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Abstract
With the widespread development of leg exoskeletons to provide external force-based repetitive training for gait
rehabilitation, the prospect of undesired movement adaptation due to applied forces and imposed constraints require
adequate investigation. A cable-driven leg exoskeleton, CDLE, presents a lightweight, flexible, and redundantly
actuated architecture that enables the possibility of system parameters modulation to alter human–robot interaction
while applying the desired forces. In this work, multi-joint stiffness performance of CDLE is formulated to system-
atically analyze human–CDLE interaction. Further, potential alterations in CDLE architecture are presented to tune
human–CDLE interaction that favors the desired human leg movement during a gait rehabilitation paradigm.

1. Introduction

Walking enables a human to accomplish many different activities of daily living. Notably, human walk-
ing is a mechanically complex mode of locomotion, yet it is the most convenient way to travel short
distances. During walking, a person retains one leg in contact with the ground while advancing the
body forward through the swing of the other leg. Alternate and repetitive execution of such leg move-
ments with a period of foot-to-foot transition enables a symmetric and energy-efficient walking pattern.
Incidentally, any occurrence of a neuro-musculoskeletal disorder can significantly affect human walking
performance.

Neurological disorders, such as stroke and spinal cord injury, are prevalent worldwide and have been
reported to be the major cause of long-term walking disability [1]. These disorders affect an individual’s
ability to perceive sensory feedback and to coordinate the muscle actuation to generate the muscular
force required to apply lower limb joint torques during different phases of walking. This results in sig-
nificant gait abnormalities, which are typically characterized by slow walking speed, gait asymmetry,
poor balance and fall control, and higher metabolic cost [2].

To improve the functional walking of individuals with neurological disorders, several gait rehabili-
tation paradigms have been proposed in the literature to provide repetitive practice sessions to train the
affected leg [3, 4, 5, 6]. In conventional practices [7], a patient walks on a treadmill with support to
prevent falls and in some cases to provide partial body weight support. These practices require multi-
ple physical therapists, are in general highly labor-intensive, and lack quantitative feedback. In the last
two decades, many robotic leg exoskeletons have been developed for gait rehabilitation [8, 9, 10, 11]
for their advantages in providing controlled repetitive motion, better quantification of motor recovery,
and reduced labor need [9]. In addition, these devices can be programmed and controlled to implement
novel gait rehabilitation methodologies.
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The design goal of these devices is to assist the leg and ensure it to be moving along the desired
foot trajectory [12, 13]. Typically, the leg exoskeletons are modeled as a serial-chain manipulator that
mainly assists joint motion during the swing phase of walking. In most cases, external forces are applied
on the thigh and shank segments to generate the sagittal plane hip and knee joint torque to minimize
the error in following the desired foot trajectory. Studies with these devices report adaptations in the
human walking pattern [14, 15], which implies some level of adjustments by the human musculoskele-
tal system when external forces are applied on the leg. Thus, the way external forces are applied is an
important component of a leg exoskeleton-based rehabilitation paradigm. Further, the studies on the role
of mass/inertia and joint mobility constraints, which arise due to the use of rigid links for actuation, on
the human walking adaptation highlight the importance of design and architecture of a robotic exoskele-
ton [16, 17]. Essentially, the effectiveness of a robotic-based gait rehabilitation paradigm depends on
the ensued physical human–robot interaction.

Consequently, with the purpose of improving human–robot interaction, several modalities through
design alterations, addition of sensors, and control strategies have been implemented in the works on
exoskeletons [18, 19, 20, 21, 22, 23]. In general, from rigid-link exoskeletons design aspect, the physical
interaction with humans is improved primarily by utilizing lightweight components and by altering actu-
ator transmission compliance that promotes backdrivability, shock tolerance, and torque fidelity. Further,
control strategies based on human motion, such as force, impedance, and admittance control, to compute
the applied joint torques have been implemented in exoskeletons. Accordingly, series elastic actua-
tors for torque generation and force–torque sensors at the human–exoskeleton interfaces are employed
to improve exoskeleton transparency and to present an overall exoskeleton compliance to the user.
Additionally, understandings derived from human physiological sensors, such as Electromyography
(EMG) and Electroencephalogram (EEG) are being incorporated at the high-level controller mainly
to control the level of assistance in accordance with human motion intent.

Among the works on leg exoskeletons [13, 24, 25, 26], cable-driven-based architectures are also being
used for movement rehabilitation. Owing to the use of cables, these systems provide inherent advantages
of being lightweight, flexible, and ease of altering cable routing. However, unlike a rigid link, a cable can
only apply a pulling force on a body and can only be used for unidirectional force applications [27, 28].
This makes a cable-driven leg exoskeleton (CDLE) analogous to the human musculoskeletal structure as
it requires redundantly actuated cables to control the system. Notably, the redundancy in actuation leads
to multiple solution conditions, which implies that a redundantly actuated CDLE can apply the desired
set of joint torques even when the system parameters are varied. Consequently, the control of CDLE
has been approached differently from rigid-link exoskeletons [24, 25, 26, 29]. In particular, either posi-
tion and velocity controls, which require solution to a complex problem of inverse kinematics, or force
control, where numerical methods are typically used to plan cable tensions, have been implemented.

The literature on the cable-driven industrial robotic systems [30] reports a significant variation in
the robot’s stiffness performance with alterations in actuator positions and cable attachment locations.
In the context of CDLE, such changes in the system architecture that alter its stiffness performance
imply modulation of physical interaction between the CDLE and human. Thus, in addition to the use
of actuator compliance, the flexibility in architecture modulation to augment the multi-joint stiffness of
a CDLE can enable the possibility of favorably tuning the human–robot interaction. As humans adapt
their walking pattern differently when subjected to different external conditions [31], having a CDLE
joint stiffness that incorporates human anatomical joint stiffness aspects [32, 33] can be used to promote
the effectiveness of a gait rehabilitation paradigm. Accordingly, there is a need to understand the human–
CDLE interaction and to identify the effect of varying CDLE parameters.

The main focus of this work is to formulate the multi-joint stiffness characteristics of a CDLE as
a measure to model human–CDLE interaction during a gait cycle. Further, the dependency of CDLE
stiffness performance on system architecture and parameters is analyzed. The potential of a CDLE in
achieving a diverse stiffness characteristics by appropriately tuning the system parameters is validated
experimentally. The stiffness analysis is performed for a redundant CDLE to apply hip and knee joints
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units in (m)

Figure 1. Schematic of a general CDLE. Ti and li represent cable tension and length of the ith cable,
respectively. Di, ri, and hi represent segment lengths, cable attachment points, and offset position on
each segment. τi denotes the joint torque and Mi represents the motor positions w.r.t O .

torque equivalent to 30% of the corresponding anatomical values over a gait cycle using the human gait
kinematics data from literature [34]. The effect of system parameters, including cable tension distri-
bution, motor positions, cable routing, and cable stiffness, on multi-joint stiffness has been discussed.
Finally, an experimental setup of a cable-driven manipulator is developed to compute the stiffness values
theoretically for two different architectures at different configurations.

2. Cable-driven leg exoskeleton

Leg exoskeletons are developed to provide external torque assistance at the hip and knee joints during
walking. As human anatomical architecture comprises of thigh, shank, and foot segments connected
in series, a typical leg exoskeleton is given a serial-chain manipulator architecture, where externally
actuated elements are attached to the segments. In this work, we considered a leg exoskeleton driven by
cables in which external forces on the leg segments are applied through motor-actuated cables. Figure 1
shows a schematic of a general CDLE architecture. Sagittal plane leg model with hip and knee joints
flexion-extension motion is considered for the analysis. It has been established that to control a n degrees
of freedom (DOFs) system, at least m = n + 1 cables are needed [27, 28]. This is because a cable can only
be pulled but not pushed, making actuation redundancy a necessary condition for a cable-driven system.
Therefore, to apply controlled external joint torque at the hip and knee joints of the two DOFs planar
leg model, at least three actuated cables are required. In this work, we considered a CDLE actuated by
four cables, that is, an architecture with two redundancy, to ensure feasible solution over the complete
gait cycle of an individual [35].

The thigh and shank segments are represented as D1 and D2 with hip and knee joints as singe DOFs
revolute joints, θ1 and θ2. Two cables are connected to each segment as shown in Fig. 1. Cables are
attached on the segment at a distance ri from the joint center and at an offset hi from the link axis, here i
represent the cable number. Cable length, li, is defined from the motor position, Mi, to the corresponding
cable attachment point on the link.

2.1. System modeling

A leg exoskeleton is used to apply external torques at the joints, where cables are modeled as pure
force at the attachment point. The dynamic model of the system can be expressed through Lagrange’s
approach. The equations of motion of an n-DOF system having m actuated cables is written as:
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d
dt

(
∂L
∂θ̇i

)
− ∂L

∂θi
= τi, i = 1, 2, ..n (1)

where L defines the Lagrangian and θi represent generalized joint variable. Further, τi represents the
externally applied torque at a joint. In the absence of any other external torque, joint torques are
applied by the actuated cables. Thus, τi = τi

c, where τi
c represents torque due to the cable forces. Using

Lagrange’s method, τi
c can be expressed as:
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where m ≥ n + 1. Rearranging the above expression in the matrix form:⎡
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τ = AT (5)

Here, τ ∈R
n×1 denotes the joint torque values and T ∈R

m×1 denotes the cable tension values. Further,
A ∈R

n×m is referred as the structure matrix representing the linear mapping between the cable tension
values and joint torques.

2.2. Tension solver

As m ≥ n + 1, Eq. (5) represents an underdetermined system. For a full ranked A, the solution of Eq. (5)
can be computed from the particular solution and homogeneous solution components using the Moore
Pseudo inverse, A∗, and null space, η(A), of A respectively [36]:

T = A∗τ + η(A)λ (6)

η(A) = {z ∈R
m×(m−n)|Az = 0}

Here, λ denotes an arbitrary scalar. Thus, for cases of nonempty η(A), the system can have multiple
valid cable tension distributions to generate the desired joint torque. For the considered general CDLE
architecture, τ ∈R

2×1, T ∈R
4×1, and A ∈R

2×4. Noting the positive cable tension constraint, T ≥ 0,
Eq. (6) generates a convex set of feasible cable tension values. Thus, an optimization problem can
be formulated to find an optimal cable tension distribution. In literature [37, 38], numerical optimiza-
tion methods have been successfully implemented. In this work, a quadratic programming problem is
formulated to solve for cable tension distribution along the full gait cycle and is given by:

min : f(t) = 1
2

(T − TP)T (T − TP) (7)

s.t : AT = τ and Tmin ≤ T ≤ Tmax (8)

Here, column vector TP is a constant vector to allow only nonzero positive cable tensions. Further, Tmin
and Tmax denote the lower and upper limits on the cable tension values.
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2.3. Stiffness modeling

For a serial-chain manipulator, external torques are applied at the joints to allow the joint motion. Thus,
for a quasi-static condition, a small variation in the joints motion can be related to the joint torques by
the joints stiffness: [

dτhip

dτknee

]
=

[
KHH KHK

KKH KKK

] [
dθhip

dθknee

]
(9)

dτ = Kdθ (10)
where K is defined as multi-joint stiffness matrix which denotes the relation between joint torques and
angles. Elements KHH and KHK represent stiffness at hip joint and elements KKH and KKK represent
stiffness at knee joint. From the relation between τ and A in Eq. (5), we get

dτ = (dA)T + A(dT ) (11)

such that, Kdθ = (dA)T + A(dT ) (12)
dT in Eq. (12) is a vector denoting small change in cable tension values which can be related to change
in cable lengths through cable stiffness, kc:

dT = kcdl (13)
Here, dl is a vector denoting change in cables lengths. Further, the rate of change of cable length can be
related to joint rates as:

dl = −AT (dθ ) (14)
Substituting Eqs. (13) and (14) in Eq. (12) results in:

Kdθ = (dA)T − AkcAT dθ (15)
Here, kc is cable stiffness matrix. The cables are assumed to have linear stiffness property making kc a
diagonal matrix with cable stiffness constant of each cable as the diagonal element. Further, dA can be
written as:

dA =
n∑

i=1

∂A
∂θi

dθi (16)

Thus, we have

K =
[

dA
dθ1

T dA
dθ2

T . . . dA
dθn

T
]

︸ ︷︷ ︸
Kd

− AkcAT︸ ︷︷ ︸
Kc[

KHH KHK

KKH KKK

]
=

[
KdHH KdHK

KdKH KdKK

]
−

[
KcHH KcHK

KcKH KcKK

]

K = Kd + Kc (17)
From the expressions of term Kd and Kc, it is evident that the overall multi-joint stiffness matrix, K,
of the cable-driven system is a function of: (i) cable tension distribution, (ii) stiffness of each cable,
and (iii) the structure matrix, that is, architecture of the system, which means motor positions and cable
attachment points on the links.

3. Human–CDLE interaction

During walking, the lower limb movements are coordinated to move the body forward. In particular,
a sequence of single foot support and double feet support phases are executed by the two limbs as
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Figure 2. (a) Hip and knee joints variation in the sagittal plane of walking [34]. (b) Stiffness ellipse
at a point on the (θhip − θknee) trajectory, highlighting the ellipse’s axes, and orientation angles, α and
β. (c) Hip and knee joints rate variation over the gait cycle. Hip joint motion is dominant during the
SS1 phase, and knee joint motion dominates the rest of the gait cycle. (d) Variation of stiffness ellipse’s
orientation angles, α and β, over the gait cycle for general CDLE architecture.

are shown in Fig. 2. A gait cycle, defined from a heel strike to the following heel strike of the same
limb, comprises of two single support phases (SS1 and SS2) and two double support phases (DS1 and
DS2). Notably, the phases during which a single foot remains in contact with the ground and in the air
are referred as stance and swing phases, respectively. Figure 2(a) shows a typical healthy individual’s
variation of knee and hip joint over a full gait cycle [34]. Figure 2(c) presents the rate of change of hip
and knee joints along the gait cycle. One full gait cycle is divided into 100 intervals where important
gait phases are defined as double support phases (DS1:1–13% of gait cycle; DS2:50–63% of gait cycle),
and single support phases (SS1: 13–50% of gait cycle; SS2:63–100% of gait cycle). It is noted from
Fig. 2(c) that the variations in the knee joint angle are larger during the double support phases, DS1 and
DS2, as well as during SS2. Comparatively, hip joint motion is dominant during SS1.

A typical approach in using a leg exoskeleton during a gait rehabilitation training is to assist the sagit-
tal plane motion of the disabled leg. This is achieved through the application of external torque at the hip
and knee joints. Multi-joint stiffness is used as a measure to model the human–robot interaction in this
work. In particular, stiffness ellipse [39] are formulated for the stiffness matrix, K, over the gait cycle.
Figure 2(b) highlights the stiffness ellipse plotted at some point of the (θhip − θknee) trajectory in the joint
space. The length of major and minor axes and the orientation of the stiffness ellipse are governed by the
eigen values and corresponding eigen vectors of the stiffness matrix, K, respectively. Such that the stiff-
ness ellipse at a point of (θhip − θknee) trajectory represents the direction and magnitude of the resisting
joint torque to a unit change in the joint angle values. Essentially, the major axis represents the maximum
resistance to the joint angle variations along that direction, and the minor axis represents the direction
of least resistance. Further, the ratio of the highest to lowest eigen values, condition number[40], is a
measure that reflects the isotropic nature of the stiffness matrix. This ratio that is equal to unity implies
equal resistance to the joint motion variations along both the axes, that is, the isotropic stiffness case.

Thus, for the case of a CDLE applying external joint torque at the leg joints, the stiffness ellipse
reflects the imposed resistance on the human leg. During a robotic gait rehabilitation paradigm, such
representation can provide an understanding of the human–robot interaction. In particular, the orienta-
tion of the minor and major axes with the desired joint motion provides the orientation of the imposed
resistance by the CDLE to execute that trajectory. Angle β, shown in Fig. 2(b), is defined to record
the orientation of minor axis with the slope of (θhip − θknee) trajectory. Wherein, small value of angle β
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Table I. Motor positions (in m) of general CDLE with respect to reference frame, O shown in Fig. 1.

Model M1 M2 M3 M4

General CDLE [0.5, 0] [1, 0] [ − 1, 0] [ − 0.5, 0]
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Figure 3. Cable tension distribution for the general CDLE architecture over the complete gait cycle.
Notably, large values of cable tensions are reported for the Case 1, where the cable tension distribution
is optimized to minimize the stiffness matrix component KHH.

(minimum 0) represents a case where the CDLE impose minimum resistance to the desired variations in
the joint motion. In contrast, a large value of β (maximum 90) implies a large resistance to the desired
variations in the joint motion, which naturally signify undesirable human–robot interaction as it may
lead to undesirable adaptation. Moreover, angle α is defined to measure the orientation of the imposed
resistance with the joint angles. Such that a small value of α (minimum 0) represents the case of less
resistance to the desired hip joint motion, while a large value (maximum 90) represents large resistance
to the desired hip joint variations.

3.1. Stiffness analysis

In this work, for the human–CDLE system, it is considered that the CDLE applies torque at the hip and
knee joints equivalent to 30% of the corresponding anatomical joint torque requirements. Thus, Eq. (5)
is solved for the required cable tension values during a gait cycle with 0.1 and 100 N as the Tmin and Tmax
values, respectively, for the system parameters listed in Table I. Figure 3 presents the tension distribution
during the gait cycle. Equation (17) is used to compute the stiffness matrix, K, considering the cable
stiffness values of 2.5 N/mm for the four cables. The distribution of the elements of stiffness matrix, K,
along the gait cycle is plotted in Fig. 4.

Stiffness ellipse orientation angles, α and β, cable tension distribution, and the stiffness matrix, K,
components are plotted in Figs. 2(d), 3, and 4, respectively, for the general CDLE architecture. The
values of angle α remain large throughout the gait cycle, which imply that to apply the desired joint
torque assistance during the gait cycle, the general CDLE architecture induced a large resistance at the
hip joint. Noting the variations of the stiffness matrix component, KHH , which accounts for the stiffness
at the hip joint due to the hip joint motion, it is observed that component KHH values are much larger
than any other component of the stiffness matrix, K, throughout the gait cycle as shown in Fig. 4. From
Fig. 2(d), the angle β demonstrates many changes in its values, reaching a maximum of 90 and a min-
imum of 0 deg over the gait cycle. This implies that to apply the desired joint torque assistance, the
CDLE induces joint stiffness with minor axis not always along the desired variations in the hip and knee
joint angles. In particular, the angle β is smaller during DS1, transition between SS1 and DS2, and late
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Figure 4. The components of the stiffness matrix, K, over the gait cycle for the general CDLE archi-
tecture, and stiffness modulation Case 1 and 3. The contribution of Kd and Kc terms is highlighted for
the stiffness matrix components. It is observed that the values of Kc dominates over the gait cycle com-
pared to Kd. Modulation of K using cable tension resulted in increase in the Kd but not very significant
compared with Kc values.

SS2 phases. Noting from Fig. 2(c) and (d), it is observed that these phases correspond to leg movements
that require higher knee joint range of motion. In contrast, the angle β has large values mostly during
SS1, transition between DS2 and SS2, and early SS2 phases, during these phases the required hip joint
range of motion is higher than the knee joint.

The variations in the α and β values, and the large values of stiffness matrix component, KHH , imply
that the general CDLE architecture poses a higher stiffness at the hip joint throughout the gait cycle,
such that it resists the desired changes in the hip joint motion more than the knee joint motion. As the
act of walking requires sufficient contribution of both joints, the applied human–CDLE interaction in
this case may result in a preference toward distal joint strategy. In general, during a robotic rehabilita-
tion training paradigm, external forces are applied to assist the joint movement, but the human–robot
interaction is typically not modeled and optimized for. In the case of CDLE, the flexibility in changing
the cable routing and attachment points, and the existence of multiple cable tension solution provides
the advantage of assisting the required joint motion along with the possibility of establishing a desired
human–robot interaction. The following sections of this paper present the stiffness matrix, K, modula-
tion through different system characteristics of a CDLE to achieve a desired human–CDLE interaction,
that is, lower value of angle β over a gait cycle.

3.2. Stiffness modulation

From Eq. (17), it is observed that the stiffness matrix, K, depends on the cable elasticity, motor positions,
cable attachment positions, and cable tension distributions. Variation in these parameters can result in
desirable tuning of the human–CDLE interaction, modeled as the imposed stiffness at the joints. In
particular, the effect of the cable tension distribution, motor positions, cable stiffness, and cable routing
on the stiffness matrix, K, are studied. The stiffness analysis of the general CDLE architecture in the
previous section noted a higher stiffness at the hip joint, thus, one approach to improve the human–robot
interaction is to optimize a system parameter to reduce the stiffness matrix component, KHH .
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Figure 5. Variation of the stiffness ellipse’s orientation angle, β, for the general CDLE architecture and
for stiffness modulation Case 1 and Case 3. Notably, no significant change is observed in angle β values
for Case 1 and Case 3.

Case 1: Cable tension distribution

An optimization problem is formulated to minimize KHH , that is, the component of the stiffness matrix
that represents the resistance at the hip joint due to the small variations in the hip joint motion. This
problem is solved for an alternate cable tension distribution during the gait cycle while still generating
the required 30% anatomical joint torque assistance at the hip and knee joints. An alternate cable tension
distribution will alter the component Kd in Eq. (17), which will modify the overall stiffness matrix, K:

min : KHH = f (T1, T2, T3, T4) (18)

s.t : AT = τ , Tmin ≤ T ≤ Tmax

Cable tension limits Tmax and Tmin are retained as 200 and 0.1 N, respectively, and cable stiffness values
are taken as 2.5 N/mm.

The cable tension distribution that minimizes KHH is shown in Fig. 3. It is observed that the cable
tension values increased among all the cables. From Fig. 4, it is observed that the new cable tension
distribution results in the reduction of the KHH values over the gait cycle but not the other components
of the stiffness matrix, that is, KKK and KKH or KHK . Furthermore, resolving each of the K components
into the corresponding Kd and Kc components as per the definitions in Eq. (17), significant changes are
observed only in the Kd values, but the Kc values remained almost same between the general CDLE and
Case 1 conditions. One vital observation from Fig. 4 is about the large magnitude difference of the Kc
values from the Kd values, which meant only a small reduction in the KHH values. The component Kc
majorly factors in the contribution of the system geometry and cable elasticity, the results essentially
imply the dominance of these factors over the cable tension distribution, and similar observations were
reported for cable-driven parallel architectures [41]. One way to allow even greater changes in Kd can be
to permit higher cable tension limits, but for the human application the CDLE applying large cable ten-
sion would only result in undesirable human–CDLE interaction. Notably, for the Case 1, no significant
changes are reported in the orientation angle β values compared to the general CDLE β values over the
gait cycle, as shown in Fig. 5. Thus, the variations in the cable tension distribution alone may not be
able to tune the the human–CDLE interaction during a rehabilitation paradigm.

Case 2: Motor positions

As noted from the large Kc values in the Case 1, the dominant role of system geometry toward the
overall stiffness matrix, K. In this section, to modulate the stiffness matrix, K, the system geometry
is altered. In particular, the motor positions are optimized, which can also be thought of as opti-
mizing the cable anchoring at the frame to obtain a desirable human–CDLE interaction. Thus, an
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Figure 6. (a) Case 2: Optimum motor positions along the gait cycle to minimize the hip stiffness KcHH for
the general CDLE. (b) General CDLE configuration at 15% of gait cycle based on the motor positions
in part (a), M1 = [0.7, −0.86], M2 = [0.12, −0.53], M3 = [ − 0.11, −0.53], M4 = [ − 0.27, −0.54], that
facilitates the lower KcHH values.

objective function is formulated to minimize the KcHH element of Kc by solving for the optimal
motor positions. Lower values of KcHH will reduce the KHH component of the stiffness matrix, K. Let
M = [M1x, M1y, M2x, M2y, M3x, M33y, M4x, M4y] be the vector of motor positions with respect to origin,
O, as shown in Fig. 1:

min : KcHH = f (M) (19)

s.t : Mix ∈ [0.1, 2], i = 1, 2 Mix ∈ [ − 2 − 0.1], i = 3, 4
Miy ∈ [ − 1, 1], i = 1, ..4

The choice of bounds on the motor positions are as per the coordinate system indicated in Fig. 1 and to
facilitate hip and knee joints actuation in the sagittal plane of walking. The results of the optimization are
plotted in Fig. 6, highlighting the four motor positions and a CDLE configuration at 15% of the gait cycle.

To minimize KcHH , the optimization process led to the changes in all four motor positions differently
over the gait cycle. It is observed that for most part of the gait cycle, all four motors need to be below the
hip joint, indicated by negative y-values. In particular, y-component for M1 and M4 are always negative.
In contrast, y-position of M2 and M3 shown significant jump. Thus, to achieve lower values for KcHH ,
motors M1 and M4 must be below the hip joint. Further, the changes in x-values for the four motors
reflect that cables connected to thigh segment should be anchored away from the leg segment and cables
connected to the shank should be anchored close to the leg segment.

Solving for the cable tension values using Eq. (7) for these new motor positions, say at 15% of the gait
cycle as shown in Fig. 6(b), did not give a feasible tension distribution. This is because motors below
the hip joint cannot apply 30% hip joint torque with positive cable tension. Thus, the optimized motor
positions are not suitable for the required joint torque assistance. Notably, the changes in the y-direction
of the motor position are relevant to reduce KcHH component, which has been noted to dominate. Thus,
the prospects of reducing KHH component to improve the human–CDLE interaction is to reduce KcHH
element by bringing the motors, or cable anchoring, below the hip joint. However, the CDLE architecture
has to be modified appropriately to achieve the feasible cable tension distribution.

Case 3: Effect of cable stiffness

Variations of other parameters, such as distance of cable attachment from joints, ri, and the offset cable
attachment on the leg segment, hi, can also alter the CDLE geometry but noting the limited amount of
changes that can be accommodated in these parameters, the reduction in the already very large values
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of hip stiffness terms KHH and KHK cannot be significant. Notably, one parameter whose value can be
varied to alter the Kc term of the KHH component is the cable stiffness, that is, parameter kc as defined
in Eq. (13). From the expression of Kc in Eq. (17), a different value of kc results in different Kc even
when CDLE geometry and required cable tension distribution remain same. To highlight this aspect,
the results, when the value of kc is changed from 2.5 to 1.5 N/mm, for only cables 1 and 4 are presented
in Figs. 4 and 5. Noting the expression of Kc in Eq. (17), changes in cable stiffness of cables 1 and 4
affect only the KHH component of the stiffness matrix. Small reduction in the values of KHH can be
observed in Fig. 4, but these changes are not enough to show significant changes in the human–CDLE
interaction as noted by insignificant change in the angle β values for Case 3 in Fig. 5. Reducing kc
values further may show further reduction in the KHH term, but a cable with low stiffness might not be
practically suitable for applying controlled external forces to assist the joint torque. However, without
adequate modification in the architecture, the dominant role of KHH cannot be compensated by such
system parameter alterations. Thus, the following section considers the possibility of altering the cable
routing to provide a CDLE architecture that achieves the required condition to alter the human–CDLE
interaction goal.

4. Co-shared CDLE architecture

Considering the formulation of the structure matrix, A, for the general CDLE in Eqs. (4) and (5), it is
observed that the torque at the proximal hip joint has components from the cables attached to thigh as
well as shank segments. Thus, the serial-chain architecture of the CDLE itself leads to high stiffness
component at the hip joint to the hip joint motion, KHH . The optimization problem, Case 2, in the last
section proposes to alter the cable routing, so as to reduce the effect of distal knee joint actuation on the
hip joint stiffness.

Noting the effect of cable anchoring at the frame and constraint of positive cable tension distribution,
a co-shared CDLE architecture as shown in Fig. 7 is considered. In this case, cables 2 and 3 routing
from the shank segment to the frame, or motors, through the thigh segment provide a means to knee
actuation as well as hip actuation. With this new architecture, the effect of knee joint actuation on hip
joint stiffness is reduced. Taking the example of cable 2 in the two architectures, general CDLE as in
Fig. 1 and co-shared CDLE as in Fig. 7, a positive T2 value will result in positive external torque at both
the knee and hip joints in the general CDLE case; however, the same cable tension value will apply a
positive torque at knee and either negative or positive torque at hip joint in the co-shared CDLE, as cable
2 has dynamic anchor points at the thigh segment which are a function of the leg motion.

4.1. Structure matrix formulation

Co-sharing of the cables in the CDLE modifies the mapping between the cable tension distribution and
the joint torque values, that is, the structure matrix, A. In particular, the expressions for cables 1 and 4
in Eqs. (4) and (5) remain the same, but for the co-shared cables 2 and 3 they get modified. With the
assumption of no friction at the thigh connection, the cable tension value in the co-shared cables does
not change. The contribution of cable 2 tension, T2, on the hip and knee joints torques, τ c

1 and τ c
2 , is

shown in Fig. 7 and given as follows [42]:

[
τ c

1
τ c

2

]
=

⎡
⎢⎣l̂22

∂�r2

∂θ1
+ (l̂21 − l̂22)

∂�r1

∂θ1

l̂22
∂�r2

∂θ2

⎤
⎥⎦ [

T2
]

(20)

Here, l̂22 and l̂21 are vectors from the cable attachment point on the shank to the thigh segment and from
thigh to motor position M2, respectively. Further, the first torque term in τ c

1 is due to the shared part of
cable 2 between the shank and thigh, while the second torque term is due to the cable 2 routed from the
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Figure 7. Co-shared CDLE architecture: distal joint cables 2 and 3 attached to shank segment, routed
through the thigh attachment points to their motor actuation position. Essentially cable routing point
on thigh segment serves as dynamic anchor point for a cable originating at the distal segment. Link
lengths, Di, cable attachment points, ri, and offset position, hi, are retained similar as for the general
CDLE architecture.

thigh segment to the anchor point at the frame, motor position M2. Similar expression will be there for
cable 3, such that the modified structure matrix, A, is given as:

[
τ c

1

τ c
2

]
=

⎡
⎢⎢⎢⎣

l̂1
∂�r1

∂θ1
l̂22

∂�r2

∂θ1
+ (l̂21 − l̂22)

∂�r1

∂θ1
l̂32

∂�r3

∂θ1
+ (l̂31 − l̂32)

∂�r4

∂θ1
l̂4

∂�r4

∂θ1

l̂1.
∂�r1

∂θ2
l̂22

∂�r2

∂θ2
l̂32

∂�r3

∂θ2
l̂4.

∂�r4

∂θ2

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

T1

T2

T3

T4

⎤
⎥⎥⎥⎥⎦ (21)

4.2. Human–CDLE interaction: Co-shared case

The co-sharing of cables provides the flexibility in shifting the anchor points, motor positions, below
the hip joint for cables actuating the hip joint to incorporate the required condition of positive cable
tension distribution. Thus, co-shared CDLE architecture can impose lower stiffness component KcHH to
improve the human–CDLE interaction, if the motors 2 and 3 positions are optimized:

min : KcHH = f (M) (22)

s.t : M2x ∈ [0.1, 2], M3x ∈ [ − 2, −0.1]
Miy ∈ [ − 1, 2], i = 2, 3

Lower and upper bounds for the above optimization problem are similar to that of general CDLE
Case 2, Eq. (19). The optimized motor positions are plotted in Fig. 8. The y-positions of the two motors
remain close to the lower bound over the gait cycle with some fluctuations in M3 for part of the gait
cycle. Further, the x position of the two motors indicate cable anchoring away from the leg segment
at the start and end of the gait cycle and close to the leg segment anchoring around 50% of the gait
cycle. From these variations, motor positions as indicated in Table II are finalized for further analysis,
where mean values over the gait cycle for M2 and M3 are taken, and sudden fluctuations in M3 are not
considered.

Solving Eq. (8) for the co-shared CDLE parameters, the cable tension distribution to assist 30%
of the anatomical joint torque requirement at the hip and knee joints over the gait cycle is shown in
Fig. 9. Compared to the general CDLE architecture, for the co-shared CDLE, lower tension values for
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Table II. Motor positions (in m) of co-shared CDLE with respect to reference frame, O, as shown
in Fig. 7.

Model M1 M2 M3 M4

Co-Shared [0.3, 0] [0.45, −0.84] [ − 0.47, −0.9] [ − 0.3, 0]
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Figure 8. Motor positions, M2 and M3, for the co-shared architecture over the gait cycle that facilitates
reduction in the hip joint stiffness term, KcHH .
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Figure 9. Cable tension distribution for the general CDLE and co-shared CDLE architectures. Cable
co-sharing resulted in increase in the tension values for cables 2 and 3, and lower tension values for
cables 1 and 4.

cables 1 and 4 and higher tension values for co-shared cables 2 and 3 are required to apply the desired
joint torques. Due to the co-sharing, higher tension force is required in cables 2 and 3 to account the
dynamic anchoring and reduced moment arm for the knee joint. Further, the tension forces in cables 2
and 3 also contribute in the required hip joint torque over the gait cycle. The stiffness matrix components
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Figure 10. Variations of the stiffness matrix components values over the gait cycle for the general CDLE,
co-shared CDLE, and Case 4. Co-sharing of cables resulted in reduction in the magnitude of imposed
stiffness by the CDLE. These values are further reduced for Case 4.

for the co-shared CDLE architecture over the gait cycle are plotted in Fig. 10. A significant reduction is
observed in all the stiffness components of the stiffness matrix, K, for the co-shared CDLE compared to
the general CDLE. Due to the co-sharing, the torque resistance at the hip joint to the hip joint motion,
KHH , reduced by around 86% of its value for most of the gait cycle for the general CDLE case. Similarly,
the reduction in KKK component is around 66%.

The overall effect of the changes in the stiffness matrix components and stiffness ellipse orientation
angle, β, variation over the gait cycle are highlighted in Figs. 11 and 12. A striking distinction is observed
among the general CDLE and co-shared CDLE architectures. For the co-shared CDLE in comparison
with the general CDLE case, the orientation of the stiffness ellipse as well as its size changed, such that
the CDLE applies required external joint torques while favoring the desired hip and knee joints motion
during the gait cycle. In particular, Fig. 12 highlights that the minor axis of the stiffness ellipse is better
aligned with the (θhip − θknee) trajectory, that is, lower angle β values. Further, Fig. 11 notes the reduction
in the condition number to imply reduced stiffness ellipse size and its isotropic nature.

Case 4: Effect of cable stiffness

The effect of cable tension distribution, geometry, and cable routing on the stiffness matrix has been
presented in the above analysis to explicate the stiffness performance of a CDLE. These system param-
eters can further be tuned to further optimize the performance, but one parameter whose value can also
be varied is the cable stiffness, kc. As noted in Case 3 of general CDLE architecture, a different value
of kc for cables 1 and 4 only reduces the Kc term of KHH . Unlike the results for Case 3 with general
CDLE architecture, the change in the value of kc from 2.5 to 1.5 N/mm for cables 1 and 4 demonstrates
a significant improvement of human–CDLE interaction for the co-shared architecture. These results are
highlighted in Figs. 10, 11, and 12. The observed results indicate further improvement in the human–
CDLE interaction, such that the imposed multi-joint resistance to the desired joint motion by the CDLE
reduces.
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the changes in imposed multi-joint stiffness between general CDLE, co-shared CDLE, and Case 4.
(b) Condition number variation for these three cases. Large values for the general CDLE case imply
anisotropic nature of the imposed stiffness. (c) Ratio of stiffness matrix components, KHH and KKK, over
the gait cycle for the three cases. Hip stiffness dominance over knee stiffness term reduced for co-shared
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Figure 12. Stiffness ellipse’s orientation angle, β, variations over the gait cycle for the general CDLE,
co-shared CDLE, and Case 4. Smaller values of β were reported for the co-shared architecture,
which imply reduction in imposed resistance along the desired joint motion and highlight improved
human–CDLE interaction during the gait assistance.

Inferences

The stiffness ellipse plots in Fig. 11(a) for the general and co-shared CDLE architectures at 10, 65, and
85% of the gait cycle highlight the changes in the multi-joint stiffness between the two architectures.
Firstly, the stiffness ellipses drawn for the general CDLE are highly skewed, which is also reflected by
the large ratio of eigen values, that is, large condition number. This reflects the anisotropic nature of
imposed resistance by the CDLE, that is very large resistance to joint variations along the major axis
and a very small resistance to joint motion along the minor axis while applying for the required joint
assistance. Notably, for the general CDLE at 10% of the gait cycle, where β value is low in Fig. 12, there
is less resistance to the desired joint motion, but at other points of the gait cycle where corresponding
β values are large, the general CDLE imposes large resistance which may lead to undesirable leg joint
movements. In contrast, the stiffness ellipses for the co-shared CDLE are close to being symmetrical,
implied by the low condition number values over the gait cycle. This essentially means that CDLE with
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co-shared cables imposes comparable resistances to the joint motion along the major and minor axes.
Thus, the possibilities of undesirable joint motion adaptation are lower in the case of co-shared CDLE.

Both the general and co-shared CDLE architectures impose a large stiffness at the hip joint compared
to the knee joint. However, the ratio KHH /KKK plotted in Fig. 11(c) is large and exhibits a significant
increase in its value during the gait cycle for the general CDLE. For the co-shared CDLE, this ratio is
smaller and remains mostly constant over the gait cycle. Noting the variations in the stiffness components
in Fig. 10, the large ratio of KHH /KKK implies a large value of imposed resistance at the hip to the hip
joint motion compared to imposed resistance at the knee joint to knee joint motion. Furthermore, the
increase in this ratio reflects a relative increase in the imposed resistance at the hip joint to the hip joint
motion for that part of the gait cycle. Thus, in the case of general CDLE, the imposed human–CDLE
interaction may lead to a preference toward the distal joint strategy resulting in undesirable adaptation
in the hip and knee joints motion during walking. In contrast, the imposed human–CDLE interaction
for the co-shared CDLE imposes comparable stiffness levels at the hip and knee joints and steadily
alters these levels over the gait cycle to apply the desired joint torques. Thus, the co-shared architecture
with such stiffness characteristics is less likely to create distal versus proximal joint preference during a
CDLE-based gait rehabilitation paradigm.

The current work models the human–robot interaction through the multi-joint stiffness formulation
of the redundantly actuated CDLE. The stiffness performance of a CDLE architecture while applying
the assistance of 30% at the hip and knee joints is evaluated as the imposed resistance at the joints. The
orientation of the direction of less resistance, the minor axis of the stiffness ellipse, with the desired
hip and knee joints trajectory, and angle β, is presented for different cases. Overall, it is observed that
the changes in the CDLE parameters with general architecture did not affect the stiffness performance
significantly. Notably, change in the cable routing to have two co-shared cables between the thigh and
shank segments resulted in significant changes in the stiffness measures. Even though the minor axis of
the stiffness ellipse is not along the desired hip and knee joints trajectory’s slope, from Fig. 12, the angle
β values for co-shared CDLE are significantly less than the corresponding values of general CDLE for
the most part of the gait cycle. These reduced β values reflect a reduction in the imposed resistance by
the CDLE at the joints, which essentially imply an improvement in the human–CDLE interaction.

For a typical robotic gait rehabilitation paradigm, the major focus is on applying external forces to
assist the joint motion. As a result of various studies with the existing systems [12, 13], the developmental
focus in most of the recent robotic exoskeletons has been in removing the undesirable effects that the
robotic system can add on the participants. In particular, the use of flexible actuation architectures is
being promoted to reduce the imposed mass/inertia and remove the mobility constraints [16, 17, 24, 25].
The current work highlights the role of applied resistance at the joints by the CDLE and presents the
stiffness modulation to effectively tune the human–CDLE interaction. The observed changes in the co-
shared CDLE architecture case essentially reflect the inherent coupling and adaptation among the human
lower limb joints. Noting the desired limb movement during walking, a significant contribution from the
hip and knee joints is observed. Thus, the use of a robotic leg exoskeleton to apply external joint torques
can be effective if the imposed human–robot interaction favors the desired joint motion. In particular,
the case of a co-shared CDLE improved the human–robot interaction by allowing control of the imposed
resistance at the hip joint. Notably, system parameters of the co-shared CDLE, such as cable stiffness,
cable tension distribution, cables anchoring on the leg segments and frame, and even the cable routing,
can be tuned further to facilitate required improvement in the human–CDLE interaction.

5. Multi-joint stiffness computation

In this section, experimental computation of the multi-joint stiffness, K, is presented for a cable-driven
serial-chain manipulator. Figure 13 shows a two DOFs planar manipulator with two links representing
the leg segments and corresponding joints, hip, and knee. Four cables are routed to achieve two different
cable routings, that is, CDLE general and co-shared architectures in Figs. 1 and 7, respectively. During

https://doi.org/10.1017/S0263574721000242 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721000242


2188 N.S.S. Sanjeevi and V. Vashista

(a) (b)

(d) (e)

Figure 13. (a, b) Schematic of the general and co-shared architecture setup, highlighting all six loading
directions, (c) front view schematic highlighting the loading mechanism, (d) experimental setup of CDLE
general architecture, and (e) co-shared architecture.

the experiment, the manipulator is maintained at an equilibrium configuration through adequate cable
tensioning. Each cable is in series with a spring, with known stiffness, and a load cell, to measure the
cable tension during the experiment. For the computation of K, a known external force vector is applied
at the tip of the second link, end effector, by hanging a small dead weight using a cable and pulley
arrangement as shown in Fig. 13(c).

Such application of small external force vector, F, on the manipulator in equilibrium state causes
small deflection of the end effector in the taskspace, dX. Corresponding to dX, there is small deflection
in the joint space, dθ , that represents the effect of multi-joint stiffness, K. Equation (23) formulates the
relation between the taskspace stiffness, KX , and multi-joint stiffness, K, for a manipulator incorporating
the conservative congruence transformation condition [43], where manipulator Jacobian is denoted by
J. For a given manipulator’s configuration, θ , and external force, F, the end effector deflection, dX, is
a nonlinear function of K, refer to Eq. (24). Thus, by measuring a set of deflections, {dX}, for a set
of externally applied force vector, {F}, the components of K are computed using a least square error
estimation algorithm. Denoting dXth as the theoretically computed end effector deflection values as per
Eq. (23) that incorporates the unknown components of K, and dXe the corresponding set of experimental
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Table III. Table provides details of the considered setup parameters for CDLE general and co-shared
architectures, and corresponding theoretical and experimental values in joint space stiffness matrix are
presented. Unit of spring stiffness kci is (N/m).

CDLE system parameters (in m) Kth(Nm/rad) Ke(Nm/rad)

General architecture Theoretical Experiment
a1 = a4 = 0.082 C1

[
88.44 26.95
26.95 9.71

] [
85.95 24.74
24.74 8.35

]
a2 = a3 = 0.084
h1 = h2 = h3 = h4 = 0.005 C2

[
80.23 21.13
21.13 6.81

] [
78.63 23.12
23.12 5.91

]
M1 = [0.175, 0.02],M2 = [0.21, −0.02]
M3 = [− 0.35, −0.03]M4 = [− 0.24, 0.01]

C3

[
84.82 23.76
23.76 8.79

] [
88.54 26.28
26.28 9.04

]
kc1 = 1231.6, kc2 = 1018.25
kc3 = 1202.75, kc4 = 1157.7

Co-shared architecture Theoretical Experiment
a1 = a4 = 0.05

C1
[

12.36 −0.44
−0.44 10.97

] [
11.98 −0.42
−0.42 10.69

]
a21 = a31 = 0.073
a22 = a32 = 0.085
h1 = 0.047, h4 = 0.005

C2

[
10.82 −0.51
−0.51 9.48

] [
11.16 −0.57
−0.57 9.47

]
h21 = h31 = 0.0057
h22 = h32 = 0.005
M1 = [0.201, 0.03],M2 = [0.19, −0.31]

C3

[
12.01 −0.48
−0.48 11.16

] [
11.58 −0.52
−0.52 10.33

]
M3 = [− 0.25, −0.24]M4 = [− 0.27, −0.02]
kc1 = 1231.6, kc2 = 1018.25
kc3 = 1202.75, kc4 = 1157.7

deflection values, the error is defined as de = dXth − dXe. Accordingly, a least square error estimation
algorithm is formulated as per Eq. (25) to compute the components of K:

KX = J−T
(

K −
[

dJT

dθ1
F

dJF

dθ2
F

]
︸ ︷︷ ︸

Kg

)
J−1 (23)

F = KXdX =⇒ dX = f (θ , K, F) (24)

E =
∑

j

dej
T dej (25)

The details of the experimental setup are provided in Fig. 13. To allow the horizontal planar motion of
the manipulator, a small castor wheel was mounted under each link to offload the gravity term. Reflective
markers were mounted on the setup to measure the link movements as well as the force application
direction. A Vicon motion capture system with eight cameras was used. Further, Futek load cells were
used in series with each cable to measure the real-time cable tension values. To apply the external
force on the end effector, dead weights in the range of 50–200 g with 50 g increments, that is, a total
of four different weights, were used. A screw jack mechanism was used to lower the dead weight to
prevent its oscillations during the experiment. Six different locations, marked as 1–6 in Fig. 13, were
used for mounting the pulley to generate six different force directions. For each dead weight in every
direction, a total of three trials were performed. Thus, a total of j = 72 set of readings were recorded for
a configuration of the manipulator.

The system parameters, including the cable attachment points, motor locations, and cable spring
stiffness values, are listed in Table III. Figure 13(c) and (d) present the experimental setup of general
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Figure 14. Multi-joint stiffness ellipse for general and co-shared architectures plotted from the experi-
mental data for three different configurations, C1, C2, and C3. Minor axis of the ellipse that represents
direction of less stiffness is shown for C2. Co-shared architecture reported a near isotropic multi-joint
stiffness behavior for all the three configurations.

and co-shared architectures. Three different manipulator configurations, C1, C2, and C3 with [θ1, θ2] =
[15◦, 14◦], [ − 5◦, 49◦] and [17◦, 22◦], were chosen for the analysis. The experimentally computed values
of multi-joint stiffness, Ke, and the corresponding theoretical values, Kth, as per Eq. (17) of the two
architectures, for both the configurations are listed in Table III. For Kth, the load cells data are used as
the cable tension values, T, in Eq. (17). A relatively close match is observed between the theoretical and
experimental components of K. Thus, Ke values experimentally validates the modulation in multi-joint
stiffness performance between the two CDLE architectures. Corresponding stiffness ellipses using Ke
values are plotted in Figs. 14 to note these changes.

Essentially, for the chosen system parameters, a significant reduction in all four components of K is
reported for the co-shared architecture compared to the general architecture, refer to Table III. In par-
ticular, the value of K11, which presents the stiffness at joint 1, reduced significantly by almost 86% but
remained dominant compared to K22. This implies a notable reduction in the ratio of diagonal elements,
K11/K22, and a C.N. close to unity for the co-shared architecture at different configurations. Further,
the off-diagonal terms, K12 and K21, are close to zero for co-shared architecture signifying an almost
decoupled multi-joint stiffness. Accordingly, the co-shared case provides an isotropic stiffness varia-
tion compared to the general architecture case, where the direction of least resistance changes with the
manipulator’s configuration as represented by the minor axis orientation in Fig. 14. These observations
are in accordance with the theoretical analysis presented in Section 4, refer to Figs. 11 and 12.

To bring the CDLE perspective, joints 1 and 2 of the manipulator can be represented as human hip
and knee joints, respectively. Accordingly, the results imply that a general architecture compared to the
co-shared architecture imposes a higher stiffness at the hip than knee joint, a coupling between the two
joints, and a notable skewed resistance variations during the leg motion. Considering the anatomical
joint stiffness distribution and the human ability to adapt the walking pattern in response to external
physical interaction [31, 32, 33], such a distinct stiffness imposition may lead to an undesirable pref-
erence between the distal and proximal joints during walking. In contrast, noting that the multi-joint
stiffness variations of a CDLE are dependent on its parameters, the current analysis show that an appro-
priate multi-joint stiffness characteristics between anisotropic to isotropic can be achieved. In general, a
typical gait motion is achieved through a combination of hip and knee joint actuation, thus, for an effec-
tive gait rehabilitation paradigm using a CDLE, a desirable human–robot interaction can be attained
through multi-joint stiffness tuning to promote a desired joint motion.
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6. Conclusion

The current work formulates the multi-joint stiffness as a measure to study the physical interaction
between a human and CDLE. Theoretical analysis to articulate the effects of different system parame-
ters, namely, cable tension, cable stiffness, cable routing, and motor positions, has been presented. The
presented results show a significant role of cable routing, among other system parameters. In particular,
a co-shared cable routing between the thigh and shank segments has the potential in producing a diverse
multi-joint stiffness characteristic. The stiffness performance of two different cable routings has been
validated experimentally to report a variation from being anisotropic to isotropic. In the context of move-
ment training during a rehabilitation paradigm, the current analysis and results demonstrate the efficacy
of performing architecture modulation for a CDLE in enabling the possibility of favorably tuning the
human–robot interaction.
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