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Abstract
This paper presents a methodology to support the decision-making process during the planning of ship operations.
The methodology is designed with the aim of identifying and providing the operator with the best Estimated Time
of Departure (ETD)–Estimated Time of Arrival (ETA) window of opportunity to execute the journey/operation
between two predefined locations. To achieve this purpose, the International Maritime Organization (IMO) stability
criteria are exploited in the process to formulate an operational safety criterion based on fuzzy reasoning as a
function of the METeorological and OCeanographic (METOC) and sailing conditions. This allows for the analysis
of the set of Pareto routes computed by a weather routing systems relying on a multi-objective set-up. The proposed
methodology is tested in an operational scenario in the Mediterranean Sea.

1. Introduction

Ships and international trade are responsible for roughly 3% of global CO2 and Greenhouse Gas (GHG)
emissions with an expected increase by 50% to 250% in the coming decades (Olmer et al., 2017).
Based on these findings, the International Maritime Organization (IMO) is developing a comprehensive
strategy to reduce GHG emissions. This can be achieved in different ways: the optimisation of ship
design; the development of new marine propulsion technologies; low-carbon and zero-carbon fuels;
by improving the execution of ship operations; etc. As highlighted by Green et al. (2008), a proper
operational planning and decision-making process can achieve a 2%–4% reduction on GHG emissions
and environmental impact.

As a result, the field of operational planning has been the object of widespread research in the
last decades covering different aspects. These range from weather forecasting, climate wave spectra
(Boukhanovsky et al., 2007; Degtyarev et al., 2000) and safe ship navigation/handling to routing
optimisation (Perera and Soares, 2017 and references therein).

This paper presents a contribution to the field of operational planning by providing a novel methodol-
ogy to support the decision-making process during the planning of vessel operations. More precisely, the
proposed approach allows the post-analysis of the output generated by weather routing systems to assist
the decision maker in identifying the most convenient Estimated Time of Departure (ETD)–Estimated
Time of Arrival (ETA) window of opportunity to execute the desired operation.

The core of each ship route planning is represented by the weather routing system, which is designed
for the estimation of the optimal route towards a selected destination as a function of the ship properties,
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travel distance/cost and the predicted METeorological and OCeanographic (METOC) state, to name
a few.

The planning of the ship voyage can be formulated as a single-objective optimisation problem in
which one criterion (e.g. voyage time) is optimised. Several methodologies have been developed for the
computation of the optimal route. These range from the well-established isochrone method, proposed by
James (1957), and its numerous improvements (Hagiwara and Spaans, 1987; Lin et al., 2013) to dynamic
programming (Zaccone et al., 2018) or constrained graph problems, as in Mannarini et al. (2015) and
Loeches et al. (2015) where the Dĳkstra algorithm is used. In these, a graph of all the available routes
between the departure and arrival locations is built, the edges of which are pruned where the defined
constraints are not satisfied.

Given the particular nature of the problem being faced, the weather routing can be modelled con-
sidering the multi-objective optimisation perspective. This allows for the inclusion of multiple criteria
in the process to compute the set of best routes in the Pareto sense. Multi-objective optimisation in the
field of weather routing has seen increasing development together with the introduction of the evolution-
ary methodologies. This approach has been presented by Szlapczynska (2007), Marie and Courteille
(2009), Maki et al. (2011), Fabbri et al. (2015), Vettor and Soares (2016), Szlapczynska (2015) and
references therein. All these exploit a genetic or evolutionary algorithm with multiple objectives in a
continuos or discrete space to find the set of Pareto-optimal solutions. Each solution represents a differ-
ent trade-off in terms of the selected conflicting objectives. At this stage, based on the computed routes,
the decision maker selects the route representing the best trade-off among the available solutions. For a
complete review on the mathematical approaches to weather routing systems, the authors refer to Walther
et al. (2016).

The consequent post-analysis of the Pareto-set produced by a weather routing tool is not a straight-
forward process, especially for a human planner owing to the huge amounts of data to be analysed.
Therefore a methodology to support the decision-making process is required. In Sidoti et al. (2017),
the authors propose the normalisation of the set of Pareto solutions after the algorithm termination.
This allows a better comprehension of the impact of the conflicting metrics. This does not allow for
the visualisation of other key variables characterising the decision-making process, such as the ETD
and/or ETA. Chiu and Bloebaum (2009) proposed the Hyper Radial Visualisation (HRV) methodology,
which enables an investigation of the trade-off decisions and the identification of better regions in a
high-dimensional performance space. Szlapczynska (2007) and Li et al. (2017) proposed the introduc-
tion of weighting coefficients plus a sorting methodology to identify the candidate route. Despite this,
the above-mentioned papers and the references therein limit the decision-making process to the study
of an ad hoc scenario with a predefined ETD for the selection of one route among those available to
reach the destination.

As discussed by Perera and Soares (2017), an additional measure that can be incorporated into the
weather routing and safe ship handling approaches is the exploitation of the information about the ETD
and ETA. Estimated ETD–ETA values can be integrated into the port schedule to save on operating
costs for both vessel and harbour operations (Kjetil, 2004).

For the above-mentioned motivations, this paper presents a methodology to support the decision-
making process during the planning of vessel operations. Starting from a selected kind of operation (e.g.
travel/transit), this methodology has the goal of assessing, and consequently identifying, the best ETD–
ETA window of opportunity to execute such an operation. Instead of summarising the computed routes
through the view of the Pareto front (Szlapczynska, 2015; Sidoti et al., 2017), the idea is to map the
Pareto front into the ETD–ETA space through a metric expressing its operational safety (criterion based
on the IMO safety guidelines IMO, 2007). As a result, a new way of visualising the huge amount of data
produced by any weather routing tool is presented. This supports the decision maker in the selection
of the optimal travel time window and produces an increased situational awareness. Furthermore, it
allows the identification of new constraints to be enforced in terms of ETD or ETA for high-resolution
route definition. The focus of this paper is therefore shifted from the formulation of the weather routing
problem to the post processing of the data obtained from the solution of the optimisation problem. For
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Figure 1. Common architecture of a ship operation decision-support system composed of 4 main
components: Environmental layer, Ship modelling, Planning layer and Decision layer. This paper is
focused on the decision layer and the generated output Operational Time Window (OTW), which is
highlighted in red.

this, a slightly different implementation (details provided in Section 2.3) of an existing weather routing
system (developed by the authors in Fabbri et al., 2018; Fabbri and Vicen-Bueno, 2019) is used for
the computation of the optimal routes between two endpoints. The computed Pareto set (representing
different trade-offs between conflicting metrics) is used as the input for the execution of the proposed
decision-making methodology. In our previous works Fabbri et al., 2018; Fabbri and Vicen-Bueno,
2019, we introduced the navigation risk metric as a safety measure to be optimised in the weather
routing multi-objective set-up together with two other objectives (travel time and added resistance). In
this work, we extrapolate this objective from the optimisation stage for its exploitation at the decision
stage. This allows for the determination of the cumulative risk associated to each Pareto solution and the
mean risk of each ETD–ETA window of opportunity. This enables an improvement of the computing
performance owing to the reduced complexity of the optimisation problem and, at the same time, to
include important information about the safeness of the routes at the decision stage. This represents an
example on how an additional metric (e.g. risk metric) can be exploited for the ranking of the Pareto
solutions in the ETD–ETA space.

The paper is organised as follows. The structure of the weather routing system is briefly recalled in
Section 2. Section 3 presents the proposed decision-making methodology, which represents the main
contribution of the paper. Section 4 presents the results of the approach tested in a real scenario for
the determination of the best travel time window. Finally, a summary of the main findings is given in
Section 5.

2. Ship operations decision-support system

In the context of ship operation planning, a standard Decision-support System (DSS) includes two
main processing layers. First, the functionalities of weather routing for the generation of the set of
routes, and second, the post-analysis of the routes to support the planner in making decisions in the
easiest and most convenient way. These two processing layers are supported by two data layers, which
define the environmental state and the ship properties. This is summarised in Figure 1, which shows
the architecture of the considered DSS. Its main components are briefly detailed in the following
subsections.
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Table 1. Ship and navigation parameters used in the ship modelling component.

Property Symbol Units

Ship parameters Length 𝐿𝑆 m
Beam width 𝐵 m
Draft 𝑇𝑆 m
Max speed �̄� kn
Metacentric height 𝐺𝑀 m
Displacement Δ kg

Navigation parameters Forward speed 𝑢 kn
Heading 𝜓 ° with respect to N

2.1. Environmental layer

The environmental layer retrieves and/or collects the set of METOC parameters needed to determine the
evolution of the environmental state for the selected Area of Interest (AOI), both in time and space. The
availability of weather forecast systems enables access to the predictions (short-term and long-term) of
the required METOC variables.

To fully characterise the evolution of sea waves, the concept of climatic wave spectra has been
recently developed (Degtyarev et al., 2000; Boukhanovsky et al., 2007; Neves et al., 2011), which has
resulted in the description of sea states as an ensemble of spectral models. However, this complete
set of environmental data is not always available to the final user. As reported in the recent review
by Žyczkowski et al. (2019), most of the operational weather forecast services do not provide the full
spectra dependence (or ensemble forecasts) but only the long-term statistics of the state of the sea waves.
For this reason, the considered implementation, described by Fabbri and Vicen-Bueno (2019), uses the
average state of the sea waves for the selected AOI, but with increased resolution both in time and space,
as the operational forecast service.

The selected parameters are those that have a direct impact on the motion and vulnerability of a
selected ship. These are: significant wave height, 𝐻𝑆 (m); mean wave peak period, 𝑇 (s); mean wave
primary direction, 𝛼 (◦ with respect to the North direction); mean wind direction, 𝜙 (◦ with respect to
the North direction); and mean wind speed, 𝑈10 (m s−1 measured at 10 m above the sea-surface). The
weather routing system also requires knowledge of the bathymetry or depth profile over the AOI to
delimit the areas where the navigation is not allowed or difficult (e.g. identification of shallow water
areas characterised by reduced manoeuverability (Vantorre et al., 2017) or risk of grounding).

2.2. Ship modelling

The ship modelling is the component involved with estimating the dynamic behaviour of the vessel
during navigation (wave and wind state provided by the environmental layer, Section 2.1). To model
different ship types (e.g. cargo, container, tankers and military), a ship is defined through a synthetic set
of parameters. These include:

• the parameters defining the shape of the ship and its hull, such as: length; draft; beam width;
metacentric height and displacement.

• the parameters defining the navigation state for the selected ship, such as the forward speed and
heading associated with the route.

In our implementation, we consider the use of the semi-empirical ship operational model described by
Lu et al. (2015). The selected methodology enables prediction of the added resistance experienced by the
ship in different weather and sea conditions (irregular waves and wind). Consequently, we implemented
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this semi-empirical operational model (Lu et al., 2015), owing to its limited computational cost. In
addition, the well-known Holtrop and Mennen’s Method (Holtrop and Mennen, 1982) is used for the
estimation of the still-water resistance of the ship. The complete set of ship parameters considered in this
model is listed in Table 1. The listed parameters enable an estimation of the sailing conditions and actual
course of the selected ship based on the METOC conditions (from the environmental layer) in a given
location within the AOI considering the ship’s forward speed, 𝑢, and heading, 𝜓. Because the purpose
of this paper is focused on the identification of ETD–ETA windows of opportunity, the ship modelling
component is defined with the goal and the advantage of being easily implemented and practical. For
this reason, not all the aspects affecting the performance of the ship are modelled. Additional aspects,
such as hull fouling, sea water temperature and sea currents (mean speed and direction), will cause
additional speed losses for the ship.

2.3. Planning layer

The planning layer represents the computational core of any weather routing system. The waypoints that
compose the route are determined as a function of the METOC forecasts (provided by the environmental
layer) and the vessel properties with the aim of optimising the selected cost(s).

The weather routing problem is addressed in our implementation as a multi-objective optimisation
set-up and solved through the Martins labelling algorithm (Martins, 1984). The selected algorithm is
a generalisation of the Dĳkstra shortest path algorithm (Dĳkstra, 1959) to deal with a multi-objective
set-up. Recalling the notion of the Pareto optimality: a route is Pareto optimal if and only if it is better
than all the other routes for at least one objective and not worse than the other routes for the rest of the
objectives. The selected algorithm computes the set of Pareto-optimal routes.

The domain of the available routes connecting the departure and arrival locations is defined in
our implementation through a mathematical representation as a navigation graph (Fabbri and Vicen-
Bueno, 2019). Inspired by the isochrones method (Lin et al., 2013), each route is defined through the
navigation graph by a set of consecutive location nodes (or waypoints) connected through linking edges
(or seaways); each edge has associated with it a cost (in a single-objective set-up) or a set of costs
(in a multi-objective set-up) that defines the price(s) to be paid to traverse it. It is worth mentioning
that the costs associated with each edge change with the time and space owing to the variability of the
METOC conditions over the AOI in the considered temporal window. The Martins algorithm determines
the complete set of Pareto-optimal routes. Each route is represented by an ordered sequence of nodes
and edges with an associated optimal (in the Pareto sense) cumulative cost (as the sum of the costs
associated with the edges composing the route) between the departure and destination locations. The
multi-objective optimisation is defined by two conflicting criteria to be minimised:

Cost 1 - Travel time
The travel time represents an estimate of the time required to traverse the selected edge between two
node locations. This is computed as a function of the actual sailing conditions by taking into account the
average METOC conditions for the selected time interval. The implemented approach (Loeches et al.,
2015) assumes the ship moves between two consecutive node locations (waypoints) at a constant speed.

Cost 2 - Added resistance
The added resistance criterion models the forward speed reduction of the ship arising from the added
resistance from weather conditions (sea waves and wind) when considering a selected course. The
added resistance follows the empirical approach defined by Lu et al. (2015). This criterion enables an
estimation of the resistance caused by the waves and the average percentage of speed loss, compared
with the speed in still-water conditions, experienced by the ship when traversing the selected edge in a
given time step. The selected criteria are aligned with the mission objectives of identifying the routes
that minimise both the travel time to reach the desired destination (from Cost 1) and the mitigation of the
METOC effects as much as possible. Considering this implementation, the minimisation of the added
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resistance has been selected as an optimisation criterion because it allows a measure of how far the ship
is from the navigation in still-water conditions. This allows us to keep the implementation as general
as possible without considering additional information about the selected ship (e.g. the efficiency of
transmitted power). Because the process of computing the set of Pareto-optimal routes for a weather
routing scenario (e.g. departure and destination locations, AOI time frame) is beyond the scope of this
paper, we recall the reference papers of Fabbri and Vicen-Bueno (2019) and Fabbri et al. (2018) for the
implementation details.

3. Decision layer: Operational time window (OTW)

The decision layer represents the architectural component characterised by a strong interaction with the
decision maker. As discussed in the previous sections, the decision layer is not limited to the selection
of the route representing the best trade-off (in this implementation, the minimisation of travel time and
added resistance) among the computed routes. Usually, two stages of planning are executed (Sidoti
et al., 2017):

• The first stage provides the so-called movement report at least 72 h before embarkation, which
indicates the departure time, intended arrival time and other data;

• The second stage provides the recommended route 36 h prior to departure.

Unexpected inconveniences may not allow the predefined plan to be followed: a delay of a few hours
in the departure time may require the execution of a new weather routing process, owing to the
varying METOC conditions in the AOI. As a consequence, a revised plan may generate routes that
were determined by different decisions. This represents an example of the possible limitations that
the current decision layer suffers as a result of unexpected inconveniences. For the above-mentioned
considerations, new methodologies are required to support the decision-making process to take into
account inconveniences that may be encountered.

3.1. Prior steps to OTW estimation

The approach we propose is to identify the OTW during the decisional stage as a post-analysis of the
set of Pareto-optimal routes.

Usually, given a selected ship, a weather routing process is characterised by:

• Departure and destination locations.
• Temporal constraints in which the journey has to be executed in terms of ETD and ETA.

For a given scenario, the OTW enables the determination of the recommended temporal window
(in terms of ETD–ETA) to perform the transit or a predefined operation between the departure and
destination locations. More precisely, the OTW determines the range of contiguous ETD and ETA values,
which is characterised by high operational safety, considering the METOC state faced by the selected
ship. To this end, the set of Pareto-optimal routes are ranked based on its temporal information: the ETD
set during the weather routing setup by the user and the resulting ETA. This is easily achieved through
a temporal two-dimensional (2-D) grid, in which the 𝑥 and 𝑦 axes are associated to different temporal
ranges of ETD and ETA, respectively. Figure 2 shows an example of a temporal grid characterised by a
temporal resolution of 1 h in both axes. Each 1 h × 1 h cell or bin contains all the Pareto-optimal routes
produced by the weather routing process (depicted as blue markers), which are characterised by the
ETDs and ETAs values falling within the considered bin.

For a given scenario, this representation allows: first, to group together the routes based on common
timing constraints; and, second, the estimation of the limits in terms of travel time for different ETDs,
which have different METOC conditions in the AOI.

It is worth mentioning that the temporal grid presented in Figure 2 is the result of the execution of
the same weather routing process but varying the ETD within the temporal range considered.
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Figure 2. Temporal grid associated with the set of Pareto-optimal routes computed by the planning
layer. Each 1 h × 1 h cell collects the Pareto-optimal routes characterised by common timing properties
(ETD and ETA bin).

Figure 3. Steps executed for the determination of the OTW representation associated with the set of
Pareto-optimal routes provided by the planning layer.

The idea we pursued is to characterise the representation of Figure 2 with additional information/data
that would be helpful at this stage for the decision maker for the determination of the OTW. Starting
from the temporal grid representation (Figure 2), our goal is to determine the range of ETD–ETA
bins, and the Pareto-optimal routes therein, which represent the most convenient choices to perform
the selected transit/operation. To this aim, our approach characterises each Pareto-optimal route with
an additional measure that represents its operational safety. This is inspired by the IMO guidelines for
the ship masters to avoid dangerous situations in adverse weather conditions (IMO, 2007). The details
regarding the computation of the OTW are reported in Section 3.2.

3.2. OTW procedure

Starting from the set of Pareto-optimal solutions (computed by the planning layer), the OTW is computed.
The procedure is characterised by 4 steps, as depicted in Figure 3. The first 3 steps show the process of
estimating the operational safety, 𝑂 (𝑟), starting from an input Pareto-optimal route 𝑟 . These 3 steps are
repeated for each Pareto-optimal route computed by the planning layer. Finally, the fourth step computes
the OTW representation, which considers all the Pareto-optimal routes. The detailed description is
reported below.

3.2.1. Step 1: Operational boxes creation
A set of overlapping operational boxes is determined along the route. The dimensions of each operational
box reflect the operational requirements defined by the decision maker. For example, the length (along
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Figure 4. Representation of the dangerous areas according to the guidelines of (IMO, 2007) over a
polar plane (angle and distance from the centre represent the wave encounter angle and the forward
speed of the ship, respectively): surf-riding and broaching-to in blue, resonance in red and successive
high-wave attack in green.

the route) can be equal to the distance covered by the ship travelling at a constant cruise speed for a
predefined number of hours (e.g. for a cruise speed= 20 kn for 2 h, the length of the rectangular area
is ≈40 nmi).

The width of the operational box is set by the decision maker as an input based on specific operational
requirements, e.g. size of the area to be surveyed and to model the ship deviations that may occur
from the selected route. The operational boxes are placed along the selected route ensuring that each
operational box overlaps with the one that follows. The maximum portion of overlapping area is set
by the decision maker as an input to the system. The maximum overlapping area occurs when two
consecutive operational boxes are aligned.

3.2.2. Step 2: Operational box estimation
Starting from the set of boxes (from Step 1) associated with the route 𝑟 , this step quantifies the average
safety distance between the safe sailing conditions and the estimated navigation conditions faced by the
selected ship when sailing within each box for the considered time step. This measure is a function of
the METOC conditions at the time of passing through it, as well as the ship parameters (see Table 1).

The safety distance is derived from the guidelines provided to navigators for adverse weather condi-
tions (IMO, 2007; Fabbri and Vicen-Bueno, 2019). The dangerous situations considered in this work
are: surf-riding and broaching-to; successive high-wave attack; synchronous rolling; and reduction of
intact-stability when riding on a wave crest.

Recalling the methodology of Krata and Szlapczynska (2012) and Przemyslaw and Joanna (2018),
the IMO dangerous areas can be depicted in a polar plot, as highlighted by the red, green and blue areas
in Figure 4. Each point 𝑝 within the polar plane is defined by its angle (taken in the clockwise direction
with respect to the upward direction) and radial distance from the centre, which represent the wave
encounter angle and the forward speed (in kn) of the ship, respectively. Here, 𝑝 is defined as all possible
configurations of the ship.

From this representation, the safety distance, 𝑠(𝜈(𝑡)), is defined as the normalised distance between
the actual ship configuration, 𝜈(𝑡) = [𝑢(𝑡), 𝜓(𝑡)], (blue marker in Figure 4) and the closest IMO
dangerous area, as summarised in Equation (1).

𝑠(𝜈(𝑡)) =

⎧⎪⎪⎨
⎪⎪⎩

0 𝜈(𝑡) ∈ DIMO(𝑡)

min
𝑝∈DIMO (𝑡)

| |𝜈(𝑡) − 𝑝 | |

𝑟max
otherwise.

(1)
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Table 2. Fuzzy rules determining the operational safety,𝑂 (𝑟), associated with a given route (𝑟) through
the percentage of boxes within a mean safety distance, 𝑠(𝜈(𝑡)), level.

Percentage of boxes within a 𝑠(𝜈(𝑡)) level 𝑂 (𝑟)

[80%, 100%] ∈ High 𝑠(𝜈(𝑡)) High
[25%, 50%) ∈ Medium 𝑠(𝜈(𝑡)) and ≥15% ∈ High 𝑠(𝜈(𝑡)) High to Medium
[50%, 65%) ∈ Medium 𝑠(𝜈(𝑡)) Medium
[10%, 15%) ∈ Low 𝑠(𝜈(𝑡)) or ≥65% ∈ Medium 𝑠(𝜈(𝑡)) Weak
≥15% ∈ Low 𝑠(𝜈(𝑡)) Low

where 𝑝 ∈ DIMO(𝑡) represents the subset of ship configurations within the IMO dangerous areas
(red, green, blue areas in Figure 4). The dangerous areas are determined based on the actual METOC
conditions at the selected time step 𝑡 and ship parameters (IMO, 2007). Here, 𝜈(𝑡) is the vector
representing the current ship configuration (forward speed 𝑢(𝑡) and the derived wave encounter angle
from the selected heading 𝜓(𝑡)) in the polar plane. The absolute distance between two points in the polar
plane is ‖ · ‖. The range of the radial axis in the same polar plane (or norm of the difference between the
two 2-D vectors) is 𝑟max. This quantity is represented by the magnitude of the maximum forward speed
of the ship, 𝑢. The safety distance, 𝑠(𝜈(𝑡)), has values in the range [0, 1], where the two range ends,
0 or 1, represent that the ship is operating in dangerous or safe conditions, respectively. In the case where
the ship configuration 𝜈(𝑡) falls within the DIMO(𝑡), the safety distance 𝑠(𝜈(𝑡)) is 0, which represents
a dangerous situation for the ship. To characterise each operational box, the computation of 𝑠(𝜈(𝑡)) is
repeated for all the locations within the operational box under analysis to determine the mean safety
distance measure, 𝑠(𝜈(𝑡)), associated with each box. The number of locations and the locations to be
investigated are directly determined by the spatial resolution of the METOC forecasts provided by the
environmental layer. It is worth pointing out that 𝑠(𝜈(𝑡)) is directly related to the METOC conditions
faced by the ship at the time step 𝑡 considering the ship configuration 𝜈(𝑡) (forward speed and wave
encounter angle) associated with the transect of the Pareto-optimal route falling within the investigated
operational box. Finally, to analyse the information associated with each Pareto-optimal route and give
an understandable representation of the route to the operator, 3 levels of 𝑠(𝜈(𝑡)) are defined (with the
associated colours).

• 0·65 < 𝑠(𝜈(𝑡)) ≤ 1 - High safety distance - Violet.
• 0·35 < 𝑠(𝜈(𝑡)) ≤ 0·65 - Medium safety distance - Blue.
• 0 < 𝑠(𝜈(𝑡)) ≤ 0·35 - Low safety distance - Yellow.

3.2.3. Step 3: Route operational safety - 𝑂 (𝑟)

This step determines the cumulative operational safety associated with the route under analysis. More
precisely, this stage is based on a set of logic rules derived from navigator knowledge and experience.
As a matter of fact, the determination of the cumulative operational safety as a direct average of the
𝑠(𝜈(𝑡)) value associated with each box along the route leads to a result that may underestimate 𝑂 (𝑟).
For example, few boxes with a low value of 𝑠(𝜈(𝑡)) are filtered out by the remaining boxes with a high
value of 𝑠(𝜈(𝑡)), which results in a route that is convenient for transit even in the case where the section
with the boxes with low safety makes the route not viable. For the above-mentioned motivations, the
cumulative 𝑂 (𝑟) associated with each route is based on the definition of a set of rules able to identify
the maximum portion of the travel time, so the ship and therefore its crew are characterised by reduced
operational safety. The set of rules are specified in Table 2. This table also reports the set of thresholds
identifying the five levels of operational safety. The fuzzy rules for the determination of the cumulative
operational safety includes degrees of freedom (including change of thresholds). This allows the decision
maker/navigator to interact with the system based on their experience. The thresholds provided in Table 2
are defined from actual experience at CMRE. These thresholds could be changed during the decision-
making process as a consequence of the operator requirements. This allows the navigator/decision maker
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Figure 5. Example of OTW representation of the Pareto-optimal routes produced by the planning layer
for a given time frame. The colour associated with each cell represents the mean value of the operational
safety metric, 𝑂 (𝑟), of the routes with ETD and ETA values within a 1 h × 1 h cell.

to configure the system based on the mission/operation (e.g. transport of sensitive material). It is worth
mentioning that the definition of these thresholds requires a careful validation during extensive tests in
future research before real-life applications. This step also allows the decision maker to gain the required
experience with the proposed methodology to obtain the appropriate results based on the capabilities of
the selected ship. It is worth pointing out that the routes characterised by at least a ship configuration
𝜈(𝑡) that leads to a safety distance 𝑠(𝜈(𝑡)) = 0 are tagged as low-operational safety, without considering
the set of rules previously defined (Table 2).

3.2.4. Step 4: OTW visualisation
Finally, the 𝑂 (𝑟) of each Pareto-optimal route is exploited to add new information to the previous
representation of Figure 2. This is done by associating each ETD–ETA cell with the mean value of 𝑂 (𝑟)
of the Pareto-optimal routes falling in it. The colour code associated with each cell is defined by the
average cumulative 𝑂 (𝑟) of the routes characterised by the same ETD–ETA cell. An example is shown
in Figure 5 using a colour map to represent the mean operational safety associated with each ETD–ETA
cell. The colours violet, blue and yellow represent high, medium and low mean 𝑂 (𝑟), respectively, as
depicted in the colour bar of Figure 5.

The OTW representation is exploited as a decision-making tool to visually identify the intervals of
ETD and ETA characterised by high (green) and low (red) mean 𝑂 (𝑟). As a consequence, the routes
within that temporal interval are characterised by favourable and or unfavourable sailing conditions for
the execution of the selected operation. From this result, the decision maker can execute the weather
routing process (planning layer) at higher resolution in a more constrained time-window to generate the
final plan for the ship. The proposed approach is tested for a concrete use case in Section 4.

4. Scenario and results

4.1. Scenario set-up

The proposed methodology is tested for the scenario of planning the transit in the Mediterranean Sea
between the ports of La Spezia (ITA) and Gibraltar (UK). The limits of the AOI and the selected
temporal window are:
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Figure 6. Nominal route (blue) between La Spezia (ITA) and Gibraltar (UK) ports (Maritime Data
Systems, 2018). The black markers around the nominal route are the location nodes that compose the
navigation graph, which indicate the domain of available routes between the two ports.

• Longitude range: from 6·5◦W to 10·5◦E.
• Latitude range: from 35◦ to 45◦N.
• Temporal window: ETD in the interval between June 14th, 2018, at 15:00 UTC and June 15th, 2018,

at 07:00 UTC.

4.2. Nominal route and analysis of a Pareto-optimal route

Figure 6 shows the nominal route between La Spezia (ITA) and Gibraltar (UK) provided by the web-
service searoutes.com (Maritime Data Systems, 2018). It also shows the location nodes (or waypoints)
that compose the domain of alternative seaways between the departure and destination ports. The
nominal route represents the shortest suggested route to reach the desired destination. The selected AOI
and time frame represent a good test case for evaluating the proposed approach owing to the presence
of a storm crossing the AOI, as depicted in Figure 7. It shows 6 snapshots of 𝐻𝑆 taken every 10 h in the
time window under study. As observed in Figure 7(a,c), the storm is characterised by waves of 𝐻𝑆 ≈ 6 m
in the north-west area of the AOI. These environmental conditions affect the planning of operations as
discussed below.

In the set-up taken for our experiment, the environmental layer (Figure 1) provides the METOC data
for the selected AOI in the form of a gridded forecast (Mentaschi et al., 2013) provided by DICCA-
MeteOcean (Dipartimento di Ingegneria Civile, 2018). The provider based its forecasting service on the
Wavewatch III model (National Weather Service - Environmental Modeling Center, 2018). The forecasts
are characterised by a spatial-temporal grid with a 10 km (5·31 nmi) spatial resolution in both latitude
and longitude and a time resolution of 1 h over the whole Mediterranean basin. The provided data
covers a temporal window of 120 h, starting at 00:00 UTC, with new forecasts generated everyday. The
uncertainty associated with the METOC variables is not available. The environmental data also include
the bathymetry/depth profiles (EMODnet Bathymetry - The European Marine Observation And Data
Network, 2018) that cover the whole AOI, with a spatial resolution of 115 m in both longitudinal and
latitudinal directions. The bathymetric profiles are used to identify the shallow water areas characterised
by reduced manoeuverability (Vantorre et al., 2017). The scenario considers a typical multi-role patrol
frigate with the properties defined in Table 3.
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(a)

(d) (e) (f)

(b) (c)

Figure 7. Evolution of the significant wave height, 𝐻𝑆 , in the AOI and temporal window [June 14th,
2018, at 15:00 UTC–June 15th, 2018, at 07:00 UTC]. Snapshots taken every 10 h. (a) June 14th,
2018 at 15:00 UTC, (b) June 15th, 2018 at 01:00 UTC, (c) June 15th, 2018 at 11:00 UTC, (d)
June 15th, 2018 at 21:00 UTC, (e) June 16th, 2018 at 07:00 UTC, (f) June 16th, 2018 at 17:00
UTC.

Table 3. Ship parameters used in the weather routing scenario.

Property Symbol Value

Ship parameters Length 𝐿𝑆 134·0 m
Beam width 𝐵 16·0 m
Draft 𝑇𝑆 5·0 m
Max speed �̄� 35·0 kn
Metacentric height 𝐺𝑀 1·6 m
Displacement Δ 4650 × 103 kg

Navigation parameters Forward speed 𝑢 [0, 20] kn
Heading 𝜓 [−𝜋, 𝜋] deg with respect to N

In a typical set-up, a weather routing process considers a predefined ETD for the determination of
the set of Pareto-optimal routes (considering a multi-objective optimisation configuration). Considering
ETD as June 14th, 2018 at 20:00 UTC, Figure 8(a) presents the set of Pareto-optimal routes obtained by
our proposed implementation. They are computed by the planning layer using the minimisation of both
the travel time and added resistance as conflicting costs. Following the classical approach, the decision
layer has to select the candidate route based on predefined procedures (e.g.: HRV, ranking methods, etc).
In our case, instead of following the classical approach, our goal is to identify the temporal intervals
in terms of ETD–ETA presenting the best conditions to execute the transit between the departure and
destination locations. For this reason, the analysis of the identification of the candidate route for a
selected ETD is beyond our scope and so is not presented in this paper. In our implementation, the
decision layer executes the OTW procedure (see Section 3 and Figure 3). From each Pareto-optimal
route, 𝑟 , the operational safety, 𝑂 (𝑟), is computed. Figure 8(b) shows the output of step 2 of Figure 3
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(a)

(b)

Figure 8. Example of the analysis by the proposed weather routing system for the selected AOI and
given ETD: (a) shows the output generated at the planning layer; (b) presents the post analysis of a
Pareto-optimal route for estimating its operational safety. (a) Set of Pareto-optimal routes generated
through the weather routing process for the selected scenario considering ETD as June 14th, 2018 at
20:00 UTC. (b) Route selected from the set of Pareto-optimal routes in (a) with application of the first
3 steps for the estimation of the operational safety.

(operational box estimation) for a given route of the set of Pareto-optimal routes. In our scenario, each
operational box along the route is 74 km long and 35 km wide. The length of the operational box is
determined by the distance covered by the ship at its maximum cruise speed (20 kn) for a period of
2 h. The operational box width is set as a configuration parameter by the decision maker and it is used
to model the ship deviations that may occur from the selected route. As shown in Figure 8(b), the
first half of the selected route is approximately characterised by a medium (blue)-to-low (yellow) mean
safety distance. This arises from the adverse METOC conditions and dangerous navigation conditions
that the ship may face during the transit (Figure 7). The second half of the route is characterised
instead by a high safety distance (violet) owing to more favourable METOC conditions. Finally, 𝑂 (𝑟)
is computed: the selected Pareto-optimal route is characterised overall by a medium-low operational
safety owing to the long exposure of the ship to low safety distance conditions (blue, yellow operational
boxes).
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4.3. Analysis of the full set of Pareto-optimal routes for different ETDs (ETD interval)

The analysis described above has been applied to a single Pareto-optimal route within the set of routes
computed for a single ETD. In our approach, the weather routing process is repeated for each ETD
within the selected temporal window of 16 h (from June 14th, 2018 at 15:00 UTC to June 15th, 2018
at 07:00 UTC). This process produces a set of 932 Pareto-optimal routes as depicted in the temporal
grid of Figure 9(a), where each 1 h × 1 h cell collects the Pareto-optimal routes within 1 h × 1 h ETD–
ETA intervals. Each Pareto-optimal route is analysed following the procedure applied previously to the
route depicted in Figure 8(b). The application of this procedure (Figure 3) allows an association of each
ETD–ETA cell with the mean value of the operational safety. Considering the whole temporal grid, the
OTW is depicted in Figure 9(b).

From the analysis of the OTW representation, the decision maker can easily identify temporal
windows of opportunity in which the execution of the transit is suggested or not. Analysing the results
in Figure 9 show:

• Low operational safety interval: the Pareto-optimal routes with ETD in the interval June 14th, 2018,
[19:00–22:00] UTC and ETA in the interval June 16th, 2018, [12:00–20:00] UTC are identified with
low (red) mean operation safety. This arises from the adverse METOC conditions that the ship may
face considering the routes within such an ETD–ETA window. This fact is highlighted in
Figure 7(a–c), where 𝐻𝑆 reaches up to 6 m. This is also highlighted in the analysis of the single route
depicted in Figure 8(b), where the first portion of the route is characterised by a medium-low
operational safety.

• High operational safety interval: the routes in the temporal window with ETD in the interval June
15th, 2018, [01:00–04:00] UTC and ETA in the interval [June 16th, 2018, 17:00 UTC, June 17th,
2018, 01:00 UTC] are characterised by a high mean operational safety. This is motivated by the
ending of the METOC perturbation crossing the AOI, as shown in Figure 7(d–f).

4.4. Assessment and analysis of OTW

A deeper analysis of why these two ETD time intervals are sorted as low and high operational safety,
respectively, is provided below. To this aim, the METOC conditions associated with the Pareto-optimal
routes within the low operational safety cells (red colour) (ETD in the interval June 14th, 2018, [19:00–
22:00] UTC and ETA in the interval June 16th, 2018, [12:00–20:00] UTC) are compared with the
METOC conditions of the Pareto-optimal routes within the high operational safety cells (ETD in the
interval June 15th, 2018, [01:00–04:00] UTC with ETA in the interval [June 16th, 2018, 17:00 UTC,
June 17th, 2018, 01:00 UTC]). These are depicted in Figures 10–12.

Figure 10 shows that the Pareto-optimal routes are characterised by waves with 𝐻𝑆 up to 5 m, 𝑇 up to
9 s and 𝜆 up to 130 m (estimated through the Hunt method (U.S. Army Engineer Waterways Experiment
Station, Coastal Engineering Research Center, 1985)). These sea conditions may produce dangerous
sailing conditions according to IMO (IMO, 2007). Such effects are reduced in the high operational safety
interval, which presents lower waves with 𝐻𝑆 ≈ 3·5 m, as depicted in Figure 11. The exposure to severe
METOC conditions decreases by delaying the departure by an additional hour. This arises from the high
density of high (violet) operational safety cells in the OTW with ETD in the interval June 15th, 2018,
[05:00–07:00] UTC with ETA in the interval [June 16th, 2018, 21:00–June 17th, 2018, 01:00] UTC,
as depicted in Figure 12, where waves with 𝐻𝑆 ≈ 3·5 m are present. The other OTW are characterised
with medium/marginal operational safety for the execution of operations.

The proposed approach presents the advantages of automating the process of selecting the best OTW
from a safety point of view by considering a set of Pareto optimal routes available for a temporal
window covering 16 h (in our case of study 16 h, but could be of a different duration). The decision
maker can explore the reduced set of routes available for an identified OTW and have an overview
of the average sailing conditions for the selected temporal window. Starting from the OTW, new runs
of the weather routing process can be executed. These runs are setup at higher spatial resolution with
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(a)

(b)

Figure 9. Analysis of the set of Pareto-optimal routes provided by the planning layer for a temporal
window of 16 h: (a) shows the Pareto-optimal routes in a temporal grid with 1 h × 1 h resolution;
(b) shows the OTW representation through the proposed decision layer. (a) Temporal grid associated to
the set of Pareto-optimal routes computed by the planning layer. The grid is characterised by a 1 h× 1 h
resolution. (b) The OTW computed from the Pareto set in (a) through the proposed decision layer.

updated constraints in terms of ETD–ETA (identified from the OTW). At this stage, the decision maker
could explore the new reduced set of Pareto-optimal routes. The selection of the final route relies on the
experience and additional evaluations of a trained decision maker. To support the decision maker in the
selection of the best trade-off route, different methodologies are available. These aspects are beyond
the scope of this paper. As reference, we recall the publications of Fabbri and Vicen-Bueno (2019),
Chiu and Bloebaum (2009) (and references therein) that cover the route selection process.
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(a) (b) (c)

(d) (e) (f)

Figure 10. Low operational safety OTW–METOC conditions characterising the routes with low opera-
tional safety in the temporal window with ETD in the interval June 14th, 2018, [19:00–22:00] UTC and
ETA June 16th, 2018, [11:00–20:00] UTC. The sub-figures represent: (a) the significant wave height
𝐻𝑆; (b) the mean wave peak period 𝑇; (c) the mean wavelength 𝜆 according to IMO (2007); (d) the
mean wave direction 𝛼; (e) the heading of the ship 𝜓; (f) the wave encounter angle 𝜒 (with respect to
the heading of the ship).

(a) (b) (c)

(d) (e) (f)

Figure 11. High operational safety OTW–METOC conditions of the routes identified by high opera-
tional safety in the travel time window ETD June 15th, 2018, [01:00–04:00] UTC and ETA June 16th,
2018, [17:00–23:00] UTC. The sub-figures represent: (a) the significant wave height 𝐻𝑆; (b) the mean
wave peak period 𝑇; (c) the mean wavelength 𝜆 according to IMO (2007); (d) the mean wave direction
𝛼; (e) the heading of the ship 𝜓; (f) the wave encounter angle 𝜒 (with respect to the heading of the ship).

5. Conclusions

A new decision layer within a general weather routing system has been proposed with the aim to support
decision makers and navigators during the planning of ship operations. The contribution provides a
methodology for the analysis of the routes computed by any weather routing system by means of the
guidelines defined by the IMO (IMO, 2007) and the operational safety metric derived.
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Figure 12. High operational safety OTW–METOC conditions of the routes identified by high opera-
tional safety in the travel time window ETD June 15th, 2018, [05:00–07:00] UTC and ETA [June 16th,
2018, 21:00–June 17th, 2018, 01:00] UTC. The sub-figures represent: (a) the significant wave height
𝐻𝑆; (b) the mean wave peak period 𝑇; (c) the mean wavelength 𝜆 according to IMO (2007); (d) the
mean wave direction 𝛼; (e) the heading of the ship 𝜓; (f) the wave encounter angle 𝜒 (with respect to
the heading of the ship).

The presented simulations demonstrate how the proposed decision layer is able to identify the optimal
ETD–ETA window of opportunity to execute a particular ship operation (e.g. travel/transit) based on
the METOC conditions and the derived sailing conditions. The proposed OTW representation is able
to visualise, in a user-friendly manner, the ETD–ETA windows of opportunity with associated high,
medium and low operational safety conditions to run a ship operation. This allows a decision maker to
execute a preliminary assessment of the routes proposed by any weather routing system and afterwards
execute a higher resolution weather routing process in a restricted time window (e.g. select a given route
from those proposed). Furthermore, the proposed solution allows the decision maker to interact with
the system by providing a custom configuration based on the type of mission scenario.

The concept presented in this paper represents a proof-of-concept requiring further development to
reach the state of a usable tool by the decision maker. Future works will be focused on the experimentation
of the tool in real-case scenarios. Furthermore, the incorporation of the IMO second generation intact
stability criteria (Papanikolaou et al., 2000; Neves et al., 2011; Peters et al., 2011; Masoudi, 2017) and
the concept of climate wave spectrum (Degtyarev et al., 2000; Boukhanovsky et al., 2007) could be
exploited to improve the idea of OTW.
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