
Combinatorics, Probability and Computing (2014) 23, 539–550. c© Cambridge University Press 2014

doi:10.1017/S0963548314000182

Counting Independent Sets in Hypergraphs

JEFF COOPER1, KUNAL DUTTA2† and DHRUV MUBAYI1‡

1Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, IL 60607,

USA

(e-mail: jcoope8@uic.edu, mubayi@uic.edu)

2Algorithms and Complexity Department, Max Planck Institute for Informatics, Saarbrücken, Germany

(e-mail: kdutta@mpi-inf.mpg.de)

Received 11 October 2013; revised 8 February 2014; first published online 8 April 2014

Let G be a triangle-free graph with n vertices and average degree t. We show that G

contains at least

exp

(
(1 − n−1/12)

1

2

n

t
ln t

(
1

2
ln t − 1

))

independent sets. This improves a recent result of the first and third authors [8]. In

particular, it implies that as n → ∞, every triangle-free graph on n vertices has at least

e(c1−o(1))
√
n ln n independent sets, where c1 =

√
ln 2/4 = 0.208138 . . .. Further, we show that

for all n, there exists a triangle-free graph with n vertices which has at most e(c2+o(1))
√
n ln n

independent sets, where c2 = 2
√

ln 2 = 1.665109 . . .. This disproves a conjecture from [8].

Let H be a (k + 1)-uniform linear hypergraph with n vertices and average degree t. We

also show that there exists a constant ck such that the number of independent sets in H is

at least

exp

(
ck

n

t1/k
ln1+1/k t

)
.

This is tight apart from the constant ck and generalizes a result of Duke, Lefmann and

Rödl [9], which guarantees the existence of an independent set of size

Ω

(
n

t1/k
ln1/k t

)
.

Both of our lower bounds follow from a more general statement, which applies to hereditary

properties of hypergraphs.
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1. Introduction

An independent set in a graph G = (V , E) is a set I ⊂ V of vertices such that no two

vertices in I are adjacent. The independence number of G, denoted α(G), is the size of the

largest independent set in G.

Definition. Given a graph G, i(G) is the number of independent sets in G.

Ajtai, Komlós and Szemerédi [3] gave a semi-random algorithm for finding an

independent set of size at least n
100t

ln t in any triangle-free graph G with n vertices

and average degree t. By analysing their algorithm, the first and third authors [8] recently

showed that, for any such graph,

i(G) � 2
1

2400
n
t log2

2 t. (1.1)

As a consequence, they proved that every triangle-free graph has at least 2Ω(
√
n ln n)

independent sets and conjectured that this could be improved to 2Ω(
√
n ln3/2 n), based on the

best constructions of Ramsey graphs by Kim [12].

In this paper, we give a simpler proof of (1.1), which substantially improves the constant

in the exponent and avoids any analysis of the algorithm in [3]. Further, we show that

our bound is not far from optimal, by disproving the conjecture in [8] and constructing a

triangle-free graph with at most 2O(
√
n ln n) independent sets. The construction is obtained

by modifying the graph obtained by the triangle-free process. Our bounds follow from the

detailed analysis of this process by Bohman and Keevash [6] and Fiz Pontiveros, Griffiths

and Morris [10].

Theorem 1.1. Let G be a triangle-free graph with n vertices and average degree t. Then

i(G) � max

{
exp

(
(1 − n−1/12)

1

2

n

t
ln t

(
1

2
ln(t) − 1

))
, 2t

}
.

Consequently, for every triangle-free graph H on n vertices,

i(H) � exp

(
(1 − o(1))

√
n ln 2 ln n

4

)
.

The constant in the exponent above is
√

ln 2/4 ≈ 0.2081. As we show below, it is not

far from optimal as we have an upper bound with exponent 2
√

ln 2 ≈ 1.665.

Theorem 1.2. For all n, there exists a triangle-free graph G on n vertices with

i(G) � exp
(
(1 + o(1))(2

√
ln 2)

√
n ln n

)
.
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Using random graphs, one can show that for t < n1/3 there is a triangle-free graph G

with independence number at most (2n/t) ln t. Consequently,

i(G) �
α(G)∑
i=1

(
n

i

)
� 2

(
n

α(G)

)
� 2

(
te

2 ln t

) 2n
t ln t

< 2 exp

(
ln (te)

2n

t
ln t

)
= exp

(
(1 + o(1))

2n

t
ln2 t

)
,

so the constant in the exponent of Theorem 1.1 is within a factor of 8 of the best possible

constant.

1.1. Linear hypergraphs

Fix k � 1. Using the semi-random method, Ajtai, Komlós, Pintz, Spencer and Szemerédi

[2] showed that there exists ck such that every (k + 1)-uniform hypergraph H with n

vertices, average degree t, and girth 5 satisfies

α(H) � ck
n

t1/k
ln1/k t.

A hypergraph is linear (or has girth 3) if any two edges intersect in at most one vertex.

Duke, Lefmann and Rödl [9] (using the result of [2]) showed that there exists c′
k such that

every linear (k + 1)-uniform hypergraph H with n vertices and average degree t satisfies

α(H) � c′
k

n

t1/k
ln1/k t.

This leads to our second theorem.

Theorem 1.3. Fix k � 1. There exists c′′
k > 0 such that the following holds: for every (k +

1)-uniform, linear hypergraph H on n vertices with average degree t,

i(H) � exp

(
c′′
k

n

t1/k
ln1+1/k t

)
. (1.2)

Ajtai, Komlós, Pintz, Spencer and Szemerédi [2] observed that, for infinitely many t

and n, there exists a (k + 1)-uniform, linear hypergraph H with n vertices, average degree

t, and independence number at most

b′
k

n

t1/k
ln1/k t.

For this hypergraph,

i(H) � exp

(
b′′
k

n

t1/k
ln1+1/k t

)
,

so (1.2) is tight up to the constant in the exponent.

1.2. Hereditary properties

Colbourn, Hoffman, Phelps, Rödl and Winkler [7] counted the number of partial S(t, t +

1, n) Steiner systems by analysing a semi-random algorithm. Using the same techniques,
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Grable and Phelps [11] extended their result to partial S(t, k, n) Steiner systems. Asratian

and Kuzjurin [5] gave a simpler proof of the bound in [11], which avoids any algorithm

analysis. Theorems 1.1 and 1.3 both follow from a more general result (Theorem 1.4

below), which is based on this simpler proof. Since our proof avoids any analysis of how

the independent sets are obtained, we are able to extend the bound in [8] from triangle-

free graphs to a more general hypergraph setting. Recall that a hereditary property P of

hypergraphs is any set of hypergraphs which is closed under vertex deletion.

Theorem 1.4. Fix k � 1 and ε ∈ (0, 4
k+1

). Let P be any hereditary hypergraph property.

Suppose there exists a non-decreasing function f such that every (k + 1)-uniform hypergraph

H ∈ P with n vertices and average degree at most t satisfies

α(H) � n

t1/k
f(t).

Then there exists n0 = n0(ε) such that every (k + 1)-uniform hypergraph H ∈ P with n � n0

vertices and average degree at most t < nk satisfies

i(H) � exp

(
α′ n

t1/k
ln t

)
,

where

α′ =

⎧⎪⎪⎨
⎪⎪⎩

(1 − n−ε/21)
1

k + 1
f(t

1
k+1 ), if H is linear,

(1 − n−ε/21)
1 − ε

k(2k + 1)
f(t

2k+ε
2k+1 ), otherwise.

Remark. Ajtai, Erdős, Komlós and Szemerédi [1] asked whether every Kr-free graph has

independence number at least Ω( n
t
ln t). They gave a lower bound of Ω

(
n
t
ln ln t

)
, which

Shearer [16] later improved to Ω
(
n
t

ln t
ln ln t

)
for sufficiently large t. Theorem 1.4 implies that

if there exists cr such that every Kr-free graph G satisfies α(G) � cr
n
t
ln t, then

i(G) �
(

n

Ω
(
n
t
ln t

)
)

= exp

(
Ω

(
n

t
ln2 t

))
.

2. Lower bounds

Theorems 1.1 and 1.3 follow from the linear case of Theorem 1.4. We will prove

Theorem 1.4 for linear hypergraphs and afterwards describe the changes needed for

nonlinear hypergraphs.

We first state a version of the Chernoff bound and two claims, that contain the main

differences between the linear and nonlinear cases. The proofs of the claims will follow

the proof of the theorem.

Chernoff bound ([14]). Suppose X is the sum of n independent variables, each equal to

1 with probability p and 0 otherwise. Then, for any 0 � t � np,

P(|X − np| > t) < 2 e−t2/3np.
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Set-up. Fix k � 1 and ε ∈
(
0, 4

k+1

)
. Let H be a (k + 1)-uniform hypergraph with n vertices,

average degree at most t < nk , and maximum degree at most tnε/8. Select each vertex of H

independently with probability p. Let m′ denote the sum of vertex degrees in the subgraph

induced by the selected vertices.

The next two claims come under the assumption of the set-up.

Claim 2.1. If H is linear and p = t−1/(k+1), then, for all n > n0(ε),

P

[
m′ > ntpk+1 +

ntpk+1

nε/20

]
< n−2.

Claim 2.2. If p = t(ε−1)/(k(2k+1)), then, for all n > n0(ε),

P

[
m′ > ntpk+1 +

ntpk+1

nε/20

]
< n−2.

Proof of Theorem 1.4 (linear case). Fix k � 1 and ε ∈
(
0, 4

k+1

)
. Let H ∈ P be a (k + 1)-

uniform, linear hypergraph with n vertices and average degree at most t < nk . We assume

n � n0, where n0 is chosen implicitly so that several inequalities throughout the proof are

satisfied. We consider two cases. In Case 1, we require that the maximum degree of H is

at most tnε/8, while Case 2 requires the maximum degree of H to be at least tnε/8.

Case 1. The maximum degree of H is at most tnε/8.

Select each vertex of H independently with probability p = t−1/(k+1). Let H ′ denote the

subgraph of H induced by the selected vertices. Let n′ denote the the number of vertices

in H ′. Since t < nk and ε < 4/(k + 1), we have

np = nt−1/(k+1) > n1−k/(k+1) = n1/(k+1) > nε/4.

By the Chernoff bound,

P

[
|n′ − np| > np

nε/20

]
� 2 e−np/3nε/20

< n−2. (2.1)

Let m′ denote the sum of vertex degrees in H ′. By linearity of expectation,

E[m′] = ntpk+1.

Set λ = n−ε/20. By Claim 2.1,

P
[
m′ > (1 + λ)ntpk+1

]
< n−2. (2.2)

Therefore, by the union bound, with probability at least 1 − 2n−2 > 1 − 1/n, H ′ satisfies

both

m′ � (1 + λ)ntpk+1
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and

n′ � (1 − λ)np.

Let t′ = (1 + 3λ)tpk . Then with probability at least 1 − 1/n, H ′ has average degree at most

m′/n′ � (1 + λ)ntpk+1

(1 − λ)np
� (1 + 3λ)tpk = t′.

Since P is hereditary, H ′ ∈ P . Thus, with probability at least 1 − 1/n, H ′ has an

independent set of size at least

n′

t′1/k
f(t′) � (1 − λ)np

((1 + 3λ)tpk)1/k
f((1 + 3λ)tpk) =

(1 − λ)n

(1 + 3λ)1/kt1/k
f((1 + 3λ)tpk)

� (1 − λ)n

(1 + 3λ)t1/k
f((1 + 3λ)tpk)

> (1 − 6λ)
n

t1/k
f((1 + 3λ)tpk)

� (1 − 6λ)
n

t1/k
f(tpk),

where we used that f is non-decreasing in the last inequality.

Let

g = (1 − 6λ)
n

t1/k
f(tpk).

Suppose I is an independent set in H with at least g vertices. Then

P[I ⊂ V (H ′)] = p|I | � pg.

Let N denote the number of independent sets in H with at least g vertices, and let the

random variable N ′ denote the number of independent sets in H ′ with at least g vertices.

By Markov’s inequality,

1 − 1/n < P[N ′ � 1] � E[N ′] � Npg = Ne−g ln p.

Thus

N > (1 − 1/n)e−g ln p = (1 − 1/n) exp

(
(1 − 6λ)

1

k + 1

n

t1/k
f(t

1
k+1 ) ln t

)
(2.3)

> (1 − 1/n) exp

(
(1 − n−ε/21)

1

k + 1

n

t1/k
f(t

1
k+1 ) ln t

)
.

Case 2. The maximum degree of H is more than tnε/8.

Let

K = {u ∈ V (H) : deg(u) > tnε/8/2}.
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Let H ′ denote the subgraph of H induced by V (H) − K , and let n′ = |V (H ′)|. Since

1

n′

∑
v∈V (H ′)

degH ′ (v) − 1

n

∑
v∈V (H ′)

degH (v) �
(

1

n′ − 1

n

) ∑
v∈V (H ′)

degH (v)

�
(

1

n′ − 1

n

)
n′tnε/8/2

= (n − n′)
tnε/8

2n

� 1

n

∑
v∈K

degH (v),

the average degree of H ′ is at most

1

n

∑
v∈K

degH (v) +
1

n

∑
v∈V (H ′)

degH (v) =
1

n

∑
v∈V (H)

degH (v) � t.

Also, because

tn �
∑

u∈V (H)

degH (u) �
∑
u∈K

degH (u) > |K|tnε/8/2,

we have |K| < 2n1−ε/8, and so n′ > n(1 − 2n−ε/8) > n/28/ε. Thus H ′ has maximum degree

at most tnε/8/2 < tn′ε/8. Further, since H has maximum degree at least tnε/8 and at most

nk , we have t < nk−ε/8. Hence t < nk−ε/8 < n′k. Thus Case 1 implies that

i(H ′) � (1 − 1/n′) exp

(
(1 − 6λ)

1

k + 1

n′

t1/k
f(t

1
k+1 ) ln t

)

> (1 − 2/n) exp

(
(1 − 6λ)(1 − n−ε/8)

1

k + 1

n

t1/k
f(t

1
k+1 ) ln t

)
,

where λ = n′−ε/20. We conclude that

i(H) � i(H ′) � exp

(
(1 − n−ε/21)

1

k + 1

n

t1/k
f(t

1
k+1 ) ln t

)
. (2.4)

The proof of Theorem 1.4 when H is nonlinear is similar. We set p = t(ε−1)/(k(2k+1)).

Since we still have np > nε/4, (2.1) still holds. We then use Claim 2.2 instead of Claim 2.1

to prove (2.2). The proof then proceeds in the same way until we get to (2.3), where, using

the different value of p, we instead obtain

N > (1 − 1/n) exp

(
(1 − 6λ)

1 − ε

k(2k + 1)

n

t1/k
f(t

2k+ε
2k+1 ) ln t

)
.

Finally, (2.4) becomes

exp

(
(1 − n−ε/21)

1 − ε

k(2k + 1)

n

t1/k
f(t

2k+ε
2k+1 ) ln t

)
.

We now prove Theorems 1.1 and 1.3.
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Proof of Theorem 1.1. Shearer [15] showed that every triangle-free graph with n vertices

and average degree t has independence number at least n
t
(ln(t) − 1). Since being triangle-

free is hereditary and graphs are 2-uniform, linear hypergraphs, we may apply Theorem 1.4

(with f(t) = ln(t) − 1) to conclude that for ε = 21/12 ∈ (0, 2), there exists n0 such that

every triangle-free graph G with n � n0 vertices and average degree at most t satisfies

i(G) � exp

(
(1 − n−ε/21)

1

2

n

t
ln t

(
1

2
ln(t) − 1

))

> exp

(
(1 − n−1/12)

1

2

n

t
ln t

(
1

2
ln(t) − 1

))
.

Suppose G is a triangle-free graph with n < n0 vertices and average degree t. Choose

an integer r such that rn � n0. Let G′ be the disjoint union of r copies of G. Then

i(G′) = i(G)r , so by the previous paragraph,

i(G) = i(G′)1/r �
(

exp

(
(1 − (rn)−1/12)

1

2

rn

t
ln t

(
1

2
ln(t) − 1

)))1/r

� exp

(
(1 − n−1/12)

1

2

n

t
ln t

(
1

2
ln(t) − 1

))
.

This completes the proof of the first bound in Theorem 1.1. For the second part, consider

a triangle-free graph G having average degree t. G contains a vertex u with degree at

least t. The neighbourhood of u is an independent set, which contains 2t independent sets.

Therefore, every triangle-free graph has at least

max

{
2t, exp

(
(1 − n−1/12)

1

2

n

t
ln t

(
1

2
ln(t) − 1

))}

independent sets. This is minimized when t =
(

1
4

+ o(1)
)√

n/ ln 2 ln n, so every triangle-free

graph on n vertices has at least

2
(1−o(1)).

√
n ln n

4
√

ln 2 = exp

(
(1 − o(1)).

√
n ln 2 ln n

4

)

independent sets.

Proof of Theorem 1.3. Duke, Lefmann and Rödl [9] showed that every (k + 1)-uniform

linear hypergraph with n vertices and average degree at most t has independence number

at least

c′
k

n

t1/k
ln1/k t.

Since linearity is a hereditary property, we may apply Theorem 1.4 (with f(t) = c′
k ln1/k t)

to conclude that for

ε =
3

k + 1
∈

(
0,

4

k + 1

)
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there exists n0 such that every (k + 1)-uniform linear hypergraph H with n � n0 vertices

satisfies

i(H) � exp

(
(1 − n−1/(7(k+1)))

c′
k

k + 1

1

(k + 1)1/k
n

t1/k
ln1+1/k t

)

> exp

(
c′′
k

n

t1/k
ln1+1/k t

)
.

If H is a (k + 1)-uniform linear hypergraph with n < n0 vertices, then we proceed in

the same way as in the proof of Theorem 1.1.

It only remains to prove the claims stated at the beginning of this section. We first

prove Claim 2.1. We will use the following theorem of Kim and Vu [13].

Theorem 2.3. Suppose F is a hypergraph such that W = V (F) and |f| � s for all f ∈ F .

Let

Z =
∑
f∈F

∏
i∈f

zi,

where the zi, i ∈ W are independent random variables taking values in [0, 1]. For A ⊂ W

with |A| � s, let

ZA =
∑

f∈F:f⊃A

∏
i∈f−A

zi.

Let MA = E[ZA] and Mj = maxA:|A|�j MA for j � 0. Then there exist positive constants

a = a(s) and b = b(s) such that, for any λ > 0,

P

[
|Z − E[Z]| � aλs

√
M0M1

]
� b|W |s−1e−λ.

Proof of Claim 2.1. Apply Theorem 2.3 with F = H and P[zi = 1] = p = t−1/(k+1). Note

first that

E[Z∅] � ntpk+1 = nt1−1 = n.

Since the maximum degree of H is at most tnε/8,

E[Z{u}] � tnε/8pk = nε/8t
1

k+1

for any u ∈ V (G). By linearity, for any A ⊂ V (G) with |A| � 2,

E[ZA] � pk+1−|A| � 1.

Since t � nk and ε < 4/(k + 1), we have n � nε/8t1/(k+1). Further, nε/8t1/(k+1) � 1. Therefore

M0 � n and M1 � nε/8t1/(k+1). Theorem 2.3 therefore implies that there exist constants

a = a(k) and b = b(k) such that

P

[
|m′ − E[m′]| > a((k + 3) ln n)k+1

√
ntpk+1tnε/8pk

]
� bnke−(k+3) ln n.

https://doi.org/10.1017/S0963548314000182 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548314000182


548 J. Cooper, K. Dutta and D. Mubayi

Since t � nk and ε < 4/(k + 1),

√
ntpk+1tnε/8pk =

ntpk+1

n1/2−ε/16p1/2
� ntpk+1

nε/16
.

Thus, since E[m′] � ntpk+1,

P

[
m′ > ntpk+1 +

ntpk+1

nε/20

]
< P

[
m′ > E[m′] + a((k + 3) ln n)k+1 ntp

k+1

nε/16

]

� bnke−(k+3) ln n

< n−2.

To prove Claim 2.2, we will apply the following theorem of Alon, Kim and Spencer [4].

Theorem 2.4. Let X1, . . . , Xn be independent random variables with

P[Xi = 0] = 1 − pi and P[Xi = 1] = pi.

For Y = Y (X1, . . . , Xn), suppose that

|Y (X1, . . . , Xi−1, 1, Xi+1, . . . , Xn) − Y (X1, . . . , Xi−1, 0, Xi+1, . . . , Xn)| � ci

for all X1, . . . , Xi−1, Xi+1, . . . , Xn, i = 1, . . . , n. Then for

σ2 =

n∑
i=1

pi(1 − pi)c
2
i

and a positive constant α with αmaxi ci < 2σ2,

P
[
|Y − E[Y ]| > α

)
� 2 exp

(
− α2

4σ2

)
.

Proof of Claim 2.2. Recall that p = t(ε−1)/(k(2k+1)). The random variable m′ is determined

by the n independent, indicator random variables I[v ∈ V (H ′)]. Each of these affects m′

by at most deg(v) � tnε/8. Set

α =
ntpk+1

nε/16
and σ2 = n1+ε/4p(1 − p)t2.

Note that αtnε/8 � 2σ2. Also, because t � nk ,

α2

4σ2
=

np2k+1

16nε/4+ε/8(1 − p)
� np2k+1

16nε/4+ε/8
=

nt
ε−1
k

16n3ε/8
� nε

16n3ε/8
= n5ε/8/16.

Since E[m′] � ntpk+1, Theorem 2.4 implies

P

[
m′ > ntpk+1 +

ntpk+1

nε/20

]
< P

[
m′ > E[m′] +

ntpk+1

nε/16

]
� 2 e−n5ε/8/16 < n−2.
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3. Upper bound for triangle-free graphs

In this section we prove Theorem 1.2. We use the results of Bohman and Keevash [6] and

Fiz Pontiveros, Griffiths and Morris [10] on the triangle-free graph process. Let G be the

maximal graph in which the triangle-free process terminates.

Theorem 3.1 ([6, 10]). With high probability, every vertex of G has degree

d � (1 + o(1))

√
1

2
n ln n,

and independence number α � (1 + o(1))
√

2n ln n.

Let r > 0 be a real parameter to be optimized later. Construct the graph G′ from G as

follows.

Construction of G′. We take the strong graph product of G and K̄r , the empty graph on

r vertices. Replace each vertex v of G by a copy Cv of K̄r . Introduce a complete bipartite

graph between all the vertices of Cv and Cu if and only if {u, v} ∈ E(G). We obtain the

graph G′. Notice that |V (G′)| = N = nr.

Define the function f : V (G′) → V (G), such that, given any i ∈ Cu ⊂ V (G′), f(i) = u.

For a set S ⊂ V (G′), define f(S) =
⋃

i∈S{f(i)}.

Claim 3.2. For every S ⊂ V (G′), S is independent only if f(S) is independent in G. Further,

|S | � r|f(S)|.

Proof. Given an independent set I ⊂ G′, consider i, j ∈ I . If f(i) �= f(j), then f(i), f(j)

are not adjacent in G, by the construction. Further, if f(i) = f(j), then i, j must belong to

some copy of K̄r in G′.

Proof of Theorem 1.2. We shall show that G′ is the required graph. By Claim 3.2,

i(G′) �
∑

I⊂G:I ind. set

2r|I |

� α

(
n

α

)
2rα

� exp
(
ln α + α ln(ne/α) + rα ln 2

)
.

To finish the proof, note that

ln α + α ln(ne/α) + rα ln 2 =

(
ln n

2
+ r ln 2 + o(1)

)
α

�
(

ln(N/r)

2
+ r ln 2 + o(1)

)√
2(N/r) ln(N/r),
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where the last line was obtained by substituting the value of α in terms of N and r. Now

maximizing the above expression with respect to r, we get that when r = 1
2
log2 n,

i(G′) � exp
(
(1 + o(1))2

√
N ln 2 ln(N)

)
.
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[9] Duke, R. A., Lefmann, H. and Rödl, V. (1995) On uncrowded hypergraphs. Random Struct.

Alg. 6 209–212.

[10] Fiz Pontiveros, G., Griffiths, S. and Morris, R. (2013) The triangle-free process and r(3, k).

arXiv.1302.6279

[11] Grable, D. A. and Phelps, K. T. (1996) Random methods in design theory: A survey. J. Combin.

Des. 4 255–273.

[12] Kim, J. H. (1995) The Ramsey number R(3, t) has order of magnitude t2/ log t. Random Struct.

Alg. 7 173–207.

[13] Kim, J. H. and Vu, V. H. (2000) Concentration of multivariate polynomials and its applications.

Combinatorica 20 417–434.

[14] Molloy, M. and Reed, B. (2002) Graph Colouring and the Probabilistic Method, Vol. 23 of

Algorithms and Combinatorics, Springer.

[15] Shearer, J. B. (1983) A note on the independence number of triangle-free graphs. Discrete Math.

46 83–87.

[16] Shearer, J. B. (1995) On the independence number of sparse graphs. Random Struct. Alg. 7

269–271.

https://doi.org/10.1017/S0963548314000182 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548314000182

	Introduction
	Linear hypergraphs
	Hereditary properties

	Lower bounds
	Upper bound for triangle-free graphs
	References

