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Abstract

We generalise two quartic surfaces studied by Swinnerton-Dyer to give two infinite families of diagonal
quartic surfaces which violate the Hasse principle. Standard calculations of Brauer–Manin obstructions
are exhibited.
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1. Introduction

For a variety V defined overQ, the Hasse principle says that if V(R) � ∅ and V(Qp) � ∅
for all prime numbers p, then V(Q) � ∅. This principle is true for quadratic forms
(see Serre [16, Section 3.2, Theorem 8]) but it is not true in general. The classical
counterexamples are 2y2 = 1 − 17x4 (Lind [10], Reichardt [14]), 3x3 + 4y3 + 5y3 = 0
(Selmer [15]) and 5x3 + 9y3 + 10z3 + 12w3 = 0 (Cassels and Guy [5]). For more
examples, see Colliot-Thélène et al. [6], Skorobogatov [18], Poonen [12], Quan [13]
and Hirakawa [8]. This paper focuses on counterexamples to the Hasse principle in the
class of diagonal quartic surfaces

αx4 + βy4 + γz4 + δw4 = 0, (1.1)

where α, β, γ, δ are nonzero integers such that αβγδ is a square. These surfaces were
studied extensively by Swinnerton-Dyer [19] and Bright [2–4]. However, only a few
examples of surfaces (1.1) are known to violate the Hasse principle. The surfaces

4x4 + 9y4 = 8z4 + 8w4, (1.2a)

2x4 + 9y4 = 6z4 + 12w4 (1.2b)

and the family

x4 + 4y4 = d(z4 + w4),
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where d ∈ Z+, d ≡ 2 (mod 16), no prime p ≡ 3 (mod 4) divides d, no prime p ≡
5 (mod 8) divides d to an odd power and d = r2 + s2 with r ≡ ±3 (mod 8), appeared in
Swinnerton-Dyer [19]. Bremner and Tho [1] found the family

x4 + 7P2y4 = 14P2Q2z4 + 18Q2w4, (1.3)

where every prime divisor of PQ is congruent to 1 mod 24, if p is a prime divisor of
P, then 2Q2 is a fourth power mod p and, if q is a prime divisor of Q, then −7P2 is a
fourth power mod q. Specialising to P = Q = 1 in (1.3) gives the surface

x4 + 7y4 = 14z4 + 18w4, (1.4)

which has a solution (2θ2 + 2θ, 2θ, θ2 + 1, θ2 − 1), where θ3 + θ2 − 1 = 0. Currently,
the surface (1.4) is the only known example of type (1.1) which violates the Hasse
principle but has nontrivial points in a cubic number field. It is an open question
whether the surfaces (1.2a) or (1.2b) have points in cubic number fields. It is worth
mentioning here the work of Manin [11] and Colliot-Thélène et al. [6], which is entirely
devoted to the study of diagonal cubic surfaces

αx3 + βy3 + γz3 + δw3 = 0,

where α, β, γ, δ are nonzero integers.
The principal results of this paper are Theorems 1.1 and 1.2. For an odd prime

number p and an integer a, with p � a, the symbol (a/p)4 is +1 if a is a fourth power
mod p and is −1 otherwise. The symbol (a/p) is defined similarly by replacing fourth
powers mod p by squares mod p.

THEOREM 1.1. Let a, b, c, d be square-free integers such that −abcd is a square,
a ≡ −b ≡ c ≡ d ≡ ±1 (mod 8), a ≡ c ≡ d (mod 3), (3/p) = (2/p)4 = 1 for any prime
divisor p of abcd and, for any permutation (a1, b1, c1, d1) of (a, b, c, d) and any prime
divisor p of a1b1 not dividing c1d1, we have (c1d1/p) = 1. Then the surface

128a2x4 + 18b2y4 = c2z4 + d2w4 (1.5)

(i) is solvable in Qp for all prime numbers p and
(ii) has no rational points.

THEOREM 1.2. Let a, b, c, d be square-free integers such that −abcd is a square,
gcd(a, b, c, d) = 1, a ≡ −b ≡ c ≡ d ≡ ±1 (mod 8), a ≡ −b ≡ c ≡ d (mod 3), (−1/p) =
(2/p)4 = (3/p)4 = 1 for any prime divisor p of abcd and, for any permutation
(a1, b1, c1, d1) of (a, b, c, d) and any prime divisor p of a1b1 not dividing c1d1, we have
(c1d1/p) = 1. Then the surface

27a2x4 + 24b2y4 = c2z4 + 2d2w4 (1.6)

(i) is solvable in Qp for all prime numbers p and
(ii) has no rational points.

To prove Theorems 1.1 and 1.2, we explicitly calculate the Brauer–Manin obstruc-
tion following the framework described by Swinnerton-Dyer in [19].
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20 N. X. Tho [3]

The conditions on a, b, c, d and p in Theorems 1.1 and 1.2 are imposed to guarantee
the solubility of (1.5) and (1.6) inQp for all prime numbers p. There are infinitely many
integers a, b, c, d satisfying these conditions. For example, we mimic the example in
[6, Proposition 5] by letting a = 1, b = −1 and c = d = q, where q is a prime of the
form q = r2 + 576s2, where r, s ∈ Z+. The fact that there are infinitely many prime
numbers q of this form follows from Cox [7, Theorem 9.12]. The condition (2/q)4 = 1
follows from Silverman [17, Ch. IX, Proposition 6.6]. From Lemmermeyer [9, page
159], we have (−3/q)4 = 1. Since q ≡ 1 (mod 16), we have (−1/q) = (−1/q)4 = 1.
Hence, (3/q)4 = 1.

REMARK 1.3. When we specialise b = −1 and a = c = d = 1 in (1.5) and map
(x, y, z, w) �→ (x/2, y/2, z, w), we have the surface (1.2a). When we specialise b = −1
and a = c = d = 1 in (1.6) and map (x, y, z, w) �→ (x/4, y/2, z, w), we have the surface
(1.2b).

For the rest of this paper, for a prime number p, (·, ·)p denotes the Hilbert symbol
and νp(s) denotes the highest power of a prime number p dividing s. For a subset S
of a field, we set S2 = {x2 : x ∈ S}, −S = {−x : x ∈ S} and −3S = {−3x : x ∈ S}. We need
some properties of the Hilbert symbol (see Serre [16, Ch. III]).

• Let a, b, c ∈ Q∗p. Then (a, bc)p = (a, b)p(a, c)p.
• Let a, b ∈ Q∗. Then (a, b)∞

∏
p prime(a, b)p = 1.

• Let q be an odd prime. Let a, b be units in Zq. Then (a, b)q = 1.
• Let a, b ∈ R. If a > 0, then (a, b)∞ = 1.
• Let a, b ∈ Q∗. Write a = pεa1 and b = pδb1, where p � a1b1. Then

(a, b)p = (−1)(a1−1)(b1−1)/4+ε(b2
1−1)/8+δ(a2

1−1)/8 if p = 2

and

(a, b)p = (−1)εδ(p−1)/2
(b1

p

)ε(a1

p

)δ
if p > 2.

2. Proof of Theorem 1.1

Lemma 5.2 in Bright [2] implies that Equation (1.5) has solutions in Qp for all
primes p � {2, 3, 5} and p � abcd. We consider the cases p ∈ {2, 3, 5} or p | abcd.

Case 1: p = 2. Since

a ≡ −b ≡ c ≡ d ≡ ±1 (mod 8),

we have |a|, |b|, |c|, |d| ∈ Z2
2. Then (1.5) has a solution in Q2, namely

(
0,

1
√
|b|

,
4√17
√
|c|

,
1
√
|d|

)
.

Case 2: p > 2. By Hensel’s lemma [16, Section 2.2, Corollary 1], it is enough to show
that (1.5) has a nontrivial solution mod p.
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• p = 3 and p � abcd. Equation (1.5) has a solution (1, 0, 1, 1) mod 3.
• p = 5 and p � abcd. Equation (1.5) has a solution:

– (1, 1, 0, 0) mod 5 if 5 | a2 + b2;
– (0, 0, 1, 1) mod 5 if 5 | c2 + d2;
– (1, 1, 0, 1) mod 5 if a2 ≡ b2 ≡ c2 ≡ d2 (mod 5);
– (1, 0, 1, 1) mod 5 if a2 ≡ b2 ≡ 1 (mod 5) and c2 ≡ d2 ≡ 4 (mod 5);
– (1, 0, 1, 1) mod 5 if a2 ≡ b2 ≡ 4 (mod 5) and c2 ≡ d2 ≡ 1 (mod 5).

• p | abcd. We only consider the case p | ac and p � bd. The remaining cases can be
proved similarly. Since (bd/p) = 1 by the given hypothesis,

(bd
p

)
= 1 =

( 3
p

)
=

( 2
p

)
4
= 1,

so there exists z0 ∈ Z such that 18b2y4
0 ≡ d2 (mod p). Therefore, (1.5) has a solution

(0, y0, 0, 1) (mod p).

We now show that (1.5) has no rational points. On the contrary, assume that
(x, y, z, w) is a rational point on (1.5). We can further assume that x, y, z, w ∈ Z and
gcd(x, y, z, w) = 1. If 3 | x, then considering (1.5) mod 3 gives 3 | z and 3 | w. Hence,
3 | y, which is impossible since gcd(x, y, z, w) = 1. Therefore, 3 � x. Similarly, 3 � z
and 3 � w. If 2 | y, considering (1.5) mod 4 gives 2 | z and 2 | w. By letting z = 2z1
and w = 2w1, where z1, w1 ∈ Z, (1.5) reduces to 8a2x4 = c2z4

1 + d2w4
1, so that 2 | z1

and 2 | w1. Hence, 2 | x. Therefore, 2 | gcd(x, y, z, w), which is impossible. Thus, 2 � y.
Similarly, 2 � z and 2 � w. So, 3 � xzw and 2 � yzw.

From (1.5),

(cz2 − dw2 − 6by2)(cz2 − dw2 + 6by2) = (16ax2 − cz2 − dw2)(16ax2 + cz2 + dw2).

Therefore, there exist coprime integers u, v such that

u(cz2 − dw2 + 6by2) = v(16ax2 − cz2 − dw2), (2.1a)

v(cz2 − dw2 − 6by2) = u(16ax2 + cz2 + dw2). (2.1b)

Eliminating x2, y2, z2 and w2 respectively gives

6Aby2 + Bcz2 − Cdw2 = 0, (2.2a)

16Aax2 + Ccz2 + Bdw2 = 0, (2.2b)

8Bax2 − 3Cby2 + Adw2 = 0, (2.2c)

8Cax2 + 3Bby2 + Acz2 = 0, (2.2d)

where A = u2 + v2, B = u2 + 2uv − v2 and C = u2 − 2uv − v2.

LEMMA 2.1. For all odd primes p, we have (B, 6)p = 1.
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PROOF. We consider three cases.

Case 1: p = 3. Considering (2.1a) mod 3 gives 3 | v. Hence, 3 � u. Therefore, B ≡ u2 ≡
1 (mod 3), so that B ∈ Z2

3. Hence, (B, 6)3 = 1.

Case 2: p | abcd. Since
( 2

p

)
4
=

( 3
p

)
= 1, we have

( 6
p

)
= 1.

Hence, 6 ∈ Z2
p and (B, 6)p = 1.

Case 3: p > 3 and p � abcd.

• p | B. Since any common divisor of B and AC divides the discriminant of ABC,
which is −228, we have p � AC. From (2.2a),

6ACbdy2 + BCcdz2 = (Cdw)2. (2.3)

Therefore, (6ACbd, BCcd)p = 1. Since 6ACbd and Ccd are units in Zp, we have
(6ACbd, Ccd)p = 1. Thus, from (2.3),

(6ACbd, B)p = 1. (2.4)

From (2.2b),

−ACac(4x)2 − BCcdw2 = (Ccz)2. (2.5)

Hence, (−ACac,−BCcd)p = 1. Since −ACac and −Ccd are units in Zp, we have
(−ACac,−Ccd)p = 1. Thus, from (2.5),

(−ACac, B)p = 1. (2.6)

From (2.4) and (2.6),

(−6abcd, B)p = 1. (2.7)

Since −abcd is a square, we have (−abcd, B)p = 1. Therefore, from (2.7), (B, 6)p = 1.
• p � B. In this case, B and 6 are units in Zp. Hence, (B, 6)p = 1. �

LEMMA 2.2. We have (B, 6)2 = −1 and (B, 6)∞ = 1.

PROOF. Considering (2.1a) mod 8 gives −2u ≡ −2v (mod 8) and so 4 | (u − v). Let
u − v = 4k, where k ∈ Z. Then

B = 2u2 − (u − v)2 = 2(u2 − 8k2).

Since u2 − 8k2 ≡ 1 (mod 8), we have B = 2	2, where 	 ∈ Z2. Hence,

(B, 6)2 = (2, 6)2 = (2, 2)2(2, 3)2 = (−1)(32−1)/8 = −1.

Since 6 > 0, it follows that (B, 6)∞ = 1. �
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From Lemmas 2.1 and 2.2,

(B, 6)∞ ×
∏

p prime

(B, 6)p = −1,

which contradicts the product formula for the Hilbert symbol. So, the surface (1.5) has
no rational points.

3. Proof of Theorem 1.2

The solution of (1.6) in Qp for each prime p is proved in the same way as in
Theorem 1.1. We focus on the second part of Theorem 1.2. Assume that (x, y, z, w) is a
rational point on (1.6). Then we can assume that x, y, z, w ∈ Z with gcd(x, y, z, w) = 1.
From (1.6), we also have 3 � zw, 2 � zwx and

(9ax2 − cz2 − 2dw2)(9ax2 + cz2 + 2dw2) = 2(dw2 − cz2 − 6by2)(dw2 − cz2 + 6by2).

Therefore, there exist coprime integers u, v such that

u(9ax2 − cz2 − 2dw2) = v(dw2 − cz2 + 6by2), (3.1a)

v(9ax2 + cz2 + 2dw2) = 2u(dw2 − cz2 − 6by2). (3.1b)

Eliminating x2, y2, z2 and w2 respectively gives

6Aby2 + Bcz2 − Cdw2 = 0, (3.2a)

9Aax2 − Ccz2 − 2Bdw2 = 0, (3.2b)

3Bax2 + 2Cby2 − Adw2 = 0, (3.2c)

−3Cax2 + 4Bby2 + Acz2 = 0, (3.2d)

where A = 2u2 + v2, B = 2u2 + 2uv − v2 and C = 2u2 − 4uv − v2.

LEMMA 3.1. For all primes p > 3:

(i) (A, 6)p = 1;
(ii) (C, 3)p = 1.

PROOF. Let p > 3 be a prime.
(i) Any common prime divisor of A and BC divides the discriminant of ABC, which

is −228 · 310. Therefore, p is not a common divisor of A and BC.

Case 1: p | A and p � abcd. From (3.2b), ACac(3x)2 − 2BCcdw2 = (Ccz)2. Hence,

(ACac,−2BCcd)p = 1. (3.3)

Since Cac and −2BCcd are units in Zp, we have (Cac,−2BCcd)p = 1. Thus, from
(3.3),

(A,−2BCcd)p = 1. (3.4)
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From (3.2c), 3ABadw2 − 6BCaby2 = (3Bax)2. Hence,

(3ABad,−6BCab)p = 1. (3.5)

Since 3Bad and −6BCab are units in Zp, we have (3Bad,−6BCab)p = 1. Thus, from
(3.5),

(A,−6BCab)p = 1. (3.6)

From (3.4) and (3.6),

(A, 3abcd)p = 1. (3.7)

Since −abcd is a square, from (3.7),

(A,−3)p = 1.

Since p | A = 2u2 + v2 and gcd(u, v) = 1, we have (−2/p) = 1. Thus, −2 ∈ Z2
p.

Therefore, (A,−2)p = 1. Hence,

(A, 6)p = (A,−3)p(A,−2)p = 1.

Case 2: p | A and p | abcd. Then
(−1

p

)
=

( 3
p

)
4
= 1 and so

(−3
p

)
= 1.

Therefore, −3 ∈ Z2
p and so (A,−3)p = 1. Since p | A = 2u2 + v2, we have (−2/p) = 1.

Hence, (A,−2)p = 1 and

(A, 6)p = (A,−3)p(A,−2)p = 1.

Case 3: p � A. Then A and 6 are units in Zp. Therefore,

(A, 6)p = 1.

(ii) Any common prime divisor of C and AB divides the discriminant of ABC,
which is −228 · 310. Therefore, p is not a common divisor of C and AB.

Case 1: p | C and p � abcd. From (3.2a), BCcdw2 − 6ABbcy2 = (Bcz)2. Hence,

(BCcd,−6ABbc)p = 1. (3.8)

Since Bcd and −6ABbc are units in Zp, we have (Bcd,−6ABbc)p = 1. From (3.8),

(C,−6ABbc)p = 1. (3.9)

From (3.2b), ACacz2 + 2ABadw2 = (3Aax)2. Hence,

(ACac, 2ABad)p = 1. (3.10)

Since Aac and 2ABad are units in Zp, we have (Aac, 2ABad)p = 1. From (3.10),

(C, 2ABad)p = 1. (3.11)
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From (3.9) and (3.11),

(C,−3abcd)p = 1. (3.12)

Since −abcd is a square, from (3.12),

(C, 3)p = 1.

Case 2: p | C and p | abcd. Then (3/p)4 = 1, so (3/p)2 = 1. Therefore, 3 ∈ Z2
p and so

(C, 3)p = 1.

Case 3: p � C. Since p > 3, both C and 3 are units in Zp. Hence, (C, 3)p = 1. �

LEMMA 3.2. We have (A, 6)2 = (C, 3)2 = 1.

PROOF. Since a ≡ c ≡ d (mod 4), taking (3.1a) mod 4 gives

2u ≡ 2v (mod 4).

Hence, 2 | (u − v). Therefore, u and v are odd. Thus, A = 2u2 + v2 ≡ 3 (mod 8) and
C = 2(u − v)2 − 3v2 ≡ 1 (mod 4). Let A = 8h + 3 and C = 4h1 + 1, where h, h1 ∈ Z.
Then

(A, 6)2 = (8h + 3, 6)2 = (−1)(8h+3−1)(3−1)/4+(8h+3)2−1/8 = 1

and

(C, 3)2 = (4h1 + 1, 3)2 = (−1)(4h1+1−1)(3−1)/4 = 1.

This completes the proof. �

LEMMA 3.3. We have A ∈ Q2
3 or A ∈ −3Q2

3. Furthermore, if A ∈ Q2
3, then C ∈ −Q2

3.

PROOF. We consider two cases.

Case 1: 3 | uv.
If 3 | u, then 3 � v. Since A ≡ v2 (mod 3) and C ≡ −v2 (mod 3), it follows that A ∈ Q2

3
and C ∈ −Q2

3.
Otherwise, 3 | v and 3 � u. Since c ≡ d (mod 3), we have 9 | z2 + 2w2 from (3.1a)

and 9 | w2 − z2 − 6y2 from (3.1b). Therefore, 9 | 3w2 − 6y2, so that 3 | w2 − 2y2, which
is impossible.

Case 2: 3 � uv. Then 3 � u and 3 � v. Hence, 3 | A.

Case 2.1: 3 � u − v. Then

B = 3u2 − (u − v)2 ≡ −1 (mod 3),

C = 2(u − v)2 − 3v2 ≡ −1 (mod 3).

Therefore, B = −β2 and C = −γ2, where β, γ ∈ Z3 and 3 � βγ. Then (3.2c) and (3.2d)
become

3β2x2 + 2γ2y2 + Aw2 = 0, (3.13a)

3γ2x2 − 4β2y2 + 2Az2 = 0. (3.13b)
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Since 3 � βγ and 3 | A, from (3.13a) and (3.13b), 3 | y. Let y = 3y1, where y1 ∈ Z. Then
(3.13a) gives Aw2 = −3(β2x2 + 6γ2y2

1). Since 3 � βx, we have A ∈ −3Q2
3.

Case 2.2: 3 | u − v. Let u − v = 3t, where t ∈ Z. Then

B = 3u2 − (u − v)2 = 3(u2 − 3t2),

C = 2(u − v)2 − 3v2 = 3(6t2 − v2).

Therefore, B = 3β2 and C = −3γ2, where β, γ ∈ Z3 and 3 � βγ. Equation (3.2a)
becomes

6A1by2 + β2cz2 + γ2dw2 = 0, (3.14)

where A1 = A/3. Since c ≡ d (mod 3) and 3 � βγcdzw, (3.14) is impossible mod 3. �

LEMMA 3.4. We have:

(i) (C, 3)3 = −1 if A ∈ Q2
3;

(ii) (A, 6)3 = −1 if A ∈ −3Q2
3;

(iii) (A, 6)∞ = (C, 3)∞ = 1.

PROOF. (i) If A ∈ Q2
3, then C ∈ −Q2

3. Therefore,

(C, 3)3 = (−1, 3)3 = −1.

(ii) If A ∈ −3Q2
3, then

(A, 6)3 = (−3, 6)3 = (−3, 2)3(−3, 3)3 = −1. (3.15)

(iii) Since 6 > 0 and 3 > 0,

(A, 6)∞ = (C, 3)∞ = 1. �

PROOF OF THEOREM 1.2. By Lemma 3.3, we need to consider two cases.

Case 1: A ∈ Q2
3. Then C ∈ −Q2

3. From Lemmas 3.1, 3.2 and 3.4,

(C, 3)∞ ×
∏

p prime

(C, 3)p = −1. (3.16)

Case 2: A ∈ −3Q3
3. From Lemmas 3.1, 3.2 and 3.4,

(A, 6)∞ ×
∏

p prime

(A, 6)p = −1. (3.17)

Both (3.16) and (3.17) contradict the product formula for the Hilbert symbol. So, the
surface (1.6) has no rational points. �
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