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We derive new analytical results for the hydrodynamic force exerted on a sinusoidally
oscillating porous shell and a sphere of uniform density in the Stokes limit.
The coupling between the spherical particle and the solvent is done using the
Debye–Bueche–Brinkman (DBB) model, i.e. by a frictional force proportional to the
local velocity difference between the permeable particle and the solvent. We compare
our analytical results and existing dynamic theories to lattice–Boltzmann simulations
of the full Navier–Stokes equations for the oscillating porous particle. We find our
analytical results to agree with simulations over a broad range of porosities and
frequencies.
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1. Introduction
The degree of porosity affects sedimentation and aggregation dynamics of

suspended particles. For instance, high-porosity, low-density particles have been found
suitable for efficient delivery of therapeutics into the systemic circulation through
inhalation. Such treatment is made possible by careful engineering of porous particle
structure and dynamics to circumvent pulmonary mechanisms for removing deposited
particles (Edwards et al. 1997). Besides clinical applicability, models of fluid flow
through porous media have been developed and tested, for instance, to improve
the efficiency of oil recovery by fluid injection (Babadagli 2003) and ultrasonic
waves (Amro & Al-Homadhi 2006), to characterize structural properties in pulp and
paper science (Ramaswamy et al. 2004) and to identify conditions that cause colloid
detachment from surfaces in porous media (Bergendahl & Grasso 2000). The response
to the surrounding flow depends on the mass distribution within the porous particle.
The steady-state response to hydrodynamic forces and torques is well understood,
but the dynamics of permeable particles still poses several unanswered questions.
Only recently has it become possible to study diffusive properties of concentrated
suspensions of permeable particles (Abade et al. 2010a). Porosity together with an
understanding of hydrodynamic forces in a corrugated nanochannel could be used to
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take advantage of size-dependent transport properties (Del Bonis-O’Donnell, Reisner &
Stein 2009) and separation (Fu et al. 2007) of nanofluids (Sparreboom, van der Berg &
Eijkel 2010).

The first analytical results on steady-state drag on a permeable homogeneous sphere
date back to Brinkman (1947a,b) and Debye & Bueche (1948). Since then, numerous
works (Deutch & Felderhof 1975; Felderhof 1975; Felderhof & Deutch 1975; Bhatt
& Sacheti 1994; Cichocki & Felderhof 2009) have been published on the drag force
and torque on spherical particles of different mass distributions and internal structure.
For example, Bhatt & Sacheti (1994) investigated a porous shell of finite thickness.
Recently, Cichocki & Felderhof (2009) solved a related problem where the shell was
wrapped around a solid core. So far, studies on the subject have largely comprised
theoretical calculations in the Stokes approximation of the Navier–Stokes equation.

In this work, we first compare the results of such calculations of steady-state
quantities to computer simulations of the Navier–Stokes equations by the well-
established lattice–Boltzmann method (LB). We will show that our simulations give
quantitative agreement with theoretical predictions without any adjustable fitting
parameters at all levels of permeability for the steady-state case.

We then examine the dynamic case in which additional complications arise as the
particle moves in the fluid in an oscillatory manner. Looker & Carnie (2004) used a
perturbative expansion to find the hydrodynamic force on a slightly permeable sphere.
They found significant differences in the fluid velocity around the particle and in
the hydrodynamic force on it in a frequency range from 1 to 10 MHz. Vainshtein
& Shapiro (2009) generalized the original Stokes (1901) result for the hydrodynamic
force on a sinusoidally oscillating solid particle with a no-slip boundary condition.
They formulated the problem such that changes in both the velocity and acceleration-
dependent part of the dynamic force could be quantified as the frequency of the
oscillation, the porosity of the particle or the boundary condition on the surface of
the particle was changed. In the high-porosity limit, where the Brinkman β parameter
tends to zero, the hydrodynamic drag force on the particle should approach zero.
However, the model of Vainshtein & Shapiro (2009) gives a finite hydrodynamic
drag force on the particle for all values of β. In this work, we present a new
analytical derivation for both a porous shell and a uniform-density porous sphere.
Our results give a physically consistent hydrodynamic force for all values of the
coupling parameter. We then find our new result to provide better overall agreement
with simulations of a particle oscillating in the fluid. Our tests are performed at
0.06–28 MHz for particles of radii between 80 and 700 nm.

2. Model
2.1. Time-dependent Stokes, Darcy and Brinkman equations

We use the Debye–Bueche–Brinkman (DBB) model, which allows one to study
generic hydrodynamic effects between a solvent and porous particles with few
parameters. Typically, this model has been studied theoretically in the steady-state case.
However, we are interested in oscillating particles so will look at the time-dependent
model. The coupled porous particle–fluid system in the case of an incompressible
fluid in the small-Reynolds-number (Re) limit, can be described by the time-dependent
linearized Navier–Stokes equations

∇ ·u= 0, (2.1a)
ρ ∂tu= η∇2u−∇p+ f , (2.1b)
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Hydrodynamic forces on porous particles 125

where ρ is the fluid mass density, u the fluid velocity, η the shear viscosity and p is
the pressure. Here, the presence of the porous particle is characterized by the force
density,

f = γ n(r)(v− u), (2.2a)

n(r)=
{
λ, r ∈ B(t),
0, r 6∈ B(t),

(2.2b)

where the coupling constant γ has units of mass per time, v is the local velocity of the
particle at the point r, which contains contributions from centre of mass and rotational
motion. The ‘node’ density n(r), which has units of inverse volume, has a constant
value λ inside the particle and zero outside the volume B(t) of the particle. Outside
B(t), where f = 0, (2.1) is commonly referred to as the unsteady Stokes equation (it is
missing the nonlinear ρu ·∇u term present in the full Navier–Stokes equations).

Inside B(t), the fluid flow interacts directly with the nodes and (2.1) is referred to
as the DBB equation (Brinkman 1947a,b; Debye & Bueche 1948). The shape of the
particle B(t) can be varied to give a shell, uniform-density sphere or other distribution.
The product γ λ is equal to ηκ2 (Abade et al. 2010a), where κ−1 is the hydrodynamic
screening length and κ−2 = η/(γ λ) is the constant permeability of the particle.

The DBB equation is a mean-field description of fluid flow in the porous particle
under the assumption that the particle radius R is large enough compared to the mean
pore size κ−1 ∼√η/(γ λ). If one further neglects the Laplacian term η∇2u inside B(t),
then one arrives at the Darcy model, for which the fluid velocity inside the particle is
independent of r = |r|. The viscosity is assumed to be η both inside and outside of
B(t).

In the frame of reference with the origin at the centre of mass of our
porous particle, we define a spherical coordinate system (r, ϕ, θ) via (x, y, z) =
r(sin θ cosϕ, sin θ sinϕ, cos θ). As we only consider axisymmetric flows, the solution
to (2.1) is independent of ϕ, and u, p and the fluid stress tensor σ will only depend on
(r, θ) (Graebel 2007). Once the dependence of σ = σ (r, θ) is known, one may proceed
to calculate the hydrodynamic force F and torque T acting at the centre of mass of our
porous particle from the stress as (Landau & Lifschitz 1987)

F=
∫
∂B(t)

σ · êr dS, (2.3)

T =
∫
∂B(t)

rêr × σ · êr dS, (2.4)

where (êr, êϕ, êθ) are the unit basis vectors in spherical coordinates and ∂B(t) is the
boundary of B(t).

The porosity-dependent force and torque exerted on the particle by the fluid can also
be calculated directly using Newton’s third law from the integral of the negative of the
force density on the fluid:

F=
∫

B(t)
−f d3x=

∫
B(t)
−γ n(r)(v− u) d3x

=−
∫

B(t)
γ n(r)(vcm + w× (r− rcm)− u(r)) d3x (2.5)
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 R

(a) (b) (c)

 R
 R1

 R2

FIGURE 1. Schematic of (a) a uniform-density sphere with node density nSp(r), (b) an
infinitely thin shell nSh(r) and (c) a shell of finite thickness/annulus nAn(r) which is hollow
inside where the Stokes approximation applies.

where w is the angular velocity of the particle and vcm its centre-of-mass velocity.
Schematics of the spherical particles we consider are shown in figure 1. The
hydrodynamic torque T on the particle then reads

T =
∫

B(t)
(r− rcm)× (−f ) d3x

=−
∫

B(t)
γ n(r)(r− rcm)(vcm + w× (r− rcm)− u(r)). (2.6)

In this work, the particle is either held fixed, vcm = 0, or its velocity is set to be
sinusoidal along the z-axis. We separate the analytical solution to (2.1) into parts
inside and outside B(t) following conventions of Felderhof (1975). The parts are
matched as detailed in §§ 3.3 and 3.4 by requiring the velocity and stress fields to be
equal on the boundary of B(t).

2.2. Previous work
A few other authors have also examined the time-dependent case. Looker & Carnie
(2004) performed a perturbative expansion to find the force exerted on a rigid, weakly
permeable sphere of radius R oscillating in an incompressible fluid. The dimensionless
perturbation parameter ε = (κR)−1 was studied in the range [0, 0.05], and they
consistently neglected terms of O(ε2) and higher. They modelled the porous sphere
by applying the Beavers–Joseph–Saffman (BJS) boundary condition on its surface to
order ε. They solved the homogenized unsteady Stokes equation by assuming the
particle to be impermeable enough so that the flow external to B(t) cannot penetrate
the particle interface.

More recently, Vainshtein & Shapiro (2009) also studied an oscillating sphere of
uniform permeability. They used (2.1) outside the sphere (as f (r) ≡ 0 for r 6∈ B(t))
and inside the sphere, their dynamic equation,

ρ∂tũ= η∇2ũ−∇p− ηκ2ũ, (2.7)

did not contain the particle velocity. This equation corresponds to (2.1) and (2.2)
inside B(t) only if v ≡ 0 in (2.2). Instead of introducing the particle–fluid interaction
in (2.7), they introduced it as a boundary condition

u(r= Rêr)− v= ũ(r= Rêr), (2.8)

where the particle velocity is v= v0eiωtêz, ũ refers to the fluid velocity inside B(t) and
u to that outside B(t). They also required continuity of components of the stress tensor
σrr and σrθ at r= Rêr when the Laplacian term was included in (2.7) and continuity of
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Hydrodynamic forces on porous particles 127

pressure when it was neglected. Note that boundary condition (2.8) is not equivalent
to the DBB model. Any attempt to remove the particle velocity in the equations of
motion of the DBB model (which enters in the f in (2.1)) would end up introducing
the particle inertia in (2.1) (arising from the equation of motion for the particle).
Vainshtein & Shapiro’s model has neither v nor dv/dt in (2.7). We find it difficult to
motivate Vainshtein & Shapiro’s model physically and will demonstrate that (2.7) and
(2.8) actually give a physically incorrect limit for the time-dependent case for small β.

2.3. Simulation method
We will compare the Stokes theory results to simulations of the full Navier–Stokes
equations through the well-established LB method. The mass and momentum
conservation in a fluid are expressed at the Navier–Stokes level as (Batchelor 1967;
Landau & Lifschitz 1987)

∂tρ + ∂α(ρuα)= 0 (2.9)

and

∂t(ρuα)+ ∂β(ρuαuβ)=−∂αp+ fα

+ ∂β(η(∂αuβ + ∂βuα − 2
3∂γ uγ δαβ)+ ζ∂γ uγ δαβ), (2.10)

where η and ζ are the shear and bulk viscosities and p is the fluid pressure. In this
work we will use a pressure with linear dependence on density, i.e. p= ρv2

s δαβ , where
vs is the speed of sound. This can be viewed as an ideal-gas equation of state or the
first term in a Taylor expansion of the pressure about fixed density in which case v2

s is
the isentropic compressibility (Kell 1970). The coupling to the particle phase appears
through the force density fα.

Our lattice Boltzmann (LB) fluid algorithm, summarized in appendix A, reproduces
(2.9) and (2.10) in the form typical of most LB algorithms (Chen & Doolen 1998).
The shear viscosity in the model is η = ρτv2

c/3, where vc =1x/1t is a lattice velocity,
and ζ = η(5/3 − 3v2

s /v
2
c ) (Swift, Osborn & Yeomans 1995). In this paper, τ will

be chosen in all cases so that η = 0.02 g cm−1s−1, twice the viscosity of water, and
ρ = 1 g cm−3. The speed of sound vs is chosen to be v2

s = v2
c/3 (vs < vc is required for

stability in LB algorithms). This is sufficiently large so that the fluid is approximately
incompressible for steady-state situations (largest variation in ρ < 0.1 %). In this work,
unless stated otherwise we use a time step 1t = 1 ns and a mesh resolution of
1x= 100 nm.

In the simulation, the node density is discrete,

n(r)=
N∑

i=1

δ(r− ri). (2.11)

That is, the particle is an extended spherical object consisting of N nodes/constituents
positioned at ri and moving at velocity vi around the centre-of-mass coordinate rcm
whose velocity is vcm. The nodes are coupled to the fluid lattice locally by weighted
interpolation, which has been used for polymers consisting of point particles (Ahlrichs
& Dünweg 1998, 1999), a nanowire immersed in a nematic liquid crystal (Smith &
Denniston 2007) and most recently for polymers consisting of composite shells (Ollila
et al. 2011a) like those in this work. The method is similar to Peskin’s immersed
boundary method (Peskin 2002). The LB method has been used successfully to model
fluid flow in porous media (Kang, Zhang & Chen 2002).
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We generate the node distribution for the shell (nSh(r)) in simulation by using the
atomic coordinates of spherical fullerenes, consisting of N carbons, scaled so the
nodes sit at radius R. The number of nodes is chosen sufficiently large for a given R to
guarantee a node placement denser than the resolution of the underlying lattice. This is
necessary in order to resolve the spherical shape as the value of the coupling constant
γ is increased away from the free-draining limit. The uniform-density sphere (3.1) and
the shell of finite thickness (3.10a) discussed below are generated by placing nodes
at intervals 1xn on a cubic lattice at coordinates r which fulfil 0 6 |r − rcm| 6 R and
R1 6 |r− rcm|6 R2, respectively.

3. Analytical results
Next, we summarize and present calculations of the components of F and T in

typical steady states for particles with different node densities n(r) that we will later
compare to our simulation result. We then look closely at the dynamic problem of the
particle oscillating sinusoidally in the fluid.

3.1. Steady-state solutions
In this subsection of the paper, we summarize previously derived steady-state solutions
to (2.1), where ∂tu is assumed to be zero, for spherical particles of different node
densities that will act as limiting cases of the oscillating-particle solution. The particle
is assumed to be fixed in place and the far-field velocity constant.

The simplest experimentally relevant case is that of a sphere of uniform node density
(Θ is the Heaviside step function),

nSp(r)= λΘ(R− r)= N ( 4
3πR3)

−1
Θ(R− r), (3.1)

immersed in a background fluid with far-field velocity u∞ = u(r→∞) = U0êz. As
mentioned in § 2.3, N is large enough in the simulations so that the discrete nodes are
spaced closer together than the fluid mesh spacing to approximate a uniform density
reasonably. Debye & Bueche (1948) solved the problem, in the context of the uniform-
density sphere being a model for a polymer in solution, for arbitrary values of the
dimensionless parameter β = κR = √γ λ/ηR. The product γ λ describes the strength
of coupling between the phases. In simulation, one may lower the node density λ

and increase the coupling parameter γ while keeping the product the same without
significantly changing the results as long as the node placement is sufficiently dense to
resolve the shape of the object (Ollila et al. 2011b). Debye & Bueche presented their
original solutions as functions of β as defined here without any reference to the size of
the node itself, but only to R and a so-called shielding length

√
η/(λγ ), which is also

referred to as mean pore size by Abade et al. (2010a). Debye & Bueche also related
the shielding length to the slip length in the Navier slip boundary condition (Debye
& Bueche 1948). Moreover, Debye & Bueche found the drag force on the spherical
uniform-density ‘polymer’ to be F= Fêz, where

F

6πηRU0
= 2β2G0(β)

2β2 + 3G0(β)
, (3.2)

G0(β)≡ 1− (1/β) tanh(β). (3.3)

Both the limit of zero, β→ 0, and infinite, β→∞, coupling in (3.2) give the intuitive
results F→ 0 and the Stokes formula F→ FS ≡ 6πηR U0 first derived by Stokes for
an impermeable sphere with a no-slip boundary condition on its surface (Stokes 1880).
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Hydrodynamic forces on porous particles 129

At low porosity (large β), (3.2) can be approximated by

F

FS
≈ 2β2

2β2 + 3
, (3.4)

which differs from (3.2) by less than 10 % for β > 10.9. This approximation will be
relevant for what follows so we treat it here in more detail. Sutherland & Tan (1970)
arrived at (3.4) directly by assuming Darcy’s law (see text below (2.2)) to apply in the
form

u(r= Rêr)= gU0êz =−ηκ2
∇p(r= Rêr) (3.5)

on the surface ∂B(t). By matching the pressure based on (3.5) and that based on the
stream function for a solid sphere (see e.g. Landau & Lifschitz 1987), they found
1 − g= 2β2/(2β2 + 3) and hence they called g the permeation coefficient. This shows
that the function G0(β) appears due to the Laplacian term of (2.1b) included in the
Brinkman model but not in the Darcy model, which is also apparent from the explicit
calculation of Felderhof (1975).

Alternatively, one may place the uniform-density sphere in a flow of constant shear
rate Q and constrain it not to rotate in which case the particle is subjected to drag
torque T = Ten, where en is a normal vector perpendicular to the shear plane. Its
magnitude T = |T | is given by (Felderhof & Deutch 1975):

T

4πηR3Q
= 1+ 3

β2
− 3 cothβ

β
. (3.6)

We define the Stokes torque (Goldman, Cox & Brenner 1967) TS ≡ 4πηR3Q and find
T→ 0 as β→ 0 and T→ TS as β→∞. Equation (3.6) is found as the solution to the
full Brinkman problem from the mean-field theory of Felderhof & Deutch (1975) or as
the limit of vanishing hard core for a coated particle (Cichocki & Felderhof 2009).

Felderhof & Deutch have written a series of publications (Deutch & Felderhof 1975;
Felderhof 1975; Felderhof & Deutch 1975) on frictional properties of dilute polymer
solutions in which they show how the macroscopic Debye & Bueche (1948) results
for the hydrodynamic friction coefficients are obtained as mean-field approximations
from a microscopic theory by Kirkwood & Riseman (1948). The term mean-field is
used here as the average flow velocity u(r), average pressure p(r) and average force
density f (r) taken over the statistical distribution P(r1, . . . , rN) of the node positions,
which were considered as segments making up the polymer (Felderhof & Deutch
1975). Felderhof & Deutch’s work is significant in that they considered a more general
density distribution than nSp(r) in (3.1).

In particular, they considered (Deutch & Felderhof 1975; Felderhof 1975) an
infinitesimally thin shell for which the node density is given by

nSh(r)= λShδ(r − R)≡ N (4πR2)
−1
δ(r − R), (3.7)

where λSh is the uniform surface density. Such shells are of particular interest in
biophysical problems such as leaky vesicles and encapsulated drug delivery. They
calculated the shell to experience a drag force and torque equal to

F

FS
= 2β2

2β2 + 9
, (3.8a)

T

TS
= β2

β2 + 9
(3.8b)
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in the same setting that gave (3.2) and (3.6) for the uniform-density sphere. We
emphasize that β in (3.8) is still equal to R

√
γ λ/η, where λ from (3.1) guarantees

correct units. The small difference between (3.4) and (3.8a) suggests that a low-
porosity shell and sphere (large β) might be difficult to distinguish from one another
based on drag force.

We have derived both results of (3.8) (they are also limiting cases of the dynamic
calculation we describe in the next subsection) for a stationary particle by requiring
the force and torque based on the coupling and the fluid stress to match locally at
every point on the shell,

−γ λSh(−u)= σ · êr, (3.9a)

−Rêr × γ λSh(−u)= Rêr × σ · êr. (3.9b)

The fluid velocity field u and stress σ that enter (3.9) are based on known stream
functions (Batchelor 1967; Landau & Lifschitz 1987) whose constants are left arbitrary
to be determined by imposing (3.9).

Bhatt & Sacheti (1994) studied a shell of finite thickness for which the node density
can be written as (R2 > R1)

nAn(r)= λAn(Θ(R2 − r)−Θ(R1 − r)), (3.10a)

λAn = N ( 4
3π(R

3
2 − R3

1))
−1
. (3.10b)

We will refer to it as an annulus due to the shape of its cross-section. They solved the
steady-state version of (2.1) in all space by imposing continuity of velocity and shear
stress at both the inner, r = R1, and outer, r = R2, surface. They found (FS = 6πηR2 U0,
βi = Ri

√
γ λAn/η, i= 1, 2)

F

FS
= 1

3

[(
coshβ2 − sinhβ2

β2

)
H2(β1, β2)

−
(

sinhβ2 − coshβ2

β2

)
H1(β1, β2)

]
, (3.11)

where the functions H1 and H2 can be found in Bhatt & Sacheti (1994). Moreover, the
right-hand side of (3.11) reduces to that of (3.2) in the limit β1→ 0 by identifying
β2 = β.

3.2. Oscillating particle
In this section, we study the hydrodynamic force F experienced by the infinitely thin
shell and the uniform-density sphere oscillating in a fluid along a fixed axis. We briefly
summarize recent work on the subject and present new time-dependent solutions to
(2.1).

Stokes (1901) was the first to solve for the hydrodynamic force exerted on
a solid sphere oscillating sinusoidally at an angular frequency ω in a quiescent
incompressible fluid. His result and its generalizations are recapitulated by both Lamb
(1932) and Landau & Lifschitz (1987). The velocity of the particle is assumed to be
v = vêz = v0eiωtêz, which, due to symmetry considerations, allows one to describe the
resulting fluid motion outside the particle as a doublet–stokeslet combination for which
the stream function ψO reads in spherical coordinates

ψO = hO(r)vsin2θ, r > R, (3.12a)

hO(r)= A/r + (D/k)(1+ 1/(kr))e−kr, (3.12b)
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where we have used the abbreviations k = (1 + i)α and α = √ρω/2η, and hO(r)
contains only terms that vanish as r→∞. The polar angle θ is measured with respect
to the z-axis, i.e. direction of particle or ambient flow velocity. Stokes solved the
linearized equation (2.1) by imposing a no-slip boundary condition on the surface of
a solid sphere: u(|r| = R, θ) ≡ v(|r| = R, θ), which corresponds to the limit γ →∞
in (2.5). The imposition of impenetrability and the no-slip boundary condition on the
(outer) surface of the sphere amounts to four equations for the complex coefficients
A and D in (3.12). For any of the particles of (3.1), (3.7) or (3.10a), the coefficients
A and D will in general be different due the node distribution inside B(t), but when
the coupling constant γ in (2.5) goes to zero they should also go to zero for any
value of α. A suitable stream function for solving (2.1) inside the sphere has the
form (Vainshtein & Shapiro 2009)

ψI = hI(r)vsin2θ, r 6 R, (3.13a)

hI(r)= Br2 + C

(
sinh(kIr)

kIr
− cosh(kIr)

)
, (3.13b)

where kIR =
√
β2 + 2iY2 and Y = Rα. If the Laplacian term of (2.1) is neglected

inside the sphere, we may set C to zero in (3.12). We remark that the parameter Y is
related to the Womersley number (Womersley 1955) by Wo =

√
2Y , which expresses

the ratio of oscillatory fluid inertia to the shear force.
We may proceed to calculate the fluid velocity field components, ur and uθ , and

components of the stress tensor, σrθ and σrr, in a given region of space via

ur = (r2 sin θ)
−1
∂θψ, uθ =−(r sin θ)−1 ∂rψ, (3.14)

σrθ = η
(

1
r

∂ur

∂θ
+ ∂uθ
∂r
− uθ

r

)
, (3.15)

σrr =−p+ 2η
∂ur

∂r
. (3.16)

The pressure, p, is associated with the irrotational part, i.e. ψdoublet = (A/r)vsin2θ

in (3.12a), of the flow and is solved from ∇p = −ρ∂udoublet/∂t. We note that
in determining the pressure distribution inside the sphere in the DBB model, the
contribution due to the irrotational part of the force f must be included.

Once the stress tensor is known, (2.3) or (2.5) may be used to calculate the total
hydrodynamic force on the sphere with arbitrary A and D as

F= Fêz =−2πρωvR3

[
i
3
+ 3

2
1+ k R

Y2

]
Ω êz, (3.17)

where the dimensionless function Ω =ΩRe + iΩIm reads

Ω = R−3 4AiY2 − 4DR2e−kR(1+ (1+ i)Y)
9(1+ (1+ i)Y)+ 2iY2

, (3.18)

and A and D have units of length cubed and length, respectively. Equation (3.17) has
the attractive feature that Ω = 1 corresponds to the impermeable no-slip result for a
sphere. Setting Ω = 1 and taking the real part reduces it to (v = v0eiωt)

Re{F} = −6πηRv0 cos(ωt)(1+ Y)− (4/3)πρR3(−ωv0) sin(ωt)

(
1
2
+ 9

4Y

)
, (3.19)
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which is the no-slip result valid for a solid sphere obtained by Stokes (1901), where
Re{F} denotes the real part of F.

For the more general case (Ω 6= 1), Re{F} can be written as

Re{F} = −6πηRv0 cos(ωt)Cs − (4/3)πρR3(−ωv0) sin(ωt)CAd , (3.20a)

Cs = (1+ Y)ΩRe − (Y + 2
9

Y2)ΩIm, (3.20b)

CAd =
(

1
2
+ 9

4Y

)
ΩRe +

(
9

4Y
+ 9

4Y2

)
ΩIm, (3.20c)

where we have again used the fact that v̇ = iωv. The factors Cs and CAd depend both
on the frequency and the boundary condition on the surface of the sphere (through
A and D). Having derived (3.20), Vainshtein & Shapiro attempted to generalize (3.19)
to a uniform-density sphere (see (3.1)) by applying the boundary condition (2.8) and
using (2.7) inside the sphere without the Laplacian term. They refer to this as the
‘Darcy model’, for which their solution reads (Vainshtein & Shapiro 2009)

ΩVS = 2β2 + 4iY2

2β2 + 3+ 3((1+ i)Y + 2iY2)
, (3.21)

where β = R
√
γ λ/η. Equation (3.21) is, however, unsatisfactory since

ΩVS→ 4iY2

3+ 3((1+ i)Y + 2iY2)
when β→ 0. (3.22)

When β → 0 the particle is completely permeable and the hydrodynamic force
should vanish altogether (the fluid and particle phase become completely decoupled
in the framework of the DBB model (2.1)). They also presented an approximate
generalization for the Brinkman problem with the Laplacian term of (2.1) inside B(t)
included, but it inherited the problem of (3.21). We may remove the discrepancy of
(3.21) by considering the DBB model of (2.1) without the Laplacian term inside B(t).
Thus, we set C = 0 in (3.13b) and use (3.14)–(3.16) to calculate the resulting velocity
and pressure fields inside and outside B(t) via (3.13) and (3.12), respectively. We
require continuity of velocity and pressure on the surface r = Rêr as opposed to (2.8).
This formulation gives

ΩD = 2β2

2β2 + 3+ 3((1+ i)Y + 2iY2)
, (3.23)

which features the limits ΩD→ 0 as β→ 0 and ΩD→ 1 as β→∞. The reason for
the unphysical β→ 0 limit of (3.21) can thus be attributed to the boundary condition
(2.8), which does not correspond to continuity of fluid velocity at the boundary if
v 6= 0. The Y→ 0 limit of (3.23) agrees with (3.4). This now gives us an expression
with physically reasonable limits, but only within the Darcy model approximation.

Looker & Carnie (2004) considered the hydrodynamic force experienced by a
sinusoidally oscillating nearly impermeable sphere using a perturbative expansion in
1/β. However, they assumed the normal component of the fluid velocity to be zero on
the surface of the particle, i.e. u · êr = 0 for r ∈ ∂B(t). They found the hydrodynamic
force to be

F/FS = 1+ k + k2/9− (1+ k)2 /(βξ), (3.24)
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where β = κR as defined in the present work and ξ is a slip coefficient related to the
tangential fluid slip length Ξ by Ξ = 1/(κξ) = R/(βξ) (Looker & Carnie 2004). We
may compare their model to ours by using (3.20) to extract the coefficients Cs and CAd ,
which become

Cs = 1+ Y − (1+ 2Y)
Ξ

R
, (3.25a)

CAd = 1
2
+ 9

4Y
− 9

2

(
1+ 1

Y

)
Ξ

R
. (3.25b)

Note that within the DBB model, we do not concern ourselves with a decomposition
of the hydrodynamic coupling, i.e. γ , to a normal and a tangential component.
However, in order to compare Looker & Carnie’s result to ours, we need to determine
a value for ξ . In keeping with their theory, we have assumed ξ to be a fixed number,
which we have determined to be ξ = 0.9 by least-squares fitting the Y → 0 limit of
(3.25a) to (3.2) in the range β ∈ [5, 100]. We will use this value of ξ throughout
the paper as a similar fit to (3.4) gives poorer agreement. One immediately sees that
the factors in (3.25) reduce to those in (3.19) as the slip on the surface vanishes
Ξ → 0⇔ β→∞, but due to the nature of the expansion, the weak-coupling limit is
not correctly reproduced. We comment more on (3.25) in the results.

3.3. Exact solution for the oscillating shell

Finding full non-perturbative solutions to the time-dependent equation (2.1) with
general force densities like those in (2.2), not just using the Darcy approximation,
has not been done. In particular, there does not exist an analytical solution to (2.1) for
the shell of (3.7) oscillating in a viscous fluid. We establish such a solution here by
requiring a matching condition between the force on the shell determined both by the
coupling (2.2) in the DBB model and the fluid stress (2.3):∫

B(t)
−γ nSh(r)(v− u) d3x=

∫
∂B(t)

êr · σ dS, (3.26)

where the integrand on the left-hand side is a force per volume. Equation (3.26) has
sound physical limits as it guarantees there will be no force acting on the particle if
γ = 0 since in that case the only solution is to have A = D = 0. Integrating over r
changes the left-hand side into a surface integral and we may equate the integrands,
i.e.

−γ λSh(v− u)= êr · σ (3.27)

⇔
{
−γ λSh(vr − ur)= σrr,

−γ λSh(vθ − uθ)= σrθ
(3.28)

is required to hold for 0 6 θ 6 π at r = R at any given time; u and σ are based on the
stream function of (3.12b). By solving (3.27), we obtain closed-form expressions for
the unknowns A = ARe + iAIm and D = DRe + iDIm in terms of β and Y . We note that
the algebra involved is simplified by the substitution D = D̃ exp kR and by the use of
a symbolic computation package like Mathematica. Plugging the resulting expressions
into (3.18) gives the real and imaginary parts of (3.18) for the shell as ΩRe =Ω1/Ω3
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and ΩIm =Ω2/Ω3, where

Ω1 = β8(81+ 162Y + 162Y2 + 36Y3 + 4Y4)

+ (9/2)β6(729+ 1539Y + 1620Y2 + 486Y3 + 80Y4 + 12Y5)

+ 18β4(2187+ 5103Y + 5832Y2 + 2430Y3 + 504Y4 + 144Y5 + 54Y6 + 4Y7)

+ 1458β2(1+ Y)(81+ 162Y + 162Y2 + 36Y3 + 9Y4 + 6Y5 + 2Y6), (3.29a)
Ω2 =−Y((3/2)β6(9+ 2Y)(27+ 54Y + 54Y2 + 12Y3 + 4Y4)

+ 18β4(729+ 2Y(810+ 891Y + 324Y2 + 81Y3 + 21Y4 + 4Y5))

+ 162β2(9+ 2Y)(81+ 162Y + 162Y2 + 36Y3 + 9Y4 + 6Y5 + 2Y6)), (3.29b)
Ω3 = (81+ 162Y + 162Y2 + 36Y3 + 4Y4)(β8 + 9β6(5+ Y)

+ (9/4)β4(297+ 162Y + 18Y2 + 4Y3 + 4Y4)

+ 27β2(135+ 162Y + 54Y2 + 12Y3 + 6Y4 + 2Y5)

+ 81(81+ 162Y + 162Y2 + 36Y3 + 9Y4 + 6Y5 + 2Y6)), (3.29c)

which is now an exact result for the shell.
The relevant limits of (3.29) merit comment. The zero-frequency limit (Y→ 0) for

our model gives

F/FS→ 2β2/(2β2 + 9) (3.30)

and

CAd→ 0. (3.31)

This is consistent with performing the force matching using the zero-frequency stream
functions that yields the steady-state shell results of (3.8). The infinite-frequency limit
gives

lim
ω→∞

F/FS = lim
ω→∞

Cs = 2β2/9 (3.32)

and

lim
ω→∞

ωCAd = 0. (3.33)

If we allow β to tend to infinity, these four limits agree with those for the no-slip
boundary condition. For the infinite-coupling limit (β→∞, Y given), we find

Cs→ 1+ Y (3.34)

and

CAd→ 1/2+ 9/(4Y), (3.35)

which agree with Stokes’s no-slip result of (3.19). Thus, (3.29) matches with all the
known relevant limits.

3.4. Exact solution to the oscillating uniform-density sphere
Another case for which there exists no analytical solution to the time-dependent
equation (2.1) is that of the uniform-density sphere of (3.1) oscillating in the fluid
with velocity v = v0eiωtêz. We have solved this problem by formulating the system of
equations (the fields based on (3.12)/(3.13) are denoted with/without the tilde),

ũr = ur, ũθ = uθ , σ̃rr = σrr, σ̃rθ = σrθ , ∀ r ∈ ∂B(t), (3.36)
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which are eight equations for the real and imaginary components of the four complex
numbers A, B, C and D of (3.12b) and (3.13b). The use of a symbolic computation
package vastly simplifies the task of deriving these results. The resulting real and
imaginary parts ΩRe =Ω1/Ω3 and ΩIm =Ω2/Ω3 are

Ω1 = 2β2(P1 cos(2Y2/Z)− 2ZYP2 sin(2Y2/Z)
+P3 cosh(2Z)+ 2ZP4 sinh(2Z)), (3.37a)

Ω2 =−6β2(YP5 cos(2Y2/Z)− 2ZP6 sin(2Y2/Z)
+YP7 cosh(2Z)+ 2ZYP8 sinh(2Z)), (3.37b)

Ω3 = (81+ 162Y + 162Y2 + 36Y3 + 4Y4)[(Z2 − Y2)(P9 cos(2Y2/Z)

− 2ZYP10 sin(2Y2/Z))+ (Z2 + Y2)(P11 cosh(2Z)+ 2ZP12 sinh(2Z))], (3.37c)

where
√

2Z =
√
β2 +√β4 + 4Y4 and the Pj = Pj(β,Y) are polynomials that are

provided in appendix B.
The result (3.29) has the low-frequency, Y→ 0, limit

F

FS
→ 2β2(1− β−1 tanhβ)

2β2 + 3(1− β−1 tanhβ)
(3.38)

and

CAd→ 0, (3.39)

which agrees with the steady-state result of Debye & Bueche (3.2). The β→∞ limits
(impenetrable, no-slip limit) are Cs→ 1 + Y and CAd → 1/2 + 9/(4Y), in agreement
with Stokes’s no-slip result of (3.19).

4. Results: comparison to simulations
In this section, we compare theoretical predictions to LB simulations for various

node densities, for both steady state and as the particle oscillates sinusoidally.

4.1. Steady state
In figure 2, we compare theoretical predictions to LB simulations for the steady-state
drag force on the shell, (3.8a), uniform-density sphere, (3.2), and on the annulus,
(3.11). The results are presented as a function of the product Nγ of the node number
and coupling parameter as one cannot characterize the annulus in terms of a single β
that is proportional to the radius. The measurement is performed in a cubic simulation
box with periodic boundary conditions in the x- and z-directions and parallel no-slip
walls at y = 0 and y = 301x moving at velocity u∞ = U0êz = (0.00011x/1t)êz. The
particle is kept immobile at the centre of the box. We choose this arrangement as it
reduces finite-size effects (Liron & Mochon 1976) in the velocity field at least to 1/L2

from 1/L.
We find our simulation results to be in excellent agreement with the theoretical

predictions without any fitting parameters. The simulation method is therefore able
to differentiate between a shell, an annulus and a uniform-density sphere without
ambiguity. It is noteworthy that even a subgrid thick annulus (R2 − R1 = 0.721x) is so
closely matched with the theoretical prediction. This is most likely due to the fact that
the node has a compact support on the fluid mesh which in this case couples a node
only to the unit cell in which it resides (Ahlrichs & Dünweg 1998, 1999; Smith &
Denniston 2007; Ollila et al. 2011b).
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FIGURE 2. (Colour online) Comparison of normalized steady-state drag force F/FS versus
Nγ for particles with different node density distributions n(r). The symbols are the simulation
results. The lines are the theoretical predictions for the shell ((3.8a), solid line), uniform-
density sphere ((3.2), dashed line) and the annulus ((3.11), dot-dashed line). Taking the thin-
annulus limit of (3.11) leads to numerical cancellation errors for large Nγ , but the agreement
with simulations is still good.
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FIGURE 3. (Colour online) Normalized steady-state drag force for a shell multiplied by the
radius R at which the nodes sit. As the radius is increased to R= 3.31x, the simulation results
differ from the theory by no more than 0.6 % at β = 14.4.

Figure 2 is, however, a more ideal case for the simulations where R/1x = 3.3
was not commensurate with the underlying fluid mesh. In figure 3, we compare
shells of different radius–node count combinations to the prediction of (3.8a). We
observe the simulation results to agree with the prediction for all β = R

√
γ λ/η

in the case of the largest R = 3.31x. The only caveat is the apparent mismatch
between theory and simulation for the smaller shells at large β. A change in the
surface area per node, 4πR2/N, did not reduce the mismatch, for which reason we
ran the simulation for different radius–node count combinations. This suggests that
the mismatch is purely a discretization effect of immersing an off-lattice spherical
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FIGURE 4. (Colour online) Normalized steady-state drag torque on uniform-density spheres
(solid symbols) and infinitely thin shells (hollow symbols) of different radii and node counts.
(a) Measurement data are shown without any fitting. (b) Normalized measurements are
shown with 1R in TS = 4πη (R+1R)3 Q used as the fitting parameter, which falls between
1R= 0.101x and 0.151x.

shell into a cubic lattice. Figure 3 does not just highlight the effect of increasing
particle size, but it also indicates the importance of incommensurability with the
lattice. The two largest particles are of nearly the same size, but for the commensurate
particle R/1x = 3, the lattice effects are emphasized as β increases compared to
the incommensurate case R/1x = 3.3 and the lattice effects again decrease for
R/1x = 2.5. This commensurability effect makes it difficult to calculate analytically
the discretization errors from this sort of immersed boundary simulation. However, if
we fit the analytical curves to the simulation data by allowing the radius R to be a
fitting parameter, then we find that the fitted radius differs from the radius at which the
discrete nodes sit by no more than 0.11x for the cases plotted in figure 3, thus putting
a bound on the discretization errors.

The drag torque experienced by the uniform-density sphere, (3.6), and by the
shell, (3.8b), is more sensitive to changes in the radius R than Stokes drag as the
dependence is cubic. We have measured the drag torque on spheres and shells of
radii 3.31x, 3.01x, 1.671x and 1.441x. We present the measurements together with
theoretical predictions in figure 4(a,b). Figure 4(a) shows the theory without any fitting
parameters whereas in figure 4(b), the radius has been used as the fitting parameter.
Even though the fitting parameter turns out to be a very small effect, giving a fitted
radius 0.11x larger than the radius at which the nodes sit, it has a noticeable impact
as the torque is proportional to R3. Moreover, the effect of the compact support of the
nodes on the fluid mesh has a big effect on small (R ≈ 1x) spheres since its support
spreads the nodes out to radii between 1x and 21x. As with the drag force, the
discretization errors for the torque can be minimized by using an irrational ratio R/1x,
for which the particle is incommensurate with the lattice (Ollila et al. 2011b).

4.1.1. The limit of impermeability
We conclude the discussion of the steady-state results by referring to the limit of

an impermeable particle, i.e. when F/FS = T/TS = 1. In the context of simulations,
we refer to this limit as saturating β since it requires γ to be increased until
impermeability is reached numerically. One might think that one could simulate a
porous particle and consider it to be equivalent to an impermeable particle with a
smaller effective ‘hydrodynamic’ radius. However, based on (3.8a) and (3.8b), one
cannot simulate nodes placed at radius R for a sub-saturation β and claim to be
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modelling a particle with an effective radius R̃ based on, say, Stokes drag F = 6πηR̃v
as a measurement of the drag torque will give a very different value for the effective
radius, which can be seen, for instance, by writing (3.8b) as

T = 4πηQR̄3 ≡ 4πηQ (Rβ2/3/ (β2 + 9)
1/3
)

3
. (4.1)

Clearly the ‘effective’ hydrodynamic radius from the torque R̄ and from Stokes drag,
R̃ = 2β2R/(2β2 + 9), are very different numbers unless β is large. Therefore, in
simulating an impenetrable sphere, one must increase β until the hydrodynamic radii
based on different measures all agree to within an acceptable level of tolerance. If
one chooses a value for β below saturation, one may only claim to be simulating
a porous particle of the chosen node density n(r). That is, one should be wary of
models using an effective hydrodynamic radius as there is more than one way to
define such a radius and different measures will not generally give the same result.
The effective-radius concept has also been criticized by Abade et al. (2010b).

In theory, the limit of impermeability requires β →∞. However, it is clear from
figures 3 and 4 that the drag force and torque are typically slightly larger in simulation
at large β than theory suggests due to discreteness of simulations. Thus, the limit of
impermeability can be reached in practice in actual simulations for a finite, but still
quite large, value of β. Based on figures 3 and 4, particles of different radii and
node distributions reach the limit at different values of β. The approach to the limit
is dictated by the node density and the ratio R/1x. A slightly modified simulation
algorithm may also be needed for stability at large values of β (Ollila et al. 2011b).

It is also clear from figure 3 that for a given number of nodes N, a shell will
approach the impermeable limit at a lower value of γ than a uniform-density sphere,
which might make it preferable in some simulations.

4.2. Oscillating particle
We first compare the different theoretical predictions for the oscillating-sphere case.
The steady-state uniform-density sphere result for the force, (3.2) and (3.4), and the
shell result, (3.8a), are qualitatively very similar. In particular, both the steady-state
drag force and torque go to zero as β goes to zero. One would therefore expect
similar behaviour from the oscillatory force on both the sphere and the shell. Figure 5
shows the correction factor Cs to the velocity-dependent part of the hydrodynamic
drag force (3.20a) at Y = αR = R

√
ρω/(2η) = 10 as a function of the dimensionless

coupling parameter β for Vainshtein & Shapiro’s Darcy model (3.21), the corrected
Darcy model (3.23), Looker & Carnie’s nearly impermeable sphere (3.25) and our
shell (3.29) and sphere model (3.29). Our theories (solid and dotted lines) and the
corrected Darcy model capture the correct approach to the limit β → 0 in which
the hydrodynamic force must vanish. We do emphasize that the existing theories are
targeted to model a uniform-density sphere, but both the sphere and shell should have
similar qualitative behaviour. It is interesting that Looker & Carnie’s model based
on homogenization theory does not lead to the peak in Cs between β = 10 and 100
present in other theories.

We now compare directly the predictions of the different time-dependent models,
after substitution into (3.20), to simulation results. In the simulation we set the velocity
of the rigid test particle to be equal to v(t) = v0 cos(ωt)êz and calculated the force
exerted on it. We placed the test particle at the centre X0 of the simulation box
of size 10R × 10R × 20R and imposed periodic boundary condition in the x- and
z-directions and had parallel no-slip walls in the y-direction to reduce finite-size
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FIGURE 5. (Colour online) The correction factor Cs plotted at Y = αR = 10 for our new
shell theory ((3.29), solid line), the corrected Darcy model ((3.23), heavy dashed line), our
new sphere theory ((3.29), dotted line), and Looker & Carnie’s perturbative expansion ((3.25),
dot-dashed line) and Vainshtein & Shapiro’s expression ((3.21), thin dashed line). Our two
new models and the corrected Darcy result have the correct asymptotic zero- and infinite-β
limits.

effects (Liron & Mochon 1976). The particle’s velocity can be integrated analytically
so we set its position to X(t) = X0 + (v0/ω) sin(ωt)êz. The length scale 1/α is a
boundary layer thickness associated with the acceleration of the fluid next to the
particle. As Y → (R/1x), 1/α approaches 1x and viscous effects are confined to a
narrow boundary layer on the particle surface. Moreover, 21x is the smallest length
scale in the computational method for which central-difference velocity gradients can
be computed and, thus, we expect deviations between theory and simulation due to
discreteness of the mesh for Y > (R/21x). So, to explore large Y , we need finer
resolution.

The hydrodynamic force on the particle is characterized by its amplitude max |F|
and phase shift φ ≡ limt→∞ arg(F(t)) − arg(v(t)). These two quantities are easy to
evaluate since all the linear theories for the force we compare here can be written as

F(t)=
√

a2 + b2 cos(ωt + φ), (4.2)

a=−(6πηRv0)Cs, b= (6πηRv0)(4/9)Y2CAd , (4.3)

φ =−arccos (a/
√

a2 + b2), (4.4)

for v(t) = v0 cos(ωt). Since we have available theories for a uniform-density sphere
and the shell, we have simulated both types of particles. The results for the
simulations and different theoretical models are shown in figure 6. As with the steady-
state results, we see that the simulation results for the uniform-density sphere and
the shell differ only at moderate to high values of β and the amplitude of the force
vanishes in both cases as β→ 0.

We look first at the phase difference between the set velocity v and the
measured hydrodynamic force F as a function of β = Rκ for the angular frequency
ω = 2π/(50001t). This translates to Y = 0.187 with R = 3.331x and 1/α = 17.81x
for which inertial effects in the fluid and compressibility effects at the scale of the
particle should be negligible, but oscillatory effects should still be clearly visible for
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FIGURE 6. (Colour online) (a) Phase shift and (b) normalized amplitude of the oscillating
hydrodynamic force as a function of β at Y = 0.187 (or, an angular frequency of ω
= 2π/(50001t) = 1.25 MHz). The hollow circles correspond to simulations of a shell
(R,N) = (3.31x = 330 nm, 540) with 1x = 100 nm. The data for a uniform-density sphere
(R,N) = (3.31x, 2247) are plotted as solid circles. (c) Phase shift and (d) normalized
amplitude of the oscillating hydrodynamic force as a function of Y (ω was varied to change
Y) at fixed β = 4.0. Simulations in (c,d) were performed with a finer mesh resolution,
1x = 77 nm and time step 1t = 0.59 ns. The hollow squares and circles correspond to
simulations of shells (R,N) = (4.31x, 540) and (9.11x, 2252). The data for uniform-density
spheres (R,N) = (4.31x, 5665) and (9.11x, 61 805) are plotted as solid squares and circles,
respectively. In all plots, lines correspond to our shell theory (solid line), corrected Darcy
theory (dashed), our theory for the uniform-density sphere (dotted) and Looker & Carnie’s
perturbation theory (dot-dashed) with ξ = 0.9.

large β. We have measured the phase shift from simulations and plot the results
together with theoretical predictions in figure 6(a). The velocity amplitude was set
to v0 = 10−5vc. In steady state, the drag force is opposite to the particle velocity,
which means there is a phase shift of −π radians between the two. This is found
to carry over to the oscillatory case for small β. However, as β increases, more of
the fluid around the particle is dragged along with it (i.e. its virtual mass increases)
and the phase shift drops somewhat. We find all theoretical models to give similar
results for the phase shift at large β corresponding to a nearly impermeable particle.
However, for a highly porous particle (small β corresponding to κ−1 > R), Looker &
Carnie’s theory breaks down as expected. Our new model based on force matching
on the surface agrees with simulation results at all values of β for both the shell
(hollow circles, (R,N) = (3.31x, 540)) and a uniform-density sphere (solid circles,
(R,N) = (3.31x, 2247)). The nodes inside the uniform-density sphere were placed at
intervals of 0.411x. We may therefore conclude that the phase shift is determined
largely by the drag exerted on the surface for the different types of node distributions.

Figure 6(b) shows the corresponding data for the normalized amplitude of the
oscillatory force. For β > 5, our exact solution to the uniform-density sphere agrees
with Looker & Carnie’s model (3.25) with ξ = 0.9. Our method of fitting their slip
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coefficient ξ thus works well for large β providing a mapping between the DBB
model and the solution obtained via the homogenization procedure. Moreover, the
Darcy-like model predicts a larger force amplitude than the Brinkman-like models,
which is consistent with the full Brinkman solution having the reduction factor (3.3)
whose value is between zero and unity. The difference between the uniform-density
sphere and shell for the simulations is also consistent with the results for the steady-
state drag force which showed a similar difference in figure 2. As β approaches zero,
the Darcy model of (3.23) corrects the discrepancy of (3.21) that predicts a finite
hydrodynamic force on the particle, which is unphysical. Our new models of §§ 3.3
and 3.4 based on local force matching agree well with the simulation data for all β.
As in the steady-state case, the sphere and shell results coincide as β→ 0.

Last, we scan over the other parameter, Y = Rα, in the model for a fixed value of
β = R

√
γ n/η to see how the phase shift and normalized force amplitude are affected.

We could perform simulations for different R such that a fixed value of Y would be
equivalent to different values of ω. However, this should not make a difference to the
force amplitude normalized by FS. Alternatively, if we change Y by adjusting the shear
viscosity η, we must also change either γ or λ (or both) to keep β unchanged. In
addition, a large increase in the shear viscosity can make a filled shell effectively a
uniform-density sphere with a coating. In the end, we fix a few values of R and vary
ω to change Y . We pick an intermediate value of β = 4.0 for which different systems
(shell versus spheres) and theories are clearly distinguished in figure 6(b). A finer
resolution, 1x = 77 nm, and time step 1t = 0.59 ns were used for these simulations.
This was necessary as the length scale 1/α that appears in (3.12) becomes small in
lattice units at higher frequencies for the original parameters. The length scale 1/α
sets the wavelength and decay length of the disturbance caused by the moving particle
and was too short to be accurately resolved on the original mesh. The measurement
of the phase turned out to be very sensitive to the box size for which reason we used
a mesh as large as 12R × 16R × 28R. In figure 6(c) we, as expected, find all models
to give reasonable phase shifts close to φ = −π at low frequencies (Y < 0.1). As Y
is increased, the phase shifts determined from simulations both for the shell (hollow
symbols) and the sphere (solid symbols) follow the model results well for Y < 1.
Again, the phase shifts for the shell and sphere are very similar and thus appear to be
determined on the surface of the particle.

The normalized force amplitude in figure 6(d) confirms the findings of figure 6(b)
both by theory and simulation: the uniform-density sphere (filled symbols) experiences
a smaller drag force than the shell (hollow symbols). The simulation data for the
uniform-density sphere agree well for Y < 0.8 with our theory for the uniform-density
sphere (dotted line) and with Looker & Carnie’s theory with ξ = 0.9 (dot-dashed line)
(as seen for Y = 0.187 and β > 3 in figure 6b). The shape of F/FS as a function
of Y for the shell, however, is captured quantitatively only by our new shell model
for Y < 1.1. The simulation data indicate a larger force on the particle than the
theory roughly when Y > 1. Doubling any of the dimensions of the already large
simulation volume did not change the results either, for which reason finite-size effects
are not responsible for the difference either. We can therefore tentatively suggest that
assumptions about the near field in linear Stokes theory break down when 1/α 6 R.
We therefore restrict the regime of validity of the present theories to Y < 1.0. It
appears that Looker & Carnie’s perturbative treatment maps closely to our uniform-
density sphere model after fitting of ξ for Y < 1.0 even for β = 4. The effect of
fitting becomes less important as β is increased, a result that is similar to what was
stated in Vainshtein & Shapiro (2009). A potentially important practical finding is that
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for β = 4, force matching on the surface reasonably captures both the sphere and the
shell measurements. The corrected Darcy model (dashed line) does have the correct
qualitative shape as a function of Y compared to the other models and our simulations,
but it predicts too large a hydrodynamic force.

5. Conclusions
We have validated theoretical predictions of the steady-state drag force and drag

torque on porous shells of different thickness and uniform-density spheres using LB
simulations of the full Navier–Stokes equations. We have found the drag force to be
in quantitative agreement with the theory without any adjustable fitting parameters.
The torque measurement proved to be more sensitive to discretization effects and
commensurability between the particle and the underlying fluid mesh.

We derived new closed-form expressions for the hydrodynamic force on an
oscillating shell and on a uniform-density sphere as a function of the coupling to
the fluid. Our approach is in good quantitative agreement with simulations and it is
consistent for all degrees of particle porosity, which is an improvement over existing
analytical models. We have demonstrated that our models are able to predict the
hydrodynamic force correctly when the porosity or the frequency of oscillation are
changed independently. We have also pointed out the regime of validity of these
theories that are based on the linear Stokes equation.
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Appendix A. LB method
Lattice–Boltzmann (LB) is an increasingly common scheme to solve the

Navier–Stokes equations (Succi 2001; Sukop & Thorne 2006) which we summarize
here. The method is based on solving an approximation of the Boltzmann transport
equation (BE) on a cubic mesh (or grid) with sites x = (i, j, k)1x connected to their
neighbouring sites by a set of n vectors {ei}n−1

i=0 along which material is transported
according to a discretized version of the BE. We define a distribution function gi(x, t)
where i labels the lattice directions from site x. For three-dimensional systems, we use
a 15-velocity model (Succi 2001) on a cubic lattice with lattice vectors ei = (0, 0, 0)vc,
(±1, 0, 0)vc, (0,±1, 0)vc, (0, 0,±1)vc, (±1,±1,±1)vc. Physical variables are defined
as moments of the distribution functions by

ρ(x, t)≡
∑

i

gi(x, t), (ρuα)(x, t)≡
∑

i

gi(x, t)eiα. (A 1)

The distribution functions evolve in time according to (Bhatnagar, Gross & Krook
1954)

Digi ≡ (∂t + eiα∂α)gi =−1
τ
(gi − geq

i )+Wi, (A 2)
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where we have also defined the material derivative Di and a driving term Wi. By
choosing appropriate moments for the equilibrium distribution geq

i and the driving term
Wi as ∑

i

geq
i = ρ,

∑
i

geq
i eiα = ρuα, (A 3)∑

i

geq
i eiαejβ = Pαβ + ρuαuβ, (A 4)∑

i

Wi = 0,
∑

i

Wieiα = Fα, (A 5)∑
i

Wieiαejβ = uαFβ + Fαuβ, (A 6)

(2.9) and (2.10) can be obtained from (A 2) via a Chapman–Enskog expansion similar
to derivations in Chen & Doolen (1998). The finite-difference scheme we use to solve
(A 2) is discussed in Ollila et al. (2011a) (although thermal noise is not used here).
We emphasize that the results of the present work are by no means specific to this
finite-difference algorithm, but it allows a stronger coupling between the fluid and the
particle. In the present work, the particle is either held fixed or moved sinusoidally
in which case its equation of motion can be solved analytically and used in the
simulation.

Appendix B. Polynomials Pj in the solution to the uniform-density sphere
The polynomials in (3.29) are reproduced in full below.

P1 = (Y12 + Z12)(81+ 162Y + 162Y2 + 36Y3 + 4Y4)(3+ 3Y + 2β2)

+ 2Y4Z6(243+ 729Y + 972Y2 + 378Y3 − 324Y4 − 480Y5

− 312Y6 − 216Y7 + 2Y(27+ 54Y + 48Y2 − 36Y4 − 8Y5)β2)

−Y8Z2(243+ 729Y + 972Y2 + 1350Y3 + 1260Y4 + 888Y5 − 96Y6

+ 168Y7 − 2Y(81+ 162Y + 144Y2 + 12Y3 − 24Y4 − 8Y5)β2)

−Z10(243+ 729Y + 972Y2 + 702Y3 + 684Y4 + 1032Y5 + 912Y6 + 264Y7

− 2Y(81+ 162Y + 144Y2 − 12Y3 − 48Y4 − 8Y5)β2)

− 3Y3Z8(36(3+ β2)− Y(−321− 651Y − 732Y2 − 470Y3 + 8Y4 + 44Y5

+ 2(9+ 50Y + 82Y2 + 28Y3 + 4Y4)β2))

+ 3Y7Z4(36(3+ β2)+ Y(159+ 165Y + 84Y2 + 74Y3 + 8Y4 + 44Y5

+ 2(81+ 130Y + 98Y2 + 28Y3 + 4Y4)β2)) (B 1)

P2 = Z10(270Y + 810Y2 + 1080Y3 + 648Y4 + 108Y5

+ (81+ 180Y + 198Y2 + 72Y3 + 8Y4)β2)

+ 4Y4Z6(81+ 153Y + 225Y2 + 198Y3 + 204Y4 + 54Y5

+ (27+ 54Y + 60Y2 + 30Y3 + 4Y4)β2)

+Y8Z2(−324− 234Y + 234Y2 + 720Y3 + 264Y4 + 108Y5

+ (27+ 84Y + 90Y2 + 48Y3 + 8Y4)β2)

+ 2Y5Z4(−243− 729Y − 972Y2 − 432Y3 + 204Y4 + 240Y5 − 36Y6

− 2Y(27+ 54Y + 48Y2 + 18Y3 + 4Y4)β2)
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+Y9(243+ 729Y + 972Y2 + 810Y3 + 492Y4 + 324Y5 − 12Y6

+ (81+ 81Y − 126Y3 − 36Y4 − 8Y5)β2)

+YZ8(243+ 729Y + 972Y2 + 702Y3 + 252Y4 + 60Y5 − 60Y6

+(135+ 243Y + 216Y2 − 18Y3 − 36Y4 − 8Y5)β2) (B 2)

P3 = (Y12 + Z12)(81+ 162Y + 162Y2 + 36Y3 + 4Y4)(3+ 3Y + 2β2)

+ 2Y4Z6(−243− 729Y − 972Y2 − 378Y3 + 324Y4 + 480Y5

+ 312Y6 + 216Y7 + 2Y(−27− 54Y − 48Y2 + 36Y4 + 8Y5)β2)

+Z10(243+ 729Y + 972Y2 + 1350Y3 + 1260Y4 + 888Y5 − 96Y6

+ 168Y7 + 2Y(−81− 162Y − 144Y2 − 12Y3 + 24Y4 + 8Y5)β2)

+Y8Z2(243+ 729Y + 972Y2 + 702Y3 + 684Y4 + 1032Y5 + 912Y6

+ 264Y7 + 2Y(−81− 162Y − 144Y2 + 12Y3 + 48Y4 + 8Y5)β2)

+ 3Y7Z4(−36(3+ β2)+ Y(−321− 651Y − 732Y2 − 470Y3 + 8Y4 + 44Y5

+ (18+ 100Y + 164Y2 + 56Y3 + 8Y4)β2))

+ 3Y3Z8(36(3+ β2)+ Y(159+ 165Y + 84Y2 + 74Y3 + 8Y4 + 44Y5

+ (162+ 260Y + 196Y2 + 56Y3 + 8Y4)β2)) (B 3)

P4 = Y11(270Y + 810Y2 + 1080Y3 + 648Y4 + 108Y5

+ (81+ 180Y + 198Y2 + 72Y3 + 8Y4)β2)

+ 4Y7Z4(81+ 153Y + 225Y2 + 198Y3 + 204Y4 + 54Y5

+ (27+ 54Y + 60Y2 + 30Y3 + 4Y4)β2)

+Y3Z8(−324− 234Y + 234Y2 + 720Y3 + 264Y4 + 108Y5

+ (27+ 84Y + 90Y2 + 48Y3 + 8Y4)β2)

+ 2Y4Z6(243+ 729Y + 972Y2 + 432Y3 − 204Y4 − 240Y5 + 36Y6

+ (54Y + 108Y2 + 96Y3 + 36Y4 + 8Y5)β2)

+Y8Z2(−243− 729Y − 972Y2 − 702Y3 − 252Y4 − 60Y5 + 60Y6

+ (−135− 243Y − 216Y2 + 18Y3 + 36Y4 + 8Y5)β2)

+Z10(−243− 729Y − 972Y2 − 810Y3 − 492Y4 − 324Y5 + 12Y6

+ (−81− 81Y + 126Y3 + 36Y4 + 8Y5)β2) (B 4)

P5 = (Y12 + Z12)(81+ 324Y + 486Y2 + 360Y3 + 76Y4 + 8Y5)

+ 2Y4Z6(81+ 180Y + 270Y2 + 216Y3 + 136Y4 − 72Y6 − 16Y7

+ 2(9+ 18Y + 20Y2 + 16Y3 + 12Y4)β2)

+Y8Z2(−81− 72Y + 270Y2 + 648Y3 + 536Y4 + 104Y5 − 40Y6 − 16Y7

+ 2(27+ 36Y + 24Y2 − 12Y3 + 8Y4)β2)

−Z10(81+ 288Y + 378Y2 + 216Y3 + 40Y4 + 104Y5 + 104Y6 + 16Y7

− 2(27+ 72Y + 96Y2 + 60Y3 + 16Y4)β2)

+YZ8(108+ 324Y + 432Y2 + 63Y3 − 108Y4 + 58Y5 + 440Y6

+ 164Y7 + 24Y8 + 4Y(9+ 18Y + 16Y2 − 4Y3 − 4Y4)β2)

+Y5Z4(−108− 324Y − 432Y2 − 225Y3 + 324Y4 + 698Y5 + 568Y6

+ 164Y7 + 24Y8 − 4Y(9+ 18Y + 16Y2 + 4Y3 + 4Y4)β2) (B 5)
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P6 = Y8Z2(108+ 324Y + 432Y2 + 306Y3 + 144Y4 + 76Y5 + 44Y6 + 8Y7

− (45+ 99Y + 108Y2 + 38Y3 + 12Y4)β2)

+Y3Z8(81+ 288Y + 378Y2 + 216Y3 − 32Y4 − 36Y5 − 8Y6

− (9+ 8Y − 2Y2 − 8Y3)β2)+ Z10(90Y3 + 200Y4 + 220Y5 + 76Y6 + 8Y7

− 3(9+ 27Y + 36Y2 + 22Y3 + 4Y4)β2)+ Y11(81+ 252Y + 270Y2 + 72Y3

− 104Y4 − 36Y5 − 8Y6 − 3(9+ 16Y + 14Y2)β2)

− 2Y7Z4(81+ 162Y + 216Y2 + 144Y3 + 100Y4 + 36Y5 + 8Y6

+ (18+ 36Y + 28Y2 − 4Y3)β2)

− 4Y4Z6(27+ 81Y + 108Y2 + 45Y3 − 34Y4 − 58Y5 − 30Y6 − 4Y7

+Y(9+ 18Y + 22Y2 + 6Y3)β2) (B 6)

P7 = (Y12 + Z12)(81+ 324Y + 486Y2 + 360Y3 + 76Y4 + 8Y5)

− 2Y4Z6(81+ 180Y + 270Y2 + 216Y3 + 136Y4 − 72Y6 − 16Y7

+ 2(9+ 18Y + 20Y2 + 16Y3 + 12Y4)β2)

+Z10(81+ 72Y − 270Y2 − 648Y3 − 536Y4 − 104Y5 + 40Y6 + 16Y7

− 2(27+ 36Y + 24Y2 − 12Y3 + 8Y4)β2)

+Y8Z2(81+ 288Y + 378Y2 + 216Y3 + 40Y4 + 104Y5 + 104Y6 + 16Y7

− 2(27+ 72Y + 96Y2 + 60Y3 + 16Y4)β2)

+Y5Z4(108+ 324Y + 432Y2 + 63Y3 − 108Y4 + 58Y5 + 440Y6

+ 164Y7 + 24Y8 + 2Y(9+ 18Y + 16Y2 − 4Y3 − 4Y4)β2)

−YZ8(108+ 324Y + 432Y2 + 225Y3 − 324Y4 − 698Y5 − 568Y6

− 164Y7 − 24Y8 + 4Y(9+ 18Y + 16Y2 + 4Y3 + 4Y4)β2) (B 7)

P8 = YZ8(108+ 324Y + 432Y2 + 306Y3 + 144Y4 + 76Y5 + 44Y6 + 8Y7

− (45+ 99Y + 108Y2 + 38Y3 + 12Y4)β2)

−Y8Z2(81+ 288Y + 378Y2 + 216Y3 − 32Y4 − 36Y5 − 8Y6

− (9+ 8Y − 2Y2 − 8Y3)β2)+ Y9(90Y3 + 200Y4 + 220Y5 + 76Y6 + 8Y7

− (27+ 81Y + 108Y2 + 66Y3 + 12Y4)β2)− Z10(81+ 252Y + 270Y2

+ 72Y3 − 104Y4 − 36Y5 − 8Y6 − 3(9+ 16Y + 14Y2)β2)

+ 2Y4Z6(81+ 162Y + 216Y2 + 144Y3 + 100Y4 + 36Y5 + 8Y6

+ (18+ 36Y + 28Y2 − 4Y3)β2)

− 4Y5Z4(27+ 81Y + 108Y2 + 45Y3 − 34Y4 − 58Y5 − 30Y6 − 4Y7

+ (9Y + 18Y2 + 22Y3 + 6Y4)β2) (B 8)

P9 = (Z10 − Y10)(9+ 18Y + 18Y2 + 36Y3 + 36Y4 + 12β2 + 12Yβ2 + 4β4)

−Z8(9+ 18Y + 9Y2 + 18Y3 + 54Y4 + 36Y5 + 36Y6

− 12Y(1+ 3Y + 3Y2)β2 + 4Y2β4)

+Y6Z2(9+ 18Y + 9Y2 + 18Y3 − 90Y4 − 108Y5 + 36Y6

− 12Y(1+ 3Y − Y2)β2 + 4Y2β4)

+Y4Z4(9+ 18Y + 18Y2 − 36Y3 − 216Y4 − 72Y5 − 72Y6

− 12Y(3+ 2Y − 2Y2)β2 − 8Y2β4)
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−Y2Z6(9+ 18Y + 18Y2 + 108Y3 + 216Y4 + 72Y5 − 72Y6

+ 12Y(1− 2Y − 2Y2)β2 − 8Y2β4) (B 9)

P10 = 2Z8(9Y + 18Y2 + 18Y3 + 18Y4 + 2β4)

− 3Y5Z2(3+ 6Y + 24Y2 + 24Y3 − 12Y4 + 2(1− 4Y − 2Y2)β2)

+ 3YZ6(3+ 6Y + 12Y2 + 24Y3 + 12Y4 + 2(3+ 4Y + 2Y2)β2)

−Y7(9+ 18Y + 18Y2 + 36Y3 − 36Y5 + 6(1− 2Y2)β2 − 4Yβ4)

+Y3Z4(9+ 18Y − 36Y2 + 36Y4 + 72Y5 + 6(3+ 8Y + 2Y2)β2 + 8Yβ4) (B 10)

P11 = (Y10 + Z10)(9+ 18Y + 18Y2 + 36Y3 + 36Y4 + 12(1+ Y)β2 + 4β4)

+Y6Z2(9+ 18Y + 9Y2 + 18Y3 + 54Y4 + 36Y5 + 36Y6

− 12Y(1+ 3Y + 3Y2)β2 + 4Y2β4)

+Z8(9+ 18Y + 9Y2 + 18Y3 − 90Y4 − 108Y5 + 36Y6

− 12Y(1+ 3Y − Y2)β2 + 4Y2β4)

−Y2Z6(9+ 18Y + 18Y2 − 36Y3 − 216Y4 − 72Y5 − 72Y6

− 4Y(9+ 6Y − 6Y)β2 − 8Y2β4)

−Y4Z4(9+ 18Y + 18Y2 + 108Y3 + 216Y4 + 72Y5 − 72Y6

+ 12Y(1− 2Y − 2Y2)β2 − 8Y2β4) (B 11)

P12 = 2Y9(9Y + 18Y2 + 18Y3 + 18Y4 + 2β4)

+ 3Y2Z6(3+ 6Y + 24Y2 + 24Y3 − 12Y4 + 2(1− 4Y − 2Y2)β2)

− 3Y6Z2(3+ 6Y + 12Y2 + 24Y3 + 12Y4 + 2(3+ 4Y + 2Y2)β2)

−Z8(9+ 18Y + 18Y2 + 36Y3 − 36Y5 + 6(1− 2Y2)β2 − 4Yβ4)

+Y4Z4(9+ 18Y − 36Y2 + 36Y4 + 72Y5 + 6(3+ 8Y + 2Y2)β2 + 8Yβ4). (B 12)
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