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The aim of this paper is to show that the viscous shear instability identified in Part 1 is
intrinsically coupled with internal gravity waves when a localized surface topography
is present within a boundary layer. The coupling involves two aspects: receptivity
and radiation. The former refers to excitation of shear instability modes by gravity
waves, and the latter to emission of gravity waves by instability modes. Both physical
processes are studied using triple-deck theory. In particular, the radiated gravity waves
are found to produce a leading-order back action on the source, and this feedback
effect, completely ignored in the acoustic analogy type of approach, is naturally taken
into account by the triple-deck formalism. A by-product is that for certain incident
angles, gravity waves are over-reflected by the boundary layer, i.e. the reflected waves
are stronger than the incident waves.

1. Introduction
As discussed in Part 1 (Wu & Zhang 2008), a stably stratified shear flow over a

topographic feature can host a variety of waves, including gravity waves, mountain lee
waves, and waves arising from shear instabilities. Nonlinear solitary waves also exist
in stratified flows. While these waves have their own distinct characteristics, they may
be intrinsically coupled through interaction with topography. These wave activities
and the interaction/coupling among them play an important role in the atmospheric
boundary layer. They are thus of fundamental importance for a proper understanding,
and ultimately modelling, of many boundary-layer meteorology phenomena.

Owing to the simple mechanics involved, gravity waves are particularly prevalent in
the atmosphere (Gossard & Hooke 1975; Einaudi, Bedard & Finnigan 1989). These
waves may be trapped within a shear layer, or freely propagating. The focus of the
present work is on the latter kind, which are of special interest because they can
facilitate long-range interactions. Two aspects are involved. The first is gravity-wave
radiation: local flow activities may generate gravity waves, which can propagate to
distant locations, both vertically and horizontally. In particular, these waves can
transport horizontal momentum to high altitude, where they deposit their momentum
flux when being reabsorbed by the background flow (mostly at the critical layer) or
break down into small-scale turbulence. The momentum flux and resulting diffusion
influence the large-scale circulation of the atmosphere (Lindzen 1981). However,
gravity waves are usually filtered out in general circulation models because their time
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and length scales are too small to be resolved by meteorology observation networks or
by numerical modelling. Therefore an appropriate parameterization is necessary to ac-
count for the mean effect of gravity waves on the large-scale motions (Fritts 1989). For
that purpose, a theoretical understanding of gravity-wave generation processes is very
useful.

Several mechanisms have been identified as generating propagating gravity waves.
For instance, certain shear flows may support instability modes which are free
propagating, and these modes in the far field acquire the character of gravity waves
(Lalas & Einaudi 1976; Mastrantonio et al. 1976; McIntyre & Weissman 1978;
Davis & Peltier 1979; Lott, Kelder & Teitelbaum 1992). Nonlinearly modulating
Kelvin–Helmoholtz (K-H) instability modes may also emit long gravity waves via
the so-called ‘envelope radiation’ mechanism (Chimonas & Grant 1984; Fritts 1984;
Scinocca & Ford 2000). Gravity waves may be generated when a steady or unsteady
airflow interacts with topography (Smith 1979). Other mechanisms include geostrophic
adjustment (e.g. Fritts & Luo 1992) and thermal convection. Gravity waves generated
by a convectively unstable boundary layer were simulated numerically by Clark,
Hauf & Kuettner (1986) and Hauf & Clark (1989). They found that the radiated
gravity waves act to organize the boundary-layer flow. Small-scale turbulence may be
yet another source of gravity waves. Stein (1967) extended the acoustic analogy theory
of Lighthill (1952) to estimate the gravity-wave emission by a turbulent stratified
atmosphere. The expression derived for the gravity-wave power output, unfortunately,
turned out to be singular in the low-frequency limit. This non-physical result
implies that ‘the assumption that turbulence is unaffected by the buoyancy [gravity]
waves that it generates must be grossly in error’ (Gossard & Hooke 1975, pp. 361),
that is, the radiated waves and the source of the waves are inherently coupled. In
order to resolve the physically unacceptable singularity, the back effect of the gravity
waves on the source (i.e. turbulence) must be considered.

The second aspect of the long-range effect is that gravity waves originating from
remote sources may provoke local events. An example of particular interest is the
intermittency of nocturnal boundary layers, which refers to sporadic outbursts of
turbulence (Coulter & Doran 2002; Nakmura & Mahrt 2005). Its occurrence has
been attributed to some form of inherent instability and the influence of external
disturbances propagating from distant locations, such as internal gravity waves,
solitary wave (Sun et al. 2004) and density current (Sun et al. 2002). Such perturbations
may cause intermittent turbulence either by distorting the local flow condition thereby
rendering the otherwise stable flow unstable, or by exciting unstable modes which the
background shear flow may support.

The present study will examine the latter scenario, which is essentially what is
referred to as receptivity in the context of laminar–turbulent transition (Goldstein &
Hultgren 1989 and references therein). Receptivity is the first step in a long chain of
processes leading to transition of aerodynamic flows (e.g. the boundary-layer flow over
an airfoil), but its possible relevance in geophysical flows has not been appreciated.
To fix the idea, we take the external disturbance to be a gravity wave propagating
in the free stream outside the boundary layer, and the inherent instability to be the
viscous instability described in Part 1. A gravity wave in general cannot directly excite
instability modes, viscous or inviscid, because they have different dispersion relations
except in the exceptional case of resonant over-reflection (e.g. McIntyre & Weissman
1978; Davis & Peltier 1979; Grimshaw 1981; Lott, Kelder & Teitelbaum 1992).
For a gravity wave to couple with an instability wave, a scale-conversion mechanism
is required. This crucial mechanism can be provided by surface topography with a
horizontal length scale comparable with that of the instability mode. The gravity wave,
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whose frequency is taken to be in the characteristic range of the viscous instability,
interacts with the mean flow generated by the topography to produce a forcing, which
consists of a Fourier component in resonance with an unstable eigenmode. The latter
is excited as a result. This scale-conversion mechanism is essentially the same as that
in acoustic receptivity (cf. Ruban 1984; Goldstein 1985). The present work intends
to add viscous instability and the concept of receptivity to the existing theoretical
framework for understanding intermittent turbulence in nocturnal boundary layers.
In addition to a possible role in triggering nocturnal intermittency, interaction of
gravity waves with topography to generate instability waves is clearly of interest and
relevance to atmospheric boundary-layer dynamics in general.

As a gravity wave propagates through a shear layer, its energy may be absorbed and
reflected by a critical layer (i.e. the thin layer surrounding the level at which the base
velocity equals the phase speed of the wave) (Booker & Bretherton 1967; Breeding
1971; Eltayeb & Mckenzie 1975). A phenomenon which may occur under certain
conditions, is over-reflection, i.e. the reflected wave is stronger than the incident wave
(Jones 1968; Breeding 1971; Eltayeb & Mckenzie 1975; Acheson 1976; Lindzen &
Barker 1985). The analogous problem of an oncoming gravity wave interacting with
a viscous boundary-layer flow has not been studied. Such a problem arises in the
present receptivity problem. It is found that gravity waves may be over-reflected by
the boundary layer for certain incident angles.

The present study will also investigate the gravity waves radiated by growing
viscous instability modes. Although Part 1 shows that temporal modes with α < s are
radiating, these are heavily damped and so the gravity waves emitted are of limited
interest unless a large-amplitude disturbance is present. Moreover, in the present
context, only spatial instability is appropriate, and all spatially amplifying modes
are trapped within the boundary layer. We shall show that when they interact with
the mean-flow generated by topography whose horizontal length scale is comparable
with the wavelength of the instability modes, the resulting scattered field consists of a
radiating component, which represents a gravity wave in the far field. The mechanism
is entirely analogous to that proposed for the acoustic radiation of T-S waves (Wu &
Hogg 2006). However, unlike acoustic waves, the radiated gravity waves have a
leading-order back-effect on the source.

The rest of the paper is organized as follows. In § 2, we describe and formulate
the two related problems, and specify the appropriate scalings so that triple-deck
theory can be applied. The resulting system is fully nonlinear. The linearized solution
for the mean-flow distortion induced by a localized topographic feature is presented.
The receptivity due to the scattering of an impinging gravity wave by topography is
considered in § 3, and the excited instability wave is calculated, and its possible role in
nocturnal intermittency is discussed. In § 4, we consider gravity-wave radiation when
an instability mode interacts with the topography. In § 5, we show that in the so-
called high-frequency limit, the fully nonlinear system can be reduced to an extended
Benjamin–Davis–Ono (BDO) equation with variable coefficients and forcing. A brief
summary and some concluding remarks are given in § 6.

2. Description and formulation of the problems
2.1. Description of the problems: receptivity and radiation

We consider a two-dimensional boundary layer due to a uniform flow with a speed
U0 over a localized topographic feature on an otherwise flat terrain. The local
boundary-layer thickness at the centre of the topography is assumed to be δ. As in
Part 1, the flow is assumed to be incompressible, and the effect of density stratification
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(a)

Gravity wave

(Incident) (Reflected)

Instability wave

(b)

Instability wave

(Transmitted)

Radiated gravity wave

(Incident)

θ

Figure 1. Sketch of the (a) receptivity and (b) radiation problems.

on the dynamics is accounted for by the Boussinesq approximation. The reference
length and velocity are taken to be δ and U0, respectively, and the normalized
variables, (x, y) and t , and the flow quantities (u, v, p, ρ) are as introduced in (2.7) of
Part 1. The Reynolds number remains as

R = U0δ/ν,

and will assumed to be asymptotically large.
The height of the surface elevation h∗ is assumed to be much smaller than δ, while

its horizontal length scale is much larger than δ. The topography generates a local
mean-flow distortion, the far field of which corresponds to mountain lee waves (Sykes
1978). The distortion attains its maximum amplitude in a thin region adjacent to the
wall, and will play a crucial part in coupling the viscous instability modes and gravity
waves, which otherwise would evolve independently of each other in the linear regime.

Two fundamental physical processes will be investigated. The first is concerned
with the generation of the viscous instability waves, i.e. the receptivity. We assume
that a gravity wave originates from a distant source. As it propagates towards the
boundary layer, it will be reflected. At the same time it will generate an unsteady
viscous flow within the boundary layer. This unsteady signature then interacts with
the steady mean-flow distortion induced by the topography to excite instability waves
(figure 1a).
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The second process is radiation of gravity waves by the viscous instability modes,
which may be viewed as an inverse problem of receptivity. Here a viscous instability
wave is assumed to be present within the boundary layer upstream of the topography.
As it propagates through the local non-uniform flow caused by the topography, a
scattering process takes place, in which gravity waves are generated in the far field
(figure 1b).

In order to keep the mathematical problems tractable, we shall analyse these
processes assuming the base flow to be two-dimensional and laminar. Such an idealized
situation may be set up in the laboratory condition, for which the theory may provide
a quantitative description. However, the theoretical results should be treated as being
of qualitative relevance when interpreted in the context of the atmospheric boundary
layer since the flow there is in general three-dimensional, and considerable turbulence
may be present.

2.2. Formulation and scalings

As is shown in Part 1, the viscous instability modes are a modified form of T-S waves,
which can be described by triple-deck theory. Naturally, the same mathematical
framework will be used to study both the receptivity and radiation problems. The
notations introduced in Part 1 will be retained. The usual variables on the triple-deck
scales,

X = R−1/4x ≡ εx, T = R−1/2t ≡ ε2t, (2.1)

are introduced, where ε = R−1/4. The stratification parameter S is assumed to be a
constant, and is scaled as

S = εs

so that the buoyancy term occurs in the upper deck only (Sykes 1978, 1980).
In the linear regime, gravity waves and instability modes satisfy their own dispersion

relations, and evolve independently. The two are coupled in the presence of topography
because the latter plays the role of a scatter: an incoming gravity (instability) wave is
scattered to an instability (gravity) wave.

For topography to facilitate substantial energy transfer between gravity waves and
unstable modes, its horizontal length scale is of crucial importance. In receptivity, the
frequency of the gravity wave ω∗ typically must scale as

ω∗ ∼ 2πR−1/2U0/δ, (2.2)

and it follows that topography must have a horizontal length scale

L∗ ∼ R1/4δ, (2.3)

so that the forcing resulting from their mutual interaction consists of a Fourier
spectral component in resonance with a T-S wave. Similar to the acoustic radiation
of T-S waves considered in Wu & Hogg (2006), for instability modes to be able
to radiate gravity waves efficiently, they must undergo distortion over a length scale
comparable with their wavelengths. Thus in both problems, the shape can be specified
by a function of X, y∗ =h∗F (X) say. In order to comply with triple-deck theory, the
height of the topography, h∗, is scaled as (cf. Sykes 1978)

h∗/δ = εh, (2.4)

so that the topography is described by

y = εhF (X),
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where the scaled elevation h =(h∗/δ)R1/4 is O(1) or smaller when (2.2) and (2.3) hold.
In the high-frequency/short-wavelength limit corresponding to ω∗ � 2πR−1/2U0/δ and
L∗ � R1/4δ, h may be allowed to be much greater than order one; this case will be
discussed further in § 5.

In the receptivity problem, the wavelength of the oncoming gravity wave is assumed
to be comparable with those of T-S waves, although longer wavelengths are allowed.
On the other hand, in the radiation problem, the gravity-wave field generated by the
instability modes turns out to have O(R1/4δ) length also. Therefore all the flow physics
of interest occurs on the scales of X = O(1) and T = O(1), and are fully described by
triple-deck structure.

The particular phenomenon, to which the viscous instability and the receptivity
may be relevant, is intermittent turbulence in nocturnal boundary layers, which often
occurs in a layer beneath the maximum of the low-level jet. In the observations
reported by Sun et al. (2004), the width of this layer was about 100 m and the wind
speed at the outer edge was about 7 m s−1, suggesting a Reynolds number of O(107).
Thus a surface elevation h∗ of a few metres over a horizontal distance L∗ up to a
few kilometres would broadly fit the required scaling (2.4) and (2.3), or its suitable
short-wavelength limit.

The dominant interactions of the topography with the gravity-wave signature (in
the receptivity problem), and with the instability modes (in the radiation problem),
take place within the lower deck, where

Y = y/ε = O(1).

The solution expands as

(u, v, p, ρ) = ε(U, ε2V, εP, ρ) + · · · , (2.5)

where the amplitude of the perturbation is chosen so that the rescaled quantities
(U, V, P ) are governed by the fully nonlinear triple deck equations

∂U

∂T
+ U

∂U

∂X
+ V

∂U

∂Y
= −∂P

∂X
+

∂2U

∂Y 2
,

∂U

∂X
+

∂V

∂Y
= 0.

⎫⎪⎪⎬⎪⎪⎭ (2.6)

These equations can be linearized subsequently for weaker disturbances. At
the ground surface, U and V satisfy the no-slip and no-penetration boundary
conditions,

U = V = 0 at Y = hF (X). (2.7)

The main and upper decks are linear to leading-order with the nonlinear effect
contributing small corrections of O(ε) and O(ε2), respectively. The main deck has the
solution given by (3.5) and (3.6) in Part 1. Matching εU with the main-deck solution
requires

U → λ(Y + A(X, T )) as Y → ∞, (2.8)

where function A(X, T ) is the displacement. The main deck acts to transmit the
displacement to the upper deck, where ỹ = εy = O(1). The solution takes the same
form as (3.8) in Part 1, and the governing equations are as given by (3.9)–(3.12) there
but with u∞ = 1. At present, it suffices to note that the rescaled pressure P̂ (X, T , ỹ)
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satisfies the equation

∂2P̂

∂X2
+

∂2P̂

∂ỹ2
+ s2P̂ = 0, (2.9)

and the boundary condition

∂P̂

∂ỹ
= (AXX + s2A) at ỹ = 0. (2.10)

The pressure in the lower and main decks, P , is related to P̂ via

P = P̂ (X, T , 0). (2.11)

The coupling between the viscous flow in the lower deck and the inviscid motion flow
the upper deck is facilitated by (2.10) and (2.11).

In the presence of an ambient disturbance, P̂ must satisfy a far-field condition of
the form

P̂ → PI(X, T , ỹ) + PR as X2 + ỹ2 → ∞, (2.12)

where PI represents an incident perturbation, and PR stands for outgoing
disturbances, which may include mountain lee waves, the reflected and/or scattered
waves from the boundary layer; PR is to be found as part of the solution. The
specification of PI depends on the nature of the external disturbance being present.
For gravity waves propagating from a distant source, PI can be represented as a
superposition of Fourier components, i.e.

PI =

∫ ∞

−∞
P∞(α, T )ei(αX−βỹ)dα, (2.13)

where β = (s2 − α2)1/2 is the dispersion relation for relatively low-frequency waves,
which appear as quasi-steady in the upper deck. A gravity wave is composed of the
components with |α| <s only, i.e. P∞ = 0 if |α| >s, and a plus sign is chosen for β to
ensure that the incident wave has a negative group velocity.

The system consisting of (2.6)–(2.13) describes the generation of instability waves
as well as radiation of gravity waves; in the latter problem, PI must be removed.
In order to close the system, it is necessary to specify the upstream conditions for
(U, V, A, P ) as X → −∞. For the receptivity problem, the flow upstream corresponds
to the signature of the gravity wave entrained into the boundary layer, whereas for the
radiation problem, the upstream perturbation consists of a viscous instability mode.

We may solve the upper-deck equation (2.9) analytically to obtain a displacement–
pressure relation. Let P̂ = PI + Q. Then Q is governed by (2.9), but satisfies the
boundary condition

∂Q

∂ỹ
= (AXX + s2A) − PI,ỹ(X, T , 0) at ỹ = 0, (2.14)

and also as a far-field condition, that Q either decays or corresponds to an outgoing
wave. The resulting system can be solved by using a Fourier transform to obtain

Q(X, T , ỹ) =

∫ ∞

−∞
P∞(α, T )ei(αX+βỹ−ωT )dα +

∫ ∞

−∞
(−im)a(k)ei(mỹ+kX)dk, (2.15)

where a(k) denotes the Fourier transform of A, and m =(s2 − k2)1/2 with the branch
being defined in the same way as in Part 1. Taking the limit ỹ → 0 in P̂ =(PI + Q)
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and noting (2.11), we have

P (X, T ) = 2PI(X, T , 0) +

∫ ∞

−∞
G(X; ξ )(Aξξ (ξ, T ) + s2A(ξ, T )) dξ, (2.16)

where G(X; ξ ) is given by (3.17) in Part 1. This is an inhomogeneous pressure-
displacement relation, in which the forcing term, 2PI, characterizes the external
perturbation.

Relation (2.16) and equations (2.6)–(2.8) form a more compact formulation of the
problem. The system is fully nonlinear for h = O(1) and PI = O(1), and requires a
numerical attack. In the so-called high-frequency limit, the system can be simplified to
an extended BDO equation with forcing. Before turning to this nonlinear case in § 5,
we shall assume, in the rest of this section and throughout §§ 3 and 4, that h � O(1)
and PI � O(1), for which the system can be linearized and solved analytically.

2.3. Linear solution for the steady flow induced by topography

Assume that h � O(1) and PI ∼ ε̃ � O(1). Both the topography-induced steady flow,
h(ũm, ṽm, ãm, p̃m) say, and the unsteady signature of the gravity wave, ε̃(ũg, ṽg, ãg, p̃g)
say, appear as small perturbations to the background flow. The total flow field can
be decomposed as

(U, V, A, P ) = (λY, 0, 0, 0) + h(ũm, ṽm, ãm, p̃m) + ε̃(ũg, ṽg, ãg, p̃g) + · · · . (2.17)

In this section, we consider (ũm, ṽm, ãm, p̃m). They satisfy the steady linearized
version of (2.6)–(2.8), which are Fourier transformed to (Sykes 1978)

ikλY ûm + λv̂m = −ikp̂m + û′′
m,

ikûm + v̂′
m = 0,

ûm = −λF̂ , v̂m = 0 at Y = 0,

ûm → λâm as Y → ∞,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(2.18)

where (ûm, v̂m, âm, p̂m) denote the flow field in spectral space. The steady part of the
pressure–displacement relation (2.16) gives

p̂m = −imâm with m = (s2 − k2)1/2, (2.19)

where the branch is defined in the same manner as in Part 1 and Sykes (1978).
The solution is found as (Sykes 1978)

p̂m(k) = −k−2(ikλ)5/3Ai′(0)λF̂ /D,

ûm(k, Y ) = λF̂
{ 1

D

∫ η

0

Ai(η)dη − 1
}

,

v̂m(k, Y ) =
1

λ

{
û′′

m − ikλY ûm − ikp̂m

}
,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(2.20)

with η =(ikλ)1/3Y , and

D(k) =

∫ ∞

0

Ai(η)dη − λ(ikλ)2/3Ai′(0)/(km). (2.21)

3. Receptivity: excitation of instability waves
Receptivity involves a gravity wave interacting with the topography-induced local

mean-flow distortion (figure 1a). The interaction generates a scattered field. Thus the
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total flow field can be expanded as

(U, V, A, P ) = (λY, 0, 0, 0) + h(ũm, ṽm, ãm, p̃m) + ε̃(ũg, ṽg, ãg, p̃g)

+ ε̃h(ũs, ṽs, ãs, p̃s) + · · · . (3.1)

The scattered field (ũs, ṽs, ãs, p̃s) consists of growing instability modes, which will
become dominant downstream (cf. Ruban 1984; Goldstein 1985).

3.1. Unsteady gravity wave solution: entrainment and reflection

As a gravity wave impinges on a boundary layer, its energy partly penetrates into the
layer, and is partly reflected. In order to calculate the instability mode to be excited,
it is necessary first to find the solution for the signature of the unsteady gravity wave
entrained into the boundary layer. Since the gravity wave is linear, we consider a
single Fourier mode by assuming that

PI = ε̃p∞ei(αX−βỹ−ωT ) + c.c.

We ignore the transient process, and seek the ‘steady-state’ solution that is established
a long time after the gravity has arrived. The solution can be written as

(ũg, ṽg, ãg, p̃g) = (ûg(Y ), v̂g(Y ), âg, p̂g)e
i(αX−ωT ) + c.c.

Instead of using the pressure–displacement relation (2.16), we reconsider the
solution to (2.9) in the upper deck, since the physical nature of the solution can
be more readily appreciated. The solution may be expressed as

P̂ = p∞(e−iβỹ + Reiβỹ)ei(αX−ωT ) + c.c.

where the constant R is recognized as the reflection coefficient, which is to be found
as part of the solution. It follows from (2.11) and (2.10) that

p̂g = (1 + R)p∞, (s2 − α2)âg = −iβ(1 − R)p∞.

Elimination of p∞ yields

p̂g =
iβ(1 + R)

1 − R âg. (3.2)

In passing, it may be noted that had we used (2.16) instead, then

p̂g = 2p∞ − iβâg = p∞ + (p∞ − iβâg),

where the second term on the right-hand side stands for the reflected wave. Then on
identifying the reflection coefficient R = (p∞ − iβâg)/p∞, the same relation (3.2) would
have been derived.

The unsteady viscous flow in the lower deck remains to be considered. It which is
governed by the linearized boundary-layer equations

−iωûg + iαλY ûg + λv̂g = −iαp̂g + û′′
g, (3.3)

iαûg + v̂′
g = 0, (3.4)

subject to the matching condition

ûg → λâg as Y → ∞, (3.5)

and the boundary condition

ûg = 0, v̂g = 0 at Y = 0. (3.6)
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Differentiating (3.3) with respect to Y and using (3.4) to eliminate v̂g yields

û′′′
g + i(ω − αλY )û′

g = 0. (3.7)

The solution to this equation with boundary condition (3.6) is

ûg = C

∫ ζ

ζ0

Ai(ζ )dζ, (3.8)

where C is an arbitrary constant, and

ζ = (iαλ)1/3Y + ζ0, ζ0 = −iω(iαλ)−2/3. (3.9)

Note that setting Y = 0 in (3.3) yields û′′
g(0) = iαp̂g . Use of this and (3.5) gives

C(iαλ)2/3Ai′(ζ0) = iαp̂g, C

∫ ∞

ζ0

Ai(ζ )dζ = λâg. (3.10)

From (3.2) and (3.10), we find that the reflection coefficient

R = 1 − 2

∫ ∞

ζ0

Ai(ζ )dζ/∆g(α, ω), (3.11)

and C = 2λp∞/(iβ∆g) so that

ûg =
2λp∞

iβ∆g

∫ ζ

ζ0

Ai(ζ )dζ, (3.12)

where we have put

∆g(α, ω) =

∫ ∞

ζ0

Ai(ζ )dζ − λ(iαλ)2/3Ai′(ζ0)/(αβ). (3.13)

The reflection coefficient of the gravity wave, R, is of considerable interest. As
it stands, it depends on three parameters: ω, s and α. Alternatively, it is more
illuminating to introduce the incident angle θ , i.e. the angle that the wave vector
makes with the horizontal (see figure 1a). It is defined as

tan θ =
β

α
=

√
s2 − α2

α
, (3.14)

and we treat R = R(ω, s, θ) as a function of ω, s and θ .
It is worth noting that in the general case of an impinging wavepacket, the

reflection of each of its constitutnent Fourier components would still be described by
the reflection coefficient given here. The reflected wavepacket can be computed by
taking Fourier inversion (along a contour that respects casuality). Since reflection of a
wavepacket is a transient process, it must be characterized by a time scale. Extracting
this and other specific features requires further investigation, and will not pursued in
the present paper.

3.2. The scattered wave field

We now consider the scattered field (ũs, ṽs, ãs, p̃s) in (3.1). Since the problem is linear,
the solution will have a harmonic time dependence, i.e.

(ũs, ṽs, ãs, p̃s) = (us, vs, as, ps)e
−iωT + c.c.

Then (us, vs, as, ps) satisfies the inhomogeneous linearized boundary-layer equations

−iωus + λY
∂us

∂X
+ λvs = −∂ps

∂X
+

∂2us

∂Y 2
− NeiαX,

∂us

∂X
+

∂vs

∂Y
= 0, (3.15)
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where we have put

N(X, Y ) =
{

iαumûg + vmû′
g + ûg

∂um

∂X
+ v̂g

∂um

∂Y

}
. (3.16)

The pressure–displacement relation (2.16) becomes

ps =

∫ ∞

−∞
G(X; ξ )

(
a′′

s (ξ ) + s2as(ξ )
)
dξ. (3.17)

The boundary and matching conditions are approximated as

us(X, 0) = −û′
g(0)eiαXF (X), vs = 0 at Y = 0, (3.18)

us → λas as Y → ∞. (3.19)

The linearized triple-deck system (3.15)–(3.19) is similar to that which arises in
the acoustic receptivity problem (Goldstein 1985), and can be solved by Fourier
transform. Let (ûs, v̂s, âs, p̂s) denote the flow quantities in the Fourier spectral space.
Then system (3.15)–(3.19) is transformed to

−iωûs + ikλY ûs + λv̂s = −ikp̂s +
∂2ûs

∂Y 2
− N̂, (3.20)

ikûs +
∂v̂s

∂Y
= 0, (3.21)

p̂s = −imâs, (3.22)

ûs(0) = −û′
g(0)F̂ (k − α), v̂s(0) = 0, (3.23)

ûs → λâs as Y → ∞, (3.24)

where

N̂(k, Y ) = iαûmûg + i(k − α)ûgûm + v̂mû′
g + v̂gû

′
m.

The quantities with subscript m are evaluated at (k − α).
Again differentiating (3.20) with respect to Y and using (3.21) to eliminate v̂s , we

obtain

û′′′
s + i(ω − kλY )û′

s = N̂Y , (3.25)

where

N̂Y = iαûmû′
s(Y ) + i(k − α)ûs(Y )û′

m + v̂mû′′
s (Y ) + v̂s(Y )û′′

m. (3.26)

Now setting Y = 0 in (3.20) and using (3.23) gives

û′′
s (0) = ikp̂s + iωû′

g(0)F̂ (k − α). (3.27)

This boundary condition replaces v̂s(0) = 0.
Now putting (cf. Goldstein 1985)

ûs = û1 +
1

λ

∫ Y

0

(
û′′

gûm + ûgû
′′
m

)
dY, (3.28)

and substituting it into (3.25), we find that û1 satisfies

û′′′
1 + i(ω − kλY )û′

1 = Ĝ(Y ), (3.29)

where

Ĝ(Y ) = −λ−1
(
2û′′′

g û′
m + 2û′

gû
′′′
m + û′′

gû
′′
m(0) + û′′

g(0)û′′
m

)
. (3.30)
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By using the two homogeneous solutions to the Airy equation, Ai(ξ ) and Bi(ξ ), the
solution to the inhomogeneous equation (3.29) that remains bounded as Y → ∞ can
be expressed as

û′
1 = −(ikλ)−1/3π

{
Ai(ξ )

∫ Y

0

Bi(ξ̃ )Ĝ(Ỹ ) dỸ − Bi(ξ )

∫ Y

∞
Ai(ξ̃ )Ĝ(Ỹ ) dỸ

}
+ C1(ikλ)

1/3Ai(ξ ),

(3.31)
where C1 a function of k to be found, and

ξ = (ikλ)1/3Y + ξ0, ξ0 = −iω(ikλ)−2/3. (3.32)

We integrate (3.31) once using boundary condition (3.23) to obtain û1, which is then
inserted into (3.28) to give

ûs = −(ikλ)−1/3π

∫ Y

0

{
Ai(ξ )

∫ Y

0

Bi(ξ̃ )Ĝ(Ỹ ) dỸ − Bi(ξ )

∫ Y

∞
Ai(ξ̃ )Ĝ(Ỹ ) dỸ

}
dY

+C1

∫ ξ

ξ0

Ai(ξ )dξ +
1

λ

∫ Y

0

(
û′′

gûm + ûgû
′′
m

)
dY − û′

g(0)F̂ (k − α). (3.33)

Solution (3.33) is then used in (3.27) and (3.24). The resulting equations and (3.22)
are solved to obtain

âs =
Ai′(ξ0)

km∆(k, ω)

{∫ ∞

0

K(ξ, ξ0)Ĝ(Y )dY +
2

λ
(ikλ)2/3

∫ ∞

0

û′
gû

′
mdY

+
1

λ

(
û′′

g(0)û′
m(0) + û′

g(0)û′′
m(0)

)
R̃

}
, (3.34)

where

∆(k, ω) =

∫ ∞

ξ0

Ai(ξ )dξ − λ(ikλ)2/3Ai′(ξ0)/(km), (3.35)

is the dispersion relation of the viscous instability (see Part 1). Here we have introduced

K(ξ, ξ0) ≡ π
Ai′(ξ0)Gi(ξ ) − Gi′(ξ0)Ai(ξ )

Ai′(ξ0)
, R̃ =

∫ ∞

ξ0

Ai(ξ )dξ/Ai′(ξ0), (3.36)

with Gi and Gi′ denoting the combinations of Airy functions and Airy-function
integrals defined by Abramowitz & Stegun (1964, p. 449).

3.3. The coupling coefficient

The solution in physical space can be obtained by inverting the Fourier transforms.
For the displacement, we have

ãs(X, T ) =
1

(2π)1/2

∫ ∞

−∞
ei(kX−ωT )âs(k) dk. (3.37)

The integrand has poles at the values of k which are roots of the dispersion relation
(3.35), i.e.

∆(k, ω) = 0. (3.38)

The instability waves correspond to the contribution to the integral from these poles
(Ruban 1984; Goldstein 1985; Wu 2001), which can be calculated by using the residual
theorem. Of interest is the most unstable (or least stable) mode, which corresponds
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to the pole with the smallest imaginary part. Let aT S denote this contribution. Then
from (3.34) it can be derived that

aT S(X, T ) =
1

(2π)1/2
F̂ (k − α)Λ(ω, α)ei(kX−ωT ), (3.39)

where we have put

Λ(ω, α) =
Ai′(ξ0)

km∆′(k, ω)F̂ (k − α)

{∫ ∞

0

K(ξ, ξ0)Ĝ(Y ) dY +
2

λ
(ikλ)2/3

∫ ∞

0

û′
gû

′
m dY

+
1

λ

(
û′′

g(0)û′
m(0) + û′

g(0)û′′
m(0)

)
R̃

}
, (3.40)

where ∆′ stands for the derivative of ∆ with respect to k. The factor Λ is a function
of the horizontal wavenumber α and frequency ω of the incoming gravity wave, but
independent of the geometry of the topography. It measures the efficiency of gravity
waves in exciting instability modes, and is usually referred to as the coupling coefficient.

The result (3.39) indicates the absolute amplitude of the instability mode excited

is proportional to F̂ (k − α). The role of the horizontal scale of surface topography

transpires when one considers F̂ (k − α) for a Gaussian shape,

F (X) = exp(−X2/d2), (3.41)

where d is the (scaled) horizontal scale. It follows that F̂ (k −α) ∼ d exp{−d2(k −α)2}.
Clearly, F̂ (k − α) attains its maximum when d ∼ (k − α)−1, i.e. when d ∼ k−1, since α

is O(k) or smaller. The result indicates that the horizontal length scale of topography
must be comparable with the characteristic wavelength of the instability modes, a
conclusion that holds for isolated topography of an arbitrary shape. If topographic
variation is over a much longer length scale (i.e. d � k−1), the amplitude of the excited
instability mode could be extremely small, indeed exponentially small for Gaussian
and many other shapes.

3.4. Numerical results

Numerical calculations were performed to compute the reflection coefficient R given
by (3.11) and the coupling coefficient Λ given by (3.40). The Airy functions, function
Gi, and their derivatives were evaluated numerically by integrating the equations
that they satisfy using a fourth-order Runge–Kutta method. The integrations (in
the complex plane) were started using the large or small variable asymptotic
approximations as initial conditions.

Figure 2(a) shows how |R| varies with the horizontal wavenumber α of the incoming
wave for fixed frequencies. For the majority of α, |R| < 1, indicating that the boundary
layer absorbs some of the incident gravity wave energy. However, for each frequency
there exist a range of α values, for which |R| > 1, implying that the wave reflected
by the viscous boundary layer is stronger than the incident wave. This is the so-
called ‘over-reflection’ phenomenon. The figure shows that for the majority of α,
higher-frequency gravity waves have larger |R|, but over-reflection is stronger for
lower frequencies. As mentioned in § 1, there have been many studies of gravity-wave
reflection by critical layers, where over-reflection may occur. Interaction of gravity
waves with viscous boundary layers is obviously an important process, but does
not appear to have received much attention. We are not aware of any report of
over-reflection in this context.
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Figure 2. The reflection coefficient |R|. (a) |R| vs. α for ω =1, 3, 5, and the stratification
parameter s = 7. (b) |R| vs. θ (the incident angle) for ω = 1, 5 and – – –, s = 5; —–, 7.

It may be tempting to interpret the observed over-reflection in terms of a resonance
between a particular gravity wave and a neutrally stable mode (cf. McIntyre &
Weissman 1978; Davis & Peltier 1979). However, no such a resonance is possible
in our problem because the marginally stable mode is trapped within the boundary
layer whilst all radiating modes are damped. Indeed, had such a resonance occurred,
|R| would have exhibited an infinite as opposed to a finite peak.

Since the α values for which over-reflection occurs is rather small, the corresponding
incident angles θ must be quite close to π/2 (see (3.14)). This is illustrated in figure 2(b),
where |R| is re-plotted against θ for fixed ω = 1 and 5. Indeed |R| attains its maximum
at an angle in the vicinity of π/2. Nevertheless, there is a small yet finite difference,
indicating that the maximum is not an artefact of π/2 being a singular limit. The
sharp peak for low-frequency waves indicates that over-reflection is sensitive to
the incident angle. The effect of stratification on reflection is delicate, depending
on the frequency and the incident angle of the gravity wave. Over the majority of
incident angles, stratification tends to suppress reflection of high-frequency waves
(e.g. ω = 5), but enhances reflection of low-frequency waves (e.g. ω = 1). This trend,
however, reverses for incident angles close to π/2.

For definitiveness, the coupling coefficient |Λ| was computed with p∞ =1.
Figures 3(a) and (b) show how |Λ| varies with α for a selection of ω. The behaviour
of the the coupling coefficient is different for the decaying and growing modes. For
the low-frequency decaying modes (ω < 5), |Λ| exhibits two peaks (figure 3a), with the
sharper and dominant one occurring at α close to (but slightly less than) s, indicating
that the excited T-S wave has a highly tuned response to the wavenumber α (or
equivalently to the incident angle) of the gravity wave. The main peak corresponds
to a gravity wave propagating almost horizontally, i.e. with θ ≈ 0 (see (3.14)). For the
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Figure 3. Variation of the coupling coefficient |Λ| with α: (a) s = 3, ω = 3, 4, 5 (low-frequency
decaying modes); (b) s = 3, ω = 6, 7, 8, 9, 10 (high-frequency growing modes); (c) ω = 7,
s = 2, 3, 4, 5.

unstable modes with high frequencies (ω > 6), the two peaks merge (figure 3b). The
resulting single maximum occurs at α ≈ 2.3, which corresponds to an incident angle
of about 45◦. Broadly speaking, high-frequency gravity waves are more efficient in
exciting T-S waves.

For the major unstable frequency band, which for s =3 is between ω = 6 and
ω =12, the coupling coefficient |Λ| is in the range of 5–30. The ratio of the vertical
velocity of a T-S wave to that of the oncoming gravity wave is hΛ, or (h∗/δ)R1/4Λ.
Since the Reynolds number for atmospheric flows is usually large, the result implies
that generation of instability waves is sensitive to surface topography. For R = 107,
which is representative of a low-level jet, the ratio is of order one when h∗ ∼ 0.01δ.
Typically, airflows of this type occur within a layer of a few hundreds metres, and
so a surface elevation of a few metres is sufficient to trigger instability modes with
sizeable amplitudes.
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The feature revealed by figures 3(a) and 3(b) persists for other values of s. In figure
3(c), the variation of |Λ| with α is plotted for a selection of s values with a fixed
ω = 7. For s = 2 and 3, the gravity wave with ω = 7 excites an unstable mode, and |Λ|
processes one peak. However, when s = 4, and 5, the mode excited for each α turns
out to be stable, and two distinct maxima appear. For the high-frequency unstable
modes, stratification tends to reduce the efficiency of the coupling for all α. However,
the effect of stratification is complicated on the low-frequency stable modes. Given
that these modes would experience exponential decay and that the coupling is fairly
weak for them, their excitation is probably of less importance.

Taking together the results concerning the reflection and receptivity, we come to a
general understanding that low-frequency gravity waves propagating almost vertically
towards the boundary layer are over-reflected, whilst high-frequency components
penetrate into the layer to generate instability modes.

3.5. Receptivity and intermittent turbulence in nocturnal boundary layers

The field investigations documented in Sun et al. (2004) indicate clearly that
intermittent turbulence was triggered by non-local disturbances, such as solitary
waves and internal gravity waves. These disturbances originate from distant locations,
and propagate in the airflow at relatively high levels (about 1 km). As they descend
toward the ground, they may generate conditions which support thermal or dynamic
shear instabilities. Therefore, characterizing these disturbances as well as their
interactions with the boundary layer and local topography is a necessary step towards
understanding the onset of turbulence. Receptivity is an important aspect in these
interactions.

Sun et al. (2004) described how a gravity wave, with a period about 10 min,
propagated downward from a height of 1.5 km and triggered a major turbulence
episode during CASES-99 (1999 Cooperative Atmosphere-Surface Exchange Study).
High-resolution Doppler lidar revealed a well-defined wave of the same period within
the boundary layer. However, it is unclear whether this wave is simply the signature
of the oncoming gravity wave entrained into the boundary layer (which would
mathematically correspond to the inhomogeneous solution (ũg, ṽg, p̃g) described in
§ 3.1), or is a viscous instability mode excited by the oncoming gravity wave via a local
receptivity such as that described in §§ 3.2 and 3.3. In our view, the latter is plausible.
First, the long wavelength (1.2 km) and relatively small propagation speed (2 m s−1,
which is about 0.3 times the wind speed) are consistent with the characteristics of
T-S waves. Secondly, the surface in the observation site exhibits an elevation of 6 m
over a horizontal disturbance of a few hundreds meters (Nakamura & Mahrt 2005).
A gravity wave may interact with such a topographical feature to generate a T-S
mode. Thirdly, the low-frequency long-wavelength wave apparently modulates the
onset of intermittent turbulence. The occurrence of the latter was found to be most
frequent in a thin layer (about 25 m) adjacent to the ground. This is consistent with
the wall-mode character of T-S waves.

Based on these observations, it may be speculated that receptivity could play a role
in triggering intermittent turbulence in nocturnal boundary layers. Viscous modes
excited by the present receptivity are of course not turbulence, but they may break
down into small-scale motions through secondary instability, once they have grown to
exceed a threshold amplitude. The requirement for a threshold implies that breakdown
is likely to be sporadic, depending on the intensity of the oncoming perturbations
(gravity waves) in the atmosphere as well as the local topographical conditions.
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4. Radiation of gravity waves by instability modes
We now consider the situation where a viscous instability mode is already present

in the boundary layer upstream of the topography (see figure 1b). The oncoming
instability wave is scattered by the topography-induced local mean-flow distortion to
radiate gravity waves to the far field. Similar to the receptivity problem considered
earlier, the total flow field can be expanded as

(U, V, A, P ) = (λY, 0, 0, 0) + h(ũm, ṽm, ãm, p̃m) + ε̃(û, v̂, â, p̂) exp(i(αTSX − ωTSt))

+ ε̃h(ũs, ṽs, ãs, p̃s) + · · · , (4.1)

where the mean-flow distortion (ũm, ṽm, ãm, p̃m) is given in § 3 in spectral
space. The only difference from receptivity is that the T-S wave signature
(û, v̂, â, p̂) exp(i(αTSX − ωTSt)) replaces that of the gravity wave. In the following,
the subscript ‘TS’ will be dropped for brevity.

The solution for the instability wave is described in Part 1. In particular,

û =

∫ η

η0

Ai(η)dη, p̂ = λ(iαλ)−1/3Ai′(η0), (4.2)

where

η = (iαλ)1/2Y + η0, η0 = −iω(iαλ)−2/3.

The frequency ω and wavenumber α satisfy the dispersion relation

∆(α, ω) ≡
∫ ∞

η0

Ai(η)dη − λ(iαλ)2/3Ai′(η0)

α(s2 − α2)1/2
= 0, (4.3)

where the branch of the square root is chosen such that T-S wave eigenfunctions in
the upper deck decay exponentially (see Part 1).

4.1. Scattering and radiation

The main focus in the following is the scattered field, which can be written as

(ũs, ṽs, ãs, p̃s) = (us, vs, as, ps)e
−iωT + c.c.

Then (us, vs, as, ps) satisfy an inhomogeneous triple-deck system similar to (3.15)–
(3.19), which can be Fourier transformed to obtain the flow quantities in spectral
space, which are denoted by (ûs, v̂s, âs, p̂s). By a similar procedure as in § 3, it can be
shown that ûs is governed by

û′′′
s − i(kλY − ω)û′

s = (ikλ)H, (4.4)

supplemented by the pressure–displacement relation

p̂s = −imâs with m = (s2 − k2)1/2. (4.5)

Equation (4.4) is subjected to the boundary condition

ûs = −û′(0)F̂ (k − α), û′′
s (0) = iωû′(0)F̂ (k − α) + ikp̂s, (4.6)

and the matching condition

ûs → λâs as Y → ∞. (4.7)

In (4.4), the forcing term

H =
1

λ
(ikλ)−1

{
i(k − α)λû û′

m + iαλû′ûm + û′′
m[û′′ − i(αλY − ω)û − iαp̂ ]

+ û′′[û′′
m − i(k − α)λY ûm − i(k − α)p̂m]

}
, (4.8)
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where the mean-flow quantities (i.e. those with the subscript m) are evaluated at
(k − α). Note that H decays exponentially as Y → ∞. The solution to (4.4) can be
expressed as (cf. Wu & Hogg 2006)

ûs = −û′(0)F̂ (k − α) +

∫ ζ

ξ0

M̃(ξ, ξ0)dξ + Ĉ(k)

∫ ξ

ξ0

Ai(ξ )dξ, (4.9)

where

M̃(ξ, ξ0) = π

{
Bi(ξ )

∫ ξ

∞
Ai(ξ̃ )H (Ỹ )dξ̃ − Ai(ξ )

∫ ξ

ξ0

Bi(ξ̃ )H (Ỹ )dξ̃

}
(4.10)

with

ξ = (ikλ)1/3Y + ξ0, ξ0 = −iω(ikλ)−2/3. (4.11)

Application of the boundary and matching conditions, (4.6) and (4.7), gives

(ikλ)2/3
{

πBi′(ξ0)

∫ ξ0

∞
Ai(ξ )H (Y )dξ + Ĉ(k)Ai′(ξ0)

}
= iωû′(0)F̂ + ikp̂s,

−û′(0)F̂ +

∫ ∞

ξ0

M̃(ξ, ξ0)dξ + Ĉ(k)

∫ ∞

ξ0

Ai(ξ )dξ = λâs .

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (4.12)

Eliminating âs and Ĉ(k) from (4.5) and (4.12), we obtain

p̂s(k) = − i(ikλ)2/3Ai′(ξ0)

k∆(k, ω)

{
û′(0)F̂ (1 + ξ0R̃(ξ0)) +

∫ ∞

ξ0

K(ξ, ξ0)H (Y )dξ

}
, (4.13)

where ∆, K(ξ, ξ0) and R̃ are as defined by (3.35) and (3.36), respectively.

4.2. The far field of the radiated gravity wave

The solution in physical space for the pressure of the scattered field is given by the
Fourier inversion

p̃s =
1√
2π

∫ ∞

−∞
p̂s(k) exp(i(kX + (s2 − k2)1/2ỹ − ω T ))dk. (4.14)

Of particular interest is the far-field of p̃s , since it corresponds to the gravity wave
radiated by the viscous instability mode through scattering. Unlike scattering of a
T-S wave in the unstratified case considered in Wu & Hogg (2006), the integrand in
(4.14) has a stationary phase at

k = ks ≡ s cosφ,

where φ ≡ tan−1(ỹ/X) is the observation angle. The method of stationary phase yields

p̃s =
1√
r
Gs(φ; ω, s) exp(i(sr − ωT − π/4)) for r ≡ (X2 + ỹ2)1/2 � 1, (4.15)

where

Gs(φ; ω, s) = − i
√

s(iksλ)
2/3Ai′(ξ0) sinφ

ks∆(ks, ω)

{
(1 + ξ0R̃(ξ0))û

′(0)F̂ +

∫ ∞

ξ0

K(ξ, ξ0)H (Y )dξ

}
,

(4.16)

which characterizes the directivity and intensity of the radiated gravity-wave field. The
source of the gravity wave consists of two parts: a surface source and a volumetric
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source, represented, respectively, by the first and the second (integral) terms in the
braces. The exponential decay of H ensures the convergence of the integral. It is
worth pointing out that because of the existence of a stationary phase, only the
leading-order approximation of the near-field source is required for calculating the
radiated gravity wave; this is in contrast to the acoustic radiation problem considered
by Wu & Hogg (2006), where the source has to be obtained up to O(ε3) accuracy.

An important point is that the present triple-deck formalism has naturally included
the back-effect of the radiated gravity wave on the source. This is because in
the present interactive system, the viscous motion induces a displacement, which
is transmitted to the upper deck to generate the pressure p̃s . The pressure p̃s of the
emitted gravity wave at the same time acts on the viscous flow within the lower deck,
which is the main source of the radiation. Mathematically, this back-effect on the
viscous motion through the pressure gradient is represented by the integral term in
the expression for ∆ (see (3.35)).

The angle φ = π/2 requires some attention. Note that φ → π/2 corresponds to
ξ0 � 1, for which (Wu & Hogg 2006),

R̃(ξ0) ∼ − 1

ξ0

(
1 − ξ

−3/2
0 + O

(
ξ−3
0

))
,

K(ξ + ξ0, ξ0) ∼ 1

ξ0

(
1 − ξ

−3/2
0 e−ξ

1/2
0 ξ − ξ/ξ0 + O

(
ξ−3
0

))
,

for ξ = O(ξ−1/2
0 ). Use of these in (4.16) simplifies it to

Gs(φ; ω, s) = 1
2
(−iω)−5/2s5/2G0 sin(2φ), (4.17)

where

G0 =

{
iωû′(0)F̂ + (−iω)3/2(−λâ âm) +

∫ ∞

0

[
exp(−(−iω)1/2Y ) + (−iω)1/2Y

]
H0(Y )dY

}
,

(4.18)
with

H0 = λ−1{iαλ(û′ûm − û û′
m) + û′′[û′′

m + iαλY ûm + iαp̂m] + û′′
m[û′′ − i(αλY − ω)û − iαp̂]}.

The result (4.17) indicates that the radiated gravity wave tends to zero in the direction
φ = π/2. It may be worth noting that along this direction, the integral term in ∆ is
negligible, i.e. the back-effect is insignificant. However, for a general angle φ, the back-
reaction is a leading-order effect. This is a fundamental difference from the approach
based on the extension of acoustic analogy (Stein 1967). The non-physical result
that Stein’s approach gives has been attributed to the back-action of gravity waves
on the source. Evidence of such a feedback effect was also noted in the numerical
simulations of gravity waves generated by convectively unstable boundary layers
(Clark et al. 1986; Hauf & Clark 1989). The present study provides a simple case, for
which the back-action has a leading-order effect, and can be elucidated analytically.

4.3. Numerical result

To demonstrate the main features of the radiated gravity-wave field, we now present
some numerical results for Gs(φ; ω, s), performed for topography with a Gaussian
shape. Instead of the scaled frequency ω, the familiar non-dimensional frequency,
f =ω∗ν/U 2

∞ × 106, will be used in the presentation, where ω∗ is the dimensional
frequency. It may be noted that f is related to ω via

f = ωR−3/2 × 106. (4.19)
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Figure 4. The radiated gravity-wave field: |Gs(φ, f, s)| in polar plots for f = 12, 8, 6, 5. The
stratification parameter s = 1. The dashed lines are plotted according to (4.17).

In all the calculations, we take d = 4, R2 = 107, and the ω values are chosen to be
within the major unstable band of the viscous instability . For convenience, we use
the ground shear λ= 0.332, the value corresponding to the Blasius profile.

The distribution of the radiated gravity wave is shown in figures 4 and 5, where
Gs(φ; f, s) is plotted in polar coordinates for several values of f . Figure 4 is for a case
of moderate stratification (s = 1), for which the most unstable mode has the frequency
f ≈ 8. The gravity waves appear to be highly directional, consisting of two or three
beams, with the main one beamed to the downstream direction. In this moderately
stratified case, there is a weak but distinctive beam in the upstream direction. The
frequency has an important effect. For relatively high-frequencies, e.g. f =8, 12, there
is only one downstream beam. As f is reduced, a new beam starts to emerge in
the region close to the x-axis. Finally, the new beam becomes the dominant one.
Meanwhile, the overall radiation becomes stronger as f is reduced.

Figure 5 shows the result for s =3. In this case of increased stratification, the
upstream beams disappear. For relatively low frequencies (e.g. f =6.8 and 10 (the
most unstable mode)), the gravity wave concentrates in one downstream direction.
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Figure 5. The radiated gravity-wave field: |Gs(φ; f, s)| in polar plots for f = 6.8, 10, 13.7.
The stratification parameter s = 3. The dashed lines are plotted according to (4.17).

However for high frequencies, two beams appear, but the radiated gravity waves
become much weaker.

The contrast between figures 4 and 5 implies that stratification has a strong effect
on both the directivity and intensity of the radiated gravity waves. As s is increased,
the intensity of the gravity wave increases rapidly. Also displayed in figures 4 and
5 are the predictions by (4.17), which is a valid approximation for φ close to π/2.
The good agreement in the expected region serves as a useful check of our numerical
results.

It should be pointed out that the radiation patterns shown in figures 4 and 5 are,
to leading-order, independent of the Reynolds number, provided it is large enough.
The Reynolds number only changes the value of f (see (4.19)) at which the pattern
is observed. For example, if R is increased by a factor of 100, then the same patterns
would appear, but at the frequencies 1/1000 of those shown in the figures. The
Reynolds number chosen (R = 3.16 × 103) is several orders of magnitude lower than
the values representative of the atmospheric boundary layer, but considerably above
the critical Reynolds number for a homogeneous Blasius boundary layer to become
unstable. It was chosen in anticipation that a Blasius boundary layer modified by a
moderate stratification would be unstable so that controlled experiments, where an
instability mode is artificially excited to interact with an isolated roughness, could be
performed in the future to validate the theoretical results. Such an experiment would
be possible in laboratory facilities such as those described by Ohya & Uchida (2003).

5. Reduced nonlinear system in the high-frequency limit
In the nonlinear case with h = O(1), it is convenient to perform the Prandtl

transformation

Ỹ = Y − hF, Ũ (X, Ỹ ) = U (X, Y ), Ṽ (X, Ỹ ) = V (X, Y ) − UhF ′(X).
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Since the boundary-layer equations remain invariant under this transformation, (Ũ , Ṽ )
satisfy (2.6). The boundary and matching conditions are changed to

Ũ = Ṽ = 0 at Ỹ = 0; Ũ → λ(Ỹ + A(X, T ) + hF (X)) as Ỹ → ∞. (5.1)

We consider the situation where the oncoming gravity waves are of relatively
high frequency, i.e. ∂/∂T ∼ Ω � O(1) (but are still sufficiently slowly varying, i.e.
Ω � O(R−1/4), to remain quasi-steady in the upper deck). To maintain the balance
between the local and convective accelerations, we assume that ∂/∂X ∼ Ω1/2, that is,
both the gravity waves and topography vary over a short scale. As in § 5 of Part 1,
the flow can be described by the variables

T̄ = ΩT, X̄ = Ω1/2X. (5.2)

In order to retain the effects of both stratification and topography, the parameters s

and h are rescaled as

s = Ω1/2s̄, h = Ω1/2,

with s̄ = O(1). The lower deck now splits to an inviscid buffer layer and a viscous
sublayer. In the buffer layer, Ỹ = O(Ω1/2) and so we introduce Z = Ω−1/2Ỹ . The
solution expands as

(Ũ , Ṽ , P , A) = (Ω1/2U ∗, Ω3/2V ∗, ΩP ∗, Ω1/2A∗) + · · · (5.3)

with (U ∗, V ∗, P ∗) satisfying (5.3) in Part 1. Then

U ∗ = λ(Z + A∗ + F ), V ∗ = −λ(A∗
X̄

+ FX̄)Z (5.4)

is an acceptable solution provided that A∗ and P ∗ satisfy

λA∗
T̄

+ λ2(A∗ + F )(A∗ + F )X̄ +
∂

∂X̄

∫ ∞

−∞
G(X̄; ξ )(A∗

ξξ + s̄2A∗) dξ = −2PI,X̄,

which, on eliminating λ from the left-hand side via substitution A∗ = λ−2A†, F = λ−2F †

and T̄ = λT †, simplifies to

A
†
T † + (A† + F †)(A† + F †)X̄ +

∂

∂X̄

∫ ∞

−∞
G(X̄; ξ )(A†

ξξ + s̄2A†) dξ = −2λ2PI,X̄. (5.5)

It is informative to decompose A† as a sum of steady and unsteady parts,

A† = Ã + (As − F †)

where the steady part As , corresponding to the topography-generated local mean-flow
distortion, satisfies

1
2
A2

s +

∫ ∞

−∞
G(X̄; ξ )(As,ξξ + s̄2As) dξ =

∫ ∞

−∞
G(X̄; ξ )(F †

ξξ + s̄2F †) dξ.

The unsteady motion is then governed by

ÃT † + ÃÃX̄ + (AsÃ)X̄ +
∂

∂X̄

∫ ∞

−∞
G(X̄; ξ )(Ãξξ + s̄2Ã) dξ = −2λ2PI,X̄. (5.6)

In the absence of topography (F = As = 0), this is a forced extended BDO equation,
with incoming gravity waves appearing as a natural physical source. When topography
is present, the equation has an additional term (AsÃ)X̄ so that the coefficients now
depend on X̄. Obviously topography acts as a scatter. Equation (5.6) provides a
relatively simple framework to study nonlinear response of the boundary layer to
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gravity waves, with or without topography. Gravity waves propagate at a common
speed c, if their streamwise and vertical wavenumbers, α and β , obey the relation
α2 + β2 = s2/(1 − c). A wavepacket consisting of these components may provoke
within the boundary layer, disturbances which are synchronized in phase and hence
may appear like a solitary wave. Equation (5.6) also describes nonlinear scatting
of an oncoming instability wave or wavepacket. These topics are worth further
study.

6. Summary and concluding remarks
As an integral part of our investigation of instability and waves in a stratified

boundary layer, we demonstrated that the viscous instability modes described in
Part 1 are intrinsically coupled with internal gravity waves in the presence of
a localized topography. The two-way coupling involves two fundamental physics
processes, receptivity and radiation. On the one hand, gravity waves originating from
a distant source can interact with the topography-induced local distortion to excite
instability modes. Conversely, boundary-layer instability modes, on approaching a
topography, can be scattered into gravity waves. Two further interesting findings
were made in the present study: (a) gravity waves impinging on the boundary layer
almost vertically can be over-reflected; and (b) the radiated gravity waves are found
to interfere with the source.

Interpreted in the context of the atmospheric boundary layer, the present theoretical
results suggest that several specific phenomena could be observed. For instance, when
gravity waves in moving air propagate over a hill, spatially growing waves are expected
in the downstream region. Such a receptivity process may play a role in triggering
intermittency in nocturnal boundary layers. Likewise, when instability waves approach
a hill, we may expect to observe considerable gravity waves, possibly in the form of
distinct beams, being emitted from the lee side of the hill. Interaction of instability
waves with a mountain has been reported by Reinking et al. (2003). However, the
instability waves were of K-H type, and the attention was on the flow upstream of
the mountain. Although gravity-wave generation has been a topic of a great deal of
interest, past field investigations have not focused on the specific scenario of radiation
due to instability waves interacting with topography as described in the present study.
The relevance of receptivity in the atmospheric wave motions does not appear to
have been explicitly recognized. Instability itself has often been viewed as triggering
the excitation process; the crucial role of scale conversion has not been realized. We
hope that the present theoretical work will provide some stimulus and new focus for
further field observations.

The coupling with freely propagating gravity waves facilitates long-range effects: a
distant event may trigger a major local flow activity and vice versa. Such a two-way
coupling implies that there is an active exchange of momentum and energy between the
regions inside and outside the atmospheric boundary layer. This may have important
implications for parameterizing the boundary-layer effect on the general circulation
of the atmosphere. Although in the present study, the coupling with internal gravity
waves via topography is demonstrated for the viscous instability modes, the scenario
and physical concepts are believed to be general. Inviscid instability modes of K-
H type are likely to be coupled with gravity waves as well via topography. Such
receptivity and radiation problems concerning K-H instability waves require further
investigations.
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