
J. Plasma Phys. (2016), vol. 82, 435820501 c© Cambridge University Press 2016
doi:10.1017/S0022377816000696

1

Computational methods for plasma fluid models

G. Fuhr1,†, P. Beyer1 and S. Benkadda1

1Aix Marseille Univ, CNRS, PIIM, Faculte de Saint Jerome, C631, 13397 Marseille Cedex 20, France

(Received 8 July 2015; revised 22 July 2016; accepted 22 July 2016)

Challenges in plasma physics are wide. Investigation and advances are made in
experiments but at the same time, to understand and to reach the experimental limits,
accurate numerical simulations are required from systems of nonlinear equations. The
numerical challenges of solving the associated fluid equations are discussed in this
paper. Using the framework of the finite difference discretization, the most widely
used methods for the problems linked to the diffusion or advection operators are
presented.

1. Introduction

Magnetized plasmas are complex systems governed by a wide range of instabilities,
geometrical effects and wave interactions. This leads to an extremely large range
of important spatial and temporal scales governing the evolution of the system
(see Wesson 1997; Freidberg 2007). In a magnetically confined fusion plasma, the
phenomena can involve short lengths and time scales of the order of a millimetre and
tens of microseconds, respectively, or, at the opposite time scales of the order of some
seconds and length scales of the order of the tokamak minor or major radii, i.e. metres.
As a consequence, a variety of models exists and cover a large range of physics, from
the plasma core to the edge and/or the scrape off layer. As a consequence, simulation
models such as gyro-kinetic models or magneto-hydrodynamical (MHD) models
(see Wesson 1997), have to be restricted to a subrange of time scales and spatial
interactions.

Fluid modelling in plasma physics is based on the integration of distribution
functions for electrons and ions. The derivation of associated moments, plus
self-consistent dynamics of the electric and magnetic fields, leads to evolution
equations for macroscopic quantities like electronic density ne, electron and ion
temperature (Te, Ti), mass velocity (v‖), electrostatic (φ) and electromagnetic (ψ)
potentials, etc. . . (see Braginskii 1965).

Moreover, due to the variety of instabilities present, models are heterogeneous. The
consequence, for associated simulations codes, is that physical assumptions cannot
be used to extract global methods for numerical implementations. However, dealing
with the associated mathematical aspects and properties of the corresponding equations
allows for a simple classification between two broad families of operators: linear (L(·))

† Email address for correspondence: guillaume.fuhr@univ-amu.fr

https://doi.org/10.1017/S0022377816000696 Published online by Cambridge University Press

mailto:guillaume.fuhr@univ-amu.fr
https://doi.org/10.1017/S0022377816000696

2 G. Fuhr, P. Beyer and S. Benkadda

and nonlinear (NL(·)) operators:

∂

∂t

Ω

pe
ψ

v‖
· · ·

= L

φ

pe
ψ

v‖
· · ·

+NL

φ

pe
ψ

v‖
· · ·

 (1.1)

Ω =∇2
⊥φ, (1.2)

where fluid moments are used to derive the dynamics in (1.1). The vorticity field
Ω is defined in (1.2). Linear terms are composed of a mix of first and second
derivatives and can be seen as a combination of advection and diffusion processes.
These processes are associated with resistivity or assumed viscosity of the plasma
for the diffusion process. Concerning linear advection, an example is the centrifugal
force acting on particles moving around a curved magnetic field. Nonlinear terms
correspond typically to a nonlinear advection by a velocity drift (represented by the
operator uD · ∇) or effects linked to the non-uniformity of the magnetic field which
leads to the tearing instabilities (operator B · ∇) (see Biskamp 1993),

B · ∇f =
(
∇×ψ B0

B0

)
· ∇f ' (∂xψ∂yf − ∂yψ∂xf)

uD · ∇f =
(
∇× φB0

B0

)
· ∇f ' (∂xφ∂yf − ∂yφ∂xf).

(1.3)

The general form of the linear operator is

L(f)= ∂

∂xi
[A(x)f] + ∂2

∂xi∂xj
[D(x)f], (1.4)

where x={x0, x1, . . .} represents the position vector, A(x) the advection coefficient and
D(x) the diffusion coefficient. In computational sciences, linear operators are divided
into three classes, i.e. hyperbolic, parabolic and elliptic operators. The classification
is determined by the nature of the eigenvalues of the associated operator (see Lomax,
Pulliam & Zingg 2001). The canonical form of an advection process corresponds
to a hyperbolic equation, diffusion corresponds to a parabolic equation and elliptic
operators correspond to Poisson-type equations. As a consequence, each kind of
equation has to be treated with appropriate methods to reproduce accurately the
associated mathematical and physical properties. For example, since information
propagates with a finite velocity in an advection process but with an infinite velocity
in a diffusion process, the methods used in both cases can be different.

The choice of the discretization to advance the evolution of the considered
quantities is not unique. Typical possible discretizations are finite difference (FD)
approaches, finite elements or spectral methods of Fourier series (see Canuto et al.
1988; Ferszinger 2002). Only the finite difference approach is discussed here. In
general in fusion plasma simulations, a combination of finite differences in the radial
direction and Fourier modes in the poloidal and toroidal directions is used (see Jardin
2011). Fourier mode representation gives a higher precision in the numerical schemes,
however such a representation can be used only when the geometry is periodic in the
considered direction. Another approach concerns the field aligned coordinate systems
(see Scott 1997), in which case generalized coordinates are used with the property
that the grid is aligned to the equilibrium component of the magnetic field.

https://doi.org/10.1017/S0022377816000696 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000696

Computational methods for plasma fluid models 3

FIGURE 1. Discretization of a function f (x).

The methods described in the following for the resolution of partial differential
equations (PDE) focus on the FD approach but they can be used also with these
other discretizations. The presented properties and limitations remain the same in the
framework of these other representations.

An overview of the possible approaches concerning grid decomposition in plasma
physics can be found in D’haeseleer (1991). Many numerical algorithms exist and it
may be difficult to decide which one to adopt. The ultimate goal being to obtain the
desired accuracy with least effort, or the maximum accuracy with the available
resources. In the following sections, typical schemes are detailed, focusing on
respective advantages and disadvantages. Section 2 presents the finite difference
method, § 3 focuses on the main families of time schemes. These methods are
applied to the typical problems of diffusion in § 4 and of advection in § 5. In a last
part, the resolution of nonlinear terms is detailed in § 6.

2. Spatial discretization: the finite difference method
Let us consider a general PDE,

∂tu(x, t)= F(x, t, u,Du,D2u), (2.1)

where u(x, t) is the unknown function, D and D2 are first- and second-order derivatives
in space, respectively. The FD approach consists of evaluating the function u(x, t)
on a discretized domain, as represented in figure 1. The derivatives in the differential
equations are replaced by polynomial interpolations. This results in a large algebraic
system of equations that has to be solved instead of the differential equation.

The discretization is made for illustration on a one-dimensional Cartesian grid.
Derivation of operators and equations in a generalized system of coordinates
appropriate for plasma physics can be found in D’haeseleer (1991). Equation (2.1)
becomes

∂tu(x, t)= F(x, t, u, ∂xu, ∂2
x u). (2.2)

Unless stated otherwise, the unknown function u(x, t) is always assumed to be
smooth, meaning that it can be differentiated several times and that each derivative
is a well-defined bounded function over an interval containing a particular point of
interest x.

https://doi.org/10.1017/S0022377816000696 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000696

4 G. Fuhr, P. Beyer and S. Benkadda

FIGURE 2. Discrete grid used for the function u(x, t).

The cell size or space step is defined by 1x = Lx/N = (b − a)/N where N is the
total number of cells in the mesh, with a and b the left and right border and Lx the
corresponding length. The coordinates of the grid points are then defined by xi= a+
i1x. The solution is computed at each time step 1t which corresponds to a series of
discrete times tn = n1t, (i, n) ∈N.

u(x, t)→ u(xi, tn)→ un
i . (2.3)

Here, un
i corresponds to the value of u(x, t) at the position x= a+ i1x and at time t=

n1t. To simplify the notation, the superscript n is omitted when there is no confusion,
e.g. ui denotes un

i .
A finite difference scheme is typically obtained by approximating the derivatives in

the partial differential equation using a Taylor expansion up to some given order. The
minimal order is given by the order of the considered derivative. Generally, the order
of a FD scheme, is linked to the rate at which the discretization converges to the exact
solution when the step size 1x decreases. The error is proportional to (1x)m, where
m is the exponent of the leading truncation error term. As the values of the unknown
function are known only at the grid points, Taylor expansions at different grid points
are linearly combined to eliminate all derivatives up to the needed order

u(x+1x, t) = un
i+1

= u(x, t)+1x
∂

∂x
u(x, t)+ 1x2

2!
∂2

∂x2
u(x, t)+ 1x3

3!
∂3

∂x3
u(x, t)

+ · · · + 1xp

p!
∂p

∂xp
u(x, t), (2.4)

u(x−1x, t) = un
i−1

= u(x, t)−1x
∂

∂x
u(x, t)+ 1x2

2!
∂2

∂x2
u(x, t)− 1x3

3!
∂3

∂x3
u(x, t)

+ · · · + (−1x)p

p!
∂p

∂xp
u(x, t). (2.5)

https://doi.org/10.1017/S0022377816000696 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000696

Computational methods for plasma fluid models 5

Using (2.4) and (2.5) the finite difference formulation of the first-order derivative
can be expressed as

(2.4)⇒ ∂

∂x
u(x, t)' un

i+1 − un
i

1x
+O(1x), (2.6)

(2.5)⇒ ∂

∂x
u(x, t)' un

i − un
i−1

1x
+O(1x). (2.7)

Equations (2.6) and (2.7) are called forward (FWD), and backward differences
(BWD), respectively. These two equations are only first-order approximations (the
order of a scheme is linked roughly with the associated error in the numerical
representation) which are not sufficient in computational science. Using a combination
of (2.4) and (2.5), second-order approximations can be obtained for the first-order
derivative, using a central difference (CD) scheme (2.8), and for the second-order
derivative, using again a central finite difference scheme (2.9).

(2.6)− (2.7)⇒ ∂

∂x
u(x, t)' un

i+1 − un
i−1

21x
+O(1x2), (2.8)

(2.6)+ (2.7)⇒ ∂2

∂x2
u(x, t)' un

i+1 + un
i−1 − 2un

i

1x2
+O(1x2). (2.9)

The importance of the scheme order is illustrated in figure 3. FD have been
used to compute d exp(x)/dx at x = 0 using first-, second-, third- and fourth-order
approximations for different step sizes. As the step size decreases, the decrease of
the associated error is faster for the higher-order schemes and the numerical solution
obtained is more accurate for these schemes. It can be remarked that for very small
step size, the error increases, this is not due to the error of the scheme order but due
to the finite number of digits used for the representation of decimal numbers.

This representation is not unique, finite difference approximations can be deduced
for any derivatives of u based on a given set of points using the method of
undetermined coefficients. As an example, to construct a one-sided FD approximation
of ∂u/∂x based on xi, xi+1 and xi+2, let D2u(x) be a second-order approximation of
∂u/∂x,

D2u(x)= au(x)+ bu(x+1x)+ cu(x+ 21x). (2.10)

Using Taylor expansion of u(x+1x) and u(x+ 21x),

D2u(x) = au(x)+ bu(x+1x)+ cu(x+ 21x) (2.11)
= (a+ b+ c)u(x)+ (b+ 2c)1x∂xu(x)+ 1

2(b+ 4c)1x2∂2
x u(x) (2.12)

+ 1
6(b+ 8c)1x3∂3

x u(x)+ · · · (2.13)

This expansion represents ∂xu(x) if the following relations are satisfied

a+ b+ c= 0

b+ 2c=+ 1
1x
⇒ (a, b, c)= (3/21x,−2/1x, 1/21x)

b+ 4c= 0

(2.14a)

∂xui = −3ui + 4ui+1 − ui+2

21x
. (2.14b)

https://doi.org/10.1017/S0022377816000696 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000696

6 G. Fuhr, P. Beyer and S. Benkadda

FIGURE 3. Relative error in the calculation of d exp(x)/dx as a function of the step size
using different-order approximations.

The applications of the undetermined coefficients method are not limited to the
determination of discrete expressions of derivatives, finding discretizations which
have a fast convergence rate for simulations of fast flows (see Horton & Estes 1980)
and obtention of an appropriate scheme for the Jacobian operator, which is the subject
of § 6, are other possible applications. The basic principle of FD discretization can
be used for spatial discretization but can also be employed to introduce resolution of
the time advancing part of the equations.

3. Schemes for advancing in time

Let us now consider a time-dependent differential equation,

∂tu(t)= F(t, u(t)). (3.1)

The idea behind any time scheme is based on a numerical quadrature of the associated
time integral based on fractional steps (see Rosen 1967) for (3.1):

u(tn+1)− u(tn) =
∫ tn+1

tn
dtF(t, u(t))

' 1t

[
α−1F(tn+1, un+1)+ α0F(tn, un)+

M∑

m=1

αmδum

]
, (3.2)

https://doi.org/10.1017/S0022377816000696 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000696

Computational methods for plasma fluid models 7

with

δu0 = F(tn, un)

δu1 = F(tn + λ11t, un +µ10δu0)

· · ·

δum = F

(
tn + λm1t, un +

M−1∑

p=0

µmpδup

)
,

(3.3)

αi corresponds to the weight of each expansion coefficient δui.
Time advance schemes can be classified depending on the value of α−1. If α−1 is

non-zero, the method is called implicit. At the opposite, if α−1 is zero, the method
is called explicit. In an explicit method, all terms are evaluated at previous times. As
an example, the explicit or forward Euler scheme (EE), which corresponds to α0 = 1
and αi 6=0 = 0 is expressed by,

un+1(x)− un(x)
1t

= F(x, tn, un(x))

un+1(x)= un(x)+1tF(x, tn, un(x)).

 (3.4)

And the implicit version, called implicit or backward Euler (IE), which corresponds
to α−1 = 1 and αi 6=−1 = 0, by

un+1(x)− un(x)
1t

= F(x, tn+1, un+1(x))

un+1(x)−1tF(x, tn+1, un+1(x))= un(x).

 (3.5)

Moreover, if F is linear in u, then F(x, tn+1, un(x))=Flin(x, tn+1)un(x) and the previous
relation can be rewritten as,

[1−1tFlin(x, tn+1)]un+1(x)= un(x). (3.6)

Both schemes, implicit and explicit Euler, are only first-order accurate and as a
consequence present the same limitations as any first-order scheme. Mainly, the error
is proportional to the time step 1t and as a consequence, to increase the accuracy by
a factor of 10, the time step must be divided by 10 and so the number of iterations
is increased by the same amount. Combinations of explicit and implicit schemes can
also be used, these schemes are called semi-implicit.

un+1(x)− un(x)
1t

= θF(x, tn+1, un+1(x))+ (1− θ)F(x, tn, un(x))

un+1(x)− θ1tF(x, tn+1, un+1(x))= un(x)+ (1− θ)1tF(x, tn, un(x))

[1− θ1tFlin(x, tn+1)]un+1(x)= [1+ (1− θ)1tF(x, tn)]un(x)

(3.7)

with 0< θ < 1. In the case θ = 1/2, the method is called Crank–Nicholson (CN) and
compared to Euler schemes, this scheme is second-order accurate (the error is reduced
quadratically when the step size is decreased).

Each scheme, explicit, implicit and semi-implicit has advantages and disadvantages.
In general, implicit schemes are more stable than explicit schemes, where stability

https://doi.org/10.1017/S0022377816000696 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000696

8 G. Fuhr, P. Beyer and S. Benkadda

can be seen as the property of the solution to remain finite at each time step (this
concept is detailed in § 4). However, implicit schemes are more difficult to implement,
in particular for nonlinear operators. They also require considerably more calculations
than explicit methods and they finally have a poor parallel scalability compared to
purely explicit schemes.

The time scheme must be chosen wisely depending on the studied problem as it
can affect the physical process described by the equations. To illustrate this, the three
schemes presented before (EE, IE and CN) are used to solve the equation describing
the one-dimensional (1-D) harmonic oscillator, assuming a unity mass in arbitrary
units,

∂2
t x(t)+ω2x(t)= 0. (3.8)

The analytic solution is given by,

x(t)= A0 cos(ωt+ ϕ)
v(t)=−A0

ω
sin(ωt+ ϕ).

 (3.9)

Since no damping effects are considered, the total energy of the system, i.e. the sum
of kinetic and potential energies, must be conserved during the motion. The total
energy is expressed by,

Etot(t) = v2(t)
2
+ ω

2x2(t)
2

,

= const. (3.10)

Since the harmonic oscillator is a second-order equation in time, (3.8) should be
split into a system of two equations of first order,

∂tx(t)= v(t)
∂tv(t)=−ω2x(t)

}
(3.11)

and the associated linear systems are,

(i) Explicit Euler (EE)

(
xn+1

vn+1

)
=
[

1 1t
−ω21t 1

] (
xn

vn

)
. (3.12)

(ii) Implicit Euler (IE)

[
1 −1t

1tω2 1

] (
xn+1

vn+1

)
=
(

xn

vn

)
. (3.13)

(iii) Crank–Nicholson (CN)
[

1 −1t/2
1tω2/2 1

] (
xn+1

vn+1

)
=
[

1 1t/2
−ω21t/2 1

] (
xn

vn

)
. (3.14)

https://doi.org/10.1017/S0022377816000696 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000696

Computational methods for plasma fluid models 9

FIGURE 4. Oscillator motion in x–v diagram (phase space) and associated time behaviour
of the total energy. The red point corresponds to the initial position velocity.

The numerical solutions for the motion of the harmonic oscillator obtained with
the three different time schemes are presented in figure 4. The energy conservation
property is violated by the explicit and the implicit schemes. Only the CN scheme
verifies the energy conservation property of the system. The error in energy
conservation of the three schemes can be derived easily starting from (3.10). Posing

E(n)tot =
(vn)2

2
+ω2 (x

n)2

2
, (3.15)

the evolution of E(t)tot from t to t+ 1 should be expressed as a function of E(t)tot

E(n+1)
tot =

(vn+1)2

2
+ω2 (x

n+1)2

2
. (3.16)

Starting from the three linear systems (3.12)–(3.14), and from the calculation of the
quantities x and v at t+1t, the following relations are derived:

(i) EE

xn+1 = xn +1tvn

vn+1 = vn −1tω2xn

⇒ E(n+1)
tot =

(
1+1t2ω2

)
E(n)tot > E(n)tot .

(3.17)

(ii) IE

xn+1 = 1
1+ω21t2

(xn +1tvn)

vn+1 = 1
1+ω21t2

(vn −ω21tvn)

⇒ E(n+1)
tot =

1
(1+1t2ω2)

E(n)tot < E(n)tot .

(3.18)

https://doi.org/10.1017/S0022377816000696 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000696

10 G. Fuhr, P. Beyer and S. Benkadda

(iii) CN

xn+1 = 1
1+ω21t2/4

([1−ω21t2/4]xn +1tvn)

vn+1 = 1
1+ω21t2/4

([1−ω21t2/4]vn −ω21tvn)

⇒ E(n+1)
tot = E(n)tot .

(3.19)

The violation of the energy conservation for IE and EE schemes appears via
a second-order term in 1t. Analytical calculation shows that the observed energy
growth is not linked to an inappropriate value of the time step but directly to the
numerical properties of the scheme. The implicit scheme however introduces artificial
damping from the truncations which leads to a decrease of the energy of the system.
Advantages of this numerical dissipation is an increased stability compared to explicit
schemes. The associated consequences are described in § 4. The properties of the
described system allows to express it as an Hamiltonian operator:

H(v, x)= v
2

2
+ ω

2

2
x2,

∂v

∂t
= ∂H
∂x

∂x
∂t
=−∂H

∂v
.

(3.20)

The energy conservation observed with the CN scheme is related to a property of
this integrator which is that to be a symplectic integrator, this class of integrators
preserves the properties of the associated Hamiltonian (e.g. energy conservation or
geometrical properties). In Hairer (2006), more details and possible schemes for such
systems are presented.

3.1. Typical time advance schemes used
Euler schemes are generally not satisfying for the numerical resolution of PDEs.
Even if their implementation is simple and fast, these schemes are only of first-order
accuracy. Higher-order schemes have been developed (see Durran 2010) and can be
divided in two families:

(i) schemes which use information at steps t, t−1t, . . . to calculate the solution at
time t+1t. The main schemes used are Adams–Moulton (AM) and Adams–Bashforth
(AB) schemes. AM are implicit linear multistep methods and AB is explicit. A variant
of AB used in plasma physic is the time scheme developed by Karniadakis, Israeli &
Orszag (1991). Compared to the original AB schemes, this one has a better accuracy
and an increased stability region. The third-order explicit version of the scheme is
given here

γ0un+1 −
2∑

p=0

αpun−p

1t
=

2∑

p=0

βpF(tn − p1t, un−p, . . .) (3.21)

αp = 3,−3/2, 1/3 (3.22)

βp = 3,−3, 1, γ0 = 11/6. (3.23a,b)

https://doi.org/10.1017/S0022377816000696 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000696

Computational methods for plasma fluid models 11

In the case where one of the operators present in F corresponds to a diffusion operator
with a coefficient ν (ν∇2), an implicit version exists. The implicit version consist
mainly in an implicit treatment of the diffusion operator, the advantage of the implicit
diffusion is an increased stability region for the scheme due to damping of associated
high wavenumbers:

û−
2∑

p=0

αpun−p

1t
=

2∑

p=0

βpF(tn − p1t, un−p, . . .) (3.24)

γ0un+1 − û
1t

= ν∇2un+1 (3.25)

αp = 3,−3/2, 1/3 (3.26)

βp = 3,−3, 1, γ0 = 11/6. (3.27a,b)

(ii) schemes where the right-hand side term is approximated at intermediate times
between t and t + 1t. This principle is used in the elaboration of the Runge–Kutta
(RK) schemes. RK schemes are not unique at each order, the choice depends on
the desired properties for the system (see Shu & Osher 1988; Butcher 2008). As
computer performances have increased during the last years, fourth-order RK schemes
are actually used widely,

un+1 = un +1t
4∑

p=0

βpkp (3.28)

kp = F

(
tn + cp1t, un +1t

4∑

q=0

αnqkq

)
. (3.29)

4. Numerical modelling of diffusion
The diffusion equation with a constant diffusion coefficient D (also called the heat

equation) is the simplest parabolic PDE. The time evolution of the positive definite
field u(x, t) is given by,

∂tu(x, t)=D∂2
x u(x, t). (4.1)

Using a second-order scheme in space, the right-hand side of (4.1) is discretized using
a central expression,

D∂2
x u(x, t)'D

ui+1 + ui−1 − 2ui

1x2
. (4.2)

4.1. Stability analysis and Courant–Friedrichs–Lewy (CFL) condition
Numerical simulations have been realized with IE and EE schemes and spatial CD,
respectively. The obtained profiles for u(x, t) at different times are plotted in figure 5.
Two runs with two different time steps are performed in both cases. Obviously, the
implicit Euler scheme produces nearly identical results with both time steps whereas
the results obtained with the explicit Euler scheme are strongly affected by the choice
of the time step. Here, for the larger time step, the solution u(x, t) shows an oscillating

https://doi.org/10.1017/S0022377816000696 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000696

12 G. Fuhr, P. Beyer and S. Benkadda

(a) (b)

(c) (d)

FIGURE 5. Solution obtained for the diffusion equation with Nx= 256,Lx= 2π. 1t= 5e–4
for cases (a) and (b) and 1t= 8e–4 for cases (c) and (d).

behaviour with an exponential growth. This behaviour can be explained through the
corresponding stability analysis.

The stability property of a time advancing scheme can be studied through the Von
Neumann stability analysis technique (see Durran 2010). Note that it is very important
to realize that the stability of a scheme is different from its accuracy. To be useful, a
numerical scheme must be both consistent and stable.

Consistency means that, the (continuous) solution of the PDE must satisfy the
discretized version of the equation – using the respective time scheme – with
approximation errors that vanish when 1x and 1t approach zero. Consistency
guarantees that the scheme truly approximates the equation intended to be solved
(and not something else).

Stability means that the scheme does not amplify errors. Obviously, this is very
important, since truncation errors are impossible to avoid in any numerical calculation.
In fact, even in the ideal case of infinite precision, some errors (e.g. discretization
errors) remain. Clearly, if errors are amplified, they will rapidly dominate any
computation (making it useless). In the simplest case of linear constant coefficient

https://doi.org/10.1017/S0022377816000696 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000696

Computational methods for plasma fluid models 13

schemes, a complete stability analysis is possible as the numerical algorithm equations
can be solved exactly by separation of variables. It follows that any solution of these
equations can be written as a superposition of Fourier modes. Since these Fourier
modes are uncoupled, the evolution of each mode can be considered individually. As
an example, considering (4.1), the field u(x, t) can be expressed as a sum of complex
wave functions. For an infinite space, the initial condition can be written as,

u(x, t= 0)= u0(x)= 1√
2π

∫ ∞

−∞
ũ(k)eikx dk. (4.3)

Let us assume moreover, that the initial condition, for simplicity, can be expressed
using only one Fourier mode,

u(x, t= 0)→ u0
j =U0eikj1x. (4.4)

After a single application of the differencing scheme, the mode’s amplitude and phase
are modified by a factor G(k),

eikj1x→G(k)eikj1x, (4.5)

and after n iterations, the field at time (tn = n1t) has the form

un
j =Gn(k)u0

j , (4.6)

where G(k) corresponds to the complex amplification factor of the scheme. A scheme
is stable only if an initial error is not amplified, which corresponds to |G(k)| 6 1.
More precisely, if |G(k)| = 1, the scheme is classified as neutral and if |G(k)| < 1,
the scheme is damping. From this analysis, it is found that the EE scheme has an
amplification factor expressed by,

G(k)= 1− 4
D1t
1x2

sin2

(
k1x

2

)
. (4.7)

From the above condition, the scheme is stable only if

D1t
1x2

6 1
2
. (4.8)

In contrast, for the IE scheme, the amplification factor is

G(k)= 1

1+ 4
D1t
1x2

sin2

(
k1x

2

) . (4.9)

Since, |G(k)|6 1∀1t, 1x> 0, this scheme is unconditionally stable.
The value of |G(k)| for the explicit Euler is mainly governed by the number

nc = D1t/1x2. For the results presented above, the first value of the time step
corresponds to nc = 0.42 and the second value to nc = 0.68. As expected, the
second case is unstable, nc = 0.68 > 1/2. The number nc is called in the literature
the Courant number. The stability condition is associated with the so called
Courant–Friedrichs–Lewy condition (see Courant, Friedrichs & Lewy 1928). However
this is true mainly only for the single stage linear methods such as the Euler scheme.

https://doi.org/10.1017/S0022377816000696 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000696

14 G. Fuhr, P. Beyer and S. Benkadda

In general, the CFL condition is necessary but not sufficient to ensure stability (see
Schneider, Kolomenskiy & Deriaz 2013).

A physical interpretation of the unconditional stability of the implicit Euler scheme
is linked to the fact that this method avoids growth of small scales through an artificial
damping of these scales.

The treatment of diffusion is a challenge in plasma physics computations. The
first issue with respect to the diffusion process, which is not detailed here, is the
strong anisotropy of diffusion between the directions parallel and perpendicular to
the magnetic field. Here, splitting between explicit and implicit operators should
be implemented to treat correctly both directions with an acceptable time step (see
Crouseilles, Kuhn & Latu 2015).

The constraint is not on the diffusion coefficient (which is typically quite small
(see Freidberg 2007)) but the correct treatment of small scales. The presence of
small scales requires a fine grid with small 1x. In a 1-D simulation, decreasing 1x
e.g. by a factor of 4 for example, implies that 1t needs to be divided by 16. As a
consequence, for the same simulation, the simulation time will be 16× 4= 64 times
longer. Increasing grid resolution has an important impact on the simulation time,
which is even worst in 3-D; an increased resolution by a factor 4 in each direction
leads to a computational time 16 × 43 = 1024 times higher. A consequence of this
is that simulations cannot be done anymore on simple workstations but must use
parallel computers.

The simple diffusion equation is used as a starting point for an illustration of
parallel implementations based on a purely serial code. Possible parallel implementa-
tions can be divided into two families depending on the hardware used for the
simulations. Both implementation and how to develop them from a serial code are
presented in the following sections.

4.2. Numerical implementation
4.2.1. Performance measurement

Before presentation of possible numerical implementations applied to the resolution
of parabolic equations, it is important to define a way to characterize benefits
associated with parallel implementations with respect to the serial one. Performance
gain can be both modelled and measured. In this section we will take a another look
at parallel computations by giving a simple analytical model that illustrates some of
the factors that influence the performance of a parallel program. Consider a program
consisting of three parts: an initialization section (time Ti), a computation section
(time Tc) and a finalization section (time Tf). The total running time of this program
on one processor (called the serial version) is then given as the sum of the times for
the three parts:

Ts = Ti + Tc + Tf . (4.10)

Now, how will this running time evolve when the program is run in parallel?
Assuming that the program is run on P processors and that Ti and Tf are almost
independent of the number of processors, the parallel time Tp ideally becomes, in
particular if the influence of the communication cost between processors is neglected:

Tp(P)= Ti + Tc/P+ Tf . (4.11)

The performance gain is measured by the speed-up S(P) which describes how much
faster a problem runs. The actual running time does not appear and the speed-up S(P)
is normalized such that

S(P)= Ts/Tp(P). (4.12)

https://doi.org/10.1017/S0022377816000696 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000696

Computational methods for plasma fluid models 15

(a) (b)

FIGURE 6. Speed-up as function of number of processors, using Amdahl’s (a) and
Gustafson’s (b) laws.

Defining γ as,

γ = Ti + Tf

Ts
, (4.13)

S(P) is simplified as,
S(P)= 1/(γ + (1− γ)/P). (4.14)

Equation (4.14) is well known as Amdahl’s law (see Amdahl 1967) and says that,
in absence of unparallelized parts (γ =0), speed-up scales as the number of processors
used for the simulation. This case is defined as an ideal speed-up. However, as can
be seen in figure 6, the serial part is a highly limiting factor in the scalability of
a code. For example, with γ = 0.5 (which means that 50 % of the code cannot be
run in parallel), using 4 processors gives a speed-up of 1.6, far away from the S= 4
desired. This constraint leads to a strong limitation on the parallel scalability of a code.
As observed in figure 6, with γ = 1 %, passing from 100 to 1000 processors gives
only a negligible gain in running time. And as consequence, Amdahl’s law appears
as a strong limitation on performance increases of codes with an increasing number
of processors used. This conclusion has been softened by Gustafson (see Gustafson
1988) who stated that if the serial part cannot be reduced, it is possible to solve a
larger problem efficiently in the same amount of time. As the problem size grows,
the work required for the parallel part of the problem frequently grows much faster
compared to that required for the serial part, then as the problem size grows, the serial
fraction decreases and the speed-up improves. In Gustafson’s law, the speed-up follows
the rule:

S(P)=w+ (1−w) ∗ P, (4.15)

with w being the part which benefits from resources improvement (as illustrated in
figure 6b). These performance measurements and associated conclusions will be used
in the following section, illustrating 2 different parallel implementations to solve a 1-D
diffusion equation.

https://doi.org/10.1017/S0022377816000696 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000696

16 G. Fuhr, P. Beyer and S. Benkadda

Lx 70π

Nx 1024
D 0.1
1t 1e–4
Tmax 500

u0(x) 0.1 sin
(

π

Lx
x
)

S(x) 0.1 exp(−10 ∗ (x− 0.3 ∗ Lx)
2)

TABLE 1. Reference numerical set-up for the resolution of (4.16).

4.2.2. Serial implementation
Starting point is the resolution of the diffusion equation with a constant source term.

For this purpose, a second-order central derivative for the Laplacian operator is used,

∂tu(x, t)= F(u(x, t))

=D∂2
x u(x, t)+ S(x)

initial condition: u(x, 0)= u0(x),

boundary conditions: ∂xu(t, 0)= 0, u(t, Lx)= 0,

(4.16)

where D∂2
x u(x, t) is discretized by

D∂2
x u(x, t)⇒D

ui+1 + ui−1 − 2ui

1x2
. (4.17)

The time evolution is resolved by a fourth-order Runge–Kutta scheme (RK-4),

k1 = F(un)

k2 = F
(

un + 1t
2

k1

)

k3 = F
(

un + 1t
2

k2

)

k4 = F (un +1tk3)

un+1 = un + 1t
6
(k1 + 2k2 + 2k3 + k4),

(4.18)

to yield the discrete equation. For the simulations, the reference numerical set-up used
in § 4.2 is indicated in table 1.

A serial implementation of a such model (serial implementation means a version of
the numerical code which can be executed only on 1 core) is illustrated in figure 7.
The field u(x, t) is modelled through an array in which each cell contains the value
of u at a given time t for all spatial grid points. In the case sketched in figure 7, the
spatial grid contains 16 cells numbered from 0 to 15. The right-hand side of (4.16) is
represented by a function F which is applied to every element of the array u using a
RK-4 algorithm (4.18). RK-4 needs 4 intermediate arrays which are not represented
on figure 7 for simplicity.

https://doi.org/10.1017/S0022377816000696 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000696

Computational methods for plasma fluid models 17

The corresponding implementation of the time loop is presented in listing 1.

Listing 1: RK4 time scheme for serial implementation of diffusion equation.
Definitions of used functions are given in § C.1.

1 /*time loop using RK4 scheme */
2 for(i=0;i<tmax;i+=1)
3 {
4 calclaplacien(pr_P0 ,K1,dx*dx, D,fieldSize); /* K1 = D*

laplacian(P0) */
5 addField(pr_fsrc ,K1,fieldSize); /* K1 += S(x)

*/
6 copyandaddmultField(pr_P0 , K1 , F1 , dt/2, fieldSize); /* F1 = P0 +

0.5dt*K1 */
7 Generate_BC(F1);
8
9 calclaplacien(F1,K2,dx*dx ,D,fieldSize); /* K2 = nabla

(chi nabla)F1 */
10 addField(pr_fsrc ,K2,fieldSize); /* K2 += S(x)

*/
11 copyandaddmultField(pr_P0 , K2 , F2 , dt/2, fieldSize); /* F2 = P0 +

0.5dt*K2 */
12 Generate_BC(F2);
13
14 calclaplacien(F2,K3,dx*dx ,D,fieldSize); /* K3 = nabla

(chi nabla)F2 */
15 addField(pr_fsrc ,K3,fieldSize); /* K3 += S(x)

*/
16 copyandaddmultField(pr_P0 , K3 , F3 , dt , fieldSize); /* F3 = P0 + dt

*K3 */
17 Generate_BC(F3);
18
19 calclaplacien(F3,K4,dx*dx ,D,fieldSize); /* K4 = nabla

(chi nabla)F3 */
20 addField(pr_fsrc ,K4,fieldSize); /* K4 += S(x)

*/
21
22 copyandaddField(K2,K3 ,pr_P1 ,fieldSize); /* P1 = K2+K3

*/
23 multCnst (2.,pr_P1 ,fieldSize); /* P1 *= 2 */
24 addField(K4,pr_P1 ,fieldSize); /* P1 += K4 */
25 addField(K1,pr_P1 ,fieldSize); /* P1 += K1 */
26 multCnst(dt/6.,pr_P1 ,fieldSize); /* P1 *= dt/6

*/
27 addField(pr_P1 ,pr_P0 ,fieldSize); /* P0 = P0 + P1

<=> PO <- PO+dt/6*(K1+K2K+2K3+K4) */
28 Generate_BC(pr_P0);
29 }

Figure 8 shows on the left the included source and on the right the initial and final
profiles obtained at t= Tmax.

4.2.3. Message passing interface (MPI) implementation
The previous code can be greatly accelerated not through low-level optimizations

but by taking advantage of modern computers architecture. For that purpose, the
development of a parallel version using an MPI library (see Message Passing Interface
Forum 2015) is explained. MPI can be seen as a way to execute a software as a set
of processes that have only local memory but are able to communicate with other
processes by sending and receiving messages. MPI has been designed mainly to be
used with a distributed collection of machines. An MPI program can be divided into
3 parts

https://doi.org/10.1017/S0022377816000696 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000696

18 G. Fuhr, P. Beyer and S. Benkadda

FIGURE 7. Data storage in memory in a serial implementation, the arrow represent the
computation of u at t+1t in function of u at t.

(a) (b)

FIGURE 8. Source profile (a) and initial/final field for numerical simulation (b) of (4.16).

(i) initialization through the MPI_Init function;
(ii) program core;

(iii) termination of parallel part with the MPI_Finalize command.

Since the evaluation of u at time tn+1 = tn + 1t depends on its value at time tn,
the time loop cannot be parallelized. The only part which can be parallelized is the
calculation of the Laplacian of u. For the following description of the method, the
simulation is considered to be run on 4 processes. In the serial algorithm, all the data
are stored in the memory of the execution process. This concept cannot be used in
an MPI version: if only 1 process can access the data, the other processes are useless.
At the opposite, sending all the information to all processes generates an unnecessary
memory allocation when the number of CPU (central processing unit) increases. As
consequence, for the MPI version, the spatial domain is divided between available
processes. Each process can access only its associated memory and has access only

https://doi.org/10.1017/S0022377816000696 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000696

Computational methods for plasma fluid models 19

to a part of the full domain as presented in figure 9. Since each process knows
only a part of the grid, it is necessary to communicate values of ‘local’ boundaries
between processes. These local boundaries, often called ghost points in the literature,
correspond to artificial points added during the grid decomposition step. These points
are used as buffer for received values from other process. Communications (dashed
arrows) are made through calls to MPI functions MPI_Send and MPI_IRecv (see
Message Passing Interface Forum 2015).

With MPI, communications between processes must be made explicitly in the code,
indicating which process sends the data and which one should receive them. As a
first part, and before the time loop, a ‘map’ of the processes is generated and each
process can know which processes are his left and right neighbours. Generally, this
part concerning the creation of the topology for the communications is made with the
MPI_Cart_Create function but for the purpose of this paper, a simple implementation
is made. A structure containing the necessary information is initialized, as presented
in listing 2. Using the concept of ghost points previously described, this explains why,
on line 34 of listing 2, 2 cells are added to the local size of the corresponding domain.

Listing 2: Initialisation of 1D MPI topology.
1 /* structure containing topology info */
2 typedef struct map
3 {
4 int leftProc;
5 int rightProc;
6 int actualProc;
7 long localSize;
8 long globalSize;
9 long posGlobalMin;

10 } struc_map , *pstruc_map;
11
12 /* associated initialization */
13 /* compute mpi grid info with local arrray size */
14 struc_map MPI_Map_generate(const long globalsize)
15 {
16 struc_map mpimap;
17 int rank , ncores;
18 /* MPI function which indicates total number of available process

*/
19 MPI_Comm_size(MPI_COMM_WORLD , &ncores);
20 /* MPI function which indicates number of actual process */
21 MPI_Comm_rank(MPI_COMM_WORLD , &rank);
22
23 mpimap.actualProc = rank;
24 mpimap.leftProc = mpimap.actualProc - 1;
25 mpimap.rightProc = mpimap.actualProc + 1;
26
27 if (mpimap.actualProc == ncores -1)
28 {
29 mpimap.rightProc = -1;
30 }
31
32 mpimap.globalSize = globalsize;
33 /* calculation of size of local domain from size of global domain

*/
34 mpimap.localSize = 2 + (globalsize -2)/ncores;
35 return mpimap;
36 }

Once the topology is initialized, the next step is to scatter the data between all
processes. This is made with the MPI_Scatter function called inside the function

https://doi.org/10.1017/S0022377816000696 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000696

20 G. Fuhr, P. Beyer and S. Benkadda

MPI_global2local (see § C.2 for the implementation). Compared to the serial version,
each process needs updated values for the local boundaries coming from neighbours.
As a consequence, the serial function Generate_BC is replaced by a function
MPI_Copy_BC which manages the communications for each intermediate step of
the RK-4 implementation. For process m, the goal is to send and receive at the same
time values from processes m − 1 and m + 1. To avoid the problem of a deadlock
in this function, (a deadlock is a situation in which two or more competing actions
are each waiting for the other to finish, and thus neither ever does), non-blocking
functions represented by the ‘_I’ in function names are used. This allows each process
to wait for data reception from a process and at the same time, send data to another
process.

Listing 3: MPI time loop. Code for the used functions are given in § C.2.
1 /* generation of 1D topology */
2 struc_map mpimap = MPI_Map_generate(sp.Size);
3
4 /*data scattering */
5 MPI_global2local(g_fsrc ,pr_fsrc ,& mpimap);
6 MPI_global2local(g_P0 ,pr_P0 ,& mpimap);
7
8 /*time loop using RK4 scheme */
9 /*using MPI implementation */

10 for(i=0;i<tmax;i+=t_out)
11 {
12 calclaplacien(pr_P0 , K1, dx2 , mpimap.localSize);
13 addField(pr_fsrc ,K1,mpimap.localSize);
14 copyandaddmultField(pr_P0 , K1 , F1 , dt2 , mpimap.localSize);
15 MPI_copy_BC(F1 ,& mpimap); /* data transfer

between process */
16
17 calclaplacien(F1,K2, dx2 ,mpimap.localSize);
18 addField(pr_fsrc ,K2,mpimap.localSize);
19 copyandaddmultField(pr_P0 , K2 , F2 , dt2 , mpimap.localSize);
20 MPI_copy_BC(F2 ,& mpimap);
21
22 calclaplacien(F2,K3, dx2 , mpimap.localSize);
23 addField(pr_fsrc ,K3,mpimap.localSize);
24 copyandaddmultField(pr_P0 , K3 , F3 , 2.*dt2 , mpimap.localSize);
25 MPI_copy_BC(F3 ,& mpimap);
26
27 calclaplacien(F3,K4, dx2 ,mpimap.localSize);
28 addField(pr_fsrc ,K4,mpimap.localSize);
29
30 /* final addition P0+DT/6*(K1+2K2+2K3+K4) */
31 copyandaddField(K2,K3 ,pr_P1 ,mpimap.localSize);
32 multCnst (2.,pr_P1 ,mpimap.localSize);
33 addField(K4,pr_P1 ,mpimap.localSize);
34 addField(K1,pr_P1 ,mpimap.localSize);
35 multCnst(dt6 ,pr_P1 ,mpimap.localSize);
36 addField(pr_P1 ,pr_P0 ,mpimap.localSize);
37 MPI_copy_BC(pr_P0 ,& mpimap);
38 }

With this implementation, the speed-up S(P) is represented in figure 10. All
simulations have been performed on a cluster node with 2 processors of 10
cores. On this cluster, speed-up tends to a limit value around 2.5–3 for both
resolutions. The measured speed-up tends to reach the ideal one when the resolution
increases. Higher resolution generates more operations at each time step, and,
since in the presented algorithm the communication cost is independent of the

https://doi.org/10.1017/S0022377816000696 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000696

Computational methods for plasma fluid models 21

FIGURE 9. MPI implementation sketching computation from time tn to time tn+1.

FIGURE 10. Speed-up S(P) obtained using MPI implementation. The solid line
corresponds to the ideal case (S(P) = P) and dashes lines to the measured values for
resolutions of 1024 and 2048 points.

resolution, the obtained speed-up is higher: as expected in Gustafson’s law, the
ratio communication/computation decreases leading to better performances. In the
simulation made to study physical models, the number of operators and considered
resolutions are higher than the ones presented here, this leads to a better scaling with
a simple domain decomposition method.

MPI was first defined for distributed memory architectures. However, modern
clusters are a combination of distributed memory between nodes but each node can be
assimilated as a shared memory system. Even if MPI can take advantage of a shared
memory environment, another library, OpenMP, is used to present another possible
implementation. The choice of OpenMP library is that this library is dedicated to the
development of parallel programs on shared memory architectures.

https://doi.org/10.1017/S0022377816000696 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000696

22 G. Fuhr, P. Beyer and S. Benkadda

4.2.4. OpenMP implementation
OpenMP (see Chapman, Jost & Van der Pas 2007) standard was formulated in 1997

as a set of library routines and tools for writing portable multiprocessing computer
programs. Any computer program can be considered as a set of processes (or threads)
and OpenMP permits for example to balance the total calculation between the different
processes.

OpenMP provides a platform-independent set of compiler pragmas (a pragma is
a language construct that specifies how a compiler should process the input source
code), directives, function calls and environment variables that explicitly instruct the
compiler how and where to use parallelism in the application. The method is well
suited for domain (and/or loop) decomposition. The possible OpenMP implementations
differ depending on the level of granularity considered in the algorithm. Granularity
can be defined as the ratio between the amount of computations executed by a thread
and the amount of communications between threads. Fine-grained parallelism means
that individual tasks are relatively small in terms of code size and execution time.
The data are frequently transferred between processors in amounts of one or a few
memory words. The coarse-grained approach is the opposite: data are communicated
infrequently, after larger amounts of computation. The finer the granularity, the
larger is the potential for parallelism and hence speed-up, but the larger are also the
overheads of synchronization and communication. As for MPI implementation, this
last point is the critical issue for obtaining an effective speed-up.

The fine-graining technique uses OpenMP directives directly in loops to produce a
parallel version of the code at compilation time. The following example shows the
corresponding implementation for computation of the Laplacian operator.

Let u(x, t) be discretized on N points in space, the extrema points with index i=
0 and respectively i = N − 1, are used as ‘ghost’ points implied by the boundary
conditions. The numerical implementation is as follows,

C version:

Coef = D/(dx*dx);
for(i=1; i<N-1; i=i+1)
laplacian[i] = Coef*(un[i+1]+un[i-1]-2*un[i]);

Fortran version:

Coef = D/(dx*dx);
do i=2,N-1
laplacian(i) = Coef*(un(i+1)+un(i-1)-2*un(i))

end do

To obtain a parallel version of the loop, using OpenMP, only one directive has to
be added in front of the loop.

C version:

Coef = D/(dx*dx);
#pragma omp parallel for
for(i=1; i<Nx-1; i= i+1)
laplacian[i] = Coef*(un[i+1]+un[i-1]-2*un[i]);

https://doi.org/10.1017/S0022377816000696 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000696

Computational methods for plasma fluid models 23

FIGURE 11. Fine-graining method. Arrows indicates scattering and gathering of data
between cores through OpenMP directives (4 cores and 16 points are considered here).

Fortran version:

Coef = D/(dr*dr);
!$OMP PARALLEL DO
do i=2,Nx-1
laplacian(i) = Coef*(un(i+1)+un(i-1)-2*un(i))

end do
!$ OMP END PARALLEL DO

Fine-graining decomposition is illustrated in figure 11 assuming 4 available threads
for the simulation. Compared to the MPI implementation, this time the field is not
distributed between processes, each core has access to the full field but loop iterations
are divided between cores.

The dashed rectangle represents the do/for loop and the blue rectangle the parallel
region. Since each threads runs in parallel, the calculation time is expected to be
divided by 4 compared to the serial case. In figure 12, the speed-up S(P) is plotted
for an input array of N = 8096 elements. The speed-up is close to the theoretical one
from 1 and 2 threads, but for more threads, there is a saturation close to a speed-
up of 3. Our test case is rather simple and with increasing number of threads, the
computational costs linked to the generation and destruction of threads, to the sharing
of variables between them and to the associated communications are not negligible
anymore. Therefore, this simple example shows that an efficient implementation of
an OpenMP structure in a given code cannot be sketched to a simple addition of
directives before loops. To be efficient, the directives should be made in the loops
which have a large number of calculations per iteration.

OpenMP can also be implemented in a coarse-graining approach. This approach
can be seen as a way to simulate an MPI implementation with OpenMP directives.
Generally, for parallel numerical tools, domain decomposition is made using
MPI techniques, and OpenMP fine-graining techniques are used as a refinement.
However, as it has been shown in the previous section, the performances of the

https://doi.org/10.1017/S0022377816000696 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000696

24 G. Fuhr, P. Beyer and S. Benkadda

FIGURE 12. Measured speed-up for a fine-graining implementation of OpenMP directives.

fine-graining approach are strongly linked to the number of operations in each loop.
Typically, for complicated models, the corresponding code will have many loops with
few operations for each. This is due to the choices of the decomposition for each
direction for example or the resolutions used in 3-D and the associated simulation
time. For this kind of simulation, pure MPI implementation has generally better
performance and scaling than an equivalent code mixing MPI domain decomposition
and OpenMP fine graining. However, this kind of OpenMP implementation becomes
more and more interesting since the generations of cluster nodes or even workstations
have between 4 to 16 or even more cores per nodes. Compared to the fine graining
where the parallelism is operated at a loop level, coarse graining is more intrusive.

In a coarse-graining (CG) approach, the domain decomposition is operated from the
beginning and communications between processes are made explicitly. Understanding
CG implementation with OpenMP directives requires a more precise description of the
memory environment in an OpenMP process (see Chapman et al. 2007).

A program can be divided into smaller sequences of codes which can be managed
independently, each one of this sequence is called a thread. OpenMP assumes that in
a shared memory environment, all threads can access the same memory for storing
and retrieving data. Each thread may have a private, temporary view of the memory
(called a thread’s view) at the beginning of an OpenMP construct (a parallel region)
that it can use instead of the memory to store data during its execution when these
data do not need to be seen by other threads.

Data can be ‘transferred’ between the memory and a thread’s view, but can never
move between temporary views directly, without going through the memory. Each
variable used within a parallel region is either shared or private. Each shared variable
reference inside a parallel region refers to the original variable of the same name. For
each private variable, a reference to the variable name refers to a variable of the same
type and size as the original variable, but private to the thread. It is therefore not
accessible by other threads. The elaboration of a communication-like system in such
a case is described in the following using again the example of the diffusion equation.
As in previous sections, a decomposition on 4 threads with spatial discretization on

https://doi.org/10.1017/S0022377816000696 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000696

Computational methods for plasma fluid models 25

16 points is used. As in the MPI version, the parallelization starts in that case from
the initialization: values for u0,u1,u2,u3 are stored on thread 0, values for u4,u5,u6,u7
are stored on thread 1, . . . and values for u12, u13, u14, u15 are stored on thread 3.
Since each thread contains its own version of the variable with the same name, we
distinguish them using the thread number as a superscript. A[0]0 corresponds to the
value of A0 for the thread 0, A[1]0 corresponds to the value of A0 for the thread 1
This concept is illustrated on figure 13.

The starting point is the creation of an equivalent to a 1-D topology. A similar
structure as the one used in § 4.2.3 is declared and initialized. Each thread is identified
with a unique number starting from 0 and increased by 1 for each thread. The
structure itself is similar to the one used for MPI, the difference is the calling
function giving unique identity of the thread. This identity is used to create the
notion of neighbours for each thread, as in the MPI case.

Listing 4: OpenMP CG topology definition.
1 typedef struct map
2 {
3 int leftProc;
4 int rightProc;
5 int actualProc;
6 long localSize;
7 long globalSize;
8 long posGlobalMin; /* offset for the thread private view */
9 } struc_map , *pstruc_map;

10
11 /*1D topology function definition */
12 /*input parameter globalsize correspond to the full length of the array

*/
13 struc_map OMP_Map_generate(const long globalsize)
14 {
15 struc_map ompmap ={0};
16 ompmap.actualProc=omp_get_thread_num (); /* omp_get_thread_num give

actual thread number */
17 ompmap.leftProc = ompmap.actualProc -1;
18 /* omp_get_num_threads give the total number of used threads */
19 if (ompmap.actualProc == omp_get_num_threads () -1)
20 {
21 ompmap.rightProc =-1;
22 }
23 else
24 {
25 ompmap.rightProc = ompmap.actualProc +1;
26 }
27 ompmap.localSize =2+(globalsize -2)/omp_get_num_threads ();
28 if (omp_get_num_threads () >1)
29 ompmap.posGlobalMin =1+ ompmap.actualProc *(ompmap.localSize -2);
30 else
31 ompmap.posGlobalMin =0;
32 ompmap.globalSize=globalsize;
33
34 return ompmap;
35 }

Once the initialization is completed, data have to be scattered between threads. This
part is illustrated in listing 4, only the case of the array corresponding to the source
term is represented. For clarity, variable names starting with g_ correspond to the
original variables and names starting with pr_ are associated with the thread private
view.

https://doi.org/10.1017/S0022377816000696 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000696

26 G. Fuhr, P. Beyer and S. Benkadda

FIGURE 13. Schematic representation of the coarse-graining communication process.

Listing 5: OpenMP CG scattering step (source code for the used functions are given
in § C.3.)

1 int main(int argc , char **argc)
2 {
3 /*....*/
4 double *g_fsrc = NULL;
5 g_fsrc = (double *) malloc(MESHSIZE*sizeof (* g_fsrc));
6
7 /*....*/
8
9 /* entry of parallel region , variable shared between global view and

threads views are indicated with the shared keyword */
10 #pragma omp parallel default(none) private(i,j) shared(g_fsrc , g_P0 ,sp,

sh_boundary ,sh_lockvar)
11 {
12 struc_map ompmap = OMP_Map_generate(sp.Size);
13
14 /* variable declared within a parallel region are private to

this region */
15 double *const pr_fsrc=malloc(ompmap.localSize*sizeof (* pr_fsrc))

;
16
17 /*copy data from global memory to thread private memory */
18 OMP_global2local(g_fsrc ,pr_fsrc ,& ompmap);
19
20 /* time loop , not shown in this listing */
21 /*.... */
22
23 } /* end of parallel region */
24 }

The most complex part is the simulation of a communication mechanism like
send/receive using OpenMP directives. The previous mechanism based on the
functions OMP_global2local and OMP_local2global (function defined in § C.3)
cannot be used in the time loop. The associated communication cost is too important
and as a consequence the scalability is poor and not efficient at all.

The developed technique is based on two other pragma directives defined in
OpenMP (see OpenMP 2015):

(i) atomic: ensure that only one thread at a time accesses a shared variable, and
subsequently synchronize updated contents with all other threads view,

https://doi.org/10.1017/S0022377816000696 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000696

Computational methods for plasma fluid models 27

(ii) barrier: synchronizes all threads, acts like a breakpoint that all threads must reach
before execution of other instructions.

Since each thread knowns only a part of the grid, the values of the local boundaries
have to be updated at each iteration due to the stencil used for spatial derivatives. For
example, the Laplacian at grid node i= 4 is based on values of u at position i= 3, 4, 5.
But, in our example, the value of u3 is known only from thread 0 and the Laplacian of
u4 is computed by thread 1. As a consequence, in order to send data between threads,
a mechanism based on Inputs/Outputs (I/O) on a shared array between all threads is
implemented. This mechanism is illustrated in figure 14.

The principle is as follows. Each thread writes to a given position in the array based
on its thread number (figure 14b). Then, the value is updated for all threads with
the atomic directive. The shared array is now up to date and the updated values are
synchronized between all threads (figure 14c).

As for the initialization, the developed implementation for the time loop is described
in listing 6. It can be noticed that in the main kernel, the elaboration of a parallel
version leads to similar modifications between the implementations of communication
through a MPI library or through the OpenMP directives in a CG approach. All
communications are carried out during the computation of the boundaries. In the CG
case, the variable called sh_boundary represents the array used for data exchanges.
This variable is updated in the function OMP_generate_BC. To be sure that all threads
have updated the necessary cells, a barrier directive is incorporated just after. Finally,
new values are copied to private variables within the function OMP_copy_BC.

Listing 6: OpenMP coarse graining time loop in a simplified version. Full code and
code for the used functions are given in § C.3.

1
2 #ifdef __GNUC__
3 #pragma omp parallel default(none) private(i,j) shared(g_fsrc , g_P0 ,sp,

sh_boundary ,sh_lockvar)
4 #else
5 #pragma novector
6 #pragma omp parallel default(none) private(i,j) shared(dt ,D,tmax ,t_out ,

dt2 ,dt6 , g_fsrc , g_P0 ,sp,sh_boundary ,sh_lockvar)
7 #endif
8 {
9 struc_map ompmap = OMP_Map_generate(sp.Size);

10
11 double *const K1=malloc(ompmap.localSize*sizeof (*K1));
12 /*same thing for the other variables K2 , K3 , K4 , F1, F2, F3,

Ftmp , pr_P0 , pr_P1 , pr_fsrc */
13
14 double const dx2 = sp.dx*sp.dx;
15
16 /*copy data from global memory to thread private memory */
17 OMP_global2local(g_fsrc ,pr_fsrc ,& ompmap);
18 OMP_global2local(g_P0 ,pr_P0 ,& ompmap);
19
20 /* B.C local and globals should be initialized correctly also

*/
21 OMP_generate_BC(sh_boundary ,pr_P0 ,& ompmap);
22 #pragma omp barrier
23
24 OMP_copy_BC(sh_boundary ,pr_P0 ,& ompmap);
25
26 /*time loop using RK4 scheme */
27 /*using coarse graining decomposition */

https://doi.org/10.1017/S0022377816000696 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000696

28 G. Fuhr, P. Beyer and S. Benkadda

28 for(i=0;i<tmax;i+=1)
29 {
30
31 /* computation of F1 = P0+dt/2*(D*nabla ^2(P0) +S)
32 calclaplacien(pr_P0 ,K1, dx2 , D, ompmap.localSize);
33 addField(pr_fsrc ,K1,ompmap.localSize);
34 copyandaddmultField(pr_P0 , K1, F1 , dt2 , ompmap.

localSize);
35
36 /*local update of shared array containing boundary

points */
37 OMP_generate_BC(sh_boundary ,F1 ,& ompmap);
38 #pragma omp barrier
39 /*new values for boundaries obtained from the shared

array */
40 OMP_copy_BC(sh_boundary ,F1 ,& ompmap);
41
42 /* same principle for K2 , K3 and K4... */
43
44
45 /* final computation of P1 from intermediate values K1 ,

K2, K3 , K4 and P0 */
46 copyandaddField(K2,K3 ,pr_P1 ,ompmap.localSize);
47 multCnst (2.,pr_P1 ,ompmap.localSize);
48 addField(K4,pr_P1 ,ompmap.localSize);
49 addField(K1,pr_P1 ,ompmap.localSize);
50 multCnst(dt6 ,pr_P1 ,ompmap.localSize);
51 addField(pr_P1 ,pr_P0 ,ompmap.localSize);
52
53 /* update of the boundaries for the next time step */
54 OMP_generate_BC(sh_boundary ,pr_P0 ,& ompmap);
55 #pragma omp barrier
56 OMP_copy_BC(sh_boundary ,pr_P0 ,& ompmap);
57
58 }
59
60 /* memory unallocation for local arrays */
61
62 } /*OMP block end*/

As a last step, each thread reads the needed values in the shared array. The speed-up
with this method is plotted on figure 15. Compared to the previous approach, the
speed-up obtained is almost optimal, and even superlinear in the present case (speed-
up > 1). The reason of the increased speed-up is linked to a reduction of the number
of communications and a reduction of the number of shared variables to update each
time: in the fine-graining approach, shared variables must be created/destroyed/updated
for all threads in each loop where OpenMP directives are used. However in the coarse-
graining approach, the shared variables are created/destroyed only one time and the
number of variables to share is highly decreased. Another difference is linked to the
reduced array size used by each thread: smaller arrays lead to less memory used,
allowing optimized and reduced memory transfer between the central memory and the
physical processor cache due to the physical memory architecture of modern CPUs.
The direct consequence associated with this implementation is an increased efficiency
compared to the serial one which has been used as the reference case.

5. Numerical modelling of advection
The other family of operators one frequently deals with in plasma physics are

hyperbolic operators. The simplest hyperbolic operator corresponds to an advection

https://doi.org/10.1017/S0022377816000696 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000696

Computational methods for plasma fluid models 29

(a)

(b)

(c)

FIGURE 14. Coarse-graining method.

https://doi.org/10.1017/S0022377816000696 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000696

30 G. Fuhr, P. Beyer and S. Benkadda

FIGURE 15. Speed-up (S(P)) for a coarse-graining implementation of OpenMP directives.
Solid line correspond to the ideal case and dashed line to measured values.

Lx 51.2
Nx 512
V 6
1t 1e–2
Tmax 5

u0(x) A0 exp
(
− (x− Lx/2)

σ 2

)

σ 0.5 or 1.5

TABLE 2. Reference numerical set-up for the resolution of (5.1).

process with a constant velocity specified by

∂tu(x, t)+ V∂xu(x, t)= 0
u(x, 0)= u0(x).

}
(5.1)

The solution has the form,

u(x, t)= u0(x− V ∗ t). (5.2)

Moreover, to avoid problems linked to boundaries, e.g. wave reflection, a periodic
box is considered in the x direction. The reference numerical set-up used for the
simulations in this section is given in table 2.

The same discretizations in space and time, as for the modelling of diffusion in
the last section, are used here: CD in space and EE or IE in time, resulting in the
following discrete equations,

EE:
un+1

i − un
i

1t
=−V

un
i+1 − un

i−1

21x
, (5.3)

https://doi.org/10.1017/S0022377816000696 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000696

Computational methods for plasma fluid models 31

FIGURE 16. Numerical resolution of advection equation using CD in space for σ = 1.5
with parameters: Nx = 512, Lx = 51.2 and 1t= 1e–2.

IE:
un+1

i − un
i

1t
=−V

un+1
i+1 − un+1

i−1

21x
. (5.4)

The results from the simulation of advection using EE and IE algorithms are plotted
on figure 16. The IE scheme reproduces almost correctly the advection process, except
that the Gaussian function is not just advected but also damped. In the case presented
here, the IE+CD scheme is stable but, in contrast to the resolution of the diffusion
equation, this scheme is not unconditionally stable. The stability is linked to the values
of V, 1x and 1t which must verify the inequality:

0 6 V
1t
1x

6 1. (5.5)

The number µ = V1t/1x corresponds to the Courant number for advection. It has
to be noticed that full agreement between the CFL condition and stability analysis
is quite rare. As for the diffusion, the CFL condition is necessary but not sufficient
to ensure stability (see Ferszinger 2002; Schneider et al. 2013). Details on the
derivation of the CFL condition for the advection equation can be found for example
in Leveque (1992), Ferszinger (2002). However, the EE is unstable even if simulations
are performed with a value of µ< 0.5. This unstable evolution is characterized here
by an increase of the amplitude of the field (which is inconsistent with a pure
advection process) and also, the growth of spurious oscillations at the queue of the
profile can be noticed. These oscillations dominate in amplitude and overcome the
expected profile. Unlike for diffusion, EE+CD is unconditionally unstable which
means that this scheme is unstable for any values of the parameters. This is verified
by the same stability analysis using Von Neumann’s technique for the derivation of
the amplification factor G,

G(k)= 1− iV
1t
1x

sin(k1x) (5.6)

|G(k)|2 = 1+ V2 1t2

1x2
sin2(k1x)> 1. (5.7)

The source of the numerical instability is not the order of the spatial differentiation
but the combination of spatial and temporal schemes used. Making the assumption

https://doi.org/10.1017/S0022377816000696 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000696

32 G. Fuhr, P. Beyer and S. Benkadda

Time scheme F(q)
EE FEE(q)= 1+ q
IE FIE(q)= 1/(1− q)
CN FCN(q)= (1+ q/2)/(1− q/2)
RK-2 FRK2(q)= 1+ q+ q2/2
RK-3 FRK3(q)= 1+ q+ q2/2+ q3/6
RK-4 FRK4(q)= 1+ q+ q2/2+ q3/6+ q4/24

TABLE 3. Analytic expression for function F(q).

that the finite space derivative is computed with a very-high-order method, e.g. the
spectral method, (5.2) becomes

∂tu(x, t)+ ikxVu(x, t)= 0, (5.8)

and the amplification factor G(k) becomes,

G(k)= 1+ iV1t (5.9)
|G(k)|2 = 1+ V21t2k2

x > 1. (5.10)

With an amplification factor always larger than 1 even using a spectral method, the EE
scheme cannot be implemented correctly with any CD scheme in space. Time schemes
other than Euler methods, such as e.g. Runge–Kutta methods are multistep and so
Von Neumann’s stability analysis is not well suited. A stability analysis can be made
using the notion of absolute stability (see Butcher 2008; Griffiths 2010). Starting from
a PDE of the form ∂tu(x, t)= λu(x, t) with λ∈C, λ represents any possible eigenvalue
of the associated discrete system, and assuming that the solution has the form

un+1 = F(λ)un, (5.11)

the scheme is stable if and only if |F(λ)|61. As example, considering the EE scheme,
F is derived in 2 steps,

∂tu(t) = λu(t) (5.12)
⇒ un+1 = (1+ λ1t)un (5.13)
↔ F(λ) = (1+ λ1t). (5.14)

For the other time schemes presented here, posing q= λ1t, the function F(q) is given
in table 3.

Corresponding stability diagrams of these time schemes are presented in figure 19.
From these diagrams, the reasons why RK schemes are so widely used appear more
clearly. Compared to Euler schemes, RK algorithms are of higher order and also their
stability region increases with the scheme order (e.g. the stability region is wider
than the one associated with the CFL condition). The width of the associated stability
region is also a huge benefit compared with typical multistep methods for which the
stable region shrinks with the scheme order (see Butcher 2008). In the simple case
of advection at constant velocity and considering first- or second-order discretizations
in space, F(λ) values can be calculated literally. With a space discretization on M

https://doi.org/10.1017/S0022377816000696 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000696

Computational methods for plasma fluid models 33

mesh points let us start from the general expression of a first- or second-order space
derivative,

∂xui = (aui−1 + bui + cui+1)/1x. (5.15)

Inserting (5.15) in (5.1) and using EE for the time discretization, a linear algebraic
system is obtained,

Un+1 =
(

I − V
1t
1x

Mv

)
Un (5.16)

with I representing the identity matrix,

Un+1 =

un+1
0

un+1
1

un+1
2
...

un+1
M−1

, Un =

un
0

un
1

un
2
...

un
M−1

, (5.17a,b)

and

Mv =

b c 0 · · · 0 a
a b c 0 0 · · · 0 0
0 a b c 0 · · · 0 0
... 0

. . .
. . .

. . .
. . . 0 0

0 0 0 a b c
c 0 0 0 a b

. (5.18)

The matrix Mv belongs to the class of circulant Toeplitz matrices. A matrix is said
to be Toeplitz if it is a diagonal constant matrix, which means that all the elements
along a diagonal have the same constant value. Eigenvalues (and eigenfunctions) of
such kinds of matrices can be easily calculated analytically (see Smith 1978) and
in the tridiagonal case, the eigenvalues of Mv are expressed by (demonstration in
appendix B, (B 10)):

λs = b+ c exp(−iks)+ a exp(iks)

k= 2π/M

s ∈ [0, . . . ,M − 1].

(5.19)

The system (5.16) becomes,

Un+1 =
(

1− V
1t
1x
λs

)
Un

= FEE(λs)Un. (5.20)

In the case of CD discretization,

a=−1/2, b= 0, c= 1/2

→ λs(k)= i sin(sk),

}
(5.21)

https://doi.org/10.1017/S0022377816000696 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000696

34 G. Fuhr, P. Beyer and S. Benkadda

inserting into (5.20),

FEE(λs)= 1− i
V1t
1x

sin(sk)

|FEE(λs)|2 = 1+ V21t2

1x2
sin2(sk),

(5.22)

which confirms the unstable characteristic of this scheme in that case, since
|FEE(λs)| > 1. More precisely, for any symmetric discretization, λs (and q) is purely
imaginary, so in any case, |F(q)| > 1. As illustrated in figure 20, EE and RK-2
schemes are unconditionally unstable for advection using central spatial derivatives.

Since the CD scheme is unconditionally unstable, the next step is to look at other
possible spatial discretizations, FWD and BWD discretizations. BWD leads to the
following values for a, b and c,

a=−1, b= 1, c= 0

⇒ λs = 1− exp(iks)

FEE(λs)= 1− V1t
1x

(1− exp(iks))

|FEE(λs)|6 1↔ 0 6 V1t/1x 6 1.

(5.23)

The BWD scheme is stable if 06V1t/1x61. It has to be noticed that, the coefficient
V which represents the advection velocity can be positive or negative, depending on
the direction of the flow. As a consequence, if the direction is from right to left, V
is negative and therefore BWD becomes unstable.

Assuming V < 0, the last possibility is not to use BWD but FWD scheme. The
associated coefficients are,

a= 0, b=−1, c= 1

⇒ λs =−1+ exp(−iks)

FEE(λs)= 1− V1t
1x

(−1+ exp(−iks))

|FEE(λs)|6 1↔−1 6 V1t/1x 6 0.

(5.24)

The stability condition is ‘symmetric’ to the one for V > 0 in the BWD case, i.e.
for V < 0: −1 6 V1t/1x 6 0. This class of methods, for which spatial discretization
is skewed in the direction from which the flow comes from is called ‘upwind’ method.
The origin of upwind methods can be traced back to the initial work of (see Courant,
Isaacson & Rees 1952). The link between stability and the direction of the flow is
illustrated in figure 17. When the flow comes from the left (V > 0), only BWD are
stable. At the opposite, when the flow came from the right (V < 0), only FWD are
stable, as expected from the stability analysis.

The last property which can be noticed for advection process simulations is that,
even if the scheme is stable, the solution is damped. This dissipation phenomenon
observed for the EE scheme is directly linked to the truncation error of the method.
In fact, the equation solved numerically is, assuming FD in space (see Leveque 1992),

∂tu(x, t)+ V∂xu(x, t)− V
2
(1x− V1t)∂2

x u(x, t)= 0. (5.25)

The dissipative damping generated is directly linked to the discretization steps.

https://doi.org/10.1017/S0022377816000696 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000696

Computational methods for plasma fluid models 35

FIGURE 17. Influence on flow direction (V=−6 on top and V= 6 on bottom) on implicit
and explicit time schemes (IE and EE) with, forward/backward spatial derivative.

In § 4, the advantage of implicit schemes has been demonstrated for the diffusion
operator. In particular, time steps can be larger than the one allowed by the
CFL condition. However, in hyperbolic systems, implicit methods require more
computational work per time step compared to explicit methods. This is linked to the
mathematical properties of the associated matrix. Moreover, due to truncation errors,
the solutions obtained with larger time steps are less accurate (see Jardin 2011). The
presented schemes are only first order in space, since the unstable character of the
CD derivative has been demonstrated. It can be interesting to develop a scheme which
is stable and second order in space. This method can be derived using analysis of
the truncation error, in the case where CD derivatives are used. The equation which
is resolved in fact is the following one,

∂tu(x, t)+ V∂xu(x, t)=−D∂2
x u(x, t) (5.26)

D= V2

2
1t. (5.27)

As a consequence, if CD derivatives are implemented, adding an artificial diffusion
with a coefficient D′ = (V2/2)1t leads to a cancellation of this anormal diffusion
and the scheme becomes stable. This procedure is known as the Lax–Wendroff
(LW) differential scheme and permits the resolution of advection with second-order
derivatives in space (see Lax & Wendroff 1960) and increased stability in time
to order 3. The interest of LW is confirmed in figure 18 where (5.2) is resolved
successfully using CD in space. Implementation of CD in space allows to use the
same discretization independently of the flow direction. Since the amplitude remains
constant in time, the LW scheme, as with RK-4, is non-dissipative, opposite to the
Euler schemes.

The non-dissipative property of this scheme is really interesting to obtain an
accurate solution. This property is not the only one necessary to obtain a realistic
solution, it is also necessary to check if the scheme is dispersive or not. The dispersion

https://doi.org/10.1017/S0022377816000696 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000696

36 G. Fuhr, P. Beyer and S. Benkadda

(a) (b)

FIGURE 18. Advection using LW scheme with V =−6 (a) and V = 6 (b).

error can be seen as the difference between the physical propagation velocity and
the numerical propagation velocity. The consequence is that a scheme suffering from
dispersion leads to appearance of oscillations in the numerical solution. Both errors,
dissipation and dispersion, can be analysed using the amplification factor derived
from the stability analysis. The main assumption for the stability (and the accuracy)
of a scheme concerns the modulus of the factor G. This modulus gives the diffusion
error of the scheme. If |G| = 1, the amplitude of the solution is not damped in time
due to artificial diffusion. If |G| 6 1, the solution is damped but, at the same time,
waves can develop at small scales due to numerical errors. Developing schemes with
a better control of this damping leads to the existence of more accurate schemes
which suppress the oscillations. As mentioned before, an example for the advection
equation, the Lax method (see Leveque 2002) adds an artificial diffusion, with a
diffusion coefficient derived from the truncation error of the scheme.

Since G is complex, additional information can be obtained using the expression
of G in polar form, G = a + ib = |G|eiθ . The argument θ characterizes the phase
speed error of the system (see Durran 1999; Hirsch 2007). The dispersion error (εφ)
is expressed by the ratio between the physical phase speed of the considered equation
and the numerical phase speed, θ . If εφ > 1, the numerical propagation is larger than
the exact one and the computed solution appears to move faster than the real one. If
εφ < 1, the numerical solution travels at a lower velocity than the physical one.

The numerical accuracy of a scheme is not only linked to these errors but also, in
a more subtle way, to the main assumption concerning Taylor’s expansion in space.
Finite differences are based on the interpolation of discrete data using polynomials
(like Taylor’s series) or other simple functions. As a consequence, schemes of
order P can advect without error any polynomial of the same order. However, at a
position close to a stiff gradient or discontinuity, the interpolation polynomial will
not converge and oscillations will appear. Such oscillations, called Gibb’s oscillations,
will not decay in magnitude when the mesh is refined. As an example, and to explain
why more advanced schemes are used to resolve the advection process, the resolution
of (5.2) is realized again using the same parameters for V , 1x, 1t presented in

https://doi.org/10.1017/S0022377816000696 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000696

Computational methods for plasma fluid models 37

FIGURE 19. Stability diagram for IE, EE, CN, RK-2, RK-3 and RK-4 schemes using the
absolute stability criterion. A scheme is stable if |q|6 1 which corresponds to the colour
range from blue to red. Grey zones correspond to |q|> 1.

FIGURE 20. Slice of the absolute stability diagrams for IE, EE, CN, RK-2, RK-3 and
RK-4 schemes corresponding to values of q purely imaginary.

figure 21. The only change is the width of the Gaussian (σ) used as initial condition.
In plasma fluid dynamics, the width of relevant modes are parameter dependent. For
example, the width of the eigenfunctions corresponding to resistive ballooning modes

https://doi.org/10.1017/S0022377816000696 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000696

38 G. Fuhr, P. Beyer and S. Benkadda

(a) (b) (c)

FIGURE 21. Oscillations occurring in the resolution of advection equation (σ = 0.5) for
LW (b) and RK-4 (c) schemes.

depend on the mode number (see Beyer, Benkadda & Garbet 2000),

case 1→ σ = 1.5
case 2→ σ = 0.5.

}
(5.28)

Since the discretization parameters remain the same, a change in the initial profile
does not affect the CFL condition. However the RK scheme becomes dissipative and
spurious oscillations appear. This behaviour cannot be suppressed switching from
central differences for the space derivatives to forward derivatives at the same order.
To control and try to avoid this effect, more advanced (higher-order) schemes have
been developed. The main hypothesis is that since advection is a conservative process,
the algorithm should be formulated to conserve the advected quantity numerically.
This formulation is a numerically flux conserving form. Using the Godunov theorem
which says that any linear algorithm for solving partial differential equations, with the
property of not producing new extrema can be at most first order, there is therefore
no hope of finding a linear second-order accurate scheme that does not produce
these unwanted oscillations. More advanced nonlinear schemes that combine the
higher-order accuracy and the prevention of producing unwanted oscillations can be
classified into two categories (see Leveque 1992):

(i) flux-splitting methods (see Boris & Book 1997): artificial viscosity, relaxation
schemes or methods based on the application of a limiter to eliminate the
oscillations: total variation diminishing (TVD);

(ii) Godunov method (see Godunov 1959): monotonic upwind-centred scheme
for conservation laws (MUSCL) scheme, piecewise parabolic method (PPM),
essential non-oscillatory (ENO).

In the following, this last method (ENO) is briefly described and an improved
version, the weighty essential non-oscillatory (WENO) method is also mentioned (see
Shu 1998). As for most advanced schemes for advection, the basic idea is to express
the hyperbolic equation as a conservation law

∂tu(x, t)+ ∂x[f (u(x, t))] = 0. (5.29)

As a consequence, the discrete equation can be expressed as,

∂tui =− f̂i+1/2 − f̂i−1/2

1x
, (5.30)

https://doi.org/10.1017/S0022377816000696 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000696

Computational methods for plasma fluid models 39

FIGURE 22. Numerical resolution of advection equation for σ = 0.5 with WENO scheme
and parameters: Nx = 512, Lx = 51.2, and 1t= 1e–2.

where f̂ corresponds to a high-order approximation of the numerical flux. The notation
i+ 1/2 signifies an estimation of the flux at the interface between two virtual cells of
centre i and i+ 1.

The key idea in ENO schemes to bypass the limitations given by Godunov’s
theorem is to use an adaptive stencil procedure that results in a non-oscillatory
nonlinear interpolation across discontinuities. The weighted essentially non-oscillatory
(WENO) scheme is an improvement over the ENO schemes by replacing the
stencil selection by a weighted average of the candidate stencils. Smoothness-
dependent weights are used such that they approach zero for candidate stencils
with discontinuities. Thus, across discontinuities, the WENO schemes behave like the
ENO schemes, while in smooth regions of the solution, the weighted average results
in a higher-order approximation. An alternative of the WENO scheme has been
realized by Suresh and Huyn. This scheme is well adapted for RK time stepping
and is accurate and faster than the corresponding fifth-order WENO scheme (see
Suresh & Huynh 1997). Figure 22 shows that the higher-order schemes exhibit higher
accuracy and the quantity is transported without strong deterioration of the shape. It
has to be noticed that only the fifth order is considered here and not the lower-order
algorithms (such as third) because these schemes are too dissipative to be considered
as accurate. The classical fifth-order WENO has also a dissipative component which
is not discussed in detail here. As a consequence, for an accurate resolution of a
pure advection problem, an adapted version using an anti-diffusive flux correction
technique can be implemented, see Zhengfu & Shu (2005) for details.

6. Nonlinear phenomena: the Poisson bracket

Nonlinear operators in fluid descriptions of plasmas are often expressed by Poisson
brackets (Jacobian operator, noted J(ζ , ψ)) between two quantities. The Jacobian is
expressed as follows in Cartesian coordinates,

J(ζ , ψ)= ∂xζ (x, y)∂yψ(x, y)− ∂xψ(x, y)∂yζ (x, y). (6.1)

https://doi.org/10.1017/S0022377816000696 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000696

40 G. Fuhr, P. Beyer and S. Benkadda

The numerical resolution of the Jacobian operator has to be treated carefully. Since
nonlinear coupling can drive and dominate energy cascade phenomena and, as a
consequence, modifications of the equilibrium or generation of small-scale turbulence
may appear, avoiding numerical instabilities or errors (for example truncation errors
linked to FD schemes) is important to obtain accurate simulations and results.
Compared to linear advection, the computation of the Jacobian is really more
expensive. As a consequence using an optimized and accurate method can greatly
reduce necessary CPU time for a simulation. Possible algorithms are chosen mainly
using geometry properties of the considered system. For fusion plasma simulations,
periodicity properties of the tokamak permit to use a Fourier mode decomposition for
toroidal and (quite often) poloidal directions. As mentioned previously, (see Canuto
et al. 1988; Ferszinger 2002), spectral methods are more accurate than any FD scheme.
Also, the precision order for calculations of any derivative is higher using Fourier
mode decomposition. The accuracy of the calculation of a derivative in real space is
determined by the precision order of the considered formula, (O(1x), O(1x2), . . .).
In Fourier space, the same accuracy is obtained using only a few modes, it can be
considered for example that the calculation with 1 mode corresponds to a precision
of O(1x), 2 modes of O(1x2) and so on.

Using this representation, the resolution of the Jacobian operator in semi spectral
space (FD representation in x and spectral representation in y in a 2-D slab geometry)
is equivalent to the computation of two discrete convolutions, the associated
complexity is of order M2 with M being the number of modes. However, if the
Jacobian is computed in real space, the complexity is of the order M only, which is
a benefit with increasing M. Since the fields are stored in a semispectral way, the
computation of the discrete Fourier transform (FT) of ζ and ψ must be made first,
then calculate the Jacobian in real space, and finally compute an inverse transform
(IFT). This method requires more intermediate steps than the direct calculation, but
the complexity scales only as M ∗ (2 ∗ log(M)+ 1). To give an idea of the associated
number of operations to perform, if M = 16, the Fourier method is '2.5× faster,
if M = 128, the Fourier method is '10× faster. In the 3-D case, using spectral
representation with M poloidal and N toroidal modes, the number of operations
scales like N2 ∗ M2 for the direct product and like N ∗ M ∗ (2 ∗ log(N ∗ M) + 1)
for the Fourier method. As a consequence, the resolution in real space, even with
the constraint on the necessary Fourier transforms, is more effective. However, this
resolution procedure shadows caveats which can lead to numerical instabilities detailed
in the following subsections,

(i) consequences of direct and inverse FT;
(ii) accurate calculation of Jacobian.

6.1. Fourier transformation
In computational sciences, the FT corresponds to the discrete Fourier series. As a
consequence, the phenomenon of aliasing could appear in the process. Considering
a Fourier mode eiklxj with kl the wave vector and xj the grid point.

kl = 2πl/(N ∗1x), l=−N/2, . . . ,N/2 (6.2)
xj = j1x, j= 0, 1, . . . ,N. (6.3)

At the grid point xj, the following relation holds

ei2π(j+l∗N)p/N = ei2πj/N, p= . . . ,−2,−1, 0, 1, 2, (6.4)

https://doi.org/10.1017/S0022377816000696 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000696

Computational methods for plasma fluid models 41

As a consequence, the modes kj= 2πj/(N ∗1x) contribute to the discrete FT but, and
this is the reason for possible numerical errors, the mode kp= 2π(j+ p ∗N)/(N ∗1x)
also. High-k modes smear out the amplitude of a lower-k mode. This can cause, for
example, an increase of the energy of the system. To prevent this aliasing phenomena,
several methods have been developed (see Patterson & Orszag 1971), e.g. performing
a phase-shifted transform. However, the bottleneck is that the correct transform needs
the calculation of eight Fourier transforms each time. The most widely used method is
the following one, which can be achieved by enlarging each dimension of the spectral
domain by a factor of (M + 1)/2 where M is the number of modes. An alternative
consist to use 2/3 of the modes for the Fourier transform, this method is generally
called the ‘2/3 rule’. In general the de-aliasing rule is applied not by an increase
of 3/2 of the number of mode but by an increase to the next power of 2. This is
because an optimized algorithm for FT exists when the size is a power of 2, named
fast Fourier transform (FFT) method. This algorithm has highly increased performance
compared to the approach based on the mathematical definition (see Press et al. 2007).
In that case, number of necessary operations scales as N log(N) and not as N2 for the
1-D case.

6.2. Accurate Jacobian
An accurate value of the Jacobian needs a clever differentiating formulation. The
Jacobian is mainly a product of derivatives in the x and y directions. Apparently, a
second-order FD based on central differences can be implemented,

J(ζ , ψ)= 1
41x1y

((ζi+1,j − ζi−1,j) ∗ (ψi,j+1 −ψi,j−1)− (ζi,j+1 − ζi,j−1) ∗ (ψi+1,j −ψi−1,j)).

(6.5)
As an example, a 2-D mesh is used, and the functions ζ and ψ are defined by,

ζ (x, y)= e−((x−x0)
2+(y−y0)

2) + e−((x+x0)
2+(y+y0)

2) (6.6)
ψ(x, y)= ∂2

x ζ (x, y)+ ∂2
y ζ (x, y). (6.7)

The analytic values of ψ and the associated Jacobian have been analytically calculated
and discretized on the same grid to avoid errors associated with any FD scheme
(corresponding plots are represented on figure 23).

The Jacobian obtained through a simple product of centre derivatives is plotted
in figure 24(a,c) for two mesh sizes: 64 × 64 and 256 × 256 points, respectively.
Comparing to the exact solution (figure 23c), the CD method produces inconsistent
results due to irrelevant extrema at low resolutions. The amplitudes of these spurious
extrema are damped when the resolution is increased but they are still present with
a resolution of 256 × 256 points. Using statistical tools, and more precisely the
coefficient of determination R2, a convergence rate to the analytical solution can be
expressed as a function of the mesh resolution. The results are plotted on figure 25.
It appears that the solution converges to the analytical one when the number of points
(and as a consequence the associated precision) increases. However, this convergence
requires a large number of points.

Products based on central schemes raise another issue which is more relevant for
longer term simulations. Platzmann (see Platzman 1961) has shown that the product
of CD leads to the appearance of small eddies which will usually intensify causing
computational instability or at least a numerical source of energy in the system. These

https://doi.org/10.1017/S0022377816000696 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000696

42 G. Fuhr, P. Beyer and S. Benkadda

(a) (b) (c)

FIGURE 23. Representation of input functions ζ , ψ and calculated Jacobian (J) for a
mesh size of 512× 512 points.

(a) (b)

(c) (d)

FIGURE 24. Computed Jacobian with CD (a,c) and Arakawa (b,d) methods for two grid
sizes, 64× 64 and 256× 256.

eddies, also known as ‘noodling’ in the literature have been observed in plasma fluid
simulations (see Brock & Horton 1982) and they are linked to another aliasing error
source which is inherent to FD schemes: a FD scheme is not able to treat correctly

https://doi.org/10.1017/S0022377816000696 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000696

Computational methods for plasma fluid models 43

FIGURE 25. R2 value with respect to exact value of the Jacobian for the 2 schemes,
Arakawa and CD.

FIGURE 26. Arakawa stencils used to ensure conservation of enstrophy and kinetic energy.

waves with wavenumbers smaller than 1x/2. A typical consequence is an unexplained
growth of the kinetic energy of the system. A more robust scheme for long term
simulations which overcomes this computational instability has been developed by
Arakawa (see Arakawa 1966). This scheme ensures conservation of energy and
enstrophy under the action of the Jacobian. The main idea is to calculate an average
between products using central derivatives (called J1) and two other alternative
formulas which ensure enstrophy conservation (J2) and energy conservation J3,
figure 26.

J1 = ∂xζ∂yψ − ∂yζ∂xψ (6.8)
J2 = −∂x(ψ∂yζ)+ ∂y(ψ∂xζ) (6.9)
J3 = ∂x(ζ ∂yψ)− ∂y(ζ ∂xψ) (6.10)

⇒ J(ζ , ψ) = (J1 + J2 + J3)/3. (6.11)

https://doi.org/10.1017/S0022377816000696 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000696

44 G. Fuhr, P. Beyer and S. Benkadda

The procedure can be described as an advanced use of the method of undetermined
coefficients for a nine-point stencil for functions ψ and ζ ,

Ji,j(ζ , ψ)=
1∑

i′=−1

1∑

j′=−1

1∑

i′′=−1

1∑

j′′=−1

ci,j,i′,j′,i′′,j′′ζi+i′,j+j′ψi+i′′,j+j′′ . (6.12)

The quantities ai,j,i+i′,j+j′ and bi,j,i+i′′,j+j′′ which will be used to simplify the final
expressions, are defined as,

ai,j,i+i′,j+j′ =
∑

i′′

∑

j′′
ci,j,i′,j′,i′′,j′′ψi+i′′,j+j′′ (6.13)

bi,j,i+i′′,j+j′′ =
∑

i′

∑

j′
ci,j,i′,j′,i′′,j′′ζi+i′,j+j′ . (6.14)

The Jacobian is expressed by,

Ji,j(ζ , ψ) =
∑

i′

∑

j′
ai,j,i+i′,j+j′ζi+i′,j+j′ (6.15)

=
∑

i′′

∑

j′′
bi,j,i+i′′,j+j′′ψi+i′′,j+j′′ . (6.16)

To verify the properties of the Jacobian and the energy conservation, the subsequent
relations between coefficients are used (derivation can be found in Coiffier (2012)),

(i) skew-symmetric property, Ji,j(ζ , ψ)=−Ji,j(ψ, ζ)

∑

i′

∑

j′

∑

i′′

∑

j′′
ci,j,i′,j′,i′′,j′′ζi+i′,j+j′ψi+i′′,j+j′′

=−
∑

i′

∑

j′

∑

i′′

∑

j′′
ci,j,i′,j′,i′′,j′′ζi+i′′,j+j′′ψi+i′,j+j′

⇒ ci,j,i′,j′,i′′,j′′ =−ci,j,i′′,j′′,i′,j′, (6.17)

(ii) conservation of enstrophy
∫

dS ζJ(ζ , ψ)= 0
∑

i

∑

j

1x1yζi,jJi,j(ζ , ψ)

=
∑

i

∑

j

∑

i′

∑

j′
1x1yai,j,i+i′,j+j′ζi,jζi+i′,j+j′

⇒ ai+i′,j+j′,i,j =−ai,j,i+i′,j+j′, (6.18)

(iii) conservation of kinetic energy
∫

dSψJ(ζ , ψ)= 0
∑

i

∑

j

1x1yψi,jJi,j(ζ , ψ)

=
∑

i

∑

j

∑

i′′

∑

j′′
1x1ybi,j,i+i′′,j+j′′ψi,jψi+i′′,j+j′′

⇒ bi+i′′,j+j′′,i,j =−bi,j,i+i′′,j+j′′ . (6.19)

https://doi.org/10.1017/S0022377816000696 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000696

Computational methods for plasma fluid models 45

These three properties lead to the final formula for the discrete Jacobian,

J(ζ , ψ) = −1
121x1y

[(ψi,j−1 +ψi+1,j−1 −ψi,j+1 −ψi+1,j+1) ∗ ζi+1,j (6.20)

− (ψi−1,j−1 +ψi,j−1 −ψi−1,j+1 −ψi,j+1) ∗ ζi−1,j (6.21)
+ (ψi+1,j +ψi+1,j+1 −ψi−1,j −ψi−1,j+1) ∗ ζi,j+1 (6.22)
− (ψi+1,j−1 +ψi+1,j −ψi−1,j−1 −ψi−1,j) ∗ ζi,j−1 (6.23)
+ (ψi+1,j −ψi,j+1) ∗ ζi+1,j+1 (6.24)
− (ψi,j−1 −ψi−1,j) ∗ ζi−1,j−1 (6.25)
+ (ψi,j+1 −ψi−1,j) ∗ ζi−1,j+1 (6.26)
− (ψi+1,j −ψi,j−1) ∗ ζi+1,j−1] . (6.27)

This formulation is not the one given in the original paper (see Arakawa 1966) but
an optimized one ('15 % faster) presented in Kuhn et al. (2013). Notice that in Kuhn
et al. (2013), an optimized implementation of the full algorithm (FT+Jacobian+IFT)
is presented and the resulting performance increase is approximately 75 % compared
to a basic serial implementation. The results are plotted in figure 24(b,d). Compared
to the CD scheme, the obtained Jacobian is more accurate. This is confirmed in
figure 25 where the value of R2 is plotted. Even with this simple example, the
increased accuracy of the Arakawa scheme compared to a simple product of central
differences is obvious. The increased accuracy is directly linked to the associated
properties and not to the order since the implementation used is also second order as
for the product of derivatives. A more detailed comparison of different schemes for
the resolution of the Jacobian operator in PDEs has been made in Naulin & Nielsen
(2003).

7. Summary and discussion

Plasma fluid computations can be seen as a resolution of systems of partial
differential equations. They therefore are subject to the main and principle difficulties
linked to the resolution of such equations. The diversity of the physical processes
involved in plasma physics leads to models implying a sum of mathematical operators.
As a consequence, the associated numerical and mathematical limitations have to be
treated carefully.

This paper focused on the main caveats that have to be avoided in plasma fluid
simulations and on the algorithms permitting to avoid them. The numerical limitations
are linked mainly to the presence of a finite grid and the correct treatment of small
scales as well as wave propagation. An accurate treatment of small scales is necessary
to study the role of turbulence on plasma dynamics and transport.

The increased performance of available super computers allows for the realization
of simulations with higher resolutions for smaller spatial scales. As a consequence,
the highest resolution simulations are closer to the experiments. For that purpose,
numerical challenges which have not been presented in detail here lie in the matrix
algebra and matrix inversion processes associated with the Poisson equation. The
reason is linked to the mathematical nature of this equation, more precisely, the
resolution of the Poisson equation at one grid point requires to gather data from
the complete domain with the methods presented here. As a consequence, the
communication due to the parallel resolution has a huge cost. More advanced

https://doi.org/10.1017/S0022377816000696 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000696

46 G. Fuhr, P. Beyer and S. Benkadda

methods/schemes can be used in that case, like the iterative approach, the conjugate
gradient . . . (see Jardin 2010).

Considerable research and improvement over the past years have been accomplished
also for the algorithms themselves. For that purpose, and in general, for all algebra
linked to matrix inversions, resolution of linear systems, and matrix computations
linked to implicit methods, specialized libraries developed should be used, e.g.
MUMPS (2015), PasTiX (2015), SuperLU (2015). As cited in § 6, another time
consuming computation which can be greatly reduced through the use of optimized
algorithms and libraries is the computation of Fourier transforms, in that case a widely
used library is the FFTW library (see FFTW 2015). During the development process,
with the associated tests of methods, an alternative is to use a global framework for
the resolution of PDEs like PETSc (see Balay et al. 2016).

Acknowledgements
The authors would like to thank W. Horton for helpful discussions and remarks on

the manuscript. This work was granted access to the HPC resources of Aix-Marseille
Université financed by the project Equip@Meso (ANR-10-EQPX-29-01) of the
program ‘Investissements d’Avenir’ supervised by the Agence Nationale pour la
Recherche.

Appendix A. List of abbreviations used
AM Adams–Moulton
AB Adams–Bashforth
BWD backward difference
CD central difference
CFL Courant–Friedrichs–Lewy
CG coarse graining
CN Crank–Nicholson
EE explicit Euler
ENO essentially non-oscillatory scheme
FD finite difference
FT Fourier transform
FFT fast Fourier transform
FWD forward difference
IE implicit Euler
IFT inverse Fourier transform
LW Lax–Wendroff scheme
MPI message passing interface
PDE partial differential equation
RK Runge–Kutta scheme
WENO weighted essentially non-oscillatory scheme

Appendix B. Eigenvalues and eigenfunctions of circulant matrices
In this appendix, the expression of eigenvalues for a periodic tridiagonal system

is derived based on the derivation of eigenvalues of circulant matrices. Consider a

https://doi.org/10.1017/S0022377816000696 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000696

Computational methods for plasma fluid models 47

circulant matrix B of size M×M ∈R2 of the form,

B=

c0 c1 c2 · · · cM−1
cM−1 c0 c1 c2 · · · cM−2

cM−1 c0 c1

cM−1 c0 c1
...

. . .
. . .

. . .
. . . c2

c1
c1 cM−1 c0

. (B 1)

A given eigenvalue λ and associated eigenvector e with components e(k) verify the
relation

Be= λe. (B 2)

Equation (B 2) should be expressed first for each component e(k):

M−k−1∑

p=0

cpe(p+k) +
M−1∑

p=M−k

cpe(p−(M−k)) = λe(k), k= 0, 1, . . . ,M − 1. (B 3)

Assumption is made that the eigenvectors components have the form

e(p) = r p. (B 4)

Inserting into (B 3) and simplifying by rk,

M−k−1∑

p=0

cpr p + r−M
M−1∑

p=M−k

cpr p = λ, k= 0, 1, . . . ,M − 1. (B 5)

Supposing moreover that r is one of the m distinct complex Mth roots of unity,

M−1∑

p=0

cpr p = λ. (B 6)

The relation (B 6) indicates that, with the assumption made in (B 4), the relation
(B 2) is verified and therefore e is an eigenvector with λ as corresponding eigenvalue

e= 1√
M

1
r
r2

...

rM−1

. (B 7)

The coefficient 1/
√

M is added to normalize the obtained eigenvectors.
Possible eigenvalues deduced from (B 6) are not unique, more precisely, the relation

(B 6) is verified for s different values of λ, {λ0, λ1, . . . , λM−1}, each one corresponding
to a possible root of unity. Finally the set of possible eigenvalues corresponds to

λs =
M−1∑

p=0

cp exp(−2iπsp/M), s= 0, 1, . . . ,M − 1. (B 8)

https://doi.org/10.1017/S0022377816000696 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000696

48 G. Fuhr, P. Beyer and S. Benkadda

Equation (B 8) can be used to deduce eigenvalues associated with discrete
expression of derivatives on a closed domain with periodic boundary conditions,
ck 6= 0 if k ∈ [0, 1,M − 1], the following simplified relation is obtained,

λs = c0 + c1 exp(−2iπs/M)+ cM−1 exp(−2iπs(M − 1)/M) (B 9)
= c0 + c1 exp(−2iπs/M)+ cM−1 exp(2iπs/M). (B 10)

Appendix C. Definition of functions used in resolution of diffusion equation
C.1. Common functions

1 void calclaplacien(double const*const src , double *const dest ,double
const dx2 , double const D,long const size)

2 {
3 long i=0;
4 long const sizeloop = size -1;
5 double sm = src [0]; /* represent element at index i-1 */
6 double sc = src [1]; /* represent element at index i */
7 double sp = 0.; /* represent element at index i+1 */
8 double const Didx2 = D/dx2;
9

10 for(i=1;i<sizeloop;i++)
11 {
12 sp = src[i+1];
13 dest[i] = (sm -2.*sc +sp)*Didx2;
14 sm = sc;
15 sc = sp;
16 }
17 }
18
19
20 /* dest[] = dest []+ src[] */
21 void addField(double const*const src , double *const dest , long const

size)
22 {
23 long i=0;
24 for(i=0;i<size;i++)
25 {
26 dest[i] += src[i];
27 }
28
29 }
30
31 /* calculate values of field at index 0 and Nx -1 corresponding to ghost

points */
32 void Generate_BC(double *const dest , const long localSize)
33 {
34 dest [0] = dest [2];
35 dest[localSize -1] = -dest[localSize -3];
36 }
37
38 /* dest[] = val* src2[] */
39 void multField(double const*const src , double *const dest , long const

size)
40 {
41 long i=0;
42 for(i=0;i<size;i++)
43 {
44 dest[i]*=src[i];
45 }
46 }

https://doi.org/10.1017/S0022377816000696 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000696

Computational methods for plasma fluid models 49

47
48 /* dest[] = src1[] */
49 void copyField(double const*const src , double *const dest , long const

size)
50 {
51 long i=0;
52 for(i=0;i<size;i++)
53 {
54 dest[i]=src[i];
55 }
56 }
57
58 /* dest[] = src1[] + src2[] */
59 void copyandaddField(double const*const src1 ,double const*const src2 ,

double *const dest , long const size)
60 {
61 long i=0;
62 for(i=0;i<size;i++)
63 {
64 dest[i]=src1[i]+src2[i];
65 }
66 }
67
68 /* dest[] = src1[] + val* src2[] */
69 void copyandaddmultField(double const*const src1 ,double const*const

restrict src2 , double *const dest ,double const dFac , long const
size)

70 {
71 long i=0;
72 for(i=0;i<size;i++)
73 {
74 dest[i]=src1[i]+dFac*src2[i];
75 }
76 }
77
78
79 /* dest[] = val*src[] */
80 void copyandmultField(double const*const src ,double const val , double *

const dest , long const size)
81 {
82 long i=0;
83 for(i=0;i<size;i++)
84 {
85 dest[i]=src[i]*val;
86 }
87 }

C.2. MPI functions

1
2 void MPI_local2global(double const*const src_local , double *const

dest_global , struc_map const *const mpimap)
3 {
4 int const buffsize = mpimap ->localSize -2;
5
6 MPI_Gather(src_local+1, buffsize , MPI_DOUBLE ,
7 dest_global +1, buffsize , MPI_DOUBLE ,
8 0, MPI_COMM_WORLD);
9

10 }
11
12 void MPI_global2local(double const*const src_global , double *const

dest_local , struc_map const *const mpimap)

https://doi.org/10.1017/S0022377816000696 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000696

50 G. Fuhr, P. Beyer and S. Benkadda

13 {
14
15 MPI_Scatter(src_global +1, mpimap ->localSize -2, MPI_DOUBLE ,
16 dest_local +1, mpimap ->localSize -2, MPI_DOUBLE ,
17 0, MPI_COMM_WORLD);
18 }
19
20
21 void MPI_copy_BC(double *const pr_array , struc_map const *const

pr_mpimap)
22 {
23 double mpitemp , mpitemps;
24 int errs = 0;
25 int errr = 0;
26 int errw = 0;
27 MPI_Status status;
28 MPI_Request send_request ,recv_request;
29 const long LGP = 0; /* left ghost point index

*/
30 const long RGP = pr_mpimap ->localSize -1; /* right ghost point index

*/
31 const long LBP = LGP +1; /* left boundary point */
32 const long RBP = RGP -1; /* right boundary point */
33 int const tag = 42;
34
35 /* only one core used , no communications */
36 if ((pr_mpimap ->leftProc ==-1) && (pr_mpimap ->rightProc ==-1))
37 {
38 pr_array[LGP]= pr_array[LBP +1];
39 pr_array[RGP] = -pr_array[RBP -1];
40 } /* core has no left neighbour */
41 /* no left neighbor , send/recv only with right neighbor */
42 else if (pr_mpimap ->leftProc ==-1)
43 {
44 pr_array[LGP] = pr_array[LBP +1];
45 mpitemps = pr_array[RBP];
46 errr = MPI_Irecv (&mpitemp , 1,MPI_DOUBLE , pr_mpimap ->rightProc ,

tag , MPI_COMM_WORLD , &recv_request);
47 errs = MPI_Send (&mpitemps , 1,MPI_DOUBLE , pr_mpimap ->rightProc ,

tag , MPI_COMM_WORLD);
48 errw = MPI_Wait (& recv_request ,& status);
49 pr_array[RGP] = mpitemp;
50 }
51 /* no right neighbor , send/recv only with left neighbor */
52 else if (pr_mpimap ->rightProc ==-1)
53 {
54 mpitemps = pr_array[LBP];
55 MPI_Irecv (&mpitemp , 1,MPI_DOUBLE , pr_mpimap ->leftProc , tag ,

MPI_COMM_WORLD , &recv_request);
56 MPI_Send (&mpitemps , 1,MPI_DOUBLE , pr_mpimap ->leftProc , tag ,

MPI_COMM_WORLD);
57 errw=MPI_Wait (& recv_request ,& status);
58 pr_array[LGP] = mpitemp;
59 pr_array[RGP] = - pr_array[RBP -1];
60 }
61 else
62 {
63 /*send/recv with left neighbor */
64 mpitemps = pr_array[LBP];
65 MPI_Irecv (&mpitemp ,1,MPI_DOUBLE ,pr_mpimap ->leftProc ,tag ,

MPI_COMM_WORLD ,& recv_request);

https://doi.org/10.1017/S0022377816000696 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000696

Computational methods for plasma fluid models 51

66 MPI_Send (&mpitemps ,1,MPI_DOUBLE ,pr_mpimap ->leftProc ,tag ,
MPI_COMM_WORLD);

67 errw=MPI_Wait (& recv_request ,& status);
68 pr_array[LGP] = mpitemp;
69
70 /*send/recv with right neighbor */
71 mpitemps = pr_array[RBP];
72 MPI_Irecv (&mpitemp ,1,MPI_DOUBLE ,pr_mpimap ->rightProc ,tag ,

MPI_COMM_WORLD ,& recv_request);
73 MPI_Send (&mpitemps ,1,MPI_DOUBLE ,pr_mpimap ->rightProc ,tag ,

MPI_COMM_WORLD);
74 errw=MPI_Wait (& recv_request ,& status);
75 pr_array[RGP] = mpitemp;
76 }
77 }

C.3. OpenMP functions

Listing 7: main OpenMP block used for the time loop.
1
2 #ifdef __GNUC__
3 #pragma omp parallel default(none) private(i,j) shared(g_fsrc , g_P0 ,sp,

sh_boundary ,sh_lockvar)
4 #else
5 #pragma novector
6 #pragma omp parallel default(none) private(i,j) shared(dt ,D,tmax ,t_out ,

dt2 ,dt6 , g_fsrc , g_P0 ,sp ,sh_boundary ,sh_lockvar)
7 #endif
8 {
9 struc_map ompmap = OMP_Map_generate(sp.Size);

10
11 double *const pr_fsrc=malloc(ompmap.localSize*sizeof (* pr_fsrc))

;
12 double *const K1=malloc(ompmap.localSize*sizeof (*K1));
13 double *const K2=malloc(ompmap.localSize*sizeof (*K2));
14 double *const K3=malloc(ompmap.localSize*sizeof (*K3));
15 double *const K4=malloc(ompmap.localSize*sizeof (*K4));
16 double *const F1=malloc(ompmap.localSize*sizeof (*F1));
17 double *const F2=malloc(ompmap.localSize*sizeof (*F2));
18 double *const F3=malloc(ompmap.localSize*sizeof (*F3));
19 double *const Ftmp=malloc(ompmap.localSize*sizeof (*Ftmp));
20 double *const pr_P0=malloc(ompmap.localSize*sizeof (* pr_P0));
21 double *const pr_P1=malloc(ompmap.localSize*sizeof (* pr_P1));
22 double const dx2 = sp.dx*sp.dx;
23
24 /*copy data from global memory to thread private memory */
25 OMP_global2local(g_fsrc ,pr_fsrc ,& ompmap);
26 OMP_global2local(g_P0 ,pr_P0 ,& ompmap);
27
28 /* B.C local and globals should be initialized correctly also

*/
29 OMP_generate_BC(sh_boundary ,pr_P0 ,& ompmap);
30 #pragma omp barrier
31
32 OMP_copy_BC(sh_boundary ,pr_P0 ,& ompmap);
33
34 /*time loop using RK4 scheme */
35 /*using coarse graining decomposition */
36 for(i=0;i<tmax;i+=1)
37 {
38
39 calclaplacien(pr_P0 ,K1, dx2 , D, ompmap.localSize);

https://doi.org/10.1017/S0022377816000696 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000696

52 G. Fuhr, P. Beyer and S. Benkadda

40 addField(pr_fsrc ,K1,ompmap.localSize);
41 copyandaddmultField(pr_P0 , K1, F1 , dt2 , ompmap.

localSize);
42 OMP_generate_BC(sh_boundary ,F1 ,& ompmap);
43
44 #pragma omp barrier
45 OMP_copy_BC(sh_boundary ,F1 ,& ompmap);
46
47 calclaplacien(F1,K2, dx2 , D, ompmap.localSize);
48 addField(pr_fsrc ,K2,ompmap.localSize);
49 copyandaddmultField(pr_P0 , K2, F2 , dt2 , ompmap.

localSize);
50 OMP_generate_BC(sh_boundary ,F2 ,& ompmap);
51
52 #pragma omp barrier
53 OMP_copy_BC(sh_boundary ,F2 ,& ompmap);
54
55 calclaplacien(F2,K3, dx2 , D, ompmap.localSize);
56 addField(pr_fsrc ,K3,ompmap.localSize);
57 copyandaddmultField(pr_P0 , K3, F3 , dt , ompmap.localSize

);
58 OMP_generate_BC(sh_boundary ,F3 ,& ompmap);
59
60 #pragma omp barrier
61 OMP_copy_BC(sh_boundary ,F3 ,& ompmap);
62
63 calclaplacien(F3,K4, dx2 , D, ompmap.localSize); /* K4

= nabla(chi nabla)F3 */
64 addField(pr_fsrc ,K4,ompmap.localSize);
65
66 copyandaddField(K2,K3 ,pr_P1 ,ompmap.localSize);
67 multCnst (2.,pr_P1 ,ompmap.localSize);
68 addField(K4,pr_P1 ,ompmap.localSize);
69 addField(K1,pr_P1 ,ompmap.localSize);
70 multCnst(dt6 ,pr_P1 ,ompmap.localSize);
71 addField(pr_P1 ,pr_P0 ,ompmap.localSize);
72 OMP_generate_BC(sh_boundary ,pr_P0 ,& ompmap);
73
74 #pragma omp barrier
75 OMP_copy_BC(sh_boundary ,pr_P0 ,& ompmap);
76
77 }
78
79 free(pr_fsrc);
80 free(K1);
81 free(K2);
82 free(K3);
83 free(K4);
84 free(F1);
85 free(F2);
86 free(F3);
87 free(Ftmp);
88 free(pr_P0);
89 free(pr_P1);
90 } /*OMP block end*

1
2 void OMP_globalBoundary(double *const dest , const long globalSize)
3 {
4 dest [0]=- dest [2];
5 dest[globalSize -1]=- dest[globalSize -3];
6 }

https://doi.org/10.1017/S0022377816000696 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000696

Computational methods for plasma fluid models 53

7
8
9 void OMP_local2global(double const*const src_local , double *const

dest_global , struc_map const *const ompmap)
10 {
11 long i=0;
12 double *const dest_tmp= dest_global+ompmap ->posGlobalMin;
13 const long loopsize = ompmap ->localSize -1;
14
15 #pragma ivdep
16 for(i=1;i<loopsize;i++)
17 {
18 dest_tmp[i]= src_local[i];
19 }
20 if (ompmap ->rightProc ==-1)
21 {
22 dest_tmp[ompmap ->globalSize -1] = src_local[loopsize];
23 }
24 if (ompmap ->leftProc ==-1)
25 {
26 dest_tmp [0] = src_local [0];
27 }
28
29 }
30
31 void OMP_global2local(double const*const src_global , double *const

dest_local , struc_map const *const ompmap)
32 {
33 long i=0;
34 double const *const src_tmp= src_global+ompmap ->posGlobalMin;
35 const long loopsize = ompmap ->localSize;
36
37 #pragma ivdep
38 for(i=1;i<loopsize;i++)
39 {
40 dest_local[i]= src_tmp[i];
41 }
42
43 }

1 void OMP_copy_BC(double const *const sh_src , double *const pr_dest ,
struc_map const *const pr_ompmap)

2 {
3 /*copy data from sh_src to private array pr_dest */
4 const long localPos = 2*pr_ompmap ->actualProc;
5 pr_dest [0]= sh_src[localPos];
6 pr_dest[pr_ompmap ->localSize -1]= sh_src[localPos +1];
7 }

1 void OMP_generate_BC(double *const sh_dest , double const*const pr_src ,
struc_map const *const pr_ompmap)

2 {
3 /* Boundaries (ghost points) communicated through shared array

sh_dest */
4 const long localPos = 2*pr_ompmap ->actualProc;
5
6 /* only one thread used */
7 if ((pr_ompmap ->leftProc ==-1) && (pr_ompmap ->rightProc ==-1))
8 {
9 #pragma omp atomic write

10 sh_dest[localPos]= pr_src [2];

https://doi.org/10.1017/S0022377816000696 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000696

54 G. Fuhr, P. Beyer and S. Benkadda

11 #pragma omp atomic write
12 sh_dest[localPos +1]=- pr_src[pr_ompmap ->localSize -3];
13 }
14 /* current thread corresponds to beginning of the domain

=> no left neighbour */
15 else if (pr_ompmap ->leftProc ==-1)
16 {
17 #pragma omp atomic write
18 sh_dest[localPos]= pr_src [2];
19 #pragma omp atomic write
20 sh_dest[localPos +2]= pr_src[pr_ompmap ->localSize -2];
21 }
22 /* current thread corresponds to end of the domain => no

right neighbour */
23 else if (pr_ompmap ->rightProc ==-1)
24 {
25 #pragma omp atomic write
26 sh_dest[localPos -1]= pr_src [1];
27 #pragma omp atomic write
28 sh_dest[localPos +1]=- pr_src[pr_ompmap ->localSize -2];
29 }
30 else
31 {
32 #pragma omp atomic write
33 sh_dest[localPos -1]= pr_src [1];
34 #pragma omp atomic write
35 sh_dest[localPos +2]= pr_src[pr_ompmap ->localSize -2];
36 }
37 }

REFERENCES

AMDAHL, G. M. 1967 Validity of the single processor approach to achieving large scale computing
capabilities. In Proceedings of the April 18–20, 1967, Spring Joint Computer Conference,
AFIPS ’67 (Spring), pp. 483–485. ACM.

ARAKAWA, A. 1966 Computational design for long-term numerical integration of the equations of
fluid motion: two-dimensional incompressible flow. Part I. J. Comput. Phys. 1 (1), 119–143.

BALAY, S., ABHYANKAR, S., ADAMS, M. F., BROWN, J., BRUNE, P., BUSCHELMAN, K.,
DALCIN, L., EIJKHOUT, V., GROPP, W. D., KAUSHIK, D. et al. 2016 PETSc webpage.
http://www.mcs.anl.gov/petsc.

BEYER, P., BENKADDA, S. & GARBET, X. 2000 Proper orthogonal decomposition and galerkin
projection for a three-dimensional plasma dynamical system. Phys. Rev. E 61 (1), 813–823.

BISKAMP, D. 1993 Nonlinear Magnetohydrodynamics. Cambridge University Press.
BORIS, J. P. & BOOK, D. L. 1997 Flux-corrected transport. J. Comput. Phys. 135 (2), 172–186.
BRAGINSKII, S. I. 1965 Transport processes in a plasma. Rev. Plasma Phys. 1, 205–311.
BROCK, D. & HORTON, W. 1982 Toroidal drift-wave fluctuations driven by ion pressure gradients.

Plasma Phys. 24 (3), 271.
BUTCHER, J. C. 2008 Numerical Methods for Ordinary Differential Equations, 2nd edn. Wiley.
CANUTO, C., HUSSAINI, M., QUARTERONI, A. & ZANG, T. 1988 Spectral Methods in Fluid

Dynamics, Springer Series in Computational Physics. Springer.
CHAPMAN, B., JOST, G. & VAN DER PAS, R. 2007 Using OpenMP: Portable Shared Memory

Parallel Programming. MIT Press.
COIFFIER, J. 2012 Fundamentals of Numerical Weather Prediction. Cambridge University Press.
COURANT, R., FRIEDRICHS, K. & LEWY, H. 1928 über die partiellen differenzengleichungen der

mathematischen physik. Math. Ann. 100 (1), 32–74.
COURANT, R., ISAACSON, E. & REES, M. 1952 On the solution of nonlinear hyperbolic differential

equations by finite differences. Commun. Pure Appl. Maths 5 (3), 243–255.

https://doi.org/10.1017/S0022377816000696 Published online by Cambridge University Press

http://www.mcs.anl.gov/petsc
https://doi.org/10.1017/S0022377816000696

Computational methods for plasma fluid models 55

CROUSEILLES, N., KUHN, M. & LATU, G. 2015 Comparison of numerical solvers for anisotropic
diffusion equations arising in plasma physics. J. Sci. Comput. 65 (3), 1091–1128.

D’HAESELEER, W. D. 1991 Flux Coordinates and Magnetic Field Structure: A Guide to a
Fundamental Tool of Plasma Structure, Springer Series in Computational Physics. Springer.

DURRAN, D. R. 1999 Numerical Methods for Wave Equations in Geophysical Fluid Dynamics.
Springer.

DURRAN, D. R. 2010 Numerical Methods for Fluid Dynamics, 2nd edn. Springer.
FERSZINGER, H. 2002 Computational Methods for Fluid Dynamics. Springer.
FFTW 2015 FFTW webpage. http://www.fftw.org/.
FREIDBERG, J. P. 2007 Plasma Physics and Fusion Energy. Cambridge University Press.
GODUNOV, S. K. 1959 Finite difference method for numerical computation of discontinuous solutions

of the equations of fluid dynamics. Mat. Sb. 47, 271–300.
GRIFFITHS, D. F. 2010 Numerical Methods for Ordinary Differential Equations. Springer.
GUSTAFSON, J. L. 1988 Reevaluating Amdahl’s law. Commun. ACM 31 (5), 532–533.
HAIRER, E. 2006 Geometric Numerical Integration. Springer.
HIRSCH, C. 2007 Numerical Computation of Internal and External Flows, Volume 1, Fundamentals

of Computational Fluid Dynamics, 2nd edn. Butterworth-Heinemann.
HORTON, W. & ESTES, R. D. 1980 Fluid simulation of ion pressure gradient driven drift modes.

Plasma Phys. 22 (7), 663.
JARDIN, S. 2010 Computational Methods in Plasma Physics. CRC Press.
JARDIN, S. 2011 Review of implicit methods for the magnetohydrodynamic description of magnetically

confined plasmas. J. Comput. Phys. 231, 822–838.
KARNIADAKIS, G. E., ISRAELI, M. & ORSZAG, S. A. 1991 High-order splitting methods for the

incompressible Navier–Stokes equations. J. Comput. Phys. 97 (2), 414–443.
KUHN, M., LATU, G., GENAUD, S. & CROUSEILLES, N. 2013 Optimization and parallelization

of emerged on shared memory architecture. In Proceedings of the 2013 15th International
Symposium on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC ’13, pp.
503–510. IEEE Computer Society.

LAX, P. & WENDROFF, B. 1960 Systems of conservation laws. Commun. Pure Appl. Maths 13 (2),
217–237.

LEVEQUE, R. J. 1992 Numerical Methods for Conservation Laws, Lectures in Mathematics.
Birkhäuser.

LEVEQUE, R. J. 2002 Finite Volume Methods for Hyperbolic Problems. Cambridge University Press.
LOMAX, H., PULLIAM, T. H. & ZINGG, D. W. 2001 Fundamentals of Computational Fluid Dynamics.

Springer.
MESSAGE PASSING INTERFACE FORUM 2015 MPI: A Message-Passing Interface Standard Version

3.1. High Performance Computing Center Stuttgart (HLRS).
MUMPS 2015 MUMPS webpage. http://mumps-solver.org/.
NAULIN, V. & NIELSEN, A. H. 2003 Accuracy of spectral and finite difference schemes in 2d

advection problems. SIAM J. Sci. Comput. 25 (1), 104–126.
OPENMP 2015 OpenMP tutorial from LLNL. https://computing.llnl.gov/tutorials/openMP/.
PASTIX 2015 PasTiX webpage. http://pastix.gforge.inria.fr/.
PATTERSON, G. S. & ORSZAG, S. A. 1971 Spectral calculations of isotropic turbulence: efficient

removal of aliasing interactions. Phys. Fluids 14 (11), 2538–2541.
PLATZMAN, G. W. 1961 An approximation to the product of discrete functions. J. Meteorol. 18 (1),

31–37.
PRESS, W. H., TEUKOLSKY, S. A., VETTERLING, W. T. & FLANNERY, B. P. 2007 Numerical

Recipes: The Art of Scientific Computing, 3rd edn. Cambridge University Press.
ROSEN, J. S. 1967 The Runge–Kutta equations by quadrature methods. NASA Tech. Rep. TR-R-275.
SCHNEIDER, K., KOLOMENSKIY, D. & DERIAZ, E. 2013 Is the CFL Condition Sufficient? Some

Remarks. pp. 139–146. Birkhäuser Boston.
SCOTT, B. D. 1997 Three-dimensional computation of drift Alfvén turbulence. Plasma Phys. Control.

Fusion 39 (10), 1635.
SHU, C.-W. 1998 Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for

Hyperbolic Conservation Laws. pp. 325–432. Springer.

https://doi.org/10.1017/S0022377816000696 Published online by Cambridge University Press

http://www.fftw.org/
http://mumps-solver.org/
https://computing.llnl.gov/tutorials/openMP/
http://pastix.gforge.inria.fr/
https://doi.org/10.1017/S0022377816000696

56 G. Fuhr, P. Beyer and S. Benkadda

SHU, C.-W. & OSHER, S. 1988 Efficient implementation of essentially non-oscillatory shock-capturing
schemes. J. Comput. Phys. 77 (2), 439–471.

SMITH, G. D. 1978 Numerical Solution of Partial Differential Equations, 2nd edn. Clarendon.
SUPERLU 2015 SuperLU webpage. http://crd-legacy.lbl.gov/∼xiaoye/SuperLU/.
SURESH, A. & HUYNH, H. T. 1997 Accurate monotonicity-preserving schemes with Runge–Kutta

time stepping. J. Comput. Phys. 136 (1), 83–99.
WESSON, J. 1997 Tokamaks, 2nd edn. Clarendon.
ZHENGFU, X. & SHU, C.-W. 2005 Anti-diffusive flux corrections for high order finite difference

WENO schemes. J. Comput. Phys. 205 (2), 458–485.

https://doi.org/10.1017/S0022377816000696 Published online by Cambridge University Press

http://crd-legacy.lbl.gov/~xiaoye/SuperLU/
https://doi.org/10.1017/S0022377816000696

	Computational methods for plasma fluid models
	Introduction
	Spatial discretization: the finite difference method
	Schemes for advancing in time
	Typical time advance schemes used

	Numerical modelling of diffusion
	Stability analysis and Courant–Friedrichs–Lewy (CFL) condition
	Numerical implementation
	Performance measurement
	Serial implementation
	Message passing interface (MPI) implementation
	OpenMP implementation

	Numerical modelling of advection
	Nonlinear phenomena: the Poisson bracket
	Fourier transformation
	Accurate Jacobian

	Summary and discussion
	Acknowledgements
	Appendix A. List of abbreviations used
	Appendix B. Eigenvalues and eigenfunctions of circulant matrices
	Appendix C. Definition of functions used in resolution of diffusion equation
	Common functions
	MPI functions
	OpenMP functions

	References

