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The effects of polymer additives on Rayleigh–Taylor (RT) instability of immiscible
fluids is investigated using the Oldroyd-B viscoelastic model. Analytic results obtained
exploiting the phase-field approach show that in polymer solution the growth rate of
the instability speeds up with elasticity (but remains slower than in the pure solvent
case). Numerical simulations of the viscoelastic binary fluid model confirm this picture.
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1. Introduction
Mixing of species (e.g. contaminants, tracers and particles) and thermodynamical

quantities (e.g. temperature) are dramatically influenced by fluid flows (Dimotakis
2005). Controlling the rate of mixing in a flow is an objective of paramount
importance in many fields of science and technologies with wide-ranging consequences
in industrial applications (Warnatz, Maas & Dibble 2001).

The difficulties of the problem come from the intricate nature of the underlying
fluid flow, which involves many active nonlinearly coupled degrees of freedom (Frisch
1995), and on the poor comprehension of the way through which the fluid is coupled to
the transported quantities. The problem is even more difficult when the transported
quantity reacts back to the flow field thus affecting its dynamics. An instance is
provided by the heat transport in convection (Siggia 1994).

Mixing emerges as a final stage of successive hydrodynamic instabilities (Drazin &
Reid 1981) eventually leading to a fully developed turbulent stage. The possibility of
controlling such instability mechanisms thus allows one to have a direct control
on the mixing process. In some cases the challenge is to enhance the mixing
process by stimulating the turbulence transition, in yet other cases the goal is to
suppress deleterious instabilities and the ensuing turbulence. Inertial confinement
fusion (Cook & Zhou 2002) is an example whose success relies on the control of
the famous Rayleigh–Taylor (RT) instability occurring when a heavy, denser, fluid is
accelerated into a lighter one. For a fluid in a gravitational field, such instability was
first described Lord Rayleigh in the 1880s (Rayleigh 1883) and later generalized to
all accelerated fluids by Sir Geoffrey Taylor in 1950 (Taylor 1950).
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Our attention here is focused on RT instability with the aim of enhancing the
perturbation growth rate in its early stage of evolution. The idea is to inject polymers
into the fluid and to study on both analytical and numerical ground how the
stability of the resulting viscoelastic fluid is modified. Similar problems were already
investigated in more specific context, including RT instability of viscoelastic fluids
with suspended particles in porous medium with a magnetic field (Sharma & Rajput
1992) and RT linear stability analysis of viscoelastic drops in high-speed airstream
(Joseph, Beavers & Funada 2002). We also mention that the viscoelasticity is known
to affect also other kinds of instabilities, including Saffman–Taylor instability (Wilson
1990; Coussot 1999), Faraday waves (Muller & Zimmermann 1999; Wagner, Muller &
Knorr 1999), the stability of Kolmogorov flow (Boffetta et al. 2005), Taylor–Couette
flow (Larson, Shaqfeh & Muller 1990; Groisman & Steinberg 1996) and Rayleigh–
Bénard problem (Vest & Arpaci 1969; Sokolov & Tanner 1972).

The paper is organized as follows. In § 2 the basic equations ruling the viscoelastic
immiscible RT system are introduced together with the phase-field approach. In § 3
the linear analysis is presented and the analytical results shown and discussed in § 4.
The resulting scenario is corroborated in § 5 by means of direct numerical simulations
of the original field equations.

2. Governing equations
The system we consider is composed of two incompressible fluids (labelled by 1 and

2) having different densities, ρ1 and ρ2 > ρ1, and different dynamical viscosities, μ1

and μ2, with the denser fluid placed above the less dense one. For more generality, the
two fluids are supposed to be immiscible so that the surface tension on the interface
separating the two fluids will be explicitly taken into account.

The effects of polymer additives is here studied within the framework of the
Oldroyd-B model (Oldroyd 1950; Hinch 1977; Bird et al. 1987). In this model polymers
are treated as elastic dumbbells, i.e. identical pairs of microscopic beads connected
by harmonic springs. Their concentration is supposed to be low enough to neglect
polymer–polymer interactions. The polymer solution is then regarded as a continuous
medium, in which the reaction of polymers on the flow is described as an elastic
contribution to the total stress tensor of the fluid (Bird et al. 1987).

In order to describe the mixing process of the resulting viscoelastic immiscible fluids
we follow the phase-field approach (for a general description of the method see, e.g.
Cahn & Hilliard 1958; Bray 2002, and for application to multiphase flows see, e.g.
Badalassi, Ceniceros & Banerjee 2003; Ding, Spelt & Shu 2007; Morro 2007; Celani
et al. 2009). Here, we only recall that the basic idea of the method is to treat the
interface between two immiscible fluids as a thin mixing layer across which physical
properties vary steeply but continuously. The evolution of the mixing layer is ruled by
an order parameter (the phase field) that obeys a Cahn–Hilliard equation (Cahn &
Hilliard 1958). One of the advantage of the method is that the boundary conditions at
the fluids interface need not to be specified being encoded in the governing equations.
From a numerical point of view, the method permits to avoid a direct tracking of
the interface and easily produces the correct interfacial tension from the mixing-layer
free energy.

To be more specific, the evolution of the viscoelastic binary fluid is described by
the system of differential equations:

ρ0 (∂tv + v · ∂v) = −∂p + ∂ · (2μe) + Aρ0 gφ − φ∂M +
2μη

τ
∂ · (σ − �), (2.1)
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∂tφ + v · ∂φ = γ ∂2M, (2.2)

∂tσ + v · ∂σ = (∂v)T · σ + σ · ∂v − 2

τ
(σ − �). (2.3)

Equation (2.1) is the usual Boussinesq Navier–Stokes equation (Kundu & Cohen
2001) with two additional stress contributions. The first one arises at the interface
where the effect of surface tension enters into play (Bray 2002; Yue et al. 2004; Berti
et al. 2005), the last term represents the polymer back reaction to the flow field (Bird
et al. 1987).

In (2.1), we have defined ρ0 = (ρ1+ρ2)/2, g is the gravitational acceleration pointing
along the y-axis, A ≡ (ρ2 − ρ1)/(ρ2 + ρ1) is the Atwood number, eij ≡ (∂ivj + ∂jvi)/2 is
the rate of strain tensor and μ = μ(φ) is the dynamical viscosity field parametrically
defined as (Liu & Shen 2003):

1

μ
=

1 + φ

2μ1

+
1 − φ

2μ2

, (2.4)

φ being the phase field governed by (2.2). The phase field φ is representative of
density fluctuations and we take φ = 1 in the regions of density ρ1 and φ = −1
in those of density ρ2 � ρ1. σ ≡ 〈RR〉/R2

0 is the polymer conformation tensor, R
being the end-to-end polymer vector (R0 is the polymer length at equilibrium), the
parameter η is proportional to polymer concentration and τ = τ (φ) is the (slowest)
polymer relaxation time which, according to the Zimm model (Doi & Edwards 1986),
is assumed to be proportional to the viscosity μ (therefore we have τ = τ1 for φ =1
and τ = τ2 for φ = −1 with μ(φ)/τ (φ) constant). Finally, γ is the mobility and M is
the chemical potential defined in terms of the Ginzburg–Landau free energy F as
(Cahn & Hilliard 1958; Bray 2002; Yue et al. 2004):

M ≡ δF
δφ

and F[φ] ≡ λ

∫
Ω

dx
(

1

2
|∂φ|2 + V (φ)

)
, (2.5)

where Ω is the region of space occupied by the system, λ is the magnitude of the
free-energy and the potential V (φ) is

V (φ) ≡ 1

4ε2
(φ2 − 1)2, (2.6)

where ε is the capillary width, representative of the interface thickness.
The unstable equilibrium state with heavy fluid placed on the top of light fluid is

given by

v = 0, φ(y) = − tanh

(
y

ε
√

2

)
and σ = � (2.7)

corresponding to a planar interface of width ε with polymers having their equilibrium
length R0. In this case, the surface tension S is given by (see e.g. Landau & Lifshitz
2000):

S ≡ λ

∫ +∞

−∞
dy

(
1

2
|∂φ|2 + V (φ)

)
=

2λ
√

2

3ε
. (2.8)

The sharp-interface limit is obtained by taking the λ and ε to zero, keeping S fixed
to the value prescribed by surface tension (Liu & Shen 2003).
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3. Linear stability analysis
Let us now suppose to impose a small perturbation on the interface separating

the two fluids. Such perturbation will displace the phase field from the previous
equilibrium configuration, which minimizes the free energy (2.5) to a new configuration
for which, in general, M �= 0. We want to determine how the perturbation evolves in
time.

Focusing on the two-dimensional case (corresponding to translational invariant
perturbations along the z direction), let us denote by h(x, t) the perturbation imposed
to the planar interface y = 0 in a way that we can rewrite the phase-field φ as

φ = f

(
y − h(x, t)

ε
√

2

)
, (3.1)

where h can be larger than ε, yet it has to be smaller than the scale of variation of h

(small amplitudes). In this limit we assume the interface to be locally in equilibrium,
i.e. ∂2f/∂y2 = V ′(f ), and thus f (y) = − tanh(y) and therefore M = −λ(∂2f /∂x2)
(′ denotes derivative with respect to the argument).

Linearizing the momentum equation for small interface velocity, we have

ρ0∂tvy = −∂yp − φ∂yM − Agρ0φ +
2μη

τ
∂iσi2 + μ

(
∂2

x + ∂2
y

)
vy + 2(∂yvy)∂yμ. (3.2)

Integrating on the vertical direction and using derivations by parts one gets

ρ0∂tq = S∂2h

∂x2
+ 2Agρ0h +

2μη

τ
Σ + Q, (3.3)

where we have defined

Q ≡
∫ +∞

−∞
μ

(
∂2

∂x2
− ∂2

∂y2

)
vy dy, q ≡

∫ ∞

−∞
vy dy, Σ ≡

∫ ∞

−∞
∂xσ12 dy, (3.4)

and we have used the relations
∫
(f ′)2 dy = 2

√
2/(3ε),

∫
ff ′′′ dy = 0,

∫
f dy =2h.

Note that, unlike what happens in the inviscid case, (3.3) does not involve solely
the field qy but also second-order derivatives of vy . In order to close the equation,
let us resort to a potential-flow description. The idea is to evaluate Q for a potential
flow vy and then to plug Q =Qpot into (3.3) (Mikaelian 1993). The approximation is
justified when viscosity is sufficiently small and its effects are confined in a narrow
region around the interface. Because for a potential flow ∂2v = 0, we have

Qpot = 2

∫ +∞

−∞
μ

∂2uy

∂x2
dy = 2

∫ 0

−∞
μ

∂2uy

∂x2
dy + 2

∫ ∞

0

μ
∂2uy

∂x2
dy = (μ1 + μ2)

∂2q

∂x2
. (3.5)

Substituting in (3.3) and defining ν =(μ1 + μ2)/(2ρ0), one finally obtains

∂tq =
S
ρ0

∂2h

∂x2
+ 2Agh +

2μη

τρ0

Σ + 2ν
∂2q

∂x2
. (3.6)

Let us now exploit (2.2) for the phase field to relate qy to h. For small amplitudes, we
have

∂2M =
λ

ε
√

2

[
f ′ ∂

4h

∂x4
+

1

2ε2
f ′′′ ∂

2h

∂x2

]
(3.7)

and therefore, from (2.2),

−1

ε
f ′∂th + vy

1

ε
f ′ =

γ λ

ε

[
f ′∂4

xh +
1

2ε2
f ′′′∂2

xh

]
. (3.8)
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Integrating over y, observing that 1/(2
√

2ε)f ′ approaches δ(y − h) as ε → 0 and
using the limit of sharp interface (γ λ→ 0), one obtains

∂th = vy(x, h(t, x), t) ≡ v(int)
y (x, t). (3.9)

The equation for the perturbation σ12 of the conformation tensor is obtained by
linearizing (2.3) around σαβ = δαβ:

∂tσ12 = ∂xvy + ∂yvx − 2

τ
σ12 (3.10)

from which, exploiting incompressibility, we obtain

∂t∂xσ12 =
(
∂2

x − ∂2
y

)
vy − 2

τ
∂xσ12 − 2σ12∂x

1

τ
. (3.11)

For small-amplitude perturbations the last term, which is proportional to σ12∂xφ, can
be neglected at the leading order. Integrating over y and using again the potential
flow approximation one ends up with

∂tΣ = 2∂2
x q − 2

τ̄
Σ −

(
1

τ1

− 1

τ2

)∫
dyφ∂xσ12, (3.12)

where we have introduced τ̄ =2τ1τ2/(τ1 + τ2).
In conclusion, we have the following set of equations (in the (x, t) variables) for

the linear evolution of the RT instability in a viscoelastic flow

∂th = v(int)
y ,

∂tq =
S
ρ0

∂2
xh + 2Agh +

2νηc

τ̄
Σ + 2ν∂2

x q,

∂tΣ = 2∂2
x q − 2

τ̄
Σ −

(
1

τ1

− 1

τ2

)∫
dyφ∂xσ12,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.13)

where c = 4μ1μ2/(μ1 + μ2)
2 � 1.

4. Potential flow closure for the interface velocity
The set of equations (3.13) is not closed because of the presence of the interface

velocity v(int)
y and of the integral term in the equation for Σ . In order to close the

system we exploit again the potential flow approximation for which vy = ∂yψ .
Taking into account the boundary condition for y → ∞, the potential can be written

(e.g. for y � 0) as

ψ(x, y, t) =

∫ ∞

0

e−ky+ ikxψ̂(k, t) dk + c.c., (4.1)

where ‘ˆ’ denotes the Fourier transform, and therefore

vy(x, y, t) = −
∫ ∞

0

k e−ky+ ikxψ̂(k, t) dk + c.c., (4.2)

q(x, t) = −2

∫ ∞

0

eikxψ̂(k, t) dk + c.c. (4.3)

and taking a flat interface, y = 0, at the leading order

v(int)(x, t) = −
∫ ∞

0

k eikxψ̂(k, t) dk + c.c. (4.4)
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Assuming consistently that

σ12(x, y, t) =

∫ ∞

0

e−ky+ ikxσ̂12(k, t) dk + c.c. (4.5)

in the limit of small amplitudes one has
∫

dyφ∂xσ12 = 0, and the set of (3.13) for the
Fourier coefficients becomes

∂t ĥ =
k

2
q̂,

∂t q̂ = −S
ρ0

k2ĥ + 2Agĥ +
2νcη

τ̄
Σ̂ − 2νk2q̂,

∂t Σ̂ = −2k2q − 2

τ̄
Σ̂ .

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.6)

Restricting first to the case without polymers (η =0), the growth rate αN of the
perturbation is obtained by looking for a solution of the form ĥ ∼ eαN t which gives

αN = −νk2 +
√

ω2 + (νk2)2, (4.7)

where it has been defined as

ω =

√
Agk − S

2ρ0

k3. (4.8)

The expression (4.8) is the well-known growth rate for a Newtonian fluid in the limit
of zero viscosity (Chandrasekhar 1961), while (4.7) is a known upper bound to the
growth rate for the case with finite viscosity (Menikoff et al. 1977).

Let us now consider the case with polymers, i.e. η > 0. The growth rate α is given
by the solution of

(ατ̄ )3 + 2(ατ̄ )2(1 + νk2τ̄ ) + ατ̄ [4ν(1 + cη)k2τ̄ − ω2τ̄ 2] − 2ω2τ̄ 2 = 0. (4.9)

The general solution is rather complicated and not very enlightening. In the limit of
stiff polymers, τ̄ → 0, one gets

α0 ≡ lim
τ̄→0

α = −ν(1 + cη)k2 +
√

ω2 + [ν(1 + cη)k2]2. (4.10)

Comparing with (4.7) one sees that in this limit polymers simply renormalize solvent
viscosity. This result is in agreement with the phenomenological definition of cη as
the zero-shear polymer contribution to the total viscosity of the mixture (Virk 1975).
Therefore, in order to quantify the effects of elasticity on RT instability, the growth
rate for viscoelastic cases at finite τ̄ has to be compared with the Newtonian case
with renormalized viscosity ν(1 + cη).

Another interesting limit is τ̄ → ∞. In this case from (4.9) one easily obtains that
the growth rate coincides with that of the pure solvent (4.7), i.e. α∞ =αN . The physical
interpretation is that in the limit τ̄ → ∞ and at finite time for which polymer elongation
is finite, the last term in (2.1) vanishes and one recovers the Newtonian case without
polymers (i.e. η =0). Of course, this does not mean that in general polymer effects
for high elasticity disappear. Indeed in the long-time limit polymer elongation is able
to compensate the 1/τ coefficient and in the late, nonlinear stages, one expects to
observe strong polymer effects at high elasticity.

From (4.9) one can easily show (using implicit differentiation) that α(τ̄ ) is a
monotonic function and, because α∞ � α0, we have that instability rate grows with
the elasticity, or the Deborah number, here defined as De ≡ ωτ̄ .
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The case of stable stratification, g → −g, is obtained by ω2 → −ω2 neglecting surface
tension. In this case (4.9) has no solution for positive α, therefore polymers alone
cannot induce instabilities in a stably stratified fluid.

5. Numerical results
The analytical results obtained in the previous sections are not exact as they

are based on a closure obtained from the potential flow approximation. While this
approximation is consistent for the inviscid limit ν = 0 (where it gives the correct
result (4.8) for a Newtonian fluid) for finite viscosity we have shown that it gives a
known upper bound to the actual growth rate of the perturbation (Menikoff et al.
1977) (this is because the potential flow approximation underestimates the role of
viscosity which reduces the instability). Nonetheless, in the case of Newtonian fluid
this upper bound is known to be a good approximation of the actual value of the
growth rate measured in numerical simulations (Menikoff et al. 1977). Because both
τ̄ → 0 and τ̄ → ∞ limits correspond to Newtonian fluids, we expect that also in the
viscoelastic case the potential flow description is a good approximation.

To investigate this important point, we have performed a set of numerical
simulations of the full model (2.1)–(2.3) in the limit of constant viscosity and relaxation
time (i.e. μ1 =μ2, c = 1 and τ1 = τ2 = τ̄ ) in two dimensions by means of a standard
fully dealiazed pseudospectral method on a square doubly periodic domain. The
resolution of the simulations is 1024 × 1024 collocation points (a comparative run at
double resolution did not show substantial modifications on the results). More details
on the numerical simulation method can be found in Celani, Mazzino & Vozella
(2006) and Celani et al. (2009).

The basic state corresponds to a zero velocity field, a hyperbolic-tangent profile
for the phase field and an uniform distribution of polymers in equilibrium, according
to (2.7). The interface of the basic state is perturbed with a sinusoidal wave at
wavenumber k (corresponding to maximal instability for the linear analysis) of
amplitude h0 much smaller than the wavelength (kh0 = 0.05).

The growth rate α of the perturbation is measured directly by fitting the height of
the perturbed interface at different times with an exponential law. For given values
of Ag, S/ρ0, ν and η, this procedure is repeated for different values of τ̄ at the
maximal instability wavenumber k (which, for the range of parameters considered
here, is always k = 1, i.e. it is not affected by elasticity). Figure 1 shows the results for
two sets of runs at different values of η and ν. As discussed above, we find that the
theoretical prediction given by (4.9) is indeed an upper bound for the actual growth
rate of the perturbation. Nevertheless, the bound gives grow rates which are quite
close to the numerical estimated values (the error is of the order of 10 %). The error
is smaller for the runs having a larger value of η and ν, as was already discussed by
Celani et al. (2009).

Both theoretical and numerical results show that the effect of polymers is to increase
the perturbation growth rate. α grows with the elasticity and saturates for sufficiently
large value of De.

6. Conclusions and perspectives
We investigated the role of polymers on the linear phase of the RT instability

in an Oldroyd-B viscoelastic model. In the limit of vanishing Deborah number (i.e.
vanishing polymer relaxation time) we recover a known upper bound for the growth
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 0.3

 0.4

 0.5

 0.6

 10–1  102 1  10

α
/ω

De

Figure 1. The perturbation growth rate α normalized with the inviscid growth rate ω (4.8) as
a function of the Deborah number De =ωτ̄ . Points are the results of numerical simulations
of the full set of equations (2.1)–(2.3), lines represent the theoretical predictions obtained from
(4.9). The values of parameters are c =1, k = 1, Ag = 0.31, S/ρ0 = 0.019 and η = 0.3, ν = 0.3
(upper points and line) and η = 0.5, ν = 0.6 (lower points and line).

rate of the perturbation in a viscous Newtonian fluid with modified viscosity. For
finite elasticity, the growth rate is found to increase monotonically with the Deborah
number reaching the solvent limit for high Deborah numbers. Our findings are
corroborated by a set of direct numerical simulations on the viscoelastic Boussinesq
Oldroyd-B model.

Our analysis has been confined to the linear phase of the perturbation evolution.
When the perturbation amplitude becomes sufficiently large, nonlinear effects enter
into play and a fully developed turbulent regime rapidly sets in (Cabot & Cook 2006;
Boffetta et al. 2009; Vladimirova & Chertkov 2009). In the turbulent stage we expect
more dramatic effects of polymers. In turbulent flows, a spectacular consequence of
viscoelasticity induced by polymers is the drag reduction effect: addition of minute
amounts (a few tenths of p.p.m. in weight) of long-chain soluble polymers to water
leads to a strong reduction (up to 80 %) of the power necessary to maintain a
given throughput in a channel (see e.g. Toms 1949; Virk 1975). We conjecture that
a similar phenomenon might arise also in the present context. Heuristically, the RT
system can indeed be assimilated to a channel inside which vertical motion of thermal
plumes is maintained by the available potential energy. This analogy suggests the
possibility to observe in the viscoelastic RT system a ‘drag’ reduction (or mixing
enhancement) phenomenon, i.e. an increase of the velocity of thermal plumes with
respect to the Newtonian case. Whether or not this picture does apply to the fully
developed turbulence regime is left for future research.

We thank anonymous referees for useful remarks.
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