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The Hasselmann kinetic equation (HKE) forms the cornerstone of present-day spectral
wave models. It describes the redistribution of energy over the wave spectrum as a
result of resonant four-wave interactions, and theoretically prescribes wave evolution on
a slow O(1/ε4ω0) time scale, where ε and ω0 are typical wave steepness and frequency.
Alternatives to the HKE (e.g. the generalized kinetic equation (GKE)), including the
effects of non-resonant four-wave interactions, are believed capable of evolving wave fields
on a fast O(1/ε2ω0) time scale. It is beyond doubt that these alternatives could reasonably
predict changes of unidirectional waves whereas the HKE cannot. For angular spread wave
fields, however, it is still ambiguous whether the GKE behaves remarkably differently from
the HKE because previous research in this direction was not fully consistent. In this study,
we revised the GKE algorithm implemented in the spectral wave model WAVEWATCH III
(WW3) by correcting two numerical aspects related to the discretization of the GKE
and to the source term integration. It is proved that once updated, the GKE in WW3
does not give rise to significant deviation from the HKE-based results, provided that the
wave spectra are fairly smooth and the directionality is sufficiently broad. These results,
although unexpected, are in good agreement with findings reported by Annenkov & Shrira.
More strikingly, the HKE and GKE are observed to operate at the same fast O(1/ε2ω0)
time scale for the spectral peak downshift and angular broadening, indicating that the
HKE, solved by the well-established Webb–Resio–Tracy algorithm, seems more robust
than usually expected.
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1. Introduction

The present-day third-generation spectral wave models generally solve the action balance
equation (e.g. Komen et al. 1994; Janssen 2008) to predict the evolution of ocean surface
waves:

dN
dt

= Sin + Sds + Snl + · · ·
ω

, (1.1)

where N(k, θ; x, t) = F(k, θ; x, t)/ω is the wave action density spectrum, ω is the intrinsic
(radian) frequency, k = |k| is the wavenumber and θ is the propagation direction of wave
energy. For deep-water waves, ω and k are linked through the linear dispersion relation

ω2 = gk, (1.2)

where g is the gravitational acceleration. The right-hand side of (1.1) consists of sources
and sinks of wave energy, including wind input Sin, wave breaking-induced dissipation Sds
and nonlinear four-wave interaction Snl (e.g. Cavaleri et al. 2007, 2018). Among these
various physical processes, Snl is known to play a central role in the development of
wind-generated wave spectrum through controlling the downshifting of the spectral peak,
the angular spreading and the high-frequency spectral tail (Hasselmann et al. 1973; Young
& van Vledder 1993; Badulin et al. 2005, 2007).

The mathematical formulation of the nonlinear transfer Snl for a continuous wave
spectrum that describes how wave energy is redistributed over the spectral space due to
resonant four-wave interactions was first established by Hasselmann (1962):

dC1

dt
= 4π

∫ [
T2

1,2,3,4F1,2,3,4δ(�k)δ(�ω)
]

dk2,3,4, (1.3)

F1,2,3,4 = C3C4(C1 + C2) − C1C2(C3 + C4), (1.4)

where C1 = C(k1) = gN(k, θ)/k is the action spectrum, T1,2,3,4 = T(k1, k2, k3, k4) is
the interaction coefficient (Krasitskii 1994; Janssen 2009), �k = k1 + k2 − k3 − k4
and �ω = ω1 + ω2 − ω3 − ω4 are wavenumber and frequency mismatch and dk2,3,4 =
dk2 dk3 dk4. The two δ-functions in (1.3) dictate that only four resonant wave components
satisfying

k1 + k2 = k3 + k4,

ω1 + ω2 = ω3 + ω4,

}
(1.5)

could exchange energy and momentum. The Hasselmann equation (1.3) is also known as
the standard kinetic equation and Boltzmann integral for a homogeneous, quasi-Gaussian
wave field. Hereafter, we refer to it as the Hasselmann kinetic equation (HKE). According
to (1.1) and (1.3), we have

Snl(k, θ) = ω
dN
dt

∣∣∣∣
nl

= ωk
g

dC1

dt
. (1.6)

An important hypothesis underpinning the derivation of the HKE is the action density
C(k) evolves on a slow (‘kinetic’) time scale of O(1/ε4ω0), where ε and ω0 are typical
wave steepness and frequency of the wave field (Annenkov & Shrira 2006). Consequently,
as a large-time limit, the HKE does not include contributions from non-resonant
interactions (�ω /= 0).
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Kinetic equations in a third-generation spectral wave model

Realizing the possible importance of non-resonant four-wave interactions for spectral
evolution on a fast time scale O(1/ε2ω0), Janssen (2003) proposed to modify the HKE as

dC1

dt
= 4

∫ [
T2

1,2,3,4F1,2,3,4δ(�k)R(�ω, t)
]

dk2,3,4, (1.7)

where

R(�ω, t) = Re
∫ t

0
exp(i�ω(t − τ)) dτ = sin(�ωt)

�ω
, (1.8)

and
lim
t→0

R(�ω, t) = t,

lim
t→∞ R(�ω, t) = πδ(�ω).

⎫⎬
⎭ (1.9)

From (1.9) we know that (i) for short times Janssen’s kinetic equation (JKE) incorporates
contributions from both resonant and non-resonant interactions, and (ii) the JKE is
equivalent to the HKE for large times. In the context of a one-dimensional (1-D;
unidirectional) wave spectrum, for which the HKE predicts no spectral change because
of the non-existence of resonant quadruplets, Janssen (2003) demonstrated that his JKE
could capture remarkably well the spectral evolution as revealed by direct simulations
based on the Zakharov equation (Zakharov 1968).

It is noteworthy that the JKE still assumes the underlying action density C(k) itself
and, therefore, the action density product terms F1,2,3,4 (1.4) are slowly varying (i.e.
quasi-stationary). Annenkov & Shrira (2006) further extended this kinetic equation by
fully discarding the quasi-stationarity assumption, resulting in the so-called generalized
kinetic equation (GKE). Later, Gramstad & Stiassnie (2013, hereafter GS13) advanced
the GKE one-step further by taking into account high-order effects related to the Stokes
correction of the frequencies. The authors, however, found the nonlinear Stokes correction
not important for the cases they explored. Neglecting the effect of the Stokes-corrected
frequencies, the GKE is formulated as (e.g. GS13):

dC1

dt
= 4Re

∫ [
T2

1,2,3,4δ(�k) exp(i�ωt)I(t)
]

dk2,3,4, (1.10)

I(t) =
∫ t

0
F1,2,3,4(τ ) exp(−i�ωτ) dτ. (1.11)

Here we have implicitly assumed a Gaussian initial condition such that the fourth-order
cumulant and, hence, the time integral I(t) are initially zero (see GS13 for more details).
As summarized in table 1, the GKE not only includes the non-resonant interactions but
also suggests the evolution of a wave field depends on its previous history of evolution
(i.e. non-local in time; Annenkov & Shrira 2018, hereafter AS18). It is worth mentioning
that the GKE will turn into the JKE if we take the action product term F1,2,3,4 in (1.11)
outside the time integral and then will naturally become the HKE if we further adopt the
large time limit (1.9).

The difference in the interaction space for the HKE and JKE/GKE is visualized in
figure 1. As constrained by (1.5), for k1 and k3 fixed, the resonant k2 and k4 components
will trace out two closed, ‘egg-shaped’ curves in wavenumber space (black lines in
figure 1), which are referred to as loci in the literature (Webb 1978; van Vledder 2006).
For the non-resonant quadruplets, which the JKE and GKE take into consideration but the
HKE does not, there will be more numerous possible wavenumber configurations owing

910 A50-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
36

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1036


Q. Liu, O. Gramstad and A. Babanin

Features HKE JKE GKE

Resonant interactions • • •
Non-resonant interactions — • •
Non-locality of C(k) in time — — •

Table 1. Features included in different kinetic equations (nonlinear four-wave interaction transfer) for a
homogenous, quasi-Gaussian wave field.

k1

k3

δ1

δ1

δ2

δ2
θ1

θ2

θ2

kx

ky

0 5 10 15 20 25
|�ωn| (%)

θ1

Figure 1. Illustration of the difference in the interaction space for the HKE and JKE/GKE for a given
combination of k1 (0.1, 0) and k3 (0.15, 0.05) (adapted from figure 6 of van Vledder 2006). The black solid
(dashed) line presents the locus for the resonant k2 (k4) component, computed with the polar method of van
Vledder (2000). Shaded contour: the normalized frequency mismatch |�ωn| = |�ω|/ min(ω1, ω2, ω3, ω4).
Red lines δi: the resonant k2 locus is magnified by δi and δ = 1.1, blue lines θj: the resonant k2 locus is
rotated counterclockwise through θj = 15◦j about the origin. The thick part of each coloured circle highlights
the non-resonant quadruplets with |�ωn| ≤ 0.1.

to the removal of the δ-function over �ω. In essence, the non-resonant k2 component can
be any non-zero point in the wavenumber plane which does not fall on the resonant locus.
For illustration purposes only, we also show a few subsets of non-resonant quadruplets
in figure 1. For example, if we have k2,nr = δik2,r, i = 1, 2, . . . and δ > 1, where the
subscripts ‘nr’ and ‘r’ denote non-resonant and resonant wave components, respectively,
we obtain a family of newly formed, magnified loci for k2,nr and accordingly k4,nr (red
lines in figure 1). Similarly, if we rotate the resonant k2 locus counterclockwise through an
angle θj = j�θ, j = 1, 2, . . . about the origin, another set of loci for k2,nr and k4,nr will
be acquired (blue lines in figure 1). In practice, however, only non-resonant quadruplets
that are not far from resonance (i.e. quasi-resonant) are considered (see § 2 for further
explanation).
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Kinetic equations in a third-generation spectral wave model

The first computation of two-dimensional (2-D) wave spectra with the GKE was
performed by GS13. Gramstad & Babanin (2016, hereafter GB16) further implemented
their GKE algorithm in the spectral wave model WAVEWATCH III (hereafter WW3,
version 3.14; Tolman 2009), and reported remarkable differences between the HKE and
GKE simulations for both directionally narrow and broad spectra, and for spectra subject
to sudden changes in wind speed or direction. These results, however, are inconsistent with
a series of work by Annenkov & Shrira (2015, 2016, 2018, 2019) who demonstrated that
the GKE results are not significantly different from the HKE (in terms of spectral shape)
even for steep, narrow-banded and directionally narrow wave fields. Therefore, it is still
puzzling whether the quasi-resonant four-wave interactions and non-locality of C(k), as
incorporated by the GKE, are critical for development of 2-D wave spectra.

Motivated by these disputes, we revisited the GKE algorithm developed by GB16,
rewrote it as a set of subroutines and then implemented them in WW3 (v6.07; WW3DG
2019). These efforts revealed that two numerical aspects pertaining to the discretization
of the GKE and to the source term integration were not handled properly in GB16.
Corrections of these non-trivial numerical aspects are proposed in this study; meanwhile,
considering the high similarity between the JKE and GKE, we implement the JKE under
the framework of the GKE in WW3 as well (§ 2). Comparisons of three kinetic equations
(HKE, JKE, GKE) are then carefully investigated through (i) a duration-limited wave
growth test (§ 3), (ii) adiabatic evolution of a steep Gaussian wave spectrum (§ 4), (iii)
response of ocean waves to turning winds (§ 5) and (iv) development of ice-coupled waves
(§ 6). Note that following Young (1999), the duration-limited wave growth here specifically
refers to the case where the wave field is sufficiently distant from land boundaries and
grows under a spatially homogeneous and stationary wind field (i.e. constant wind speed
and direction). Other cases considered in the paper are still duration-limited (spatially
homogeneous and no dependence on the spatial coordinate) but are subject to different
external environmental forcing.

It is seen that good agreement with the findings of Annenkov & Shrira can be achieved
with the updated GKE algorithm. As our GKE algorithm and that used by Annenkov
& Shrira were developed fully independently, it appears reasonable to unambiguously
conclude that beyond our expectation, corrections embraced in the present JKE/GKE
relative to the HKE do not give rise to significantly different spectral evolution of
directional wind waves, provided that wave spectra are fairly smooth (i.e. no strong
perturbations) and the directionality is sufficiently broad. More detailed discussion and
conclusions of these findings are given in §§ 7 and 8, respectively.

2. Numerical algorithm

2.1. The GKE
The GKE algorithm and its implementation in WW3, originally developed by GB16,
together with relevant updates, are documented in the following subsections, including the
discretization of equations, quasi-resonant filter, phase mixing and source term integration.

2.1.1. Discretization
According to (1.10), the incremental change of action δC1 in an infinitesimal phase element
δk1 and time interval �t is

δC1 = dC1

dt
δk1�t = 4Re

∫ [
T2

1,2,3,4δ(�k) exp(i�ωt)I(t)
]

dk2,3,4δk1�t, (2.1)
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and owing to the symmetry of four-wave interactions (Hasselmann & Hasselmann 1985),

δC1 = δC2 = −δC3 = −δC4. (2.2)

In this respect, GS13 and Janssen & Janssen (2019) reported that both the GKE and JKE
conserve the total wave action, momentum and energy (see also Shrira & Annenkov 2013).
Therefore, the principle of detailed balance (2.2) holds for these two equations, just as for
the HKE. When implemented in WW3, (1.10) and (2.1) are discretized as

dC1

dt
=

∑
k2,3,4

M1,2,3,4

/
δk1, (2.3)

where δk is the area of the given wavenumber bin and

M1,2,3,4 = 4T2
1,2,3,4δ(�k)Re

[
exp(i�ωt)I(t)

]
δk1,2,3,4. (2.4)

The time integral I(t) is solved iteratively by

I(t) = I(t − �t) +
∫ t

t−�t
F1,2,3,4(τ ) exp(−i�ωτ) dτ,

= I(t − �t) + �t
2

[F1,2,3,4(t − �t) exp(−i�ω(t − �t)) + F1,2,3,4(t) exp(−i�ωt)
]
.

(2.5)

For an intermediate step of estimating (2.3)–(2.5), GB16 considered waves of different
modes as discrete wave systems and have adopted∑

k2,3,4

F1,2,3,4δ(�k)δk1,2,3,4 =
∑

k2,3,4

C′
3C′

4(C
′
1 + C′

2) − C′
1C′

2(C
′
3 + C′

4), (2.6)

where C′(k) = C(k)δk. For discrete spectral wave models with a logarithmically spaced
frequency grid, however, (2.6) should be more naturally solved by∑

k2,3,4

F1,2,3,4δ(�k)δk1,2,3,4 =
∑

k2,3,4

F1,2,3,4δk1,2,3, (2.7)

where the δ-function over wavenumber is eliminated because of∫
δ(�k) dk4 =

∫
δ(k1 + k2 − k3 − k4) dk4 = 1 (2.8)

according to Tracy & Resio (1982). Clearly, for an equally spaced wavenumber grid, (2.6)
and (2.7) are equivalent. More technical details for solving (2.3)–(2.7) are presented in
appendix A.

2.1.2. Filtration of quadruplets
To reduce the computational expense of the GKE, we only consider wavenumber
configurations satisfying

k1 + k2 = k3 + k4,

|�ω| ≤ λc min(ω1, ω2, ω3, ω4),

}
(2.9)

as valid quadruplets. Here λc is a cut-off factor used to filter out quartets very far from
resonance which contribute little to spectral evolution (figure 1). From a theoretical
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Kinetic equations in a third-generation spectral wave model

point of view, GB16 suggested λc = O(ε2) (note that in generic situations �ω ∼ O(ε2)

(Annenkov & Shrira 2006)) and adopted λc = 0.08 for their simulations. Similarly, AS18
pointed out that for short-term simulations (O(102) wave periods), λc of O(10−2) is
sufficient; instead, for better numerical stability a larger O(10−1) value for λc is preferred
for long-term simulations (O(103) periods).

For a given quadruplet, we choose k1, k2 and k3 at the wavenumber grid points, and
k4 is naturally determined by (2.9). Unless otherwise specified, the action density C(k4)
is obtained through bilinear interpolation (van Vledder 2006). When k4 falls beyond the
spectral grid, we assume

C(k4) =

⎧⎪⎨
⎪⎩

0, for k4 < kmin,

C(kmax)

(
k4

kmax

)n/2−2

, for k4 > kmax,
(2.10)

where kmin and kmax are the minimum and maximum wavenumbers within in the spectral
grid, and n = −5 is the prescribed high-frequency power law for frequency spectrum (i.e.
E( f ) ∝ f n).

2.1.3. Phase mixing
As noted in § 1, the GKE (2.3)–(2.5) is generally solved by assuming wave phases
are initially completely uncorrelated, i.e. a cold start with I(t = 0) = 0 (GS13; AS18).
As wave field evolves, the nonlinear four-wave interactions give rise to deviation from
Gaussianity (Janssen 2003), resulting in non-zero fourth-order cumulant and, hence,
non-zero I(t). Some physical processes such as wave breaking (e.g. Babanin et al. 2010)
may uncorrelate phases (i.e. phase re-mixing) at certain times. GS13 and GB16 suggested
such effect could be incorporated in the GKE algorithm by restarting the GKE (setting
t = 0) every Npm characteristic wave periods (in terms of T0,−1; appendix B) while
keeping the action spectrum unchanged. As we show in the following, the phase re-mixing
is also desired to suppress the numerical instability of the GKE for long-term simulations.

Two options for Npm have been made available: Npm can either be a fixed constant
(Npm ∼ O(102)) or explicitly depend on the dominant breaking probability bT by
employing Npm = 1/bT and

bT = 85.1(εp,w − 0.055)2.33 (2.11)

according to Babanin, Young & Banner (2001, their figure 12). Here εp,w is the significant
steepness of the spectral peak:

εp,w = 2

[∫ 1.3fp,w

0.7 fp,w

Ew( f ) df

]1/2

kp,w, (2.12)

where Ew( f ) is the 1-D wave spectrum, kp,w and fp,w are the peak wavenumber and
frequency, respectively. The subscript ‘w’ means these quantities are computed from wave
spectrum F( f , θ) after filtration of swells. Following Bidlot (2001), we consider spectral
components as wind seas if

c
U10 cos(θ − θu)

< βw, (2.13)

where c = ω/k is the phase velocity, U10 (θu) is the wind velocity (direction) 10 m above
the sea surface, βw is an empirical wind forcing parameter with βw ∈ [1.0, 2.0] used in the
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literature (e.g. Janssen et al. 1989; Barstow et al. 2005). Here, by default, we have chosen
βw = 1.2.

2.1.4. Source term integration
Third-generation spectral wave models usually employ a semi-implicit or implicit
integration scheme to calculate the change of action density �N in the time step �t from
source terms S = S/ω:

�N(k, θ) = S(k, θ)�t
1 − εD(k, θ)�t

, (2.14)

where D(k, θ) = ∂S(k, θ)/∂N(k, θ) is the diagonal term and ε = 1/2 or 1 is the
implicitness parameter (e.g. The WAMDI Group 1988; van Vledder 2006; Tolman 2013).
Owing to the presence of the time integral I(t) in (1.10) which explicitly depends on the
history of the evolution of wave spectrum (in terms of the action product term F1,2,3,4(τ )),
it is challenging, if not impossible, to compute the diagonal term D(k, θ) for the GKE. To
circumvent this problem, we adopt the explicit dynamic time-stepping scheme (ε = 0) of
Tolman (1992) for source term integration when Snl is based on the GKE.

For a fixed global time step �tg, the source term integration is performed over a number
of dynamic time steps �tid:

�tid = min

⎡
⎣�tg −

i−1∑
j=1

�t j
d, min

∀θ; f ≤ fhf

(
�Nmax(k)
|S(k, θ)|

)i
⎤
⎦ ,

�tid = max
(
�tid, �td,min

)
and

∑
�tid = �tg,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.15)

where �Nmax(k) is the maximum allowed change of action density per spectral bin per
time step that is generally chosen as a certain fraction (∼10 %) of the Pierson–Moskowitz
energy level, �td,min is a user-defined minimum dynamic time step, and fhf = Nhf /T0,−1 is
the high-frequency limit of the prognostic region of the spectrum. The reader is referred to
Tolman (1992) and WW3DG19 for more technical details of this explicit dynamic scheme.
GB16 assumed D(k, θ) = 0 but used the default implicit scheme (ε = 1) in WW3. These
two settings are apparently incompatible particularly when both Snl and other terms (e.g.
Sin, Sds) are activated in the computations.

2.2. The JKE and HKE
We implement the JKE (1.7) under the framework of the GKE algorithm similarly
as mentioned previously except that R(�ω, t) is solved directly based on (1.8) and
(1.9). Likewise, the phase mixing for the JKE is achieved by restarting it (setting
t = 0) periodically. The HKE (1.3) is computed based on the Webb–Resio–Tracy (WRT)
approach (Webb 1978; Tracy & Resio 1982; Resio & Perrie 1991; van Vledder 2006) with
an implicit (ε = 1) dynamic integration scheme (Tolman 1992).

3. Parameter settings

As described in the previous section, two parameters for the GKE and JKE algorithms
remain undefined: the quasi-resonant cut-off factor λc in (2.9) and the number of
wave periods for phase mixing Npm. A single-grid-point, duration-limited wave growth
experiment under U10 = 20 m s−1 (Tolman 2013, his test_01) is conducted here to
investigate the impact of these parameters on model results. The initial condition selected
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is a JONSWAP spectrum (Hasselmann et al. 1973) with a peak frequency of 0.25 Hz and
significant wave height Hs � 0.7 m (the high-frequency energy level α = 0.0081 and peak
enhancement factor γ = 2; appendix B). We choose the source term package ST6 (Rogers,
Babanin & Wang 2012; Zieger et al. 2015; Liu et al. 2019) for estimating the wind input
and wave breaking terms (Sin, Sds). Other model settings can be found in table 2.

Considering (i) that wind blows steadily in this duration-limited case and, hence, the
wave field evolves slowly and (ii) that wave spectra are sufficiently broad and, thus,
non-resonant interactions contribute little to the development of wind waves, we expect
that the three kinetic equations (HKE, JKE and GKE) should yield essentially the same
evolution of wave spectrum (Annenkov & Shrira 2015, 2016). Using the HKE-based results
as the baseline reference, we quantify the accuracy of the JKE and GKE simulations with
the following metrics:

εx =
√√√√ 1

N

∑
N

(
x − xH

xH

)2

, (3.1)

εT =
∑

Hs,...,σθ

εx, (3.2)

where x and xH represent integral wave parameters from the GKE/JKE and HKE runs,
respectively. Six wave parameters are selected, including wave height Hs, peak frequency
fp, Goda’s spectral narrowness Qp, angular spreading σθ , Donelan’s high-frequency
energy level αD and peak enhancement factor γD (appendix B). The root-mean-square
(r.m.s.) difference εx (3.1) defined for each wave parameter is then combined into a single
difference metric εT (3.2).

During our numerical experiments, it was quickly found that the GKE and JKE
simulations without phase mixing (Npm = ∞) will become numerically unstable at large
times and eventually deviate significantly from the HKE growth curve (figure 14). AS18
also demonstrated that their GKE-simulated spectra present noticeable high-frequency
noise after a few hundreds of wave periods of integration (their figure 6). It is presumed
that this numerical instability results from the rapidly oscillating terms present in the
GKE/JKE (I(t) or R(�ω, t)). We found, however, remixing phases periodically can
effectively remove all high-frequency noise and stabilize the GKE/JKE integration,
generating a wave growth curve close to that for the HKE (figure 14).

Figure 2 shows the total difference εT of the GKE results relative to the HKE
counterparts as a function of Npm and λc, where the GKE is solved based on (2.7). For
λc fixed at 0.1, the GKE presents minimum εT (closest to the HKE) in the vicinity of
Npm = 100 (figure 2a). For Npm fixed, εT drops rapidly as λc increases from 0.01 to 0.1 but
changes marginally for larger cut-off values (figure 2b), which again suggests four-wave
interactions very far from resonance plays a very limited role in the development of wind
waves. It should be noted that the total number of unique quadruplets Nq (appendix A)
and, hence, the computational expense of the GKE scale linearly with λc (red triangles
in figure 2b). Under U10 of 20 m s−1, the dominant breaking probability bT according to
(2.11) decreases from 15 % for very young wind seas (t ∼ 2 h) to almost zero for mature,
nearly fully developed wave conditions (figure 2c). The experiment with Npm = 1/bT
corresponds to an εT of 26 %, falling in between differences for Npm = 10 and Npm = 30.
Difference metrics for the JKE are practically the same and, thus, are not reproduced here.

The evolution of six selected integral wave parameters simulated by all the three
kinetic equations is presented in figure 3, where λc and Npm are fixed at 0.1 and 100,
respectively. When (2.7) is employed (labelled as DK = 0), the GKE and JKE are in
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Experiment f1 (Hz) δ Nf �θ (◦) Nhf λc Npm Nq U10 (m s−1) ci (%) Sin, Sds Section

Duration-limited growth 0.04 1.07 45 10 6 [0.01, 0.25] [10, 1000] [4, 90] × 106 20 / ST6 3
Adiabatic-Gaussian — 1.053 50 5 ∞ 0.1 100, ∞ 6 × 108 / / / 4
Turing winds — 1.07 45 10 6 — 100 4 × 107 10 / ST6 5
Ice-coupled — — — — ∞ — — — 20 50 — 6

Table 2. The model set-up for different wave experiments, including the frequency grid fi = δi−1f1, i = 1, . . . , Nf , directional bin size �θ , high-frequency extent of the
prognostic region Nhf , quasi-resonant cut-off factor λc, number of wave periods for phase mixing Npm, total number of unique quadruplets Nq, external wind and ice
forcing (U10, ice concentration ci) and source term package for Sin, Sds. The global (source term) integration time step �tg (�td,min) used is 10 (1) s. Nhf = ∞ means the
high-frequency tail evolves freely without any prescribed slope; Npm = ∞ denotes the GKE/JKE is solved without phase mixing.
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Figure 2. Total difference εT of the GKE results (based on (2.7)) as a function of (a) the number of
periods for phase mixing Npm (λc = 0.1) and (b) the quasi-resonant cut-off factor λc (empty and full circles:
Npm = 50 and 100). Red triangles in (b) show the total number of unique quartets Nq (normalized by
Nq,λc=0.08). (c) Evolution of the dominant breaking probability bT (2.11) with time. The experiment with
Npm = 1/bT and λc = 0.1 yields an εT of 26 %.

excellent agreement with the HKE except that the angular spreading σθ from the formers
are slightly lower (figure 3f ; see also figure 2 of Annenkov & Shrira 2016). Wave spectra
from the GKE based on (2.6) (labelled as DK = 1), as used by GB16, are remarkably
broader in both frequency and directional spaces, evidenced by the clearly underestimated
spectral peakedness (Qp and γD; figure 3c,e) and overestimated spreading (σθ ; figure 3f ).
Meanwhile, the high-frequency energy level αD when using (2.6) is considerably higher
(figure 3d). As a comparison, the total differences εT for the GKE with (2.6) and (2.7) are
142 % and 11 %, respectively. Figure 3 (thin yellow and purple lines) also clearly displays
that spectral peakedness γD is more sensitive than Hs and fp to the frequency of phase
mixing.

It is further noted that (2.6) tends to suppress the bimodality of short waves (e.g. Romero
& Melville 2010; Liu et al. 2019), as demonstrated in figure 4 where the normalized angular
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Figure 3. Evolution in time of (a) significant wave height Hs, (b) peak frequency fp, (c) Goda’s spectral
narrowness Qp, (d) Donelan’s high-frequency energy level αD, (e) peak enhancement factor γD and ( f ) angular
spreading σθ according to the (black solid line) HKE, (blue dash-dotted line) GKE (DK = 1; (2.6)), (red dashed
line) GKE (DK = 0; (2.7)) and (orange ‘❙’) JKE (DK = 0; (2.7)) in the duration-limited test. Here λc = 0.1
and Npm = 100 are chosen for the GKE and JKE simulations. Model spectra are selected at 10 min interval
starting with 1 h forecast. To illustrate the impact of phase mixing, the GKE results with Npm = 500 are also
shown: thin yellow line (2.6) and thin purple line (2.7).
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Figure 4. Comparison of the normalized angular distribution, F( f , θ)/F( f , 0), of wave spectrum after 8 h
of model integration: (a) f = 2fp; (b) f = 3fp. Here θ = 0◦ denotes the wind direction and the corresponding
wave age is U10/cp � 1.5 (cp/u∗ � 15). Legend as in figure 3.
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Kinetic equations in a third-generation spectral wave model

distribution F( f , θ)/F( f , 0) for the wave spectrum after ∼8 h of model integration (the
corresponding inverse wave age U10/cp � 1.5) is presented. Here θ = 0◦ corresponds to
the wind direction and hence the dominant wave direction. Clearly, at 2fp, the GKE with
(2.6) fails to reproduce the bimodal distribution (figure 4a); at 3fp, its predicted bimodal
lobes are much shallower than those for the GKE/JKE based on (2.7) and for the HKE
(figure 4b).

Considering the results above, the default settings in WW3 for the GKE and JKE are
defined by (2.7), λc = 0.1 and Npm = 100. All these parameters, however, can be easily
redefined by the user through namelist variables (WW3DG19).

4. Adiabatic evolution of a Gaussian wave spectrum

In this section, we investigate the short-term (O(102) wave periods), adiabatic evolution
of an initially Gaussian wave spectrum. Here by ‘adiabatic’ we mean physical processes
except for the four-wave interactions are neglected (Sin = Sds = 0). The initial 2-D
Gaussian spectrum F( f , θ) = E( f )D(θ) is specified by

E( f ) = ε2g2

4(2π)9/2f 5
p σg

exp

[
−( f − fp)2

2σ 2
g f 2

p

]
, (4.1)

where ε = Hskp/2 is the wave steepness, σg controls the spectral width and the angular
spreading function D(θ) follows the cosN θ model (Holthuijsen 2007):

D(θ) =

⎧⎪⎨
⎪⎩

1√
π

Γ (N/2 + 1)

Γ (N/2 + 1/2)
cosN(θ − θw), for |θ − θw| ≤ 90◦,

0, for |θ − θw| > 90◦,
(4.2)

where Γ is the Gamma function and θw is the dominant wave direction.
The initial wave field considered here is defined with ε = 0.2, σg = 0.1, N = 90 and

fp = 0.1 Hz (black line in figure 5), featuring a Benjamin–Feir index BFI = ε/(2�f /fp) =
0.86 > 1/

√
2, where �f is the half-width at the half-maximum of E( f ) (Janssen 2003;

Onorato et al. 2006; Xiao et al. 2013). A relatively high-resolution ( f , θ) grid is used
to better resolve this directionally narrow spectrum (δ = 1.053, �θ = 5◦; table 2). For
this short-term evolution, phase mixing practically makes very little difference in the
GKE/JKE-based results (figure 6).

Figure 5 presents the computed wave spectra at t = 50, 100 and 200 wave periods
according to distinct kinetic equations. The evolution in time of integral wave parameters
over 300 periods is illustrated in figure 6, complemented by the spectrogram for the first
150 periods displayed in figure 7. The consistent features revealed by three equations are
the noticeable downshifting of the spectral peak (figures 6b and 7), remarkable angular
broadening (figure 6e) and the gradual development of the f −4 high-frequency decay
(figures 5 and 7; wave energy starts accumulating at the high-frequency tail at t = 200
periods because of the lack of dissipation). Similar results have been reported by Onorato
et al. (2002) and Dysthe et al. (2003), among others.

The growth of the rear face of the spectrum ( f > fp), initially severely truncated and
eventually f −4 sloped owing to the shape-stabilizing role of the four-wave interactions
(Young & van Vledder 1993), differs noticeably across distinct kinetic equations. It is seen
that the GKE leads to the fastest growth of the tail, closely followed by the JKE with
the HKE measurably falling behind (figures 5 and 6d). Meanwhile, wave spectra from
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Figure 5. Evolution in time of wave spectrum E( f ) according to the (grey lines) HKE, (blue lines) JKE (Npm =
∞) and (red lines) GKE (Npm = ∞). Wave spectra shown are at time tn = t/Tp = 50, 100, 200 periods. The
black line represents the initial Gaussian spectrum defined by (4.1) and (4.2) with ε = 0.2, σg = 0.1, N = 90
and fp = 0.1 Hz. The grey dotted line represents the f −4 reference slope.
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Figure 6. Short-term evolution of the (a) significant wave height (normalized by the initial value) Hs/Hs,0,
(b) peak wave frequency fp, (c) Goda’s spectral narrowness Qp, (d) mean square slope 〈s2〉, (e) angular
spreading σθ and ( f ) BFI according to the (black solid line) HKE, (blue lines) JKE and (red lines) GKE.
The thick and thin coloured lines refer to the corresponding JKE/GKE solved without and with phase mixing
(Npm = ∞, 100), respectively. Model spectra are selected at 10 s interval.

the JKE and GKE are slightly wider in both frequency and directional spaces than those
from the HKE (figures 6c,e and 7), qualitatively similar to results reported in Annenkov
& Shrira (2018, 2019). At t > 200 periods, the f −4 slope is well formed at the rear face
of the spectrum (figure 5), then 〈s2〉 from all the equations gets closer (figure 6d). The
residual differences in 〈s2〉 are likely attributed to differences in the numerical algorithms.
Wave energy from all the kinetic equations is not perfectly conserved (figure 6a) owing
to the defects in our numerical approach and the finite extent of the spectral domain
(e.g. Resio & Perrie 1991; Rogers et al. 2012). Both JKE and HKE produce a minimal BFI
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Figure 7. Spectrogram of the simulated wave fields according to the (a) HKE, (b) JKE (Npm = ∞) and
(c) GKE (Npm = ∞). The wave spectrum E( f ) is shown in a logarithmic scale, and the dotted line highlights
the location of peak frequency fp.

within the first 100 periods of model integration (figure 6f ), whereas the GKE-based BFI
maximizes at t ∼ 60 periods, and then declines with time. This is primarily because that
the GKE-simulated E( f ) is not fully smooth at f > fp for t < 75 periods (a plateau present
at f ∼ 1.2fp; figure 5), resulting in narrower spectral peak width �f and accordingly larger
BFI. As one would expect for a freely evolving wave system, the directional BFI (i.e. the
index including the effect of angular spreading; Xiao et al. 2013) from all the equations
decreases with time (not shown).

It has long been argued that the HKE, as prescribed by its formulation, predicts
wave fields evolve on a slow, ‘kinetic’ time scale O(1/ε4ω0); whereas the GKE and
JKE introduce the effect of quasi-resonant four-wave interactions, thereby being capable
of advancing evolution on a fast, ‘dynamic’ time scale O(ε−2ω0), also known as
Benjamin–Feir instability time scale or modulational instability time scale (Hasselmann
1962; Dysthe et al. 2003; Janssen 2003; Annenkov & Shrira 2006, 2009, GS13, among
others). A striking outcome identified in figures 5–7 is that the three equations initially
operate at the same ‘dynamic’ time scale (ε−2 = 25 periods) for the spectral peak
downshift and angular broadening. Although counter-intuitive, comparable results were
also reported by AS18, showing that the HKE, GKE and Zakharov equations yield
very close evolution of integral wave parameters for an initially unstable wave spectrum
subject to strong modulational instability (their figure 8; see our § 8 for further discussion
regarding these results).

The average growth rate of wave spectrum over the first 100 periods as a result of the
nonlinear transfer, defined as

〈Snl( f )〉 = E( f , t = 100Tp) − E( f , t = 0)

100Tp
, (4.3)
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Figure 8. (a) The average growth rate 〈Snl( f )〉 over the first 100 periods as a function of frequency f . The inset
shows 〈Snl( f )〉 in a logarithmic scale for high frequencies. (b) The exponent ν for the scaling of Smax

nl ∼ εν as
a function of k/kp. The shaded area highlights the energy-containing range of the initial Gaussian spectrum, as
approximated by k/kp ∼ (1 ± 3σg)

2. Black/blue/red line: HKE/JKE/GKE. The latter two equations are solved
without phase mixing (Npm = ∞).

is plotted in figure 8(a). Here 〈Snl〉 arising from three kinetic equations is nearly the same
except for the spectral tail ( f > 3fp), exhibiting a positive lobe below fp, a negative lobe in
the vicinity of fp and another positive lobe at higher frequencies. AS18 suggested that the
scaling of growth rate Snl with wave steepness ε, rather than the growth rate itself, could
be a good indicator to sort out different kinetic equations. The authors found that the
HKE corresponds to Smax

nl ( f ) ∼ ε6, where Smax
nl ( f ) was the maximal growth rate attained

in their simulations; their direct simulations based on the Zakharov equation favours
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Smax
nl ( f ) ∼ ε4 (see also Annenkov & Shrira 2009) and the GKE features a scaling in

between, i.e. Smax
nl ( f ) ∼ ε5∼5.5. We checked this idea as well by conducting simulations of

multiple Gaussian spectra with various steepness (ε = 0.035, 0.05, 0.07, 0.10, 0.14, 0.2)
while keeping other parameters (e.g. σg, fp) unchanged. Following AS18, a first-degree
polynomial fit is performed onto the estimated Smax

nl ( f ) at each frequency by adopting

log Smax
nl ( f ) = ν( f ) log ε + β, (4.4)

and the resulting exponent ν is illustrated in figure 8(b). Consistent with AS18, for most
of the energy-containing frequency range (shaded region in figure 8b), we have ν ∼ 6 and
ν ∼ 5.5 for the HKE and GKE, respectively; the JKE yields a comparable scaling to the
GKE.

5. Directional response of waves to turning winds

The situation that wind changes rapidly, quite often occurring under tropical cyclones or
strong frontal systems, represents an interesting case where the fast evolution of wave
spectrum may take place and, therefore, where the three kinetic equations may behave
dissimilarly. Field observations and numerical simulations of the response of wind waves
to turning winds have been conducted thoroughly in the literature, and the reader is referred
to van Vledder & Holthuijsen (1993, hereafter VH93) for reviews of this topic.

A consistent picture of the directional relaxation of a wind–sea spectrum to abrupt
changes in wind direction is that the time scale τ for the turning of mean wave direction θw
(appendix B) toward the new wind direction θu, usually defined by the following relaxation
model (e.g. VH93)

∂θw

∂t
= 1

τ
sin(θu − θw), (5.1)

depends on the stage of development of the wave field with young waves featuring short
time scales.

Here, we simulate these spectral responses with the three different kinetic equations. A
constant U10 of 10 m s−1 is imposed, and the initial JONSWAP spectrum is defined with
fp = 0.5 Hz and Hs ∼ 0.19 m. Other model attributes are the same as the duration-limited
growth test described in § 3 (table 2). Following VH93, a sudden wind shift is introduced
at t = 3 h when the dimensionless peak frequency fp approximately reaches 2fPM ,
where fPM = 5.6 × 10−3g/u∗ is the fully developed Pierson–Moskowitz peak frequency
(Komen, Hasselmann & Hasselmann 1984) and u∗ is the friction velocity. The spectral
response time scale τ can be estimated from model results based on a finite-difference
version of (5.1):

τ(tj) = tj+1 − tj−1

θw,j+1 − θw,j−1
sin(θu,j − θw,j), (5.2)

where the subscript ‘j’ is the local counter for the time interval at which model spectra are
stored (15 min selected here). Similar to VH93, five-point moving averages over the time
series were used to reduce scatter in the estimated τ .

Figure 9 presents the dimensionless τ∗ = gτ/u∗ as a function of the dimensionless
frequency ν∗ = fpu∗/g for wind shift θu of 30◦, 45◦, 60◦ and 90◦ according to different
kinetic equations. Observations and simulations reported by VH93 are also shown as
references. Our HKE-based results (grey markers) show that: (i) τ∗ increases as wave
develops (ν∗ ↓), consistent with previous studies; (ii) τ∗ is noticeably dependent on wind
shift with waves turning faster for lower θu; and (iii) the average time scale over different
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Figure 9. Dimensionless response time scale τ∗ = gτ/u∗ as a function of dimensionless peak frequency
ν∗ = fpu∗/g (figure adapted from figure 12 of VH93): (a) (grey) HKE versus (blue) JKE; (b) (grey) HKE
versus (red) GKE; ‘✖’, ‘�’, ‘✚’, ‘•’ for the directional shift θu of 30◦, 45◦, 60◦, 90◦. Black solid and dashed
lines represent the relations derived by VH93 based on their observations (τ∗ = 37ν−1.7∗ ) and EXACT-NL
simulations (τ∗ = 0.002ν−4.0∗ ), respectively. The hatched area illustrates the published data summarized by
VH93 in their figure 3. The density of markers for model results has been reduced for clarity.

wind shifts as yielded by the state-of-the-art physics for Sin and Sds (i.e. ST6) does not
deviate significantly from the model results presented in VH93 (black dashed line in
figure 9), where the authors also used the HKE for Snl (EXACT-NL) but with different
wind input and wave breaking physics (Komen et al. 1984). For old wind seas (low ν∗), the
simulated directional relaxation is considerably slower than observations from VH93. The
JKE and GKE (blue and red markers) are not dissimilar to the HKE. Although unexpected,
this is, however, in line with findings from Annenkov & Shrira (2015) who found the HKE
and GKE produce nearly identical results during a squall event (sharp increase in wind
speed). The significant differences between distinct kinetic equations as observed by GB16
for comparable situations are primarily attributed to the two numerical flaws (discretization
and source term integration) in their computations.

6. Ice-coupled waves

Numerical simulations of the Gaussian wave spectrum presented in § 4 indicate when the
spectral tail is significantly truncated, quasi-resonant four-wave interactions may lead to
faster development of the f −4 high-frequency decay. Such unusual spectral shape, however,
rarely exists in real oceans except for ice-coupled waves.

Field experiments suggest that when ocean waves propagate into ice fields, wave
energy decays exponentially with distance, according to the following form (e.g.
Wadhams et al. 1986)

1
F( f , x)

dF( f , x)
dx

= −αi( f , I), (6.1)

where F( f , x) is the 1-D wave spectrum at a penetration x, αi is the spatial attenuation
rate of wave energy, depending on wave frequency f and ice parameters I. For
given ice conditions, αi generally increases with increasing wave frequency (figure 10).
Consequently, wave spectra collected at ice-infested seas usually have heavily attenuated
tails (see, e.g., figure 6 of Rogers et al. 2016). It may, thus, be inspiring to explore the
growth of ice-coupled waves with different kinetic equations.
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Figure 10. Attenuation rate of ice-coupled waves αi/2ci as a function of wave period T . Filled circles •
and empty squares � represent observations from Cheng et al. (2017) and Rogers, Meylan & Kohout
(2018) collected under an Arctic storm event. Dashed and solid red lines show estimations by (6.3) with
η = 14 kg m−3 s−1, hi = 0.15 and 0.45 m, respectively (figure adapted from figure 10 of Liu et al. 2020).

In order to simulate ice-coupled wave spectra, the action balance equation (1.1) is
conventionally rewritten as (Masson & Leblond 1989)

dN
dt

= (1 − ci)(Sin + Sds) + Snl + Sice

ω
, (6.2)

where ci is sea ice concentration, the wind input and wave breaking terms are reduced by a
factor (1 − ci) and Snl is left unchanged (Polnikov & Lavrenov 2007). The newly included
Sice term represents the impact of sea ice on wave energy. Although parameterizations of
Sice available in the literature are rather diverse (e.g. Rogers et al. 2016; Liu et al. 2020,
see their table 1), here we select the viscous ice model of Meylan et al. (2018) and the
corresponding Sice term is given by (Liu et al. 2020, IC5 in WW3):

Sice(k, θ) = −cg 2ci
ηhi

ρwg2 ω3

︸ ︷︷ ︸
αi

F(k, θ), (6.3)

where cg is the open-water group velocity (assuming no change in the dispersion relation),
ρw is the density of water, hi is the ice cover thickness and η (in kg m−3 s−1) is an empirical
viscous parameter. It follows from (6.3) that the ice-induced wave decay scales linearly
with hi and is proportional to the frequency cubed (figure 10).

In the following simulations, we have arbitrarily chosen η = 14 kg m−3 s−1 and ci =
50 %, largely following Liu et al. (2020) who have fit (6.3) to field wave measurements
collected under a stormy event in the Arctic marginal ice zone with the same value of η

(figure 10). Two ice thicknesses (0.15 and 0.45 m) were considered, signifying different
strengths of the ice-induced wave decay. Other model settings (table 2) are practically the
same as in the open-water, duration-limited wave growth test (§ 3).

Experiments with hi of 0.15 m prove no differences in model results by three different
equations (not shown). When the ice-induced attenuation becomes stronger (hi = 0.45 m),
however, the GKE and JKE (with Npm = 100) produce remarkably faster wave growth
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Figure 11. Evolution in time of (a) significant wave height Hs, (b) wave period T0,2, (c) Goda’s spectral
narrowness Qp, (d) mean square slope 〈s2〉, (e) angular spreading σθ according to the (black solid line)
HKE, (blue dotted line) JKE (Npm = 100) and (red dashed line) GKE (Npm = 100) in the ice-coupled test
(hi = 0.45 m). Model spectra are selected at 10 min interval. The GKE results with Npm = 30, 300, 500 (thin
coloured lines) are also presented to illustrate the noticeable effect of phase mixing in this case.

than the HKE, as evident from figure 11. In this case, the growth curves are less smooth,
particularly for the first 12 h. During 6–18 h of model integration, wave height Hs and
wave period T0,2 from the GKE/JKE are significantly higher than the HKE-based values,
but eventually all the kinetic equations reach similar quasi-equilibrium states.

Inspection of wave spectra given in figure 12 reveals more complexity of the
development of waves in this specific ice-coupled regime. Starting from the initial
JONSWAP spectrum with minor energy (Hs � 0.7 m, fp = 0.25 Hz), wave grows due to
the net balance of all the physical processes involved. At t = 1 h, the rear face of spectrum,
particularly for f < 0.4 Hz, is apparently attenuated by ice; meanwhile, the wind input of
ST6 (Donelan et al. 2006), being different from traditional parameterizations, injects more
energy at high frequencies (see figure 4 of Zieger et al. 2015) and creates a secondary peak
around 2fp. The nonlinear transfer will regard this secondary peak as a perturbation and
work to smooth it out (Resio & Perrie 1991; Young & van Vledder 1993). These processes
compete with each other and determine the underlying spectral shape. The secondary peak
persists throughout 1–12 h in the HKE run and spectra at 6 and 12 h are noticeably noisy
(figure 12a). Six hours later (t ≥ 18 h), the spectrum turns into a smooth form with an
evidently dissipated tail (orange and red lines in figure 12a). Wave spectra from the GKE
run (Npm = 100) get rid of the secondary peak at an earlier time (t ∼ 6 h; figure 12c),
facilitating the subsequent rapid growth over the next 12 h (figure 11).

Unlike the open-water, duration-limited wave growth test (figure 3), we found that
the GKE simulations here are appreciably sensitive to the frequency of phase mixing.
For Npm ∈ [30, 300], the more frequently wave phases are remixed, the earlier wave
spectrum becomes smooth (figure 12b,c), and accordingly the earlier the rapid growth
(during which Hs roughly increases from 1 to 2 m) takes place (figure 11). When
Npm = 500, the numerical instability of the GKE is not well suppressed, as manifested
by the severely saw-like spectral shape (even on the forward face) at t = 36 h (not shown).
The corresponding wave parameters (green dotted line in figure 11) also markedly deviate
from those for the HKE and other GKE runs (i.e. with lower Npm), particularly for t > 12 h.
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Figure 12. Development of wave spectrum E( f ) with time according to (a) the HKE, (b) the GKE (Npm =
300) and (c) the GKE (Npm = 30) in the ice-coupled test. For clarity, only spectra at t = 0, 1, 6, 12, 18 and
24 h are displayed. The reference slope proportional to f −4 is shown as the grey dotted line.

It is worth mentioning that the case presented here is unique and uncommon. All the
unusual preconditions (e.g. ice coupling, unconventional wind input term and non-smooth
spectra shape) coincidentally lead to different growth curves by three equations. It is
thus less than definite to conclude that the fast evolution, as hypothesized by the GKE,
is robustly confirmed for 2-D spectrum here. Nonetheless, this particular ice-coupled
experiment represents a useful illustration of side effects of the phase mixing approach
proposed to constrain the numerical instability of our GKE algorithm. It is generally
believed that fast evolution takes place (i) when the initial spectrum is far from its statistical
equilibrium and (ii) when the assumed initial probability distribution of waves (typically
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Gaussian with zero fourth-order cumulant and I(t)) does not match the underlying
spectrum (Janssen 2003; Annenkov & Shrira 2006, GS13). Phase mixing causes periodic
mismatch between the kurtosis and spectrum (figure 13 of Annenkov & Shrira 2016), and
therefore may provoke stronger but likely spurious spectral evolution. GS13 (their figure
13) has demonstrated this effect nicely for the 1-D spectrum.

7. Limitations of the GKE algorithm

7.1. Phase mixing and high-frequency instability
In nearly all the GKE/JKE simulations, the wave spectrum, after a sufficiently long time,
developed high-frequency instability and eventually the simulations became numerically
unstable (figure 14; see also figure 6 of AS18). Currently, the nature of such high-frequency
instabilities is not fully understood. It may be physical, being partly related to wave
breaking (GB16, see also Longuet-Higgins & Cokelet 1976). It is also worth mentioning
that high-frequency instability is commonly seen in the computations of nonlinear surface
waves and capillary waves (Longuet-Higgins & Cokelet 1976; Dommermuth & Yue 1987;
Pushkarev & Zakharov 2000).

In the context of numerical realizations of the GKE, phase mixing (randomization),
first proposed by GS13, is the only effective way of suppressing these high-frequency
instabilities discussed in the literature (figure 14). It is observed that after the cold start
(the initial state with totally random, uncorrelated phases), the instabilities take some time
to develop. By randomizing the phases periodically the instabilities are prevented from
disrupting the computations. It should be emphasized that the phase mixing approach
is an approximation, and at the moment the accuracy of this approximation is not very
clear. In the extreme, ice-coupled case, model results do show sensitivity to the adopted
frequency of phase mixing (figure 11). Other techniques such as low-pass filtration
(frequency-dependent damping term; Dommermuth & Yue 1987; Pushkarev & Zakharov
2000; Tolman 2011) may be experimented with the GKE in the future.

It should also be mentioned that the randomization, on the other hand, may facilitate
fast evolution (figure 11) for the reasons explained in the previous section. For other cases
explored in this paper, the GKE and JKE do not deviate significantly from the HKE even
though phase mixing is activated. Therefore, these results are believed to be robust. Further
discussion about phase mixing can be found in Annenkov & Shrira (2016).

7.2. Applicability for 2-D simulations
All the simulations presented in this paper were performed with a single grid point
version of WW3. Despite this very simple scenario, the long-term GKE runs (O(103) wave
periods) are computationally challenging. First, for the spectral grids we used, simulations
with the GKE require interactions of enormous quasi-resonant and resonant quadruplets
(O(107 ∼ 108)) to be calculated. Second, as already pointed out, it is difficult to obtain the
analytic form of the diagonal term for the GKE nonlinear transfer, and therefore we have
used the explicit yet more time-consuming scheme to integrate source terms. Owing to
these factors, the GKE runs are approximately 5–10 times more expensive than the HKE
(see also figure 3 of GB16). It should be noted, however, that the same as the WRT, our
GKE algorithm is not parallelized, and thus all the simulations presented here were run
on a single processor. A more efficient, parallel GKE algorithm has been developed by
Annenkov & Shrira (2016), and their GKE could outrun the HKE when using sufficient
processors.
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Applying the GKE onto a 2-D spatial domain could be more demanding. The periodic
phase mixing is unavoidably desired to suppress the high-frequency noise. However, in this
way, we could easily end up with a situation where wave phases at two neighbouring grid
points are mixed at different instants due to their distinct wave periods. This might cause
numerical problems as well, especially when one spectrum with some slightly perturbed
high-frequency modes is spatially advected to the downstream grid points. Apart from
this difficulty, we need a 2-D Nq × Nsea matrix to trace the previous history of wave
evolution over the whole 2-D model domain, where Nq is the total number of unique
quadruplets (appendix A) and Nsea is the total number of sea grid points. Obviously,
storing this matrix in the internal memory will soon become impossible as Nsea increases.
All these limitations of our GKE algorithm would practically inhibit its large-scale,
realistic applications. Andrade, Stuhlmeier & Stiassnie (2019) reported that when applied
to degenerate quartets, the GKE may exhibit blow-up under certain conditions, further
implying a possible inherent deficiency of the GKE. Such strange behaviour, however, is
not observed in our simulations for wave spectra with multiple wave modes.

8. Concluding remarks

The HKE (Hasselmann 1962), formulating the nonlinear transfer due to resonant four-wave
interactions, stands for the most fundamental component of contemporary spectral wave
models. The useful parameterization of this critical nonlinear process developed in
1980s, i.e. the discrete interaction approximation (Hasselmann et al. 1985), directly
opened up a new generation of spectral wave modelling, and is still routinely employed
in present-day operational wave forecast and hindcast. More accurate yet economic
alternative parameterizations have been proposed over the last three decades (e.g. Komatsu
& Masuda 1996; Polnikov 1997; Benoit 2005; Resio & Perrie 2008; Tolman 2013).
Meanwhile, effort has also been put into establishing alternative kinetic equations that take
into account non-resonant four-wave interactions and therefore are expected to outperform
the HKE in describing fast evolution of wave fields and possibly in predicting the
occurrence of freak waves due to modulational instability (Janssen 2003; Annenkov &
Shrira 2006; Onorato et al. 2009; Waseda, Kinoshita & Tamura 2009; Xiao et al. 2013,
GS13, among others). For 1-D spectra, the advantage of modern kinetic equations (JKE,
GKE) over the HKE is beyond controversy (Janssen 2003, GS13). For directional wave
spectra, however, findings from previous studies, particularly GB16 and Annenkov &
Shrira (2015, 2016, 2018), are not fully consistent.

Dedicated to resolving these disputes, this study has scrutinized the GKE algorithm of
GB16 and identified two numerical defects related to the discretization of the GKE and
to source term integration. It is proved that once these numerical flaws are amended, our
results now are comparable to those reported by Annenkov & Shrira. Key findings are
summarized as follows.

(i) For the open-water, duration-limited wave growth case, all the three equations (HKE,
JKE and GKE) yield very similar growth curves (figure 3), provided that the phase
mixing approach is applied to stabilize the JKE/GKE simulations. Under this steady
wind forcing, traditional wave parameters Hs and fp are practically insensitive to the
frequency of phase mixing (Npm), as already demonstrated in GS13 and Annenkov
& Shrira (2016).

(ii) In line with Annenkov & Shrira (2015), even for wave spectra subject to turning
winds (i.e. a sudden change in wind direction), the GKE/JKE produces comparable
results to the HKE. Surprisingly, the average directional response time scale, as
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yielded by the state-of-the-art source term package (ST6), does not significantly
deviate from that given by the source term package developed some 30 years ago
(figure 9). For old waves, the simulated rate of spectral turning is considerably lower
than observations (VH93), possibly highlighting deficiencies in model source terms
in these situations.

(iii) For the experiment with the steep Gaussian spectrum, the relaxation of the rear
face of wave spectrum to the f −4 high-frequency decay noticeably differs across
different kinetic equation simulations. The growth rate of the tail is seen as GKE >ε

JKE > HKE (figure 5; here ‘>ε’ means ‘marginally greater than’). We analysed
the scaling of the maximum growth rate Smax

nl with wave steepness ε, and found
that the HKE corresponds to Smax

nl ∼ ε6 and the JKE/GKE to Smax
nl ∼ ε5.5 (figure 8),

again in good agreement with AS18. The most striking result in this paper, in our
opinion, is that the HKE and JKE/GKE initially operate at the same fast O(1/ε2ω0)
time scale for the spectral peak downshift and angular spreading (figure 6). This is
apparently contrary to the generally accepted viewpoint that the HKE only prescribes
spectral evolution on a slow O(1/ε4ω0) time scale (Hasselmann 1962; Dysthe et al.
2003; Janssen 2003). Despite being counter-intuitive, we stress that this finding was
already evident in simulations conducted by AS18 (their figure 8).

(iv) The ice-coupled experiment represents the only case where we found that the
GKE/JKE indeed produces remarkably faster wave growth than the HKE (figure 11)
yet as a result of multiple uncommon factors. The GKE runs are shown to be
sensitive to the frequency of phase mixing, further obfuscating the problem being
investigated.

(v) The JKE and GKE provide almost identical results even for the ice-coupled test
where wave spectrum is not smooth during the early stage of development (figures 11
and 12). This implies the assumption that the action density is slowly varying (i.e.
independent on the fast time scale), as adopted by the JKE (Janssen 2004, § 4.5),
may be reasonably valid.

To sum up, we believe our paper has clarified the open question regarding differences
in spectral evolution of directional wave fields according to different kinetic equations.
Given the results presented here and previously reported by Annenkov & Shrira, it
appears sensible to conclude that dissimilar to the 1-D spectrum case, the GKE and JKE,
unexpectedly, do not produce significantly different development of 2-D spectra, provided
that wave spectra are fairly smooth and the directionality is sufficiently broad. In other
words, it appears that the HKE, solved by the well-established WRT algorithm, works
more robustly than what is usually expected from its formulation, particularly in terms
of the fast evolution of fp and σθ on a ‘dynamic’ O(1/ε2ω0) time scale. It might be
likely that the WRT algorithm, when discretizing the HKE, ‘fails’ to stay exactly at the
resonance loci and therefore introduces some quasi-resonant effect. Alternatively, the time
scaling (O(1/ε2ω0) or O(1/ε4ω0)) may only apply to discrete wave components N(k, θ, t)
but not necessarily apply to any integral wave parameters (e.g. fp and σθ ; S. Annenkov,
personal communication, 2020). One of our reviewers also suggested that the spectral
peak downshift and angular spreading are manifestations of the self-similar evolution of
the wave field (Badulin et al. 2005, 2007), and are not directly linked to the dN/dt scaling.

The scope of the present paper is limited to investigating different kinetic equations
in a spectral wave model. Nonetheless, it is noteworthy that Annenkov & Shrira (2018,
2019) inter-compared the HKE, GKE and direct simulations based on the Zakharov
equation (DNS-ZE), and found that the two kinetic equations, being close to each other,
behave markedly differently from the DNS-ZE in shaping the spectrum. Wave spectra
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from the DNS-ZE are angularly less spread but broader in the frequency space with
less-pronounced spectral peaks. Liu et al. (2019) demonstrated that the HKE, together
with the ST6 package, overestimates spectral peakedness of the fetch-limited wind waves,
providing an indirect support of these findings. It may be feasible to further explore
these discrepancies and the directional response of ocean waves to turning winds by
employing the three-dimensional, fully nonlinear phase-resolving wave model established
by Chalikov (2018) in which effects of wind input and wave breaking are reasonably
parameterized.
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Appendix A. Numerical implementation of the GKE

When implemented in WW3, (2.3)–(2.7) for the GKE are solved by the following steps.

(i) For a given 2-D ( f , θ) grid consisting of Nf frequencies and Nθ directions, we first
transform it into a wavenumber grid (kx, ky), of which each component (kx or ky)
is stored in a 1-D array with Ns = Nf Nθ elements. The corresponding area of each
wavenumber bin δk = kδkδθ = kδωδθ/cg is recorded in another 1-D array.

(ii) Based on the known (kx, ky) grid, we find all the unique interactive quadruplets
satisfying (2.9) and the following criteria:

i2 ≥ i1,

i3 /= i1, i3 /= i2,

i4 ≥ i3,

i4 /= i1, i4 /= i2,

i1 + (i2 − 1) × Ns < i3 + (i4 − 1) × Ns,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(A1)

where ij refers to the index of kj in the 1-D kx and ky arrays: k1, k2 and k3 are
chosen at the wavenumber grid points; k4 is naturally determined by (2.9); and i4 is
approximated by the index of the wavenumber grid point nearest to k4.
The criteria (A1) are established to guarantee the uniqueness of the located quartets
because a quadruplet (k1, k2, k3, k4) is essentially same as the following seven other
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quadruplets (Hasselmann & Hasselmann 1985):

(k2, k1, k3, k4),

(k1, k2, k4, k3),

(k2, k1, k4, k3),

(k3, k4, k1, k2),

(k3, k4, k2, k1),

(k4, k3, k1, k2),

(k4, k3, k2, k1).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A2)

Meanwhile, the last criterion of (A1) already indicates that any quantity for the
quadruplets (e.g. �ω, T1,2,3,4, F1,2,3,4) can be stored in a sparse upper triangular
N2

s × N2
s matrix. A given quadruplet (k1, k2, k3, k4) corresponds to the entry in the

rth row and cth column of that sparse matrix, where

r = i1 + (i2 − 1) × Ns,

c = i3 + (i4 − 1) × Ns,

}
(A3)

as clearly illustrated in figure 13.
(iii) Calculate the nonlinear transfer rates M1,2,3,4 (2.4)–(2.7) for all the unique quartets

and record these values in a sparse upper triangular matrix M1,2,3,4 (N2
s × N2

s ;
figure 13, leftmost)

(iv) According to the property of detailed balance δC1 = −δC3 = −δC4 (see (2.2)), we
can integrate interaction contributions over all (k3, k4) by

M1,2 = (
M1,2,3,4 − MT

1,2,3,4
) × S3,4, (A4)

where S3,4 is a N2
s × 1 column vector (figure 13, middle):

S3,4 =
{

1, k3 = k4,

2, k3 /= k4.
(A5)

(v) Reshape M1,2 in (A4) as a Ns × Ns upper triangular matrix (figure 13, rightmost)
and integrate contributions over all k2 (δC1 = δC2):(

dC1

dt
δk1

)
Ns×1

=
∑
k2

(
M1,2 + MT

1,2
) � S1,2, (A6)

where � denotes element-wise multiplication, S1,2 is a 2-D Ns × Ns matrix

S1,2 =
{

1/2, k1 = k2,

1, k1 /= k2.
(A7)

Thus far, the calculation of the GKE-predicted growth rate dC1/dt (2.3) is completed,
and the nonlinear transfer Snl(k, θ) required by WW3 is obtained through (1.6).

It is noteworthy that when the phase mixing approach is not employed (§ 2.1), the
GKE/JKE-simulated wave spectra will become noisy after long times of model integration
and eventually lead to unrealistic wave growth behaviour (figure 14). Re-mixing of wave
phases by every O(102) wave periods will effectively suppress these high-frequency noises
and produce smooth, reasonable evolution of wind wave spectra.
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(k1, k2)
r 

= 
i 1 

+ 
(i

2 
− 

1)
 ×

 N
s

c = i3 + (i4 − 1) × Nsk4
k3

M1,2,3,4

×

–8 –6 –4 –2 0 2 4 6 8

�ωn (%)

S3,4

k1
k2

M1,2

k3, k4
Σ

Figure 13. Illustration of the GKE algorithm on a very coarse ( f , θ) grid: fi = 0.04 × 1.1i−1, i = 1, . . . , 8,
and θ ∈ [−120◦, 120◦] with �θ = 30◦. The colour of elements of M1,2,3,4 indicates the normalized frequency
mismatch for a given quartet �ωn = �ω/ min(ω1, ω2, ω3, ω4).
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Figure 14. (a) Evolution of the significant wave height Hs in the duration-limited test under U10 = 20 m s−1

(§ 3). (b) Wave spectrum E( f ) and (c) nonlinear transfer Snl( f ) after 11 h of model integration. Grey solid
line, HKE; blue dashed line, GKE without phase mixing (Npm = ∞); green dotted line, JKE without phase
mixing; red dash-dotted line, GKE with phase mixing by every 100 wave periods. The phase-mixed JKE results
basically overlap with the red line and thus are not shown.

Appendix B. Integral wave parameters from the wave spectrum

The bulk parameters selected in this study, including significant wave height Hs, mean
wave period T0,−1, T0,2, Goda’s spectral narrowness Qp, mean square slope 〈s2〉, mean
wave direction θw, angular spreading σθ , are calculated from the 1-D and 2-D wave spectra
(E( f ), F( f , θ)) as follows (Goda 2010, WW3DG2019):

mn =
∫

f nE( f ) df , (B1)

Hs = 4
√

m0, (B2)

T0,−1 = m−1/m0, (B3)

T0,2 =
√

m0/m2, (B4)
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Qp = 2
m2

0

∫
fE2( f ) df , (B5)

〈s2〉 =
∫

k2E( f ) df , (B6)

a =
∫∫

cos θF( f , θ) df dθ, (B7)

b =
∫∫

sin θF( f , θ) df dθ, (B8)

θw = arctan (b/a) , (B9)

σθ =
√

2
(

1 −
√

(a2 + b2)/m2
0

)
. (B10)

The peak frequency fp is estimated from E( f ) using a parabolic fit in the neighbourhood of
the discrete spectral peak. When necessary, we also fit the generalized JONSWAP spectral
form (Young 2006)

E( f ) = αg2(2π)−4f −(5+n)
p f n exp

[
n
4

(
f
fp

)−4
]

× γ
exp

[
−( f −fp)2/2σ 2f 2

p

]
, (B11)

to the simulated wave spectra and record the corresponding high-frequency energy level
α and peak enhancement factor γ . For n = −5, (B11) corresponds to the JONSWAP form
of Hasselmann et al. (1973) and for n = −4 to the form proposed by Donelan, Hamilton
& Hui (1985). The fitting approach can be found in Liu et al. (2019, their § 4.c).
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