t

u(as, xs)

]
(4)

subject to(as, xs, As) ∈ S(s) for s ≤ t , and also subject to

Et

(
1

1+ ξ
)s−t

As −→s→∞ 0.

The latter constraint rules out perpetual borrowing at the benchmark rate of return,
Rt .

3. EXISTENCE OF A MONETARY AGGREGATE FOR THE CONSUMER

To ensure the existence of a monetary aggregate for the consumer, we partition the
vector of monetary asset quantities,as, such thatas= (ms, hs). We correspondingly
partition the vector of interest rates of those assets,ρs, such thatρs = (rs, is). We
then assume that the utility function,u, is blockwise weakly separable inms and
in xs for some such partition ofas. Hence, there exists a monetary aggregator
(“category utility”) function,M , a consumer-goods aggregator function,X, and a
utility function, u∗, such that

u(as, xs) = u∗(M(ms), hs, X(xs)). (5)

We assume that the terminal-period utility function in the finite-planning-horizon
case is correspondingly weakly separable, such thatuT (as, xs, As) = u∗T (M(ms),

hs, X(xs), As). Then it follows that the exact monetary aggregate, measuring the
welfare acquired from consuming the services ofms, is

Ms = M(ms). (6)

We define the dimension ofms to bek1, and the dimension ofhs to bek2, so that
k = k1+ k2.

It is clear that equation (6) does define the exact monetary aggregate in the
welfare sense, becauseMs measures the consumer’s subjective evaluation of the
services that he receives from holdingms. However, it also can be shown that
equation (6) defines the exact monetary aggregate in the aggregation-theoretic
sense. In particular, the stochastic processMs, s ≥ t , contains all of the information
aboutms that is needed by the consumer to solve the rest of his decision problem.
This conclusion is based upon the following theorem, which we call the consumer’s
aggregation theorem:

Let

Ds = Is +
k1∑

i=1

[
(1+ ri,s−1)p

∗
s−1mi,s−1− p∗smis

]
,
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and let

1(s) =
{
(hs, xs, As) ∈ Y:

n∑
i=1

pisxis

k2∑
i=1

[
(1+ i i,s−1)p

∗
s−1hi,s−1− p∗shis

]
+ (1+ Rs−1)p

∗
s−1As−1− p∗s As + Ds

}
. (7)

Let the deterministic point(a∗t , x
∗
t , A∗t ) and the stochastic process(a∗s, x

∗
s, A∗s),

s ≥ t + 1, solve Problem 1 (or Problem 2, ifT = ∞). Consider the following
decision problems, which are conditional upon prior knowledge of the aggregate
processM∗s = M(m∗s), although not upon the component processesm∗s.

Problem 1(a). Choose the deterministic point(ht , xt , At ) and the stochastic
process(hs, xs, As), s= t + 1, . . . , t + T , to maximize

u∗
(
M∗t , ht , xt

)+ Et

[
t+T−1∑
s=t+1

(
1

1+ ξ
)s−t

u∗
(
M∗s , hs, xs

)
+
(

1

1+ ξ
)T

u∗T
(
M∗T , hs, xs, As

)]
(8)

subject to(hs, xs, As) ∈ 1(s) for s= t, . . . , t +T , with the processM∗s given for
s ≥ t .

Problem 2(a). Choose the deterministic point(ht , xt , At ) and the stochastic
process(hs, xs, As), s= t + 1, . . . ,∞, to maximize

u∗
(
M∗t , ht , xt

)+ Et

[ ∞∑
s=t+1

(
1

1+ ξ
)s−t

u∗
(
M∗s , hs, xs

)]
(9)

subject to(hs, xs, As) ∈ 1(s) for s ≥ t , and also subject to

Et

(
1

1+ ξ
)s−t

As −→s→∞ 0,

with the processM∗s given fors ≥ t .

THEOREM 1 (Consumer’s Aggregation Theorem).Let the deterministic point
(mt , ht , xt , At ) and the stochastic process(ms, hs, xs, As), s= t + 1, . . . , t + T,
solve Problem1. Then, the deterministic point(ht , xt , At ) and the stochastic
process(hs, xs, As), s = t + 1, . . . , t + T, will solve Problem1(a) condition-
ally upon M∗s = M(ms) for s = t, . . . , t + T . Similarly, let the deterministic
point (mt , ht , xt , At ) and the stochastic process(ms, hs, xs, As), s ≥ t + 1 solve
Problem2. Then, the deterministic point(ht , xt , At ) and the stochastic process
(hs, xs, As), s ≥ t + 1 will solve Problem2(a)conditionally upon M∗s = M(ms)

for s ≥ t .
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Clearly, this aggregation theorem, proved in the appendix of Barnett et al.
(1997b), applies not only whenMs is produced by voluntary behavior, but also
when theMs process is exogenously imposed upon the consumer, as through a
perfectly inelastic supply function forMs, set by central-bank policy. In that case,
Problems 1(a) and 2(a) describe optimal behavior by the consumer in the remaining
variables. Because(hs, xs, As) are not assumed to be weakly separable fromMs,
the information aboutMs is needed in the solution of Problems 1(a) and 2(a) for
the processes(hs, xs, As). For example, the marginal rate of substitution between
labor and goods may depend upon the value ofMs. Alternatively, information
about the simple-sum aggregate over the components ofms is of no use in solving
either Problem 1(a) or 2(a) unless the monetary aggregator functionM happens
to be a simple sum. In other words, the simple-sum aggregate contains useful in-
formation about behavior only if the components ofms are perfect substitutes in
identical ratios (linear aggregation withequalcoefficients).

4. SOLUTION PROCEDURE

Using Bellman’s principle, we can derive the first-order conditions for solving
Problems 1 and 2. Under the somewhat more restrictive conditions assumed by
Poterba and Rotemberg (1987), the first-order conditions derived below reduce to
those acquired by Poterba and Rotemberg.

We concentrate on the infinite-planning-horizon Problem 2, rather than on the
finite-planning-horizon Problem 2 because the contingency-plan functions (“feed-
back rules”) that solve Problem 1 are time dependent in the finite-planning-horizon
case, but not in the infinite-planning-horizon case. In the infinite-planning-horizon
case, time enters only through the variables that enter those equations as arguments,
rather than through time shifting of the functions themselves.

We begin by solving the budget constraint in equation (1) for the quantity of an
arbitrary consumer good,xjs, and we then use the resulting rearranged constraint
to eliminatexjs from the intertemporal utility function in Problem 2 for alls ≥ t .
For notational simplicity, we letj = 1. We letz1s = (as, As). To apply Bellman’s
method, we must define the control and state variables. We define the control
variables during periods to bezs= (z1s, x2s, . . . , xns). We define the state variables
during periods to be(β1s,φs), where the price and income state variables areφs =
((p2s, . . . , pns), p∗s, p∗s−1, Rs−1, ρs−1, Is)/p1s, and whereβ1s = (as−1, As−1).

Having eliminated the budget constraint by substitution as described above, we
can rewrite Problem 2 as follows:

Problem 2(b). Choose the deterministic pointzt and the stochastic processzs,
s= t + 1, . . . ,∞, to maximize

u(zt ,βt )+ Et

[ ∞∑
s=t+1

(
1

1+ ξ
)s−t

u(zs,βs)

]
(10)
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subject to
β1,s+1 = z1s (11)

and

Et

(
1

1+ ξ
)s−t

As −→s→∞ 0, (12)

with βt given.

Equations (11) are the transition equations,βs+1= g(zs,βs), providing the evo-
lution of future state variables as functions of the controls and the current state. We
assume that theφs process is Markovian. Applying the Benveniste and Scheinkman
equations, we can acquire the Euler equations for the control variables.

The Euler equations, which will be of the most use to us below, are those for
monetary assets. If we replaceX(xt ) with ct in u, those Euler equations become

Et

[
∂u

∂mit
− ρ p∗t (Rt − ri t )

p∗t+1

∂u

∂ct+1

]
= 0 (13a)

for i = 1, . . . , k1, wherect = X(xt ) is the exact-quantity aggregate overxt and
p∗t is its dual exact-price aggregate.4 Similarly, we can acquire the Euler equation
for the consumer-goods aggregate,ct , rather than for each of its components. The
resulting Euler equation forct is

Et

[
∂u

∂ct
− ρ p∗t (1− Rt )

p∗t+1

∂u

∂ct+1

]
= 0. (13b)

5. MONETARY POLICY

Having the Bellman solution at hand, we are in a position to give further consid-
eration to the policy implications of monetary aggregation through the theoretical
aggregate. Hence, we now return to Theorem 1 and Problem 2(a). Clearly, the
Bellman equation for Problem 2(a) can be written in a form analogous to that
of the Bellman equation produced by Problem 2. The only changes are that the
controls now are(hs, x2s, . . . , xns, As), s= t, . . . ,∞while the state variables are
(hs−1, As−1,φs,M∗s ), whereφs is the vector of price and income state variables
defined earlier. Hence, the solution contingency plans solving Problem 2(a) are of
the form

(hs, x2s, . . . , xns, As) = f
(
hs−1, As−1,φs,M∗s

)
, (14)

where all of the controls and state variables are deterministic fors= t .
The appearance ofM∗s as a state variable has interesting policy implications.

Clearly, if M∗s is used as an indicator in the conduct of monetary policy, the
monetary aggregate will indeed contain information about(hs, x2s, . . . , xns, As)

and thereby about the final targets of monetary policy both in goods and labor
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markets. Alternatively, suppose that policy instruments, such as the monetary base,
are used to target the equilibrium path ofM∗s as an intermediate target of policy.
Assuming that the instruments are used in a manner that is not time inconsistent, as,
for example, through an open-loop policy, the equilibrium stochastic process for
M∗s can be influenced by policy. Under our assumption of rational expectations,
economic agents will know about the policy rule and hence about the targeted
equilibrium process forM∗s . The consumer then can solve Problem 2(a) to acquire
the optimal solution for the remaining variables conditionally upon the targeted
process forM∗s .

We see that onlyM∗s can play these roles, if policy operates through a monetary
target or indicator. The simple-sum aggregate, which does not appear as a control
in f, can serve neither role. In fact, the only information from the monetary asset
portfolio, m∗s, that is useful in solving Problem 2(a) isM∗s = M(m∗s) becausem∗s
enters the contingency plansf only throughM .

At this point, we have completed our theoretical analysis of demand for money
in a risky environment. We now can use GMM to estimate the parameters of first-
order conditions under a particular specification for tastes. We then can compute
the estimated theoretical monetary aggregate and proceed to investigate the quality
of currently available statistical index numbers in tracking the monetary service
flow. However, we first determine the applicability of existing index number theory
under the assumptions of our exact aggregation theory.

6. RISK-NEUTRAL CASE

In the perfect-certainty case, nonparametric index number theory is highly de-
veloped and is applicable to monetary aggregation. In the perfect-certainty case,
Barnett (1987, 1980) proved that the nominal user cost of the services ofmit is
πi t , where

πi t = p∗t
Rt − ri t

1+ Rt
. (15)

The corresponding real user cost isπi t /p∗. In the risk-neutral case, the user cost
formulas are the same as in the perfect-certainty case, but with the interest rates
replaced with their expected values. It can be shown that the solution value of the
exact monetary aggregateM(mt ) can be tracked without error in continuous time
[see, e.g., Barnett (1983)] by the Divisia index:

d log Mt =
k1∑

i=1

sit d logmit , (16)

where the user-cost-evaluated expenditure shares are

sit = πi t mit

/
k1∑

i=1

π j t mjt .
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The flawless tracking ability of the index in the risk-neutral case holds regardless
of the form of the unknown aggregator function,M .

However, under risk aversion, the ability of equation (16) to trackM(mt ) is
compromised. We investigate the magnitude of that error below by econometrically
estimatingM(mt ).

7. A GENERALIZATION

The fact that the Divisia index tracks exactly under perfect certainty or risk neutral-
ity is well known. However, we show in this section that neither perfect certainty
nor risk neutrality is needed for exact tracking of the Divisia index. Only contem-
poraneous prices and interest rates need be known. Future interest rates and prices
need not be known, and risk-averse behavior relative to those stochastic processes
need not be excluded. The proof is as follows.

Assume thatRt , p∗t , andrt are known at timet , although their future values are
stochastic. Then, the Euler equations (13a) formt are

∂u

∂mit
− ρp∗t (Rt − ri t )Et

[
1

p∗t+1

∂u

∂ct+1

]
= 0 (17)

for i = 1, . . . , k1. Similarly, the Euler equation (13b) for aggregate consumption
of goods,ct , becomes

∂u

∂cit
− ρp∗t (1+ Rt )Et

[
1

p∗t+1

∂u

∂ct+1

]
= 0. (18)

Eliminating Et [ 1
p∗t+1

∂u
∂ct+1

] between (17) and (18), we acquire

∂u

∂mit
= Rt − ri t

1+ Rt

∂u

∂ct
. (19)

However, by the assumption of weak separability ofu in mt , we have

∂u

∂mit
= ∂u

∂Mt

∂M

∂mit
, (20)

whereMt = M(mt ) is the exact monetary aggregate that we seek to track. Sub-
stituting (19) into (20) and using (15), we find that

∂M

∂mit
= πi t

∂u/∂ct

∂u/∂Mt
. (21)

Now, we substitute (21) into the total differential ofM to acquire

d M(mt ) = ∂u/∂ct

∂u/∂Mt

kt∑
i=1

πi t dmit . (22)
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However, becauseM is assumed to be linearly homogeneous, we have Euler’s
equation for linearly homogeneous functions. Substituting (21) into Euler’s equa-
tion, we have

M(mt ) = ∂u/∂ct

∂u/∂Mt

kt∑
j=1

π j t mjt . (23)

Dividing (22) by (23), we acquire (16), which is the Divisia index. Hence, the
exact tracking property of the Divisia index is not compromised by uncertainty
regarding future interest rates and prices or by risk aversion.

Nevertheless, this assumption is not trivial, as emphasized by Poterba and
Rotemberg (1987), because current-period interest rates are not paid until the
end of the current period. In fact, current-period interest rates are not assumed
to be known contemporaneously in our Euler equations (13a) and (13b). Barnett
et al. (1997b) have derived the consumption CAPM beta risk adjustment to interest
rates that removes the tracking error of the Divisia index under risk aversion. With
that adjustment inserted in the user cost prices, Barnett et al. (1997b) proved that
the Divisia index again tracks the aggregator function exactly in continuous time,
regardless of the degree of risk aversion. However, with the current controversies
regarding CCAPM and the associated “equity premium puzzle,” no central banks
currently are using risk-adjusted interest rates. In the present paper, we therefore
do not include the risk-adjusted Divisia index among the statistical index numbers
that we compare for their ability to track the GMM estimated theoretical aggregator
function.

8. DATA AND SPECIFICATION

We conduct our comparisons at two levels of monetary aggregation: M1 and M2.
To simplify the illustration, we accept a common clustering of M2 components
without first testing for weak separability. We first setms equal to those compo-
nents of M1 found by Belongia and Chalfant (1989) to be weakly separable.5 We
refer to the resulting aggregates over those components to be M1 aggregates. We
then repeat our analysis withms set equal to the components of M2, but with those
components clustered into three groups with prior aggregation within groups, so
thatms contains three aggregated elements. Hence, we implicitly assume thatas is
partitioned in accordance with a recursively nested two-level separable blocking,
such that the components of our M1 aggregate are separable within the compo-
nents of our M2 aggregate, which in turn are separable withinas. Considering the
little that is known about testing for separability in the risk-averse case, the clus-
tering that we have chosen without explicit separability testing is hardly the last
word on that subject.

We now select a specification for the functionu that satisfies our weak separa-
bility assumption, and we estimate the parameters by GMM. In that estimation, the
data that we use are the monthly monetary component data available from Fayyad
(1986) for January 1969 to March 1985.6 In our estimation of the parameters of
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tastes, we use those data in per capita real-balances form. We begin by defining
ms to contain two components—currency and demand deposits—which Belongia
and Chalfant (1989) found to be blockwise weakly separable, at least under risk
neutrality, from other goods and assets.7 In the utility function,u∗(M(ms), hs, xs),
we assume a further higher level of nested blockwise strong separability, such that

u(ms, hs, xs) = V(M(ms), Xs)+ H(hs), (24)

where Xs= X(xs) is the exact quantity aggregate over consumer goods.8 The
utility function that we specify and estimate is the category utility function,
V(M(ms), Xs).9

Because the variables inV(M(ms), Xs) are disjoint from those inH(hs), we
can restrict the original decision to be defined in terms of the utility function
V(M(ms), Xs) in the following manner, without altering the solution for the vari-
ables(ms, Xs). We redefine the utility function in Problem 2 to be

V(M(mt ), Xt )+ Et

[ ∞∑
s=t+1

(
1

1+ ξ
)s−t

V(M(ms), Xs)

]
. (25)

The utility function in Problem 1 can be restricted in an analogous manner. The
budget constraint in either case is simplified in the following manner. All terms
containing the variables(hs, hs−1) are absorbed into the “other income” variable,
Is, with (hs, hs−1) replaced by their stochastic processes solving the complete
unrestricted decision (Problem 1 or 2).

The budget constraint then becomes{
(ms, Xs, As) ∈ H : p∗s Xs =

k1∑
i=1

[
(1+ ri,s−1)p

∗
s−1mi,s−1− p∗smis

]
+ (1+ Rs−1)p

∗
s−1As−1− p∗s As + Is

}
. (26)

In short, with M1 components, we estimate a three-goods model, including two
monetary components and the aggregate quantity of consumer goods,Xs. With M2
components, we estimate a four-goods model, including three aggregated monetary
components and the aggregate quantity of consumer goods,Xs. We now define
our specification forV .10

We assume constant proportional risk aversion, such that the utility function
V = V(M(ms), Xs) is of the form

V(M(ms), Xs) = 1

σ
[ J(Xs,Ms)]

σ (27)

for some functionJ, whereMs = M(ms) is the theoretical monetary aggregate
that we seek to estimate. We then assume that the functionJ has the Cobb–Douglas
form
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J(Xs,Ms) = Xβ
s M1−β

s . (28)

Finally, we assume that the monetary aggregator function,M(ms), has the con-
stant elasticity of substitution form

Ms =
(

k1∑
i=1

δi msi

)1/ν

(29)

with
n∑

i=1

δi = 1,

wheren = 2 for M1 andn = 3 for M2.
Substituting (29) into (28), and then substituting the result into (27), we get

V(M(ms), Xs) = 1

σ

Xβ
s

(
k1∑

i=1

δi msi

)(1−β)/νσ . (30)

Denoting the rate of subjective time discount byρ = 1/(1+ ξ) and substituting
(30) into (25), we get the complete intertemporal expected utility function

Et (U ) = 1

σ

Xβ
t

(
k1∑

i=1

δi mti

)(1−β)/νσ

+ Et


∞∑

s=t+1

ρs−t 1

σ

Xβ
s

(
k1∑

i=1

δi msi

)(1−β)/νσ . (31)

The parameters to be estimated areρ, σ, β, {δi }, andν. The constraints imposed
on those parameters are

k1∑
i=1

δi = 1, 0< β ≤ 1, and 0< δi ≤ 1.

All consumption and asset quantity data are real per capita. We approximate
the benchmark rate,Rs, by the maximum-holding-period yield across all assets in
Fayyad’s (1986) tables during periods. The particular asset that produced that rate
of return need not be the same for alls because our measurement ofRs produces
a proxy for the rate of return on some very illiquid assets (such as human capital
in a world without slavery), on which we may have no monthly data.

9. ESTIMATION

We use Hansen and Singleton’s (1982) GMM estimator to estimate the parameters
of the Euler equations (13a) and (13b). In accordance with Hansen and Singleton’s
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TABLE 1. GMM estimates of parameters of M1 theoretical aggregator function
nested within consumer demand model

Inside aggregator Outside aggregator

Estimated parameter B1 B2 B3 B4 B5

Estimate 0.9168 −0.3329 7.6018 42.717 0.6800
t-ratio 62.489 −3.726 19.171 10.424 2.3769

Inside aggregator Outside aggregator

Derived parameter ρ α β δ ν

Implied estimate 0.9168 −0.3329 0.9825 0.5398 0.6800

estimator, we iterate on the weighting matrix until convergence. The Hansen
and Singleton GMM estimator requires the selection of instrumental variables.
When estimating the theoretical M1 aggregate, we use the following five instru-
ments:Z1 = constant= 10, Z2 = Xs−1− Xs, Z3 = (ms+1,1−ms1)+ (ms+1,2−
ms2), Z4=ms−1,1+ms−1,2, andZ5= Rs−1.

The sample size of Fayyad (1986) is 195, which covers monthly periods from
January 1969 to March 1985. To impose the constraints on the parameters, we
transform the parameters in the following manner:

k1∑
i=1

ρ = B1, σ = B2, β = cos2 B3, δ = cos2 B4, ν = B5,

and we estimate the new parametersB1, B2, B3, andB4. The GMM estimator con-
verged at its fourth stage. The resulting parameter estimates are as in Table 1.11

Using these parameter estimates and the component data, we computed the esti-
mated theoretical M1 monetary aggregate,Ms = M(ms), at each observation. We
also computed the Divisia quantity index and the simple-sum index over the same
components.

Then, we repeated this procedure with the M2 data. The components of M2 were
clustered into three groups, and asset quantities within the groups were aggregated
by simple summation to produce three aggregated components over which we then
aggregate by the three methods. For details of the prior clustering of components,
see Table 4-1 of Barnett et al. (1991c). To impose the constraints on the parameters,
we transform them as follows:

ρ = B1, σ = B2, β = cos2 B3, δ1 = cos2 B5, δ2 = sin2 B5 sin2 B6, ν = B4.

The GMM estimation converged at the third stage. The resulting parameter esti-
mates are provided in Table 2.

Using these parameter estimates and the component data, we computed the
estimated theoretical M2 monetary aggregate,Ms = M(ms), at each observation.
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TABLE 2. GMM estimates of parameters of M2 theoretical aggregator function
nested within consumer demand model

Inside aggregator Outside aggregator

Estimated parameter B1 B2 B3 B4 B5 B6

Estimate 0.8975 −0.2669 0.2173 0.8426 0.8198 0.9177
t-ratio 43.9094 −3.3072 13.1376 1.9011 17.6566 14.6081

Inside aggregator Outside aggregator

Derived parameter ρ σ β ν δ1 δ2

Implied estimate 0.8975 −0.2669 0.9535 0.8426 0.4656 0.3371

We also computed the Divisia quantity index and the simple-sum index over the
same components. In Figure 1, the nominal per capita monetary indices are supplied
for the three methods of aggregation at both the M1 and M2 levels of aggregation.

The properties of the three aggregates at each level of aggregation are seen
easily by inspecting Figure 1. At both levels of aggregation, the Divisia index
tracked the estimated theoretical aggregate more closely than did the simple-sum
monetary aggregate. At the M1 level, Divisia M1 tracks the estimated theoretical
aggregate rather well throughout the sample period. At the M2 level, the growth
rates of the Divisia and estimated theoretical aggregates diverged from each other
from September 1982 through April 1983, with the growth rate of the estimated
theoretical aggregate being consistently higher than that of the Divisia aggregate
throughout that time period. This phenomenon opened a gap between the plots of
the levels of the two series. However, the two paths tracked parallel to each other
after the 8 months of diverging growth rates because the growth rates of the two
series returned to being very similar after April 1983.

The source of the divergence from September 1982 through April 1983 probably
can be found in the unusual circumstances that existed in money markets. Many in-
novations in money markets evolved during that period, such as the introduction of
super-NOW accounts and money-market deposit accounts at commercial banks.12

There also was more than the usual degree of uncertainty regarding monetary
policy because that period immediately followed the termination of the Federal
Reserve’s “monetarist experiment,” and the targets of monetary policy immedi-
ately following the termination of that experiment were unclear. In short, we find
that the Divisia monetary aggregates would have benefited from Barnett et al.’s
(1997b) risk adjustment only during that one period of unusually high risk in
money markets.

10. FREQUENCY-DOMAIN TESTS

In earlier research, Barnett et al. (1995a) detected nonlinearity in the Divisia mon-
etary aggregate time series. In this paper, we seek to determine whether the time
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series of the estimated theoretical monetary aggregates exhibit similar nonlinearity,
and whether the nonlinearity in the Divisia monetary aggregate stochastic process
is induced by the nonlinearity in the theoretical aggregate process that the Divisia
index is tracking. In particular, we wish to investigate whether there exists any re-
maining nonlinear structure in the difference between the Divisia and the estimated
theoretical monetary aggregate. We use this test as a form of residual analysis to
explore the dynamic properties of the Divisia index as an approximation to the
theoretical aggregate.

The mathematical theory relating the normalized squared skewness function
to linearity and Gaussianity has been used by Hinich (1982) to derive testing
procedures. The procedure used in this paper is the one derived by Hinich (1982).
Details of the Hinich test also are discussed by Hinich and Patterson (1985, 1989)
and Ashley et al. (1986).

There are an infinite number of polyspectra, where the order of the polyspectra
are determined by the number of frequencies in their Fourier transform. The bispec-
trum, having two frequencies (its “bifrequencies”), is the second-order polyspec-
trum. The Hinich test is based on the skewness function, which is the normalized
bispectrum, normalized by division by the product of the ordinary power spectra
of the two individual frequencies and their sum.

The bispectrum can be estimated consistently from a finite sample{x(1), . . . ,
x(N)} by the following procedure. Segment the record ofN observations into
K (non-overlapped) blocks ofL observations each, whereL is called the block
length.13 The parameterK/N = 1/L, is the resolution bandwidth.14 For k =
1, . . . , K , we define the bi-periodogram for the bifrequency pair( fi , f j ) as

Gk( fi , f j ) = 1

L
Xk( fi )Xk( f j )X

∗
k( fi + f j ),

where

Xk( f ) =
kL∑

n=(k−1)L+1

x(n) exp

[−i 2π f n

N

]
and whereX∗k denotes the complex conjugate ofXk.

A consistent and asymptotically normal estimator of the bispectrum is

B̂xxx( fi , f j ) = 1

K

K∑
k=1

Gk( fi , f j ),

where 2fi + f j < N and 0< f j < fi < N, and fi = i /L (i = 1, 2, . . . , L). See
Hinich and Messer (1995) for details on the estimator.15 This type of estimator
is analogous to the direct estimator of the power spectrum described by Welch
(1967) and Groves and Hannan (1968), in which the data record is segmented into
frames, and periodograms are computed frame by frame, and then averaged at
each frequency.
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The lowest-order polyspectrum, having only one frequency, is the ordinary
power spectrum. The power spectrum estimator is

P̂xx( fi ) = 1

K

K∑
k=1

Ik( fi ),

where the periodogram is defined asIk( fi ) = (1/2πL)Xk( fi )X∗k( fi ), k = 1, 2,
. . . , K .16 In the bispectrum case, bi-periodograms are computed frame by frame
and then averaged at each frequency pair. It is the final averaging step that leads to
consistency of the estimator in both cases. The variance is reduced by averaging
over more frames, but at a cost of reduced resolution.

We estimate the bispectrum over a range of values for the block length,L, in
accordance with a suggestion by Stokes (1991). The suggested range of block
lengths is(N/3)1/2 to (N)1/2, which, for our sample size(N = 396), corresponds
to a range of block lengths between 12 and 19. See Stokes (1991) for an example
using a well-known gas data model. The settingL = 12 corresponds toN0.42 and
is the closest to Hinich’s suggestion ofN0.4.

The Hinich test for nonlinearity produces a test statisticZ, which is distributed
asymptotically as the standard normal under the null hypothesis of constant skew-
ness. Linear stochastic processes have constant skewness for all pairs of frequen-
cies. The test corresponds to a test of flatness of the bispectrum against variations
in the frequency pair. If the bispectrum is not flat, the power of clashes between fre-
quency pairs depends upon the frequency pair. If that power is not only independent
of the frequency pair, but is always zero, then the process has satisfied a necessary
condition for Gaussianity, which is a special case of linearity. The conditions for
linearity and Gaussianity would be not only necessary but also sufficient, if the
conditions also applied to all higher-order polyspectra. The Hinich Gaussianity test
produces a test statisticG, which is asymptotically standard normal under the null
of zero skewness, which corresponds to flatness of the bispectrum at zero power.
Both the linearity and Gaussianity tests are one sided, and the null is rejected if
the test statistics are large.

The Hinich test is extremely conservative. If the stochastic processesx(t) are
linear, then all of its polyspectra of order greater than or equal to two are indepen-
dent of the frequencyn-tuples,( f1, f2, . . . , fn), for all n ≥ 2. However, the Hinich
test is based only on the bispectrum havingn = 2. A rejection of its null would be
a strong result because the null includes all linear processes and some nonlinear
processes. Consequently, the Hinich test cannot confirm linearity. It only can reject
or fail to reject it. In principle, we could test for nonlinearities using polyspectra
of higher order than the bispectrum, but estimation of even the trispectrum is not
feasible for common sample sizes of economic data sets.

The conservatism of the Hinich test has been reflected in empirical studies.
For example, Barnett et al. (1997a) found that the Hinich test was much less
likely to reject its null than other competing tests, such as the BDS test (Brock,
Dechert, Scheinkman, and LeBaron (1996)). In addition, Hong (1996) notes that
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the third-order cumulants of an autoregressive conditional heteroskedastic (ARCH)
process can be identically zero, in which case the bispectrum test would fail to
reject linearity. Barnett et al. (1997a) demonstrate that, empirically, the Hinich test
has low power against ARCH. In fact, ARCH is linear in the mean, and Ashley
et al. (1986) have shown that the Hinich nonlinearity test does have substantial
power (at reasonable sample sizes) against many commonly considered forms of
nonlinear serial dependence.

The Hinich test has been applied previously in economic analysis. Hinich and
Patterson (1989) examined trade-by-trade stock market data for evidence of non-
linearity. Barnett et al. (1995a) found that Divisia monetary aggregate growth rate
data exhibit deep nonlinearity at the M1 level of aggregation. The value of the
asymptoticZ statistic for Divisia M1 in their test was 21.66, far exceeding cus-
tomary rejection levels of 2 or 3. Considering the conservative nature of the test,
this rejection of linearity is dramatic.

11. FREQUENCY-DOMAIN RESULTS

With the same monthly nominal per capita growth rate data used by Barnett et al.
(1995a) and by Barnett et al. (1991c), we run the same bispectrum tests for non-
linearity, but for the difference between the growth rate of the Divisia monetary
aggregate and its corresponding GMM estimated theoretical monetary aggregate.
At the M1 level of aggregation, the Hinich asymptoticZ statistic for testing non-
linearity of that tracking error is 1.322. Hence, we cannot reject linearity of the
residual process for the Divisia approximation. We conclude that the strong evi-
dence of nonlinearity found in the Divisia monetary aggregate M1 data by Barnett
et al. (1995a) was induced by the stochastic process of the exact theoretical mon-
etary aggregate that is tracked by the corresponding Divisia monetary aggregate.

At the M2 level, Barnett et al. (1995a) found little evidence of nonlinearity in the
Divisia monetary aggregate’s stochastic process. The Hinich asymptoticZ statistic
was 1.542, and hence they could not reject linearity. At that level of aggregation,
we similarly find little evidence of nonlinearity in the residual process. The Hinich
Z statistic for the difference in growth rates between the Divisia and the estimated
theoretical M2 aggregate is 1.426. Hence, there was little nonlinear structure for
Divisia to remove from the Theoretical aggregate’s time series at the M2 level, and
little nonlinear structure is evident in the tracking errors.

Because sample size is important in the Hinich test, we decided to determine
whether nonlinearity would become evident in Divisia M2 when the data are
updated to include the latest observations reported by the Federal Reserve Bank
of St. Louis. We repeated the Hinich test with the full available sample size of
monthly Divisia M2 data. The sample is from January 1959 through October
1999 and is seasonally adjusted. We converted it to per capita form by division by
noninstitutional population and transformed to growth rates. We ran the Hinich test
for nonlinearity with those data, both with and without deflation to real balances
using the consumer price index as the deflator. In addition to computing Hinich’s
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asymptoticZ statistic to test for linearity, we also bootstrapped his test statistic to
acquire a finite sample inference.

The bootstrap method used was to resample the data 300 times and compute the
Z statistic for each resample. Then, the 300Z statistics are sorted, and the 95%,
96%, 97%, 98%, 99%, 99.5%, and 99.9% quantiles are computed. The level of the
95% quantile is the threshold to be used for theZ statistic, if one wants to achieve
a 5% size for the test based on the resampling method.

For the per capita real-growth-rate data, the asymptoticZ statistic was 0.26
and the 95% quantile of the bootstrappedZ was 1.19. With the per capita real-
nominal-growth-rate data, the asymptoticZ statistic was 0.96 and the 95% quantile
of the bootstrapped Z was 1.01. Hence, there is even less evidence of statistically
significant nonlinearity in the Divisia M2 data in the large sample than in the
original smaller sample using the Hinich asymptoticZ statistic.

Nevertheless, it is interesting to inspect the estimated bispectrum. That three-
dimensional surface can contain information about the frequency pairs at which
nonlinear interactions might exist, even if the inference about general nonlinearity
is statistically insignificant. Recall that the test seeks to detect deviations from flat-
ness of the skewness function (the normalized bispectrum). The skewness function
is the square of the absolute value of the bispectrum divided by the product of the
spectra of the bifrequencies and their sum.

Rather than plotting the skewness values, we plot the normal cumulative dis-
tribution of the skewness multiplied by a scale factor to make skewness have a
chi-square distribution with 2 degrees of freedom, using the mean noncentrality
parameter for each bifrequency pair. Again, the theory is developed for a large
sample, but simulations have shown that the results are conservative. Thus, the
plotted values are the probabilities of obtaining such a value of the skewness at
that bicorrelation under the null of linearity. In Figure 2, we display the skewness
function plotted against the two periods (inversely related to the two frequencies)
for the per capita real-growth-rate Divisia M2 data. The view is looking down from
above, and the color code designates height.17 Although the true bispectrum and
normalized skewness function are smooth functions, Hinich’s test uses discrete
bifrequencies in accordance with the sampling procedure described above. With
this extended sample, we used a resolution bandwidth in monthly time units of
12 months, which produces nine bifrequencies. Figure 2 displays level surfaces
corresponding to the tops of the boxes produced in estimating the bispectrum and
skewness functions from the finite samples.

It was evident from the plots of the nominal and real per capita Divisia M2
data that the estimated skewness function is not flat relative to frequency (or
period) pairs. The (4-month, 4-month) bifrequency for the nominal data has a
probability value of 0.971. If we believe that the use of asymptotic theory is valid,
then the probability of obtaining such a result for one of the nine bifrequencies
is 2.9%. This result suggests that there is some nonlinear structure remaining in
those data, although in the test of general nonlinearity we cannot reject the null
of linearity. We do not supply that plot, but we do supply the corresponding plot
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for the deflated real data. Figure 2 was produced from those deflated real data.
Inspection of Figure 2 suggests that deflation to real balances filtered out whatever
little nonlinearity existed in the nominal data. In particular, in Figure 2 we see that
the largest probability value for the real data is 0.944 for the (12-month, 4-month)
bifrequency.

12. CONCLUSIONS

We conclude from the M1-level data that the nonlinear serial dependence in the
Divisia M1 stochastic process was induced from the nonlinearity in the exact
theoretical aggregate that the Divisia index tracks. No statistically significant non-
linearity remains in the tracking-error process, and so, we find that the Divisia index
successfully extracted the nonlinearity from the theoretical aggregate’s process.
At the M1 level of aggregation, we find no evidence of significant gains from the
use of the risk-adjusted Divisia monetary aggregate, and so, our frequency-domain
tests are based on the tracking ability of the unadjusted Divisia M1 index.

At the M2 level, we find that the use of the CCAPM beta-adjusted Divisia
monetary aggregate would be advantageous only during a brief period of a few
months. That period was one during which the level of risk in the financial sector
of the economy was unusually high. Risk aversion does not seem to be a significant
problem for the unadjusted Divisia monetary aggregates, except at broad levels of
aggregation during periods of unusually high risk.

NOTES

1. For a survey limited to the consumer demand side, see Barnett et al. (1992). See Belongia (1996)
and Belongia and Chalfant (1989) for some empirical results. For a presentation of the theory in the
perfect-certainty case for consumers, manufacturing firms, and financial intermediaries, see Barnett
(1987). For international results on Divisia monetary aggregation, see Belongia and Binner (2000).

2. A nonzero probability must exist that the holding-period return,Rs, on the benchmark asset will
exceed that of any other asset during periods because no other motivation for holding the benchmark
asset exists within the consumer’s decision problem, as defined below. In fact, because the variance of
the distribution ofRs is likely to be high relative to that ofris for anyi , we should expect the mean of
Rs to exceed that of any element ofrs.

3. Although money may not exist in the elementary utility function, there exists a derived utility
function that contains money, so long as money has positive value in equilibrium. See, e.g., Arrow and
Hahn (1971), Phlips and Spinnewyn (1982), and Feenstra (1986). We are implicitly using that derived
utility function.

4. Assuming thatX is linearly homogeneous, the exact price aggregator function is the unit cost
function.

5. On testing for weak separability, also see Swofford and Whitney (1987).
6. Although component data are available for more recent months, we decided to use the data

supplied in the appendix of Fayyad (1986) to ensure comparability with the data of Barnett et al.
(1991c), who also published those data along with results that are worth comparing with those in the
present paper. However, in our frequency-domain analysis, we use those data only when comparison
with the data of Barnett et al. (1991c) is relevant. Otherwise, we use updated data now maintained and
published by the St. Louis Federal Reserve Bank. Those data can be found in St. Louis Federal Reserve
Bank’s data Web site, FRED. For links to that source of Divisia monetary aggregate data, as well as to
international sources of Divisia monetary aggregate data, see http://wuecon.wustl.edu/∼barnett/.
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7. See Barnett et al. (1991c) regarding the need to test for weak separability and for further details
regarding the data.

8. Formally, we assume thatxs is in a weakly separable block withinu, with linearly homogeneous
category utility function,X(xs). The true cost-of-living index,p∗s = p∗(ps), is the unit cost function
dual to the quantity aggregator function,Xs. As described earlier, we approximate the true cost-of-living
index by the Fisher ideal index.

We are able to appeal to perfect-certainty aggregation theory in this case because current-period
prices, unlike current-period interest rates, are known in the current period. Hence, two-stage budgeting
over consumer goods is possible, and thereby perfect-certainty aggregation and index number theory
are applicable to consumer goods.

9. The strong separability assumption is largely for expository convenience. Weak separability
of the form u(m1s,m2s, Ls, xs) = U [V(M(m1s), Xs),m2s, Ls] would be sufficient to ensure the
existence of the functionV(M(m1s), Xs) that we use later.

10. We use the same aggregator-function specifications used by Poterba and Rotemberg (1987),
although we believe that at a later stage of this research the aggregator functions should be replaced by
those of the highly flexible semi-nonparametric, asymptotically ideal model (AIM) specification. See,
e.g., Barnett et al. (1991a,b,d).

11. Thet ratios should be interpreted with caution because the use of transformations of parameters
to impose inequality constraints biases conventional methods of estimating standard errors. As a result,
we supply no standard errors ort ratios for the original untransformed parameters.

12. In particular, super-NOW accounts were introduced during January 1983 and money-market
deposit accounts were introduced during December 1982. The period during which the growth rate of
the estimated theoretic M2 aggregate diverged from the Divisia and simple-sum M2 aggregates was
September 1982 through April 1983.

13. Melvin Hinich (personal correspondence), has suggested that the block length be set to ensure
that ln(L)/ ln(N) ≈ 0.4. Consistency of the estimators requires that the parametere= ln(L)/ ln(N) <
0.5.

14. If the last frame is incomplete, it is dropped from the calculation of the estimator.
15. For highly kurtotic stochastic processes, Hinich and Messer (1995) state that the use of the

asymptotic distribution may not be warranted.
16. We employ a trapezoidal taper to reduce side lobe distortion. Some modification of these

formulas therefore is required.
17. The axes are the periods of the two frequencies, varying from 12 down to 2. The vertical axis

(not displayed in the figure) is scaled identically to the horizontal axis, and also varies from 12 down
to 2 as the vertical axis rises in the figure. The height of the estimated skewness function above the
frequency-pair plane is identified by the color code.
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