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Abstract

On the one hand, termination analysis of logic programs is now a fairly established research

topic within the logic programming community. On the other hand, non-termination analysis

seems to remain a much less attractive subject. If we divide this line of research into two kinds

of approaches, dynamic versus static analysis, this paper belongs to the latter. It proposes

a criterion for detecting non-terminating atomic queries with respect to binary constraint

logic programming (CLP) rules, which strictly generalizes our previous works on this subject.

We give a generic operational definition and an implemented logical form of this criterion.

Then we show that the logical form is correct and complete with respect to the operational

definition.

KEYWORDS: constraints, constraint logic programming, non-termination

1 Introduction

On the one hand, termination analysis of logic programs is a fairly established

research topic within the logic programming community; see the surveys, for example,

(De Schreye and Decorte 1994; Mesnard and Ruggieri 2003). Various termination

analyzers are now available via web interfaces, and we note that the Mercury

compiler, designed with industrial goals in mind, includes a termination analysis

(Speirs et al . 1997) available as a compiler option.

On the other hand, non-termination analysis in logic programming seems to

remain a much less attractive subject. We can divide this line of research into two

kinds of approaches: dynamic versus static analysis. In the former one, Bol et al.

(1991) sets up some solid foundations for loop checking, while some recent work

is presented in Shen et al. (2001). The main idea is to prune infinite derivations at

runtime. (Some finite derivations may also be pruned by some loop checkers.) In

the latter approach, which includes the work we present in this paper, one tries

to compute at compile time queries which admit at least one infinite derivation.

One of the earliest works on the static approach is described in De Schreye et al.

(1989), where the authors presented an algorithm for detecting non-terminating
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atomic queries with respect to (w.r.t.) a binary clause of the form p(̃s) ← p(̃t). The

condition is described in terms of rational trees, while we aim at generalizing non-

termination analysis for the generic CLP(X) framework. Non-termination has also

been studied in other paradigms, such as term rewrite systems (Waldmann 2004;

Giesl et al . 2005; Zantema 2005; Waldmann 2007; Zankl and Middeldorp 2007;

Payet 2008); the technique described in Payet (2008) is close to that of this paper.

In Gupta et al. (2008), the authors consider non-termination of C programs, and

Godefroid et al. (2005) and Sen et al. (2005) provide some techniques that detect

crashes, assertion violation and non-termination in C programs.

Our analysis shares with the work on termination analysis presented in Codish

and Taboch (1999) a key component: the binary unfoldings of a logic program

(Gabbrielli and Giacobazzi 1994), which transform a finite set of definite clauses

into a possibly infinite set offacts and binary definite clauses. Some termination

analyses compute a finite over-approximation of the binary unfolding semantics,

over a constraint domain such as CLP(N). In contrast, the non-termination analysis

we have presented in Payet and Mesnard (2006) starts from a finite subset BP of

the binary unfoldings of the concrete program P ; of course, a larger subset may

increase the precision of the analysis – Payet and Mesnard (2006) provide some

experimental evidence. This non-termination analysis first detects patterns of non-

terminating atomic queries from the binary recursive clauses and then propagates

this non-termination information to compute classes of atomic queries for which

we have a finite proof that there exists at least one infinite derivation w.r.t. BP .

The equivalence between the termination of a logic program and that of its binary

unfoldings (Codish and Taboch 1999) is the cornerstone of the analysis; it allows us

to conclude that any atomic query belonging to the identified above classes admits

an infinite left derivation w.r.t. P . The basic idea in Payet and Mesnard (2006) relies

on checking, for each recursive clause in BP , that the body is more general than the

head; if this test succeeds, we can conclude that the head is an atomic query which

has an infinite derivation w.r.t. BP . A key observation consists in considering neutral

argument positions, i.e. argument positions of the predicate symbols defined in P that

do not have any effect on the derivation process when they are filled with a term that

satisfies a given condition. The subsumption test presented in Payet and Mesnard

(2006) only considers the arguments that are in the non-neutral positions and checks

that the arguments in the neutral positions satisfy their associated condition. This

extension of the classical subsumption test considerably increases the power of the

approach in the sense that it allows one to compute more classes of non-terminating

atomic queries.

The initial motivation in Payet and Mesnard (2006) was to complement termina-

tionanalysis with non-termination inside the logic programming paradigm in order to

detect optimal termination conditions expressed in a language describing classes of

queries. Although we obtained interesting experimental results, the overall approach

remains quite syntactic, with an ad hoc flavor and tight links to some basic logic

programming machinery such as the unification algorithm. So in the present paper

our aim is to generalize the approach to the constraint logic programming (CLP)

setting, and the main contribution of this work consists in a strict generalization of

the logical criterion defined in Payet and Mesnard (2004).
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The paper is organized as follows: In Section 2 we give some preliminary

definitions, and in Section 3 we recall in CLP terms the subsumption test to

detect looping queries. In Section 4 we introduce the neutral argument positions;

the operational definition we give (Section 4.3) is useless in practice; hence we

propose a sufficient condition for neutrality, expressed as a logical formula related

to the constraint binary clause under consideration (Section 4.4). For some constraint

domains, we show that the condition is also necessary (Section 4.5). Depending on

the constraint theory, the validity of such a condition can be automatically decided.

In Section 4.6, we describe an algorithm that uses the logical formula of the sufficient

condition to compute neutral argument positions. Finally, in Section 5 we describe

our prototype, and we conclude the paper in Section 6. The detailed proofs of the

results can be found in the long version of this paper which is available as a CoRR1

archive.

Notice that our approach consists in computing a finite subset BP of the binary

unfoldings of the program of interest and then in inferring non-terminating queries

using BP only; hence, we deliberately choose to restrict the analysis to binary CLP

rules and atomic CLP queries, as the result we obtain can be lifted to full CLP.

2 Preliminaries

For any non-negative integer n, [1, n] denotes the set {1, . . . , n}. If n = 0, then

[1, n] = �. We recall some basic definitions of CLP; see Jaffar et al. (1998) for more

details. From now on, we fix an infinite countable set V of variables together with

a signature Σ, i.e. a pair 〈F,Π〉, where F is a set of function symbols and Π is a

set of predicate symbols with F ∩Π = � and (F ∪Π) ∩V = �. Every element of

F ∪Π has an arity which is the number of its arguments. We write f/n ∈ F (resp.

p/n ∈ Π) to denote that f (resp. p) is an element of F (resp. Π) whose arity is n � 0.

A constant symbol is an element of F whose arity is 0.

A term is a variable, a constant symbol or an object of the form f(t1, . . . , tn) where

f/n ∈ F , n � 1 and t1, . . . , tn are terms. An atomic proposition is an element p/0 of Π

or an object of the form p(t1, . . . , tn), where p/n ∈ Π, n � 1 and t1, . . . , tn are terms. A

first-order formula on Σ is built from atomic propositions in the usual way, using the

logical connectives ∧, ∨, ¬, →, ↔ and the quantifiers ∃ and ∀. If φ is a formula and

W := {X1, . . . , Xn} is a set of variables, then ∃Wφ (resp. ∀Wφ) denotes the formula

∃X1 . . . ∃Xnφ (resp. ∀X1 . . . ∀Xnφ). We let ∃φ (resp. ∀φ) denote the existential (resp.

universal) closure of φ.

We fix a Σ-structure D, i.e. a pair 〈D, [·]〉 which is an interpretation of the symbols

in Σ. The set D is called the domain of D; [·] maps each f/0 ∈ F to an element of

D, each f/n ∈ F with n � 1 to a function [f] : Dn → D, each p/0 ∈ Π to an element

of {0, 1} and each p/n ∈ Π with n � 1 to a boolean function [p] : Dn → {0, 1}.
We assume that the predicate symbol = is in Σ and is interpreted as identity in D.

A valuation is a mapping from V to D. Each valuation v extends by morphism to

1 http://arxiv.org/ – Paper ID is 0807.3451 .
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terms. As usual, a valuation v induces a valuation [·]v of terms to D and of formulas

to {0, 1}.
Given a formula φ and a valuation v, we write D |=v φ when [φ]v = 1. We write

D |= φ when D |=v φ for all valuation v. Notice that D |= ∀φ if and only if D |= φ,

that D |= ∃φ if and only if there exists a valuation v such that D |=v φ and that

D |= ¬∃φ if and only if D |= ¬φ. We say that a formula φ is satisfiable (resp.

unsatisfiable) in D when D |= ∃φ (resp. D |= ¬φ).

We fix a set L of admitted formulas, the elements of which are called constraints.

We suppose thatL is closed under variable renaming, existential quantification and

conjunction and that it contains all the atomic propositions,the always satisfiable

formula true and the unsatisfiable formula false. We assume that there is a

computable function solv which maps each c ∈ L to one of true or false,

indicating whether c is satisfiable or unsatisfiable in D. We call solv the constraint

solver.

Example 2.1 (Qlin)

The constraint domain Qlin has <, �, =, �, > as predicate symbols, +, −, ∗, / as

function symbols and sequences of digits as constant symbols. Only linear constraints

are admitted. The domain of computation is the structure with the set of rationals,

denoted by �, as domain and where the predicate symbols and the function symbols

are interpreted as the usual relations and functions over the rationals. A constraint

solver for Qlin always returning either true or false is described in Refalo and

Hentenryck (1996).

Sequences of distinct variables are denoted by X̃, Ỹ or Z̃ and are sometimes

considered as sets of variables: we may write ∀X̃ , ∃X̃ or X̃ ∪ Ỹ . Sequences of (not

necessarily distinct) terms are denoted by s̃, t̃ or ũ. Given two sequences of n terms

s̃ := (s1, . . . , sn) and t̃ := (t1, . . . , tn), we write s̃ = t̃ either to denote the constraint

s1 = t1 ∧ · · · ∧ sn = tn or as a shorthand for “s1 = t1 and . . . and sn = tn”. Given a

valuation v, we write v(̃s) to denote the sequence (v(s1), . . . , v(sn)) and [̃s]v to denote

the sequence ([s1]v, . . . , [sn]v).

The signature in which all programs and queries under consideration are includedis

ΣL := 〈F,Π ∪Π′〉 where Π′ is the set of predicate symbols that can be defined in

programs, with Π ∩Π′ = �.

An atom has the form p(t1, . . . , tn), where p/n ∈ Π′ and t1, . . . , tn are terms. A

program is a finite set of clauses. A clause has the form H ← c � B, where H and

B are atoms and c is a finite conjunction of atomic propositions such that D |= ∃c.
A query has the form 〈A | d〉, where A is an atom and d is a finite conjunction

of atomic propositions. Given an atom A := p(̃t), we write rel (A) to denote the

predicate symbol p. Given a query Q := 〈A | d〉, we write rel (Q) to denote the

predicate symbol rel (A). The set of variables occurring in some syntactic objects

O1, . . . , On is denoted Var(O1, . . . , On).

We consider the following operational semantics given in terms of derivations

from queries to queries: Let 〈p(ũ) | d〉 be a query and p(̃s)← c � q(̃t) be a fresh copy
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of a clause r. When solv (̃s = ũ ∧ c ∧ d) = true,

〈p(ũ) | d〉=⇒
r
〈q(̃t) | s̃ = ũ ∧ c ∧ d〉

is a derivation step of 〈p(ũ) | d〉 w.r.t. r with p(̃s) ← c � q(̃t) as its input clause. We

write Q
+

=⇒
P

Q′ to summarize a finite number (> 0) of derivation steps from Q

to Q′, where each input clause is a variant of a clause from program P . Let Q0

be a query. A sequence of derivation steps Q0 =⇒
r1

Q1 =⇒
r2
· · · of maximal length is

called a derivation of P ∪ {Q0} when r1, r2, . . . are clauses from P and when the

standardization apart condition holds; i.e. each input clause used is variable disjoint

from the initial query Q0 and from the input clauses used at earlier steps. We say

Q0 loops w.r.t. P when there exists an infinite derivation of P ∪ {Q0}.

3 Loop inference with constraints

In the logic programming framework, the subsumption test provides a simple way

to infer looping queries: if, in a logic program P , there is a clause p(̃s) ← p(̃t) such

that p(̃t) is more general than p(̃s), then the query p(̃s) loops w.r.t. P . In this section,

we extend this result to the constraint logic programming framework.

3.1 A “more general than” relation

A query can be viewed as a finite description of a possibly infinite set of atoms, the

arguments of which are values from D.

Example 3.1

In the constraint domain Qlin, the query Q := 〈p(X,Y ) |Y � X + 2〉 describes the

set of atoms p(x, y), where x and y are rational numbers and X and Y can be

made equal to x and y respectively while the constraint Y � X + 2 is satisfied. For

instance, p(0, 2) is an element of the set described by Q.

In order to capture this intuition, we introduce the following definition.

Definition 3.2 (Set described by a query)

The set of atoms that is described by a query Q := 〈p(̃t) | d〉 is denoted by Set(Q)

and is defined as Set(Q) = {p([̃t]v) | D |=v d}.

Clearly, Set(〈p(̃t) | d〉) = � if and only if d is unsatisfiable in D. Moreover, two

variants describe the same set:

Lemma 3.3

Let Q and Q′ be two queries such that Q′ is a variant of Q. Then, Set(Q) = Set(Q′).

Notice that the operational semantics we introduced above can be expressed using

sets described by queries:

Lemma 3.4

Let Q be a query and r := H ← c � B be a clause. There exists a derivation step of

Q w.r.t. r if and only if Set(Q) ∩ Set(〈H | c〉) �= �.
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The “more general than” relation we consider is defined as follows:

Definition 3.5 (More General )

We say that a query Q1 is more general than a query Q when Set(Q) ⊆ Set(Q1).

Example 3.6

In Qlin, the query Q1 := 〈p(X,Y ) |Y � X + 3〉 is more general than the query

Q := 〈p(X,Y ) |Y � X + 2〉. However, Q is not more general than Q1; for instance,

p(0, 3) ∈ Set(Q1) but p(0, 3) �∈ Set(Q).

3.2 Loop inference

Suppose we have a derivation step Q=⇒
r

Q1, where r := H ← c � B. Then, by

Lemma 3.4, Set(Q) ∩ Set(〈H | c〉) �= �. Hence, if Q′ is a query that is more general

than Q, as Set(Q) ⊆ Set(Q′), we have Set(Q′) ∩ Set(〈H | c〉) �= �. So, by Lemma 3.4,

there exists a query Q′1 such that Q′=⇒
r

Q′1. The following lifting result says that,

moreover, Q′1 is more general than Q1.

Theorem 3.7 (Lifting)

Consider a derivation step Q=⇒
r

Q1 and a query Q′ that is more general than Q.

Then, there exists a derivation step Q′=⇒
r

Q′1, where Q′1 is more general than Q1.

From this theorem, we derive two corollaries that can be used to infer looping

queries just from the text of a program.

Corollary 3.8

Let r := H ← c � B be a clause. If 〈B | c〉 is more general than 〈H | c〉, then 〈H | c〉
loops w.r.t. {r}.

The intuition of Corollary 3.8 is that we have 〈H | c〉=⇒
r

Q1, where Q1 is a variant of

〈B | c〉; hence, Q1 is more general than 〈H | c〉; so, by the Lifting Theorem 3.7, there

exists a derivation step Q1 =⇒
r

Q2, where Q2 is more general than Q1; by repeatedly

using this reasoning, one can build an infinite derivation of {r} ∪ {〈H | c〉}.

Corollary 3.9

Let r := H ← c � B be a clause from a program P . If 〈B | c〉 loops w.r.t. P , then

〈H | c〉 loops w.r.t. P .

The intuition of Corollary 3.9 is that we have 〈H | c〉=⇒
r

Q1, where Q1 is a variant of

〈B | c〉, which implies that Q1 is more general than 〈B | c〉; as there exists an infinite

derivation ξ of P ∪ {〈B | c〉}, by successively applying the Lifting Theorem 3.7 to

each step of ξ one can construct an infinite derivation of P ∪ {Q1}.

Example 3.10

Consider the following recursive clause r in Qlin:

p(N)← N � 1 ∧N = N1 + 1 � p(N1).

The query Q1 := 〈p(N1) |N � 1 ∧N = N1 + 1〉 is more general than the query

Q := 〈p(N) |N � 1 ∧N = N1 + 1〉 (for instance, p(0) ∈ Set(Q1) but p(0) �∈ Set(Q)).
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So, by Corollary 3.8, Q loops w.r.t. {r}. Therefore, there exists an infinite derivation

ξ of {r} ∪ {Q}. Then, if Q′ is a query that is more general than Q, by successively

applying the Lifting Theorem 3.7 to each step of ξ, one can construct an infinite

derivation of {r} ∪ {Q′}. So, Q′ also loops w.r.t. {r}.

4 Loop inference using filters

The condition provided by Corollary 3.8 is rather weak because it fails at inferring

looping queries in some simple cases. This is illustrated by the following example.

Example 4.1

Consider the following recursive clause r in Qlin:

p(N,T )← N � 1 ∧N = N1 + 1 ∧ T1 = 2 ∗ T ∧ T � 1 � p(N1, T1)

Let c denote the constraint in r. The query 〈p(N,T ) | c〉 loops w.r.t. {r} because

only the first argument of p decreases in r, and in this query it is unspecified.

But we cannot infer that 〈p(N,T ) | c〉 loops w.r.t. {r} from Corollary 3.8, as in r

〈p(N1, T1) | c〉 is not more general than 〈p(N,T ) | c〉 because of the second argument

of p: for instance, p(1, 1) ∈ Set(〈p(N,T ) | c〉) but p(1, 1) �∈ Set(〈p(N1, T1) | c〉).

In what follows, we extend the relation “is more general.” Instead of comparing

atoms in all positions using the “more general” relation, we distinguish some

predicate argument positions for which we just require that a certain property must

hold, while for the other positions we use the “more general” relation as before.

Doing so, we aim at inferring more looping queries.

Example 4.2 (Example 4.1 continued )

Let us consider argument position 2 of predicate symbol p. In the clause r, the

projection of c on T is equivalent to T � 1; this projection expresses the constraint

placed upon the second argument of p to get a derivation step with r. Notice that the

projection of c on T1 is equivalent to T1 � 2, which implies T1 � 1. Therefore, the

requirements on the head variable T propagates to the body variable T1. Moreover,

the “piece” 〈p(N1) | c〉 of 〈p(N1, T1) | c〉 is more general than the “piece” 〈p(N) | c〉 of

〈p(N,T ) | c〉. Consequently, 〈p(N1, T1) | c〉 is more general than 〈p(N,T ) | c〉 up to the

second argument of p which, in 〈p(N1, T1) | c〉, satisfies T1 � 1, the condition to get

a derivation step with r. Hence, by an extended version of Corollary 3.8 we could

infer that 〈p(N,T ) | c〉 loops w.r.t. {r}.

4.1 Sets of positions

A basic idea in Example 4.2 lies in identifying argument positions of predicate

symbols. Below, we introduce a formalism to do so.

Definition 4.3 (Set of positions)

A set of positions, denoted by τ, is a function that maps each p/n ∈ Π′ to a subset

of [1, n].
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Example 4.4

If we want to distinguish the second argument position of the predicate symbol p

defined in Example 4.1, we set τ := 〈p �→ {2}〉. If we do not want to distinguish any

argument position of p, we set τ′ := 〈p �→ �〉.

Definition 4.5

Let τ be a set of positions. Then, τ is the set of positions whose definition is that

for each p/n ∈ Π′, τ(p) = [1, n] \ τ(p).

Example 4.6

If we set τ := 〈p �→ {2}〉 and τ′ := 〈p �→ �〉, where the arity of p is 2, then

τ = 〈p �→ {1}〉 and τ′ = 〈p �→ {1, 2}〉.

Using a set of positions τ, one can project syntactic objects:

Definition 4.7 (Projection)

Let τ be a set of positions.

• The projection of p ∈ Π′ on τ is the predicate symbol denoted by pτ. Its arity

is the number of elements of τ(p).

• Let p/n ∈ Π′ and t̃ := (t1, . . . , tn) be a sequence of n terms. The projection of

t̃ on τ(p), denoted by t̃τ(p), is the sequence (ti1 , . . . , tim ), where {i1, . . . , im} = τ(p)

and i1 < · · · < im.

• Let A := p(̃t) be an atom. The projection of A on τ, denoted by Aτ, is the

atom pτ (̃tτ(p)).

• The projection of a query 〈A | d〉 on τ, denoted by 〈A | d〉τ, is the query 〈Aτ | d〉.

Example 4.8 (Example 4.4 continued )

The projection of the query 〈p(N,T ) | c〉 on τ (resp. τ′) is the query 〈pτ(T ) | c〉 (resp.

the query 〈pτ′ | c〉).

Projection preserves inclusion and non-disjointness of sets described by queries:

Lemma 4.9 (Inclusion)

Let τ be a set of positions and Q and Q′ be two queries. If Set(Q) ⊆ Set(Q′), then

Set(Qτ) ⊆ Set(Q′τ).

Lemma 4.10 (Non-disjointness)

Let τ be a set of positions and Q and Q′ be two queries. If Set(Q) ∩ Set(Q′) �= �,

then Set(Qτ) ∩ Set(Q′τ) �= �.

4.2 Filters

A second idea in Example 4.2 consists in associating constraints with argument

positions (T � 1 for position 2 in Example 4.2). We define a filter to be the

combination of sets of positions with their associated constraint:

Definition 4.11 (Filter)

A filter, denoted by Δ, is a pair (τ, δ), where τ is a set of positions and δ is a function

that maps each p ∈ Π′ to a query of the form 〈pτ(̃t) | d〉, where D |= ∃d.
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Example 4.12

Consider τ := 〈p �→ {2}〉 and τ′ := 〈p �→ �〉. Let δ := 〈 p �→ 〈pτ(B) |B � 1〉 〉 and

δ′ := 〈 p �→ 〈pτ′ | true〉 〉. Then, Δ := (τ, δ) and Δ′ := (τ′, δ′) are filters.

Note that δ(p) is given in the form of a query 〈pτ (̃t) | d〉, instead of just a constraint

d, because we need to indicate that the entry points of d are the terms in t̃. Indeed,

the function δ is used to “filter” queries: we say that a query Q satisfies Δ when the

set of atoms described by Qτ, the projection of Q on the positions τ, is included in

the set of atoms described by δ(rel (Q)), the query defined for Q’s predicate symbol

by Δ. More formally:

Definition 4.13 (Satisfies)

Let Δ := (τ, δ) be a filter and Q be a query. Let p := rel (Q). We say that Q satisfies

Δ when Set(Qτ) ⊆ Set(δ(p)).

Now we come to the extension of the relation “more general than.” Intuitively,

〈p(t̃′) | d′〉 is Δ-more general than 〈p(̃t) | d〉 if the “more general than” relation holds

for the elements of t̃ and t̃′ whose position is not in τ, while the elements of t̃′ whose

position is in τ satisfy δ. More formally:

Definition 4.14 (Δ-more general )

Let Δ := (τ, δ) be a filter and Q and Q′ be two queries. We say that Q′ is Δ-more

general than Q when Q′τ is more general than Qτ and Q′ satisfies Δ.

Example 4.15

Consider the constraint c in the clause

p(N,T )← N � 1 ∧N = N1 + 1 ∧ T1 = 2 ∗ T ∧ T � 1 � p(N1, T1)

of Example 4.1. The query Q1 := 〈p(N1, T1) | c〉 is Δ-more general than Q :=

〈p(N,T ) | c〉 for the filter Δ :=
(
〈p �→ {2}〉, 〈p �→ 〈pτ(B) |B � 1〉〉

)
. However, Q1 is

not Δ′-more general than Q for the filter Δ′ :=
(
〈p �→ �〉, 〈p �→ 〈pτ′ | true〉〉

)
; indeed,

τ′(p) = � implies that being Δ′-more general is equivalent to being more general,

and by Example 4.1, Q1 is not more general than Q.

Lemma 4.16 (Transitivity)

For any filter Δ, the “Δ-more general than” relation is transitive.

Notice that for any filter Δ := (τ, δ) and any query Q, we have that Qτ is more

general than itself (because the “more general than” relation is reflexive), but Q may

not satisfy Δ. Hence, the “Δ-more general than” relation is not always reflexive.

Example 4.17

Consider the constraint domain Qlin. Let p/1 ∈ Π′ and Δ := (τ, δ) be the fil-

ter defined by τ := 〈p �→ {1}〉 and δ := 〈 p �→ 〈pτ(X) |X � 1〉 〉. The query

Q := 〈p(0) | true〉 is not Δ-more general than itself because Set(Qτ) = {pτ(0)} �⊆
{pτ(x) | x is a rational and x � 1} = Set(δ(p)). Hence, Q does not satisfy Δ.

The fact that reflexivity does not always hold is an expected property. Indeed,

suppose that a filter Δ := (τ, δ) induces a “Δ-more general than” relation that is
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reflexive. Then for any queries Q and Q′, we have that Q′ is Δ-more general than Q if

and only if Q′τ is more general than Qτ (because, as Q′ is Δ-more general than itself,

Q′ necessarily satisfies Δ). Hence, δ is useless in the sense that it “does not filter

anything.” Filters equipped with such a δ were introduced in Payet and Mesnard

(2004), where for any predicate symbol p, δ(p) has the form 〈pτ(X̃) | true〉, where X̃ is

a sequence of distinct variables. In this paper, we aim at generalizing the approach

of Payet and Mesnard (2004). Hence, we also consider functions δ that really filter

queries.

4.3 DN filters: an operational definition

Let us now introduce a special kind of filters that we call “derivation neutral” (DN).

The name “derivation neutral” stems from the fact that if in a derivation of a query

Q we replace Q by a Δ-more general Q′, then we get a “similar” derivation.

Definition 4.18 (Derivation neutral )

Let r be a clause and Δ be a filter. We say that Δ is DN for r when for each

derivation step Q=⇒
r

Q1, the query Q1 satisfies Δ and when for each query Q′ that is

Δ-more general than Q, there exists a derivation step Q′=⇒
r

Q′1, where Q′1 is Δ-more

general than Q1. This definition is extended to programs: Δ is DN for P when it is

DN for each clause of P .

DN filters lead to the following extended version of Corollary 3.8 (to get

Corollary 3.8, take Δ := (τ, δ) with τ(p) = � for any p):

Theorem 4.19

Let r := H ← c�B be a clause. Let Δ be a filter that is DN for r. If 〈B | c〉 is Δ-more

general than 〈H | c〉 then 〈H | c〉 loops w.r.t. {r}.

Example 4.20

If the filter Δ of Example 4.15 is DN for the clause r = p(N,T ) ← c � p(N1, T1)

of Example 4.1, then we can deduce that 〈p(N,T ) | c〉 loops w.r.t. {r} because

〈p(N1, T1) | c〉 is Δ-more general than 〈p(N,T ) | c〉 (see Example 4.15).

Computing a DN filter from the text of a program is not straightforward if we

use the above definition. Section 4.4 presents a logical characterization that we use

in Section 4.6 to compute a filter that is DN for a given recursive clause.

4.4 A logical characterization of DN filters

From now on, we suppose, without loss of generality, that a clause has the form

p(X̃)← c � q(Ỹ ), where X̃ and Ỹ are disjoint sequences of distinct variables. Hence,

c is the conjunction of all the constraints, including unifications. We distinguish the

following set of variables that appear inside such a clause:

Definition 4.21

The set of local variables of a clause r := p(X̃) ← c � q(Ỹ ) is local vars(r) :=

Var(c) \ (X̃ ∪ Ỹ ).
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In this section, we aim at characterizing DN filters in a logical way. To this end,

we define:

Definition 4.22 (sat)

Let Q := 〈p(̃t) | d〉 be a query and s̃ be a sequence of terms of the same length

as t̃. Then, sat (̃s, Q) denotes a formula of the form ∃Var(Q′)(̃s = t̃′ ∧ d′), where

Q′ := 〈p(̃t′) | d′〉 is a variant of Q and variable disjoint with s̃.

Intuitively, sat (̃s, Q) holds when the terms in the sequence s̃ satisfy the constraint d,

the entry points of which are the terms in t̃. Clearly, the satisfiability of sat (̃s, Q)

does not depend on the choice of the variant of Q. The set that is described by a

query can then be characterized as follows:

Lemma 4.23

Let Q be a query and p := rel (Q). Let ũ be a sequence of arity(p) terms and v be a

valuation. Then, p([ũ]v) ∈ Set(Q) if and only if D |=v sat(ũ, Q).

Now we give a logical definition of derivation neutrality. As we will see later,

under certain circumstances, this definition is equivalent to the operational one we

gave above.

Definition 4.24 (Logical derivation neutral )

We say that a filter Δ := (τ, δ) is DNlog for a clause r := p(X̃)← c � q(Ỹ ) when

D |= c→ ∀X̃τ(p)

[
sat(X̃τ(p), δ(p))→ ∃Yc

]
and D |= c→ sat(Ỹτ(q), δ(q)),

where Y = Ỹτ(q) ∪ local vars(r).

Example 4.25

In Qlin, the filter
(
〈p �→ {2}〉, 〈p �→ 〈pτ(B) |B � 1〉〉

)
is DNlog for the clause

p(N,T )← N � 1 ∧N = N1 + 1 ∧ T1 = 2 ∗ T ∧ T � 1 � p(N1, T1)

of Example 4.1. Indeed, X̃τ(p) = {T }, Ỹτ(q) = {T1} and local vars(r) = {}. So, if we

let c denote the constraint in this clause, the formulas of Definition 4.24 turn into

D |= c→ ∀T
[
T � 1→ ∃T1 c

]
and D |= c→ T1 � 1

which are true.

The first formula in Definition 4.24 has the following meaning: if one holds

a solution for constraint c, then, changing the value given to the variables of X̃

distinguished by τ to some value satisfying δ(p), there exists a value for the local

variables and the variables of Ỹ distinguished by τ such that c is still satisfied.

This formula expresses the fact that DNlog arguments (i.e. those distinguished by τ)

do not interact in c with the other arguments. Intuitively, two variables X1 and X2

do not interact in a constraint c when the set of values assigned to (X1, X2) by

all the solutions of c results from the exhaustive combination of the set of values

assigned to X1 by all the solutions of c and the set of values assigned to X2 by all

the solutions of c; more formaly, when

{(v(X1), v(X2)) | D |=v c} = {v(X1) | D |=v c} × {v(X2) | D |=v c} .
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Example 4.26

• In Example 4.25 above, the set of values assigned to (N,T ) by all the solutions

of c is {(a, b) | a � 1, b � 1}. We have {(a, b) | a � 1, b � 1} = {a | a �
1} × {b | b � 1}, where {a | a � 1} is the set of values assigned to N by all

the solutions of c and {b | b � 1} is the set of values assigned to T by all the

solutions of c. Hence, N and T do not interact.

• Now consider c = (X � Z ∧ Z � Y ). The set of values assigned to (X,Y ) by

all the solutions of c is {(a, b) | a � b} and the set of values assigned to X and

to Y by all the solutions of c is �. As {(a, b) | a � b} �= �×�, we have that

X and Y do interact.

The second formula in Definition 4.24 means that any solution of c assigns to

the variables of Ỹ distinguished by τ a value that satisfies δ(q). This corresponds to

the intuition that neutral argument positions are sorts of “pipes” in which one can

place any term satisfying δ with no effect on the derivation process.

The logical definition of derivation neutrality implies the operational one (see also

the discussion in the long version of this paper):

Theorem 4.27

Let r be a clause and Δ be a filter. If Δ is DNlog for r, then Δ is DN for r.

4.5 When DN filters are also DNlog

DN filters are not always DNlog as illustrated by the following example:

Example 4.28

Suppose that Σ = {0,=,�} and D = DQlin
. Consider

r := p(X1, X2)← X2 � X1 ∧X1 � 0 ∧ Y1 = X1 ∧ Y2 = X2 � p(Y1, Y2) .

Let c denote the constraint in r. Consider also a filter Δ := (τ, δ), where τ(p) = {1}
and δ(p) = 〈pτ(X) |X � 0〉. Notice that given the form of Σ, one cannot write a

constraint that has only one solution different from 0; more precisely, for any terms

t1 and t2 and any constraint d �= false,

p(0, 0) ∈ Set(〈p(t1, t2) | d〉) . (1)

Whatever Q, if there is a derivation step Q=⇒
r

Q1:

• the query Q1 satisfies Δ because c implies that Y1 � 0;

• for any Q′ that is Δ-more general than Q, Set(〈p(X1, X2) | c〉) ∩ Set(Q′) �= �
because by (1) p(0, 0) ∈ Set(〈p(X1, X2) | c〉) ∩ Set(Q′); hence, there exists a

derivation step Q′=⇒
r

Q′1. Notice that Q′1τ is more general than Q1τ because Q′τ
is more general than Qτ and c demands that Y2 = X2; moreover, Q′1 satisfies

Δ because c implies that Y1 � 0; therefore, Q′1 is Δ-more general than Q1.

Consequently, Δ is DN for r. However, Δ is not DNlog for r because the first formula

of Definition 4.24 does not hold. Indeed, as X̃τ(p) = X1, Ỹτ(p) = Y1 and Y = {Y1},
this formula is equivalent to D |= c → ∀X1[X1 � 0 → ∃Y1c]. Let v be a valuation
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such that v(X1) = v(Y1) = v(X2) = v(Y2) = 0; then, D |=v c. Let v1 be a valuation

with v1(X1) = 1, and v1 matches v on the other variables; then, D |=v1 X1 � 0;

however, D |=v1 ∃Y1c does not hold because c contains the constraint X2 � X1 with

v1(X2) = 0 and v1(X1) = 1, and it is not possible to change the value that v1 assigns

to Y1 so that v1(X2) � v1(X1). Therefore, D |=v c → ∀X1[X1 � 0 → ∃Y1c] does not

hold.

The point in Example 4.28 is that the problematic values (for DNlog-ness) cannot

be captured by a query; hence they do not prevent Δ from being DN. More

precisely, we have p
(
v(X1), v(X2)

)
= p

(
v(Y1); v(Y2)

)
= p(0, 0); and the atom p(0, 0)

is captured by the query 〈p(0, 0) | true〉, i.e. Set(〈p(0, 0) | true〉) = {p(0, 0)}. However,

p
(
v1(X1), v1(X2)

)
= p(1, 0), and there exists no query Q with Set(Q) = {p(1, 0)}. If we

had considered r in the constraint domain Qlin, then Δ would not have been DN as

there exists Q1 such that 〈p(0, 0) | true〉=⇒
r

Q1; the query 〈p(1, 0) | true〉 is well formed

in Qlin and is Δ-more general than 〈p(0, 0) | true〉,2 but there exists no query Q′1 such

that 〈p(1, 0) | true〉=⇒
r

Q′1. Hence, an idea for matching DN with DNlog consists

in considering domains in which every sequence of values can be captured by a

query:

Theorem 4.29

If, for all atoms A whose arguments are elements of D, there exists a query Q such

that Set(Q) = {A}, then every filter that is DN for a clause r is also DNlog for r.

The intuition of the proof of Theorem 4.29 consists in mapping some sequences

of values (induced by the considered valuations) to queries that capture them and

in using the DN property to prove that DNlog-ness holds. More precisely, let

r := p(X̃) ← c � q(Ỹ ) and Δ := (τ, δ) be a filter that is DN for r. First, we have to

prove that

D |= c→ ∀X̃τ(p)

[
sat(X̃τ(p), δ(p))→ ∃Yc

]
.

Let v be a valuation such that D |=v c and v′ be a valuation such that v′(V ) = v(V )

for all variable V �∈ X̃τ(p) and D |=v′ sat(X̃τ(p), δ(p)). Then, there exists a query Q such

that Set(Q) = {p([X̃]v)} and a query Q′ such that Set(Q′) = {p([X̃]v′)}. Intuitively,

as D |=v c, there exists a derivation step Q=⇒
r

Q1; moreover, as v′ matches with v

on X̃τ(p) and as the sequence of values that v′ assigns to X̃τ(p) satisfies Δ, then Q′ is

Δ-more general than Q. Therefore, as Δ is DN for r, there exists a query Q′1 such

that Q′=⇒
r

Q′1 and Q′1 is Δ-more general than Q1; using these properties of Q′ and

Q′1, one can deduce that D |=v′ ∃Yc, where Y = Ỹτ(q) ∪ local vars(r). We also have to

prove that

D |= c→ sat(Ỹτ(q), δ(q)) .

This is a consequence of the fact that for any derivation step Q=⇒
r

Q1, the query

Q1 satisfies Δ (because Δ is DN for r).

2 Because 〈p(1, 0) | true〉τ = 〈pτ(0) | true〉 = 〈p(0, 0) | true〉τ and 〈p(1, 0) | true〉τ = 〈pτ(1) | true〉 with Set
〈pτ(1) | true〉 = {pτ(1)} ⊆ Set(δ(p).)
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Example 4.30

For any rational number x, there exists a term t constructed from the constant

and function symbols of Qlin such that [t]v = x for any valuation v. Therefore, for

each atom p(ã), where ã is a sequence of rational numbers, there exists a query Q

in Qlin of the form 〈p(̃t) | true〉, where the elements of t̃ are constructed from the

constant and function symbols of Qlin, which is such that Set(Q) = {p(ã)}. Hence,

by Theorem 4.29, in Qlin DN is equivalent to DNlog.

4.6 Computing looping queries

For any filter Δ := (τ, δ) and any clause r := p(X̃)← c � q(Ỹ ), we let

• DNlog1(Δ, r) :=
(
c→ ∀X̃τ(p)

[
sat(X̃τ(p), δ(p))→ ∃Yc

])
and

• DNlog2(Δ, r) :=
(
c→ sat(Ỹτ(q), δ(q))

)

denote the formulas in Definition 4.24.

A solution to compute a DNlog filter for a clause r := p(X̃) ← c � p(Ỹ ) is to

consider the projection of c on the elements of X̃ that we wish to distinguish and

to check that DNlog1 and DNlog2 hold for r and the corresponding filter Δproj.

Formally, for any set of variables W , the projection of c onto W is denoted by

∃Wc and is the formula ∃Var(c)\Wc. If DNlog1 and DNlog2 hold for r and Δproj,

then Δproj is DNlog for r; hence it is DN for r by Theorem 4.27; so we can try

the test of Theorem 4.19 to get a query that loops w.r.t. {r}. Hence the following

algorithm:

An algorithm to compute a looping query

Input: a clause r := p(X̃)← c � p(Ỹ ).

1. For each m ⊆ [1, arity(p)] do:

2. Set τ(p) := m, δ(p) := 〈pτ(X̃τ(p)) | ∃X̃τ(p)
c〉 and Δproj := (τ, δ).

3. If DNlog1(Δproj, r) and DNlog2(Δproj, r) hold then

4. If 〈p(Ỹ ) | c〉 is Δproj-more general than 〈p(X̃) | c〉 then

5. return 〈p(X̃) | c〉, which is a looping query w.r.t. {r}.

This algorithm always finds a DNlog filter. Indeed, for m = �, the corresponding

filter Δproj = (τ, δ) is such that X̃τ(p) is the empty sequence, so δ(p) = 〈pτ | ∃�c〉,
where ∃�c is equivalent to ∃Var(c)c, i.e. to true because in the definition of a clause

(see Section 2) we suppose that c is satisfiable; therefore, DNlog1(Δproj, r) and

DNlog2(Δproj, r) hold, as they are equivalent to c → (true → ∃local vars(r)c) and

c→ true respectively.

Four tests are performed by the above algorithm for each subset m of [1, arity(p)]:

does DNlog1(Δproj, r) hold; does DNlog2(Δproj, r) hold; if these tests succeed, is

〈p(Ỹ ) | c〉τ more general than 〈p(X̃) | c〉τ; and does 〈p(Ỹ ) | c〉 satisfy Δproj? Actually,

only three tests are necessary as we have:
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Lemma 4.31

Let r := p(X̃) ← c � p(Ỹ ) be a clause and Δ := (τ, δ) be a filter. Then, we have

D |= DNlog2(Δ, r) if and only if 〈p(Ỹ ) | c〉 satisfies Δ.

Example 4.32

Let us consider the constraint domain Qlin and the recursive clause

r := p(X1, X2)← X1 � X2 ∧ Y1 = X1 + 1 ∧ Y2 = X2 � p(Y1, Y2) .

Let c be the constraint in r. Consider m := {1, 2}. The projection of c onto

{X1, X2} is the constraint X1 � X2; hence the algorithm sets τ(p) := {1, 2} and

δ(p) := 〈p(X1, X2) |X1 � X2〉 and Δproj := (τ, δ). The formulas DNlog1(Δproj, r) and

DNlog2(Δproj, r) hold, as they are respectively equivalent to

c→ ∀X1∀X2(X1 � X2 → ∃Y1∃Y2c) and c→ Y1 � Y2 .

So, Δproj is DNlog for r. Moreover, as 〈p(Y1, Y2) | c〉 is Δproj-more general than

〈p(X1, X2) | c〉, by Theorem 4.19 the query 〈p(X1, X2) | c〉 loops w.r.t. {r}. Notice that

by Definition 4.18, every query that is Δproj-more general than 〈p(X1, X2) | c〉 also

loops w.r.t. {r}. Generally speaking, for any predicate symbol q/n, a set of positions

m ⊆ [1, n] can be seen as a finite representation of the set of queries of the form

〈q(t1, . . . , tn) | d〉, where for each i ∈ m, d constrains ti to a ground term. For instance,

〈p(0, 0) | true〉 loops w.r.t. {r}, as it is Δproj-more general than 〈p(X1, X2) | c〉; this

query belongs to the class described by the set of positions {1, 2} for p; therefore

we say that this class is non-terminating because there exists a query in this class

that loops. As 〈p(0, X) | true〉, 〈p(X, 0) | true〉 and 〈p(X,Y ) | true〉 are more general

than 〈p(0, 0) | true〉, by the Lifting Theorem 3.7 these queries also loop w.r.t. {r};
consequently, the classes described by the sets of positions {1}, {2} and {} for p

are non-terminating too. So, for every set of positions m for p, the class of queries

described by m is non-terminating.

Example 4.33

In Qlin again, consider the recursive clause (slightly different from that in Exam-

ple 4.32)

r := p(X1, X2)← X1 � X2 ∧ Y1 = X1 + 1 ∧ Y2 = X2 � p(Y1, Y2).

Let c be the constraint in r and v be a valuation with v(X1) = v(X2) = v(Y2) = 0

and v(Y1) = 1; then we have D |=v c.

• Consider m := {1, 2}. The projection of c onto {X1, X2} is X1 � X2; hence the

algorithm sets τ(p) := {1, 2}, δ(p) := 〈p(X1, X2) |X1 � X2〉 and Δproj := (τ, δ).

The formula DNlog2(Δproj, r) is equivalent to c → Y1 � Y2. We have D |=v c

and D �|=v Y1 � Y2, so D �|=v c → Y1 � Y2. Therefore, DNlog2(Δproj, r) does

not hold, so Δproj is not DNlog for r.

• Consider m := {1}. The projection of c onto {X1} is equivalent to the constraint

true. The algorithm sets τ(p) := {1}, δ(p) := 〈pτ(X1) | true〉 and Δproj := (τ, δ).

The formula DNlog1(Δproj, r) is equivalent to c → ∀X1(true → ∃Y1c), i.e.

c → ∀X1∃Y1c. We have D |=v c; if we change the value assigned to X1 to 1,
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then X1 � X2 (a subformula of c) does not hold anymore, and one cannot

find any value for Y1 such that X1 � X2 holds again; therefore, we have

D �|=v ∀X1∃Y1c so D �|=v c→ ∀X1∃Y1c. Hence, DNlog1(Δproj, r) does not hold,

so Δproj is not DNlog for r.

• Consider m := {2}. The projection of c onto {X2} is equivalent to the constraint

true. The algorithm sets τ(p) := {2}, δ(p) := 〈pτ(X2) | true〉 and Δproj := (τ, δ).

The formula DNlog1(Δproj, r) is equivalent to c → ∀X2(true → ∃Y2c), i.e.

c→ ∀X2∃Y2c. We have D |=v c; if we change the value assigned to X2 to −1,

then X1 � X2 (a subformula of c) does not hold anymore, and one cannot

find any value for Y2 such that X1 � X2 holds again; therefore, we have

D �|=v ∀X2∃Y2c, so D �|=v c→ ∀X2∃Y2c. Hence, DNlog1(Δproj, r) does not hold,

so Δproj is not DNlog for r.

• Consider m := �. The projection of c onto � is equivalent to the constraint

true. The algorithm sets τ(p) := �, δ(p) := 〈pτ | true〉 and Δproj := (τ, δ). Both

DNlog1(Δproj, r) and DNlog2(Δproj, r) hold, as they are equivalent to c →
(true → c) and c→ true respectively. So, Δproj is DNlog for r. As 〈p(Y1, Y2) | c〉
is Δproj-more general than 〈p(X1, X2) | c〉, by Theorem 4.19 〈p(X1, X2) | c〉 loops

w.r.t. {r}. This query allows us to conclude that the class described by the set

of positions {} for p is non-terminating.

Consequently, we get no information about the classes described by the sets of

positions {1, 2}, {1} and {2}. Actually, the class described by {1, 2} is terminating, i.e.

every query in this class does not loop; indeed, intuitively, when the arguments of p

in a query Q are fixed to some values in �, we have a finite derivation of {r} ∪ {Q}
because in r the first argument of p strictly increases until it becomes greater than

the second argument. Hence, the class described by {1, 2} will not be inferred by

our approach. On the other hand, the query 〈p(1, X) | true〉 loops w.r.t. {r}, which

implies that the class described by {1} is non-terminating. Our approach fails to

infer this result, as X1 and X2 interact in c via X1 � X2, so there is no DNlog

filter for r that distinguishes position 1 and not position 2 of p. Hence, as DN and

DNlog match in this example, the DN approach fails3 to infer the non-termination

of {1}. So, a limitation of the DN approach when DN and DNlog match is the

following: when two arguments interact, if there is no DNlog filter that distinguishes

both their positions, then it is not possible to infer non-termination of a class of

queries described by a set containing one of these positions and not the other. Notice

that non-interaction of arguments is expressed by DNlog and not necessarily by

DN; when DNlog and DN do not match (see Theorem 4.29), there are situations

in which DN arguments can interact with non-DN arguments. In Example 4.28,

3 Note that the situation of this example is different from that of Example 4.32. Here, we cannot infer
the non-termination of the class described by {1} from the non-termination of the class described by {}.
Indeed, every element in the class described by {1} has the form 〈p(t1, t2) | d〉, where d constrains t1 to a
ground term; on the other hand, every element in the class described by {} has the form 〈p(t′1, t′2) | d′〉,
where t′1 and t′2 are not constrained to some ground terms; hence 〈p(t1, t2) | d〉 is not more general than
〈p(t′1, t′2) | d′〉.
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the arguments of p at positions 1 and 2 interact via X2 � X1; the filter that we

give in this example distinguishes position 1 but not position 2 of p, and it is DN

for r.

5 An implementation

We have implemented the analysis in SWI-Prolog (Wielemaker 2003) for CLP(Qlin).

The prototype4 takes a recursive binary rule p(X̃) ← c � p(Ỹ ) as input and tries to

find a filter with the projection of the constraint c of the considered rule onto its

head variables X̃. For each possible set of positions, it computes the four logical

formulas corresponding to Definition 4.14 and Definition 4.24. As the number of

such sets is exponential w.r.t. the arity of the predicate p, our analysis is at least

exponential. These formulas are evaluated by a decision procedure for arbitrary

logical formulas over 〈�; {0, 1}; {+}; {=, <}〉. If they are true (note that Lemma 4.31

shows that some tests are redundant), the analyzer prints the corresponding filter

and computes a concrete looping query.

So the analyzer implements Theorem 4.19 with the help of Theorem 4.27. We

point out that the analysis can be automated for any constraint domain the theory

of which is decidable, e.g. logic programming with finite trees and logic programming

with rational trees (Maher 1988).

Table 1 summarizes the result of the analysis of a set of handcrafted binary rules.

The symbol � indicates those examples that the analysis presented in Payet and

Mesnard (2004) could not prove non-terminating.

6 Conclusion

In Payet and Mesnard (2004) we have presented a technique to complement

termination analysis with non-termination inside the logic programming paradigm.

Our aim was to detect optimal termination conditions expressed in a language

describing classes of queries. The approach was syntactic and linked to some basic

logic programming machinery such as the unification algorithm. In Payet and

Mesnard (2004) we have presented the first step at generalizing the work of Payet

and Mesnard (2006) to the CLP setting. The logical criterion we gave only considers

those filters the function δ of which does not filter anything, i.e. δ maps any predicate

symbol p to 〈pτ(X̃) | true〉.
This paper describes a generalization of Payet and Mesnard (2006) to the CLP

setting. It presents a criterion, both in an operational and a logical form, to

infer non-terminating atomic queries with respect to a binary CLP clause. This

criterion is generic in the constraint domain; its logical form strictly general-

izes that of Payet and Mesnard (2004), and it has been fully implemented for

CLP(Qlin).

4 Available at http://personnel.univ-reunion.fr/fred/dev/DNlog4Q.zip.
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Table 1. Running the analyzer on a set of examples

Binary clause τ δ Looping query

p(A)← true � p(B) {1} 〈p(X) | true〉 〈p(0) | true〉

p(A)← A = B � p(B) {1} 〈p(X) | true〉 〈p(0) | true〉

p(A)← A = 0 � p(B) � 〈p | true〉 〈p(A) |A = 0〉

p(A)← A = 0 ∧ B = 0 � p(B) � 〈p | true〉 〈p(A) |A = 0〉

p(A)← A = 0 ∧ B = 1 � p(B) None found

p(A)← A � 0 ∧ B = 1 � p(B) {1} 〈p(X) |X � 0〉 〈p(0) | true〉 �

p(A)← A � 0 ∧ B � 1 � p(B) {1} 〈p(X) |X � 0〉 〈p(0) | true〉 �

p(A)← A � 0 ∧ B � −1 � p(B) � 〈p | true〉 〈p(A) |A � 0〉

p(A)← A � 1 ∧ B � 0 � p(B) None found

p(A)← A = B + 1 ∧ B � 0 � p(B) � 〈p | true〉 〈p(A) |A � 1〉

p(A,B)← A = C + 1 ∧ C � 0 {2} 〈p(Y ) | true〉 〈p(A, 0) |A � 1〉
� p(C,D)

p(A,B)← A = C + 1 ∧ C � 0 {2} 〈p(Y ) | true〉 〈p(A, 0) |A � 1〉
∧B = D � p(C,D)

p(A,B)← A = C + 1 ∧ C � 0 {2} 〈p(Y ) | true〉 〈p(A, 0) |A � 1〉
∧B + 1 = D � p(C,D)

p(A,B)← A = C + 1 ∧ C � 0 {2} 〈p(Y ) |Y � −1〉 〈p(A,−1) |A � 1〉 �
∧B + 1 = D ∧ D � 0

� p(C,D)

p(A,B)← A = C + 1 ∧ C � 0 � 〈p | true〉 〈p(A,B)|A � 1

∧B = D + 1 ∧ D � 0 ∧B � 1〉
� p(C,D)

p(A,B)← A � B ∧ C = A + 1 {1,2} 〈p(X,Y ) |X � Y 〉 〈p(0, 0) | true〉 �
∧D = B � p(C,D)

p(A,B)← A � B ∧ C = A + 1 � 〈p | true〉 〈p(A,B) |A � B〉
∧D = B � p(C,D)

pow2(A,B, C)← {2, 3} 〈pow2(Y ,Z)| 〈pow2(A, 1, 2)| �
A = D + 1 ∧ D � 0 Y � 1 ∧ Z � 2〉 A � 1〉
∧E = 2 ∗ B ∧ B � 1

∧F = C ∧ C � 2

� pow2(D,E, F)
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