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Recent work in constructive mathematics shows that Hilbert’s program works for a large

part of abstract algebra. Using in an essential way the ideas contained in the classical

arguments, we can transform most of the highly abstract proofs of ‘concrete’ statements into

elementary proofs. Surprisingly, the arguments we produce are not only elementary but also

mathematically clearer, and not necessarily longer. We present an example where the

simplification was significant enough to suggest an improved version of a classical theorem.

For this we use a general method to transform some logically complex first-order formulae

into a geometrical form, which may be interesting in itself.

1. Introduction

The purpose of this paper is to survey some of our recent work in constructive algebra

(Coquand and Lombardi 2002; Coquand et al. 2005; Coquand 2004; Coquand 2005;

Coquand et al. 2004; Coste et al. 2001) from the point of view of mathematical logic. We

illustrate the relevance of simple logical considerations in the development of constructive

algebra.

We analyse the logical complexity of statements and proofs in abstract algebra. Two

notions of formulae, one geometric the other first-order, will play an important role. The

two notions are in general incomparable. Both notions have a fundamental ‘analytical’

property: if a statement is formulated in first-order logic and has a proof, then we know

that it can be proved in a first-order way. Similarly, if a geometric statement holds, it

has a constructive proof with a particularly simple tree form (Bezem and Coquand 2003;

Coquand 2005; Coste et al. 2001).

We first present some basic examples in algebra, which are directly formulated with the

required logical complexity: the first is an implication between equational statements, and

the second is coherent, that is geometric and first-order. We then present a more elaborate

example, which was a mathematical conjecture and for which a first-order formulation is

not obvious. We can further transform it to a coherent formulation. Knowing a priori that

we had to look for an ‘analytical’ proof involving simple algebraic manipulations only

then helps in finding a proof. We then show on one concrete example, due to Kronecker,

that in this way we can get non-trivial algorithms on polynomials. One main theme,

which is also present in Ducos et al. (2004) is the elimination of Noetherian hypotheses

to get a proof of simple first-order statements. In some complex examples one needs a
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concrete interpretation of the notion of minimal prime ideals, and we present such an

interpretation.

2. Logical complexity

The theory of commutative rings is a first-order theory, and is actually even equational.

We need 3 symbols of functions +,×,− (we will often write ab for a × b), two constants

0, 1 and the axioms

x + (−x) = 0, x + (y + z) = (x + y) + z, x + y = y + x, x + 0 = x

x1 = x, xy = yx, x(yz) = (xy)z, x(y + z) = xy + xz .

Some elementary concepts and theorems of commutative abstract algebra can be formu-

lated in this language. For instance, the notion of integral ring is not equational but can

be represented by the universally quantified first-order formula

xy = 0 → (x = 0 ∨ y = 0) .

By the completness theorem of first-order logic, we know that if a theorem can be

formulated in a first-order way, it has a proof in first-order logic. Furthermore, if it is

formulated equationally, we even know, by Birkhoff’s completness theorem, that there

is a purely equational proof. As we shall explain below, this can be seen as a partial

realisation of Hilbert’s program.

However, if we take a basic book in abstract algebra, such as Atiyah and Macdon-

ald (1969) or Matsumura (1986), we discover that even basic theorems are not formulated

in a first-order way because of the introduction of abstract notions. These abstract notions

include:

1 arbitrary ideals of the rings, which are defined as subsets and are not a first-order

notion;

2 prime or maximal ideals, whose existence usually relies on Zorn’s lemma;

3 Noetherian hypotheses.

These notions have different levels of non-effectivity. The property of being Noetherian

can be captured by a generalised inductive definition (Jacobson and Lofwall 1991), but

then we leave first-order logic. The notion of prime ideals seems even more ineffective,

the existence of prime ideals being usually justified by the use of Zorn’s lemma.

Furthermore, a notion such as ‘being nilpotent’ cannot be expressed in a first-order way

since it involves an infinite countable disjunction.

G. Wraith (Wraith 1980) points out the relevance of the notion of geometric formulae for

constructive algebra. One defines first the notion of positive formulae: a positive formula

is one formula of the language of rings built using positive atomic formulae (equality

between two terms) and the connectives ∨,∧. Special cases are the empty disjunction,

which is the false formula ⊥, and the empty conjunction, which is a true formula. We also

allow existential quantification and infinite disjunction indexed over natural numbers†. A

† Sometimes, the notion of an ‘arbitrary’ infinite disjunction is allowed, but in this paper we shall only need

this generality in the final section.
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geometric formula is an implication between two positive formulae. A coherent formula is

a formula that is both geometric and first-order. Note that, as special cases, any positive

formula is geometric, and the negation of a positive formula is geometric. As a special

case of a coherent formula, we have the notion of a Horn formula, which is an implication

C → A where C is a conjunction of atomic formulae and A is an atomic formula. Horn

theories correspond to the notion of an atomic system in Prawitz (1971). For example,

equational theories are Horn theories.

A coherent way to express the fact that a ring is a field is

∀x.x = 0 ∨ ∃y.xy = 1 .

On the other hand, the following formula, classically equivalent, is not geometric

∀x.(¬x = 0) → ∃y.xy = 1 .

The notion for a ∈ R to be nilpotent is not first-order, but it can be expressed as a

positive formula: a is nilpotent if and only if an = 0 for some n ∈ �. On the other hand,

‘being reduced’, that is to have only 0 as a nilpotent element, can be expressed by the

following Horn formula

∀x.x2 = 0 → x = 0 .

Another typical example (Wraith 1980) of a notion expressed geometrically is the notion

of a flat module M over a ring R. This says that if we have a relation PX = 0 where P is

a row vector with coefficient in R and X is a column vector with elements in M, then we

can find a rectangular matrix Q and a vector Y such that QY = X and PQ = 0. Since

we do not say anything about the size of Q, this statement implicitly involves an infinite

disjunction over natural numbers. Thus, the notion of a flat module is not first-order but

geometric.

As stressed by G. Wraith, the importance of geometric formulae comes from Barr’s

Theorem.

Theorem 2.1. If a geometric sentence is deducible from a geometric theory in classical

logic with the axiom of choice, it is also deducible from it intuitionistically.

Furthermore, in this case there is always a proof with a simple branching tree form, a

dynamical proof (Coquand 2005; Bezem and Coquand 2003; Coste et al. 2001). In general,

this tree may be infinitely branching, but if the theory is coherent, that is, geometric and

first-order, the proof is a finitely branching tree.

In order to describe these proofs, it is convenient first to note that any coherent formula

is equivalent to a conjunction of formulae of the form C → D where C and D are given

by the following grammar:

C ::= 1 | C ∧ A D ::= 0 | D ∨ E E ::= (∃−→v )C .

Here 0 and 1 represent the empty disjunction and conjuntion, respectively. We may write

D for 1 → D, A for 1 ∧ A, and so on, to economies on empty conjunctions, disjunctions,

existential quantifications and brackets as much as possible. We will call a closed atomic

formula a fact. In most algebraic theories, the only facts are equalities. We can thus
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consider a coherent theory to be a collection of formulae of the form C → D. We look

at the formulae of the theory T as a collection of rules. The purpose of a dynamical

proof is to establish the correctness of a fact with reference to some given set of facts X

and the dynamical rules belonging to T , starting from a given set of facts. A dynamical

proof shows when a given fact F is a consequence of the given set of facts X. Formally, a

dynamical proof is a rooted tree. At the root of the tree is the set of facts X that we start

with. Each node consists of a set of facts, representing a state of information. The sets

increase monotonically as we progress from the root to the leaves. The successors of a node

are determined by the dynamical rules, which add new information to the set of already

available atomic formulas. The different immediate successors of a node correspond to

case distinctions. Every leaf of a dynamical proof contains either a contradiction or the

fact F under investigation. If all leaves contain a contradiction, the given set of atomic

formulas is contradictory.

In the special case in which all formulae are of the form C → A, the tree has no

branching. We get something equivalent to the notion of the atomic systems introduced

by Prawitz (Prawitz 1971). In particular, equational theories are of this form. The crucial

point is that this notion of a dynamical proof is complete for deducibility in a coherent

theory, and that a dynamical proof uses only intuitionistically valid inference steps. Barr’s

theorem, which we have cited above, follows from this: if a geometric sentence is deducible

from a geometric theory in classical logic, even with the axiom of choice, it is a semantical

consequence of the theory, and so, by completeness, it can be derived by a dynamic proof.

In the more general case of a geometric theory, where we also allow countable

disjunctions in positive formulae, we have to generalise the notion of a dynamical proof

with countable branching, but it can be proved that completeness still holds.

We can now explain the sense in which these completeness theorems can be seen as a

realisation of Hilbert’s program. We consider the facts, or atomic sentences, as concrete

statements. A dynamic proof can be seen as a ‘logic-free’ and elementary way of deriving

new concrete statements from a given collection of concrete statements. By completeness,

we know that if we can derive a concrete statement from this theory with the use of ideal

methods (typically using Zorn’s lemma), there is also an elementary derivation. Prawitz

has a similar analysis for the case of Horn theories.

It is suggestive to interpret the construction of such a dynamical proof in computational

terms: each geometric axiom can be interpreted as the specification of a subprogram. The

actual computation of a witness using these subprograms can then be seen as a branch

in the dynamical proof. For instance, the coherent axiom for fields

x = 0 ∨ ∃y.1 = xy

can be seen as the specification of a program that, given an element a, tests whether a = 0

or not, and in the later case, gives an element b such that ab = 1.

However, both the completeness theorem and Barr’s theorem are purely heuristic results

from a constructive point of view. Indeed, they are both proved using non-constructive

methods, and do not give algorithms to transform a non-effective proof to an effective

one. In practice, however, in all the examples analysed so far, it has been possible to

extract effective arguments from the ideas present in the non-effective proofs.
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3. Some basic examples

In this section we provide two elementary examples where Barr’s theorem can be invoked.

They are directly expressed with the appropriate logical complexity. In the next section,

we present more elaborate examples where some work has to be done in order to get

the right logical complexity. For the first example of this section, Birkhoff’s complete-

ness theorem for equational logic is enough. Both examples appear at the beginning of

Matsumura (1986).

3.1. Dimension over rings

The following result is usually proved using maximal ideals (Matsumura 1986).

Theorem 3.1. If n < m and f : Rn → Rm is a surjective linear map, then 1 = 0 ∈ R.

What is the logical complexity of this statement? If we fix n and m, say n = 2 and

m = 3, the statement becomes an implication from a conjunction of equalities to 1 = 0.

More precisely, the hypothesis is that we have a 2 × 3 matrix P and a 3 × 2 matrix Q such

that PQ = I . That is, we have 9 equations of the form

pi1q1j + pi2q2j = δij

with i, j = 1, 2, 3.

A typical classical proof uses the existence of maximal ideals: if R is non-trivial, it has

a maximal ideal m. If k = R/m, we have a surjective map from kn to km, and this is a

contradiction.

It is possible to transform this argument into equational reasoning. Here we simply

note that the concrete statement means that 1 belongs to the ideal generated by pi1q1j +

pi2q2j − δij , seeing pik, qkj as indeterminates, and this can be certified with a simple algebraic

identity.

3.2. Projective modules over local rings

We shall analyse a standard theorem on local rings. Classically, a local ring is defined to

be a ring with only one maximal ideal. Constructively, the locality of R is expressed by

the coherent formula

Inv(x) ∨ Inv(1 − x)

where Inv(a) means ∃y.ay = 1. That this condition is equivalent to the implication

Inv(x + y) → (Inv(x) ∨ Inv(y))

can be seen directly. We have

Inv(xy) ↔ (Inv(x) ∧ Inv(y)) .

It then follows that for all x and y we have

Inv(x) ∨ Inv(1 − xy) .
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Classically, it is possible to derive

Inv(x) ∨ ∀y.Inv(1 − xy)

from this, but constructively this inference is not justified. The last statement says that

any element x is invertible or belongs to the Jacobson radical of R, which is classically

the intersection of all maximal ideals of R. It is easy to see that this is the same as the set

of elements x such that all 1 − xy are invertible, and this is a first-order characterisation

of the Jacobson radical. Thus, we have shown classically that in a local ring an element

is invertible or in the Jacobson radical. It follows that the Jacobson radical is the unique

maximal ideal of R.

We now analyse the following theorem.

Theorem 3.2. If M is a finitely generated projective module over a local ring R, then M

is free.

The concrete formulation of this theorem is as follows (Lombardi and Quitte – to

appear).

Theorem 3.3. If F is an idempotent square matrix over a local ring R, then F is similar

to a matrix of the form (
Ir 0

0 0

)

The statement of this theorem, for a fixed size of F , is expressed in coherent logic.

We have a first-order classical derivation, which we can transform by proof-theoretic

methods to a constructive first-order derivation.

Proof (classical). Let f1, . . . , fn be the column vectors of the matrix F , and e1, . . . , en be

the column vectors of the identity matrix In, that is, the canonical basis of Rn, so that

e1 − f1, . . . , en − fn are the column vectors of the matrix In − F . We have that f1, . . . , fn
generate Im(F), and e1 −f1, . . . , en −fn generate Im(In −F). Also, Rn = Im(F)⊕Im(In −F).

Let J be the Jacobson radical of R, so that R/J = k is a field, classically. We can extract

from f1, . . . , fn and e1 − f1, . . . , en − fn a basis g1, . . . , gn of kn such that, for each i, we have

Fgi = gi or 0, that is, each gi is either in Im(F) or in Im(In − F). We can assume that we

first group the vectors in Im(F). The determinant of the matrix P = g1, . . . , gn is not 0

modulo J , hence it is invertible in R, and g1, . . . , gn is a basis of Rn. The matrix PFP−1

then has the desired form.

It is interesting that the constructive argument we give next, which is extracted from

this proof, is both simpler and more precise than the classical argument.

Proof (constructive). We build by induction a sequence of column vectors f′
1, . . . , f

′
n

such that f′
i = fi or ei − fi, and that for each m the top m × m minor of the matrix

f′
1, . . . , f

′
m is invertible. This is possible because the sum of the minor for f′

1, . . . , f
′
m−1, fm

and the minor for f′
1, . . . , f

′
m−1, em − fm is the minor for f′

1, . . . , f
′
m−1, em, which is invertible

by induction.
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In this way, we build an invertible matrix f′
1, . . . , f

′
n. We also have Ff′

i = f′
i or 0 for

each i. For a suitable permutation g1, . . . , gn of these vectors, we get a matrix P such that

PFP−1 has the required form.

Note that the constructive proof can be read as an algorithm: given the matrix F and

the ‘subprogram’ that for each x decides whether x or 1 − x is invertible, it computes an

invertible matrix P such that PFP−1 has the required form.

Theorem 3.3 has an interesting history in intuitionistic algebra. It was noted in

Mulvey (1974) that an intuitionistic proof of this result could be used to give an

alternative proof of Swan’s theorem relating fibre bundles on a compact Hausdorff

space M with finitely generated projective modules over the ring C(M) (Swan 1962). The

result in (Mulvey 1974) is formulated in higher-order intuitionistic logic. In Reyes (1978)

it is noted that one can formulate the theorem in first-order logic. The formulation

there, which is attributed to A. Kock, is a priori weaker than the formulation of

Theorem 3.3†.

Theorem 3.4. If F is an n × n projection matrix over a local ring R, we can find an n × r

matrix X and an r × n matrix Y such that XY = F and Y X = Ir .

This is essentially what is proved in Mulvey (1974). Note, however, that the proof there

uses, a priori, the fact that an element is invertible or not, and so is not, as it stands,

intuitionistically valid. Here we present an intuitionistic version of this argument, which

is very close to the classical argument.

Proof. Suppose that we have m column vectors that form a n×m matrix X = U1, . . . , Um

that generate Im(F) (we start with m = n and X = F .) We can then find an m × n matrix

Y such that XY = F (to start, we can take X = F and Y = In or Y = F .) Then

Y X = G is an m × m projection matrix since G2 = Y XY X = Y X = G. We also have

XG = XY X = FX = X. If we write G = (cij), we have Uj = ΣcijUi for each j. Since R is

local, cjj is invertible or 1 − cjj is invertible.

If 1 − cjj is invertible for some j, we can express Uj in term of Ui, i �= j, and reduce m

by one.

Otherwise, cjj is invertible for all j. The determinant of G is of the form r + Πcjj with

r in the ideal generated by cij , i �= j. Since R is local, and Πcjj is invertible, either this

determinant is invertible or there exists i �= j such that cij is invertible. In the later case,

since Uj = ΣcijUi, we can express Ui in terms of Ul, l �= i, and reduce m by one. In the

former case, we have that G is invertible. Since G(Im − G) = 0, this implies G = Im, and

we have finished.

† In our formulation, we assume that both the image and the kernel of F are free. The formulation of

Reyes (1978) assumes only that the image of F is free. However, since the kernel of F is the image of In − F ,

and the theorem holds for all projection matrix, the two formulations turn out to be equivalent.
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4. Serre’s splitting-off theorem

4.1. Classical formulation

The example we are going to present has its origin in a paper of Serre from 1958

(Serre 1957/1958). It is a purely algebraic theorem, but with a geometrical intuition. The

geometrical statement is roughly that if we have a vector fibre bundle over a space of finite

dimension, and each fibre has a large enough dimension, we can find a non-vanishing

section. We first give the classical formulation, in which both hypotheses and conclusions

have a non-elementary form, and then a version in which the conclusion is first-order.

We assume R to be a Noetherian ring, and let Max(R) be the space of maximal ideals

with the topology induced from the Zariski topology. We assume that the dimension of

Max(R) is finite and < n (that is there is no proper chain of irreducible closed sets of

length n). For instance, if R is a local ring, then Max(R) is a singleton and we can take

n = 1.

If M is a finitely generated module over R and x is a maximal ideal of R, then M/xM is

a finite-dimensional vector space over R/x and we let rx(M) be its dimension. Intuitively,

M represents the module of global section of a vector bundle over the space Max(R) and

rx(M) is the dimension of the fibre at the point x. If s ∈ M, it is suggestive to write s(x)

the equivalence class of s in M(x) = M/xM. Intuitively, s(x) is a continuous family of

sections.

Theorem 4.1 (Serre 1958). If M is a finitely generated projective module over R such

that n � rx for all maximal ideals x of R, there exists s ∈ M such that s(x) �= 0 for all

x ∈ Max(R).

The first step is to give a more concrete formulation of this result. We give only the

end result (Coquand et al. 2004; Lombardi and Quitte – to appear). If F is a matrix over

R, we let ∆k(F) be the ideal generated by all minors of F of order k. We say that a vector

of elements of R is unimodular if and only if 1 belongs to the ideal generated by these

elements. With the same hypothesis as before, that the dimension of Max(R) is < n, we

can state the following result.

Theorem 4.2 (Serre 1958 – concrete version). If F is an idempotent matrix over R and

∆n(F) = 1, then there exists a linear combination of the columns of F that is unimodular.

Interestingly, in this form, the theorem can then be seen as a special case of Swan’s

Theorem (Swan 1967), which is a theorem that was conjectured by Serre. We give the

abstract form of the theorem first.

Theorem 4.3 (Swan 1967). If M is a finitely generated module over R such that for each

x ∈ Max(R) the fibre M(x) can be generated by p elements, then M can be generated by

p + n − 1 elements.

Theorem 4.4 (Swan 1967 – concrete version). If F is a rectangular matrix over R and

∆n(F) = 1, then there exists a linear combination of the columns of F that is unimodular.

https://doi.org/10.1017/S0960129506005627 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005627


A logical approach to abstract algebra 893

Only the concrete formulation of these two results reveals their similarities. The

generalisation of these theorems to the non-Noetherian case was first established in

Coquand et al. (2004), by analysing the paper Heitmann (1984) using the techniques that

are presented in this paper.

Note that the conclusion of this theorem is expressed in first-order logic, and even

positively. The hypothesis, however, is non-elementary: we suppose both that R is

Noetherian and that we have a hypothesis on the dimension of Max(R). It was conjectured

that the theorem holds without the hypothesis that R is Noetherian, and this is the

statement we want to analyse. We will leave expressing the hypothesis of the theorem

dim (Max(R)) < n in a first-order way.

4.2. Geometric formulation of the Krull dimension

The first step is to give an elementary formulation of the notion of the Krull dimension.

This is not so easy a priori since the usual definition is in terms of a chain of prime

ideals: a ring R is of Krull dimension < n if and only if there is no proper chain of prime

ideals of length n. An elementary definition is presented in Coquand et al. (2005). We

first introduce the notion of the boundary of an element of a ring: the boundary Na of a

is the ideal generated by a and the elements x such that ax is nilpotent. We then define

inductively Kdim R < n: for n = 0 it means that 1 = 0 ∈ R, and for n > 0 it means that

we have Kdim (R/Na) < n − 1 for all a ∈ R.

For each n, we get a formulation of Kdim R < n that is positive, but not first-order.

For instance, Kdim R < 1 is expressed by the formula

∀x.∃a.
∨
k∈�

xk(1 − ax) = 0 ,

while Kdim R < 2 is expressed by

∀x, y.∃a, b.
∨

k,l∈�

yk(xl(1 − ax) − by)) = 0 .

We can now express the concrete form of the non-Noetherian version of Forster’s theorem

(which motivated Swan’s theorem in the Noetherian case).

Theorem 4.5 (Heitmann 1984 – concrete version). If Kdim R < n and F is a rectangular

matrix over R such that ∆n(F) = 1, then there exists a linear combination of the columns

of F that is unimodular.

The formulation is now geometric (but not first-order). The hypothesis is a positive

statement (of the form ∀∃, but the existential quantification is over natural numbers) and

the conclusion is purely existential. We expect it to have a constructive proof, which,

furthermore, will have a very simple nature. In this case, it is enough to extract this

direct proof from the argument in Heitmann (1984). This is carried out in Coquand et al.

(2004).
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4.3. A new notion of dimension

We now present a notion of dimension, which was introduced in Coquand et al. (2004)

and appears implicitly in Heitmann (1984). This notion is finer than the notion of the

Krull dimension: we always have Hdim R � Kdim R. Interestingly, Hdim R � n can be

expressed by a first-order formula, but the logical complexity of this formula increases

with n, contrary to Kdim R � n, which stays a positive formula for all n.

We get this definition by changing the nilradical in the definition of the Krull dimension

by the Jacobson radical J , which is classically the intersection of all maximal ideals, but

can be defined in a first-order way as the set of elements a such that 1 − ax is invertible

for all x ∈ R. We then introduce a new notion of the boundary of an element of a ring:

the boundary Ja of a is the ideal generated by a and the elements x such that ax is in the

Jacobson radical of R. We then define Hdim R < n inductively: for n = 0 it means that

1 = 0 ∈ R, and for n > 0 it means that we have Hdim (R/Ja) < n − 1 for all a ∈ R.

What is the logical complexity of Hdim R < n? For n = 1 we get that Hdim R < n

means

∀x.∃a.∀y.∃b.1 = b(1 − yx(1 − ax)) ,

which is a prenex formula with two alternations of quantifiers. For n = 2 we get an even

more complex formula, and the logical complexity increases with n.

In this way we get a way to state a plausible non-Noetherian version of Swan’s theorem

in a purely first-order way as an implication

Hdim R < n → ∆n(F) = 1 → ∃X,Y .1 = XFY ,

where X is a row vector and Y a column vector. For a given n and a given size of F this

is a first-order statement.

The form of the statement for Hdim R < n is particular since it is a purely prenex

formula. It is then possible to conclude using general proof-theoretic arguments that if we

have a first-order classical proof, we also have an intuitionistic proof. From proof theory,

one can use the Gentzen sharpened Hauptsatz (Gentzen 1969), or a negative translation.

Yet another logical analysis can be obtained using the notion of Skolem functions, and

we think that we provide an example that illustrates well the strength of this notion. We

illustrate the idea for n = 1 only. We have seen that Hdim R < 1 is equivalent to

∀x.∃a.∀y.∃b.1 = b(1 − yx(1 − ax)) .

If we add two Skolem functions f(x) and g(x, y) to the language of rings, we can

reformulate this as

1 = g(x, y)(1 − yx(1 − xf(x))) .

The non-Noetherian version of Swan’s theorem then takes a particularly simple form,

because in this equational theory, extended with the equation ∆1(F) = 1, we can build a

row vector X and a column vector Y such that 1 = XFY .

It can be checked that if R is Noetherian, Hdim R < n if and only if dim (Max(R)) < n.

A possible generalisation of Serre’s theorem can thus be formulated as follows.
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Theorem 4.6 (Coquand et al. 2004). If Hdim R < n and F is a rectangular matrix over R

such that ∆n(F) = 1, then there exists a linear combination of the columns of F that is

unimodular.

The formulation of this theorem is now purely coherent, in a coherent theory that has

a specially simple form (no branching). If it holds, it has a purely elementary proof, and

knowing this helps in finding a proof (Coquand et al. 2004). We can, furthermore, read

the proof presented in Coquand et al. (2004) as an algorithm that produces a unimodular

column.

5. Kronecker’s Theorem

In this section we show that, though these results may seem quite abstract, as they are

expressed in first-order logic and are a priori far from actual computations, they can

be used to get concrete computations on polynomials. The previous example of Serre’s

Theorem may involve too complicated computations, and we shall analyse a simpler

statement, the abstract version of a theorem of Kronecker (Heitmann 1984; Coquand

2004). In this case, it is possible to get from an abstract proof a concrete algorithm that

could have been formulated by Kronecker (Edwards 2005). We first give the abstract

version, which is proved in (Coquand 2004).

Theorem 5.1. If Kdim R � n and we have n + 2 elements g0, g1, . . . , gn+1, it is possible

to find n + 1 elements f0, f1, . . . , fn such that g0, g1, . . . , gn+1 and f0, f1, . . . , fn generate the

same radical ideal.

This means that some power of fj is zero mod g1, g2, . . . , gn+2 and some power of

gi is zero mod f1, f2, . . . , fn+1. This theorem is expressed in geometric logic, and has a

simple inductive proof (Coquand 2004). To simplify the discussion, we take n = 2. As

we have explained, the meaning of Kdim R � 2 is that for all x1, x2, x3 ∈ R there exists

p1, p2, p3 ∈ R and k1, k2, k3 ∈ � such that

pk3

3 (pk2

2 (pk1

1 (1 − p1x1) − p2x2) − p3x3) = 0 .

Theorem 5.1 can thus be interpreted as follows: given such an algorithm that produces

such an algebraic identity taking as input x1, x2, x3 ∈ R, we can give another algorithm,

which produces f0, . . . , f2 as a function of g0, . . . , g3.

Furthermore, this algorithm is simple and explicit, corresponding to the simplicity of

the proof in Coquand (2004), given the algorithm corresponding to Kdim R � 2. Given

g1, g2, g3, we find p1, p2, p3 and k1, k2, k3 such that

pk3

3 (pk2

2 (pk1

1 (1 − p1g1) − p2g2) − p3g3) = 0 ,

and we can then take

f1 = g1 + g0h1, f2 = g2 + g0h2, f3 = g3 + g0h3

where

h1 = 1 − p1g1, h2 = pk1

1 (1 − p1g1) − p2g2, h3 = pk2

2 (pk1

1 (1 − p1g1) − p2g2) − p3g3 .
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The correction of the algorithm follows from the fact that we have

1 ∈ <g1, h1>, g1h1 ∈
√

<g2, h2>, g2h2 ∈
√

<g3, h3>, g3h3 ∈
√

0 .

In Coquand et al. (2005), we present a direct proof that Kdim �[X1, . . . , Xn] � n. For

n = 2 this reduces to the remark that if we take 3 elements g1, g2, g3 in �[X1, X2], they

are algebraically dependent (see Richman et al. (1988) and Edwards (2005)). Such an

algebraic dependence relation can always be written

pk3

3 (pk2

2 (pk1

1 (1 − p1g1) − p2g2) − p3g3) = 0

for some p1, p2, p3 ∈ �[X1, X2]. Thus, we have Kdim �[X1, X2] � 2. Since this algorithm

corresponds to finding an algebraic dependence relation, complex computations are

involved in general.

We can then combine the two algorithms and in this way get a non-trivial algorithm

on polynomials, which, given g0, g1, g2, g3, produces f0, f1, f2 such that g0, g1, g2, g3 and

f0, f1, f2 generate the same radical ideal. In general, we get a constructive proof for the

following result, which is a formulation of Kronecker’s Theorem.

Theorem 5.2. Let polynomials g1, g2, . . . , gm in n indeterminates with rational coefficients

be given, and let m be greater than n+ 1. Construct n+ 1 polynomials f1, f2, . . . , fn+1 in

the same indeterminates that are zero mod g1, g2, . . . , gm and have the property that, for

each i = 1, 2, . . . , m, some power of gi is zero mod f1, f2, . . . , fn+1.

The geometrical interpretation of this statement is that any algebraic variety in �n is

the intersection of at n + 1 hypersurfaces.

6. Elimination of Noetherian hypotheses

It is remarkable that the Noetherian hypothesis could be avoided in the case of Serre’s

Theorem or of the generalisation of Kronecker’s Theorem, Theorem 5.1. The elimination of

Noetherian hypotheses is also a theme in algebraic geometry (Dieudonne 1964). However,

the method usually used there is to reduce the statement to the Noetherian case. This

misses the fact that, given the logical simplicity of the statement without the Noetherian

hypotheses, one can expect a direct simple proof.

We give two examples of this fact. The first appears in Dieudonne (1964) and is

elementary.

Theorem 6.1. If M is a finitely generated module over a commutative ring R and u : M →
M a surjective linear map, then u is bijective.

The proof given in Dieudonne (1964) consists of first proving the statement in the

case for which the ring is Noetherian, and then reducing the general case to this case.

Essentially, the argument for this reduction is as follows: if M is generated by m1, . . . , mk ,

the fact that u is surjective says that we can find rij in R such that mi = Σriju(mj). We also

have sij in R such that u(mi) = Σsijmj . If we let R′ be the subring of R generated by the

elements rij and sij , then R′ is Noetherian. If the proposition is proved in the Noetherian

case, we get an inverse for sij with coefficients in R′ ⊆ R. Hence, u is bijective.

https://doi.org/10.1017/S0960129506005627 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005627


A logical approach to abstract algebra 897

This argument is not satisfactory from a logical point of view since it proves a first-order

statement using a logically complex notion, the notion of being Noetherian. One would

expect a more direct argument. In this case, one can indeed give one elementary argument

that also gives a way to compute the inverse of u as a polynomial in u. For this, let A be

the subring of endomorphisms of M generated by u, that is, the ring of endomorphisms

that are polynomials in u. Then M has the structure of an A-module. Also, if I is the

ideal of A generated by u, we have IM = M, so there exists v ∈ A such that vM = 0 and

1 − v ∈ I (this is Corollary 2.5 of Atiyah and Macdonald (1969), which has an elementary

proof). But vM = 0 means v = 0, so 1 ∈ I , that is, u is invertible.

The second example is more complex, and comes from Swan (1980). We say that R is

seminormal if and only if, if b2 = c3, there exists a ∈ R such that b = a3 and c = a2. This

is a remarkably simple, and first-order, condition. Swan (1980) shows that for reduced

rings this is a necessary and sufficient condition for the canonical map Pic R → Pic R[X]

to be an isomorphism. The proof in Swan (1980) consists of reducing the problem to the

case in which R is Noetherian.

In this case also the theorem can be formulated in a geometric way. Here, we just give

the concrete formulation.

Theorem 6.2. If R is seminormal and M is an idempotent matrix of rank 1 over R[X]

such that there is a unimodular combination of the columns of M(0) over R, then there

is a unimodular combination of the columns of M over R[X].

The hypotheses are coherent without branching for a fixed size of the matrix. One then

expects a priori a direct elementary proof. This is indeed the case, and was carried out in

Coquand (2006).

There are examples in algebra, such as Krull’s Principal Ideal theorem or the Reg-

ular Element Property, which states that a regular ideal contains a regular element

(Kaplansky 1974), where the Noetherian hypothesis is necessary.

7. Interpretation of minimal prime ideals

Besides Noetherian hypotheses, proofs in algebra use abstract objects such as prime ideals,

and even minimal prime ideals, that is, prime ideals that are minimal for inclusion. This

is used, for instance, in the classical proof of Theorem 6.2, and in Peskine’s proof of

Zariski’s Main Theorem (Peskine 1966). Classically, the existence of such prime ideals rely

on Zorn’s lemma. Contrary to the use of Noetherian hypotheses, it can be shown generally

that the use of minimal prime can always be eliminated. To simplify, we just consider the

case in which the commutative ring R is reduced, that is, we add the first-order axiom

x2 = 0 → x = 0 ,

and show in this case how to interpret the existence of a minimal prime ideal of R.

We first recall the elementary description of the Zariski spectrum of R, following

Joyal (Coquand and Lombardi 2002; Joyal 1975). We consider the following coherent
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proposition theory, with axioms

¬D(0) = 0, D(1), D(fg) ↔ D(f) ∧ D(g), D(f + g) → D(f) ∨ D(g) .

It can be shown directly that

D(g1) ∧ . . . ∧ D(gn) → D(f1) ∨ . . . ∨ D(fm)

holds if, and only if, the monoid generated by g1, . . . , gn meets the ideal generated by

f1, . . . , fm (Coquand and Lombardi 2002). Since R is reduced, ¬D(f) is derivable in this

theory if and only if f = 0 in R. This is a constructive interpretation of the fact that the

intersection of all prime ideals of R is {0}.
A ‘model’ of the propositional theory D(f) corresponds classically to a complement of

a prime ideal. In order to get a complement of a minimal prime ideal, it is enough to add

the axiom

D(f) ∨
∨
gf=0

D(g) . (∗)

Indeed, the axiom says that {f ∈ R | D(f)} is a maximal filter, and thus that its complement

is a minimal prime ideal. The axiom (∗) is a geometric infinitary axiom. Taken with the

previous coherent axioms, this defines a geometric theory M whose models are classically

the complement of minimal prime ideals. We are going to show the formal consistency of

this theory M by building constructively a topological model. For this we introduce the

orthogonality relation: f ⊥ g if and only if fg = 0. If X ⊆ R, we define the orthogonal of

X to be

X⊥ = {y ∈ R | ∀x ∈ X.y ⊥ x} .
It is standard (Birkhoff 1967) that the lattice of sets equal to their biorthogonal is a

complete lattice L. In L we have ∨Xi = (∪Xi)
⊥⊥ and ∧Xi = ∩Xi.

Theorem 7.1. The lattice L is a complete Heyting algebra. Furthermore, if we take

D(f) = f⊥⊥ ∈ L, we get a model of the theory M of the complement of minimal prime

ideals.

Proof. Note first that if X ∈ L and a ∈ X, then au ∈ X for all u ∈ R. Indeed, if b ∈ X⊥,

we have ab = 0, so aub = 0. This implies au ∈ X⊥⊥ = X. From this fact, it follows by

elementary reasoning that we have X ∧ (∨Yi) = ∨(X ∧ Yi) in L, that is, L is a complete

Heyting algebra. The axiom (∗) is satisfied since, if a ∈ f⊥ and a ∈ g⊥ for all g ⊥ f, we

have a ⊥ f and thus a ⊥ a. This implies a2 = 0, so a = 0 since R is reduced.

Corollary 7.2. D(f) = 0 is derivable in the theory M iff f = 0. More generally, we can

derive D(f1) ∧ . . . ∧ D(fn) → D(g1) ∨ . . . ∨ D(gm) in the theory M iff hg1 = . . . = hgm = 0

implies hf1 . . . fn = 0.

Proof. If D(f1) ∧ . . .∧D(fn) → D(g1) ∨ . . .∨D(gm) is derivable, we have, by the previous

theorem,

f⊥⊥
1 ∩ . . . ∩ f⊥⊥

m ⊆ (g⊥
1 ∩ . . . ∩ g⊥

m )⊥ ,

which is equivalent to g⊥
1 ∩ . . .∩g⊥

m ⊆ (f1 . . . fn)
⊥. Conversely, if hg1 = . . . = hgm = 0 implies

hf1 . . . fn = 0 and D(f1 . . . fn) holds, it follows from (∗) that we have D(g1) ∨ . . . ∨ D(gm).
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In particular, D(f) = 0 is derivable so we get f⊥ = R, and thus f = 0.

One interpretation of this corollary is that the intersection of all minimal prime ideals

of R is {0}. This gives an effective interpretation of the existence of minimal prime ideals.

Note that a consequence of the theory M is

D(f) ∨ ¬D(f) , (∗∗)

and this gives a direct explanation of why the Krull dimension decreases by at least one

when we quotient R by the boundary ideal Nf of f: the prime ideals of R/Nf corresponds

exactly to the prime ideals containing Nf , and (∗∗) implies that no minimal prime ideals

of R contain Nf .
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Joyal, A. (1975) Le théorème de Chevalley-Tarski. Cahiers de Topologie et Géométrie Différentielle
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Swan, R.G. (1962) Vector bundles and projective modules. Trans. Amer. Math. Soc. 105 264–277.

Swan, R.G. (1967) The Number of Generators of a Module. Math. Z. 102 318–322.

Swan, R.G. (1980) On Seminormality. Journal of Algebra 67 210–229.

Wraith, G. (1980) Intuitionistic algebra: some recent developments in topos theory. Proceedings

of the International Congress of Mathematicians (Helsinki, 1978), Acad. Sci. Fennica, Helsinki

331–337.

https://doi.org/10.1017/S0960129506005627 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005627

