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Abstract

A set of data with positive values follows a Pareto distribution if the log–log plot of
value versus rank is approximately a straight line. A Pareto distribution satisfies Zipf’s
law if the log–log plot has a slope of −1. Since many types of ranked data follow Zipf’s
law, it is considered a form of universality. We propose a mathematical explanation for
this phenomenon based on Atlas models and first-order models, systems of strictly pos-
itive continuous semimartingales with parameters that depend only on rank. We show
that the stationary distribution of an Atlas model will follow Zipf’s law if and only if
two natural conditions, conservation and completeness, are satisfied. Since Atlas mod-
els and first-order models can be constructed to approximate systems of time-dependent
rank-based data, our results can explain the universality of Zipf’s law for such systems.
However, ranked data generated by other means may follow non-Zipfian Pareto dis-
tributions. Hence, our results explain why Zipf’s law holds for word frequency, firm
size, household wealth, and city size, while it does not hold for earthquake magnitude,
cumulative book sales, and the intensity of wars, all of which follow non-Zipfian Pareto
distributions.
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1. Introduction

A set of empirical data with positive values follows a Pareto distribution if the log–log plot
of the values versus rank is approximately a straight line. Pareto distributions are ubiquitous
in the social and natural sciences, appearing in a wide range of fields from geology to eco-
nomics [3, 34, 38]. A Pareto distribution satisfies Zipf’s law if the log–log plot has a slope of
−1, following Zipf [44], who noticed that the frequency of written words in English follows
such a distribution. We shall refer to these distributions as Zipfian. Zipf’s law is considered
a form of universality, since Zipfian distributions occur almost as frequently as Pareto distri-
butions. Nevertheless, according to Tao [41], ‘mathematicians do not have a fully satisfactory
and convincing explanation for how the law comes about and why it is universal’.

We propose a mathematical explanation of Zipf’s law based on Atlas models and first-order
models, systems of strictly positive continuous semimartingales with parameters that depend
only on rank. Atlas and first-order models were introduced by Fernholz [14] to model the
distribution of capital in stock markets, and a mathematical development of these models can
be found in [4], [18], and [29]. Atlas and first-order models can be constructed to approximate
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empirical systems of time-dependent rank-based data that exhibit some form of stability,
and while the stationary distributions of Atlas models are Pareto, first-order models can be
constructed to have any stationary distribution [14].

Many empirical systems of time-dependent rank-based data generate distributions with log–
log plots that are not actually straight lines but rather are concave curves with a tangent of
slope −1 at some point along the curve. We shall refer to these more general distributions as
quasi-Zipfian, and we shall use first-order models to approximate the systems that generate
them.

The class of empirical systems for which Zipf’s law, or its quasi-Zipfian counterpart, is
likely to hold comprises large time-dependent systems for which the number of members can
vary over time. Frequency of written words in a language, population of cities, and capital-
ization of US companies all fall into this class. These systems frequently satisfy two natural
conditions, conservation and completeness. Conservation is like conservation of mass in a
physical system, and arises, for example, in measuring the frequency of written words. Since
it is impossible to count all the written words in a language, a given number of words must be
sampled, and conservation is the result of maintaining a constant sample size over time. Hence,
conservation is a natural condition that can be expected to hold for many time-dependent
rank-based systems of empirical data.

The second condition, completeness, is related to the replacement of members at the bottom
of a rank-based empirical system. In a large rank-based system of time-dependent data those
members in the lowest ranks will frequently be replaced by new members from outside the
system, and completeness ensures that the effect of this replacement is minimal if the system
includes enough ranks. As an example, in Section 4 we show that the distribution of capital in
the US stock market follows a complete quasi-Zipfian distribution. However, if this distribution
is cut off after the top 100 stocks, the resulting incomplete system is no longer quasi-Zipfian.
While it is certainly possible to construct incomplete systems, like the top 100 stocks, most
such systems seem to be truncated versions of larger complete systems. Accordingly, conser-
vation and completeness are broadly universal properties of large systems of time-dependent
rank-based empirical data.

Mathematically, we show that under the assumptions of conservation and completeness, the
stationary distribution of an Atlas model will satisfy Zipf’s law. However, most time-dependent
rank-based systems do not quite satisfy Zipf’s law, and also do not quite satisfy the require-
ments for Atlas models, so in practice we usually must employ more general first-order models.
We refer to these more general models as quasi-Atlas models, and we show that under conser-
vation and completeness these models will result in quasi-Zipfian distributions as long as the
top-ranked process represents less than half the total mass of the system. Quasi-Atlas mod-
els can be used to approximate many large rank-based systems, and since conservation and
completeness are common characteristics of such systems, this offers an explanation for the
universality of quasi-Zipfian distributions in the natural and social sciences.

The dichotomy between the class of Zipfian and quasi-Zipfian distributions versus the class
of non-Zipfian Pareto distributions is of interest to us here. We find that Zipfian and quasi-
Zipfian distributions are usually generated by systems of time-dependent rank-based data, and
it is this class of systems that we can approximate by Atlas models or first-order models.
In contrast, data that follow non-Zipfian Pareto distributions are usually generated by other
means, often of a cumulative nature. Examples of time-dependent rank-based systems that
generate Zipfian or quasi-Zipfian distributions include the market capitalization of companies
[14, 37], the population of cities [21], the employees of firms [2], the income and wealth of
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households [1, 7], and the assets of banks [20]. From the comprehensive survey of Newman
[34] we find an assortment of non-Zipfian Pareto distributions: the magnitude of earthquakes,
citations of scientific papers, copies of books sold, the diameter of moon craters, the intensity
of solar flares, and the intensity of wars, all of which are cumulative systems. Consider, for
example, the magnitude of earthquakes: each new earthquake adds a new observation to the
data, but once recorded, these observations do not change over time. Such cumulative systems
may generate Pareto distributions, but we have no reason to believe that these distributions will
be Zipfian.

The mathematical theory of Atlas and first-order models developed in [4] and [29] is based
on a number of earlier results. The existence and uniqueness for solutions of these systems
comes from [6] and [40]. The behavior of the ‘gap processes’, the differences between adjacent
rank processes, is based on [23, 24, 25, 43]. The long-term behavior of Atlas and first-order
models, including the existence of a stationary distribution and a strong law of large numbers,
can be found in [31, 32].

The theory of rank-based systems of continuous semimartingales has been extended in sev-
eral directions, e.g. infinite Atlas systems [9, 10, 35], behavior at triple points [5], existence and
nonexistence of triple points [26, 27, 36], convergence to equilibrium [11, 13, 28], behavior of
degenerate systems [16, 17], large deviations [12], and second-order stock market models [15].

In the next sections we first review the properties of Atlas and first-order models, and then
characterize Zipfian and quasi-Zipfian systems using these models. We apply our results to
the capitalization of US companies, with an analysis of the corresponding quasi-Zipfian dis-
tribution curve. We also discuss a number of other time-dependent systems, as well as other
approaches that have been used to characterize these systems.

2. Atlas and quasi-Atlas models

We use systems of strictly positive continuous semimartingales {X1, . . . , Xn}, with n > 1,
to approximate systems of time-dependent data. For such a system we define the rank func-
tion to be the random permutation rt ∈ �n, for t ≥ 0, such that rt(i) < rt(j) if Xi(t) > Xj(t) or if
Xi(t) = Xj(t) and i < j. Here, �n is the symmetric group on n elements. The rank processes
{X(1) ≥ · · · ≥ X(n)} are defined by X(rt(i))(t) = Xi(t).

For a continuous semimartingale X, we can define the semimartingale local time at the
origin � by the Tanaka–Meyer formula

�(t) � 1

2

(
|X(t)| − |X(0)| −

∫ t

0
sgn(X(s)) dX(s)

)
,

for t ≥ 0, where sgn(x) = 2 1{x>0} − 1, for x ∈R (see [30, (7.7)–(7.9), p. 220]). The local time
� measures the amount of time that X spends near 0+. The mapping t �→ �(t) is continuous
and nondecreasing, and induces the random measure d� with support contained in the set
{t ≥ 0 : X(t) = 0} (see [30, Theorem 7.1(ii), p. 218]).

We have assumed that the semimartingales Xi are strictly positive, so we can consider the
logarithmic processes log X1, . . . , log Xn. For 1 ≤ k < � ≤ n, let �X

k,� denote the local time at

the origin for log X(k) − log X(�), with �X
0,1 = �X

n,n+1 ≡ 0. The processes log X1, . . . , log Xn

have a triple point at time t > 0 if there exist j < k < � such that log Xj(t) = log Xk(t) =
log X�(t). Multidimensional Brownian motion almost surely has no triple points (see [30,
Proposition 3.22, p. 161]), but some of the systems we consider satisfy only the weaker condi-
tion that the processes log X1, . . . , log Xn accumulate no local time at triple points, by which
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we mean that, for all � ≥ k + 2, we have �k,� ≡ 0, almost surely (a.s.). If the log Xi accumu-
late no local time at triple points, then [5, Theorem 2.5] shows that the rank processes log X(k)
satisfy

d log X(k)(t) =
n∑

i=1

1{rt(i)=k} d log Xi(t) + 1

2
d�X

k,k+1(t) − 1

2
d�X

k−1,k(t), a.s., (2.1)

for t ≥ 0 and k = 1, . . . , n.
Let us define the processes X[k] � X(1) + · · · + X(k), for k = 1, . . . , n. The following lemma

shows that the local time process �X
k,k+1 measures the flow into and out of X[k].

Lemma 2.1. Let X1, . . . , Xn be strictly positive continuous semimartingales that satisfy (2.1).
Then

1

2
X(k)(t)d�X

k,k+1(t) = dX[k](t) −
n∑

i=1

1{rt(i)≤k}dXi(t), a.s., (2.2)

for t ≥ 0 and k = 1, . . . , n.

Proof. Suppose that the rank processes X(k) satisfy (2.1), so we have

d log X(k)(t) =
n∑

i=1

1{rt(i)=k}d log Xi(t) + 1

2
d�X

k,k+1(t) − 1

2
d�X

k−1,k(t), a.s.,

for t ≥ 0 and k = 1, . . . , n. By Itô’s rule this is equivalent to

dX(k)(t)

X(k)(t)
=

n∑
i=1

1{rt(i)=k}
dXi(t)

Xi(t)
+ 1

2
d�X

k,k+1(t) − 1

2
d�X

k−1,k(t)

=
n∑

i=1

1{rt(i)=k}
dXi(t)

X(k)(t)
+ 1

2
d�X

k,k+1(t) − 1

2
d�X

k−1,k(t), a.s.,

for t ≥ 0 and k = 1, . . . , n. From this, we have

dX(k)(t) =
n∑

i=1

1{rt(i)=k}dXi(t) + 1

2
X(k)(t)d�X

k,k+1(t) − 1

2
X(k)(t)d�X

k−1,k(t)

=
n∑

i=1

1{rt(i)=k}dXi(t) + 1

2
X(k)(t)d�X

k,k+1(t) − 1

2
X(k−1)(t)d�X

k−1,k(t), a.s.,

for t ≥ 0 and k = 1, . . . , n, since the support of d�X
k−1,k is contained in the set{

t : log X(k−1)(t) = log X(k)(t)
}
. Now we can add up dX(1)(t) + · · · + dX(k)(t) = dX[k](t), and we

have

dX[k](t) =
n∑

i=1

1{rt(i)≤k}dXi(t) + 1

2
X(k)(t)d�X

k,k+1(t), a.s.,

for t ≥ 0 and k = 1, . . . , n, and (2.2) follows. �
The local time process �X

k,k+1 compensates for turnover into and out of the top k ranks.
Over time, some of the higher-ranked processes will decrease and exit from the top ranks,
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while some of the lower-ranked processes will increase and enter those top ranks. Equation
(2.2) measures the replacement of the top k ranks of the system by the lower ranks.

We are interested in systems that show stability by rank, at least asymptotically. Since we
must apply our definition of stability to systems of empirical data as well as to continuous
semimartingales, we use asymptotic time averages rather than expectations for our definitions.
We shall show below that for the systems of continuous semimartingales we consider, a law
of large numbers implies that the asymptotic time averages are equal to the corresponding
expectations.

Definition 2.1. (Fernholz [14]) Let {X1, . . . , Xn} be a system of strictly positive continuous
semimartingales that satisfy (2.1). Then this system is asymptotically stable if there exist
positive constants λk,k+1 and σ 2

k,k+1, k = 1, . . . , n − 1, such that

1. lim
t→∞

1

t

(
log X(1)(t) − log X(n)(t)

)= 0, a.s. (coherence);

2. lim
t→∞

1

t
�X

k,k+1(t) = λk,k+1, a.s., for k = 1, . . . , n − 1;

3. lim
t→∞

1

t

〈
log X(k) − log X(k+1)

〉
t = σ 2

k,k+1, a.s., for k = 1, . . . , n − 1;

where 〈 · 〉 represents quadratic variation.

The simplest system we consider is an Atlas model, a system of strictly positive continuous
semimartingales {X1, . . . , Xn} defined by

d log Xi(t) = −g dt + ng1{rt(i)=n}dt + σ dWi(t), (2.3)

for t ≥ 0 and i = 1, . . . , n, where g > 0 and σ > 0 are constants, and (W1, . . . , Wn) is a
Brownian motion (see [14, Example 5.3.3, p. 103]). Atlas models are asymptotically stable
with parameters

λk,k+1 = 2kg, σ 2
k,k+1 = 2σ 2, (2.4)

for k = 1, . . . , n − 1 (see [29, Proposition 2]).
A modest generalization of the Atlas model is the first-order model, introduced in [14,

Section 5.5]. A first-order model is a system of strictly positive continuous semimartingales
{X1, . . . , Xn} with

d log Xi(t) = grt(i) dt + Gn1{rt(i)=n}dt + σrt(i) dWi(t), (2.5)

for t ≥ 0 and i = 1, . . . , n, where σ 2
1 , . . . , σ 2

n are positive constants; g1, . . . , gn are constants
that satisfy

g1 + · · · + gn ≤ 0 and g1 + · · · + gk < 0 for k < n; (2.6)

Gn = −(g1 + · · · + gn); and (W1, . . . , Wn) is a Brownian motion (see [4, (1.1)–(1.6)]). First-
order models are asymptotically stable with parameters

λk,k+1 = −2
(
g1 + · · · + gk

)
, σ 2

k,k+1 = σ 2
k + σ 2

k+1, a.s., (2.7)

for k = 1, . . . , n − 1 (see [29, Proposition 2]). Here we use a simple form of first-order model
in which the drift parameters gk are constant and the variance parameters σ 2

k grow linearly with
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rank. Accordingly, we define a quasi-Atlas model to be a first-order model determined by three
parameters g > 0 and σ 2

2 ≥ σ 2
1 > 0, such that

gk = −g, σ 2
k = σ 2

1 + (k − 1)(σ 2
2 − σ 2

1 ), (2.8)

for k = 1, . . . , n. Hence, we see that Atlas models are a subclass of quasi-Atlas models, which
in turn are a subclass of first-order models.

By [4, Proposition 2.3], each of the processes Xi in a first-order model asymptotically spends
equal time in each rank. Due to this ergodicity, the parameters ng in (2.3) and Gn in (2.5)
cause the asymptotic growth rate to be zero for each of the processes log Xi, for i = 1, . . . , n.
Equations (2.3) and (2.5) can be generalized by the addition of a term γ dt on the right-hand
side, where the constant γ represents the common logarithmic growth rate of the system, but
in our setting it is convenient to make the simplifying assumption that γ = 0 (see, e.g., [4, (1.1)
and (1.6)]). The condition (2.6), along with Gn = −(g1 + · · · + gn), stabilizes the system and
prevents it from separating into smaller subsystems over time. A discussion of this stabilizing
effect can be found in the Remark following Theorem 8 of [35].

We see from (2.7) that for a first-order model the parameters λk,k+1 and σ 2
k,k+1 depend only

on ranks 1 through k + 1 and not on the number n of processes in the model. On a more intuitive
level, the parameter Gn is defined so that whatever the size n of the model, the ‘upward force’
gk+1 + · · · + gn + Gn > 0 from below adjusts to counteract the ‘downward force’ g1 + · · · +
gk < 0 from above, with

gk+1 + · · · + gn + Gn = −(g1 + · · · + gk).

The local time �k,k+1 between ranks k and k + 1 is determined by these upward and downward
forces since they push these two ranks together, and the value of λk,k+1 depends on this local
time.

Lemma 1 in [29] shows that the processes log X1, . . . , log Xn in a first-order model accu-
mulate no local time at triple points. It is also known that a first-order model for which k �→ σ 2

k
is concave, i.e. for which σ 2

k+1 − σ 2
k ≤ σ 2

k − σ 2
k−1, for k = 2, . . . , n − 1, almost surely has no

triple points, and this condition holds for Atlas and quasi-Atlas models [27, 36]. Hence, (2.1)
and Lemma 2.1 are valid for Atlas and quasi-Atlas models.

For a first-order model {X1, . . . , Xn}, let us define the processes X1, . . . ,Xn by

Xi(t) = log Xi(t) − 1

n

n∑
j=1

log Xj(t), t ∈ [0, ∞),

for i = 1, . . . , n, along with the corresponding ranked processes X(1) ≥ · · · ≥X(n), with

X(k)(t) = log X(k)(t) − 1

n

n∑
j=1

log Xj(t), t ∈ [0, ∞),

for k = 1, . . . , n. Then it follows from [29, Proposition 1], [31, Theorems 3.1 and 3.2], or
[32, Theorem 4.1], that (X1, . . . ,Xn), as a process with values in R

n, has a unique stationary
distribution. We define the gap processes by log X(k) − log X(k+1), for k = 1, . . . , n − 1, and the
stationary distribution for (X1, . . . ,Xn) induces a stationary distribution for each gap process
log X(k) − log X(k+1) =X(k) −X(k+1) (see [29, Corollary 2]).
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For a first-order model {X1, . . . , Xn}, let ξk represent the gap process log X(k) − log X(k+1)
in its stationary distribution, for k = 1, . . . , n − 1. For an Atlas or quasi-Atlas model, the
ξk will be independent and exponentially distributed, so the stationary joint distribution of
(ξ1, . . . , ξn−1) will be the product of the exponential marginal distributions (this follows from
[24, Theorem 9.2] and is a special case of [29, Theorem 2]). It is also known that in this case
ξk has density function αke−αkx, for x ∈ [0, ∞), with rate parameter

αk = 2λk,k+1

σ 2
k,k+1

(2.9)

and expectation

E
[
ξk
]= 1

αk
= σ 2

k,k+1

2λk,k+1

(see [29, Theorem 2]). For k = 1, . . . , n − 1, if f : [0, ∞) →R is a measurable function with∫ ∞

0
|f (x)|e−αkx dx < ∞,

then the strong law of large numbers,

lim
T→∞

1

T

∫ T

0
f
(

log X(k)(t) − log X(k+1)(t)
)
dt =E

[
f (ξk)

]
, a.s.,

holds (see [29, Proposition 1], [31, Theorem 3.1], or [32, Theorem 5.1]). It follows from this
that

lim
T→∞

1

T

∫ T

0

(
log X(k)(t) − log X(k+1)(t)

)
dt =E

[
ξk
]= 1

αk
= σ 2

k,k+1

2λk,k+1
, a.s., (2.10)

and

lim
T→∞

1

T

∫ T

0

X(k+1)(t)

X(k)(t)
dt =E

[
e−ξk

]= αk

αk + 1
, a.s., (2.11)

for k = 1, . . . , n − 1 (see [29, Theorem 1]).
For a first-order model {X1, . . . , Xn}, the asymptotic slope of the tangent to the log–log plot

of the X(k) versus rank will be

lim
T→∞

1

T

∫ T

0

log X(k)(t) − log X(k+1)(t)

log (k) − log (k + 1)
dt (2.12)

at rank k, so if we define the slope parameters sk by

sk � k lim
T→∞

1

T

∫ T

0

(
log X(k)(t) − log X(k+1)(t)

)
dt, (2.13)

for k = 1, . . . , n − 1, then

−sk

(
1 + 1

2k

)
< lim

T→∞
1

T

∫ T

0

log X(k)(t) − log X(k+1)(t)

log (k) − log (k + 1)
dt < −sk, (2.14)

for k = 1, . . . , n − 1. Accordingly, for large enough k, the slope parameter sk will be approxi-
mately equal to minus the slope given in (2.12). For expositional simplicity, we treat the sk as if
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they measured the true log–log slopes between adjacent ranks, but it is important to remember
that this equivalence is only as accurate as the range of the inequalities in (2.14).

For an Atlas model, it follows from (2.4), (2.10), and (2.13) that

sk = σ 2

2g
, a.s., (2.15)

for k = 1, . . . , n − 1, so the stationary distribution of an Atlas model follows a Pareto distri-
bution, at least within the approximation (2.14), and when σ 2 = 2g it follows Zipf’s law. For a
quasi-Atlas model, we see from (2.7) and (2.10) that the slope parameters will be

sk = k
(
σ 2

k + σ 2
k+1

)
2λk,k+1

= σ 2
k + σ 2

k+1

4g
, a.s., (2.16)

for k = 1, . . . , n − 1, so the stationary distributions of quasi-Atlas models are not confined to
the class of Pareto distributions.

It is convenient to consider families of first-order models that share the same parameters,
and for this purpose we define a first-order family to be a sequence of constants {gk, σ 2

k }k∈N
with g1 + · · · + gk < 0 and σ 2

k > 0, for k ∈N. A first-order family generates a class of first-
order models {X1, . . . , Xn}, each defined as in (2.5) with the common parameters gk and σ 2

k ,
for k ∈N, with Gn = −(g1 + · · · + gn), for n ∈N. An Atlas family is a first-order family with
gk = −g < 0 and σ 2

k = σ 2 > 0, for k ∈N. A quasi-Atlas family is a first-order family with gk =
−g < 0 and σ 2

k = σ 2
1 + (k − 1)(σ 2

2 − σ 2
1 ) > 0, for k ∈N.

For a first-order family {gk, σ 2
k }k∈N we shall use the notation En to denote the

expectation with respect to the stationary distribution for the system {log (X(1)/X(2)), . . . ,

log (X(n−1)/X(n))} defined by that family. For Atlas and quasi-Atlas models it is useful to mea-
sure the expected values of the ranked processes X(k) relative to the value of the top process
X(1), so we define the ranked weight ratios

Rk �En

[
X(k)(t)

X(1)(t)

]
, (2.17)

for k = 1, . . . , n and t ≥ 0. Since En assumes the stationary distribution, and since the
definition does not depend on weights below the kth rank, the ranked weight ratios are inde-
pendent of both t and n. With the system in its stationary distribution, the random variables
log (X(k)(t)/X(k+1)(t)) are independent, so

Rk =En

[
X(k)(t)

X(k−1)(t)

]
·En

[
X(k−1)(t)

X(k−2)(t)

]
· · ·En

[
X(2)(t)

X(1)(t)

]
, (2.18)

for 2 ≤ k ≤ n and t ≥ 0, where the terms on the right-hand side can be calculated in terms of
(2.11). We can also define, for n ∈N,

R[n] �En

[
X[n](t)

X(1)(t)

]
= R1 + · · · + Rn, (2.19)

for t ≥ 0.
For an Atlas or quasi-Atlas family, the parameters σ 2

k,k+1, λk,k+1, sk, and Rk are defined
uniquely for k ∈N by (2.4), (2.8), (2.15), (2.16), and (2.17), as the case may be. Let us note
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that for a quasi-Atlas family the slope parameters sk and ranked weight ratios Rk do not depend
on the number of processes in the model as long as n > k, so a quasi-Atlas family defines
a unique asymptotic distribution curve. Accordingly, these families will allow us to derive
results about asymptotic distribution curves without repeatedly reciting the characteristics of
individual models. Moreover, we only consider values derived from a first-order family when
the models in the family are in their stationary distribution. Hence, for the Atlas and quasi-Atlas
families we consider, we can calculate the values of the sk and Rk directly from the parameters
g, σ 2

1 , and σ 2
2 , and we can ignore the models themselves.

3. Zipfian Atlas models as approximations of empirical systems

In this section we first consider how empirical systems of time-dependent data can be
approximated by first-order models. In the case that these first-order approximations are in fact
Atlas or quasi-Atlas models, we show that it is likely that the empirical systems will follow
Zipfian or quasi-Zipfian distributions.

Suppose that {Y1, . . . , Yn}, for n > 1, is an asymptotically stable system of strictly posi-
tive continuous semimartingales with rank function ρt ∈ �n, for t ≥ 0, such that ρt(i) < ρt(j) if
Yi(t) > Yj(t) or if Yi(t) = Yj(t) and i < j. Let {Y(1) ≥ · · · ≥ Y(n)} be the corresponding rank pro-
cesses with Y(ρt(i))(t) = Yi(t). As in Definition 2.1, for the processes Y1 . . . , Yn we can define
the parameters

λk,k+1 � lim
t→∞

1

t
�Y

k,k+1(t) > 0, a.s.,

σ 2
k,k+1 � lim

t→∞
1

t

〈
log Y(k) − log Y(k+1)

〉
t > 0, a.s.,

(3.1)

for k = 1, . . . , n − 1.

Definition 3.1. (Fernholz [14]) Let {Y1, . . . , Yn} be an asymptotically stable system of strictly
positive continuous semimartingales with parameters λk,k+1 and σ 2

k,k+1, for k = 1, . . . , n − 1,
defined by (3.1). Then the first-order approximation of {Y1, . . . , Yn} is the first-order model
{X1, . . . , Xn} with

d log Xi(t) = grt(i) dt + Gn1{rt(i)=n}dt + σrt(i) dWi(t), (3.2)

for t ≥ 0 and i = 1, . . . , n, where rt ∈ �n is the rank function for the Xi, the parameters gk and
σk are defined by

gk = 1

2
λk−1,k − 1

2
λk,k+1 for k = 2, . . . , n − 1;

g1 = −1

2
λ1,2, gn = gn−1 ∧ 0;

σ 2
k = 1

4

(
σ 2

k−1,k + σ 2
k,k+1

)
for k = 2, . . . , n − 1;

σ 2
1 = σ 2

2 + (
σ 2

2 − σ 2
3

)
1{2σ 2

2 >σ 2
3 }, σ 2

n = σ 2
n−1 + (

σ 2
n−1 − σ 2

n−2

)∨ 0;

(3.3)

where σk is the positive square root of σ 2
k , Gn = −(g1 + · · · + gn), and (W1, . . . , Wn) is a

Brownian motion.
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The parameters g1, gn, σ 2
1 , and σ 2

n in (3.3) were chosen to preserve the structure of Atlas
and quasi-Atlas models. For the first-order model (3.2) with parameters (3.3), equation (2.7)
implies that

λk,k+1 = −2
(
g1 + · · · + gk

)= λk,k+1, a.s., (3.4)

for k = 1, . . . , n − 1, and

σ 2
k,k+1 = σ 2

k + σ 2
k+1 = 1

4

(
σ 2

k−1,k + 2σ 2
k,k+1 + σ 2

k+1,k+2

)
, a.s.,

for k = 2, . . . , n − 2, so the σ 2
k,k+1 are a smoothed version of the σ 2

k,k+1. Hence, the param-
eters for a first-order approximation are similar to those of the asymptotically stable system
that it approximates. We would also like to have the stable distributions of the two systems
{log (X(1)/X(2)), . . . , log (X(n−1)/X(n))} and {log (Y(1)/Y(2)), . . . , log (Y(n−1)/Y(n))} be similar,
with

lim
T→∞

1

T

∫ T

0

(
log X(k)(t) − log X(k+1)(t)

)
dt ∼=

lim
T→∞

1

T

∫ T

0

(
log Y(k)(t) − log Y(k+1)(t)

)
dt, a.s.,

for k = 1, . . . , n − 1. From (3.3) and (3.4) we see that if the system {Y1, . . . , Yn} is a quasi-
Atlas model with parameters gk and σ 2

k , then the first-order approximation {X1, . . . , Xn} will
also be a quasi-Atlas model with the same parameters gk = gk and σ 2

k = σ 2
k , for k = 1, . . . , n.

In this case it follows from (2.10) that

lim
T→∞

1

T

∫ T

0

(
log X(k)(t) − log X(k+1)(t)

)
dt =

lim
T→∞

1

T

∫ T

0

(
log Y(k)(t) − log Y(k+1)(t)

)
dt, a.s.,

for k = 1, . . . , n − 1, so the stable distributions of the two systems will be the same.
Lemma 2.1 shows that the parameters λk,k+1 can be expressed as

λk,k+1 = lim
T→∞

2

T

∫ T

0

(
dY[k](t)

Y(k)(t)
−

n∑
i=1

1{ρt(i)≤k}
dYi(t)

Y(k)(t)

)
, a.s., (3.5)

for k = 1, . . . , n − 1, in which all the terms on the right-hand side of the equation are
observable. In a similar fashion we can write

σ 2
k,k+1 = lim

T→∞
1

T

∫ T

0
d
〈
log Y(k) − log Y(k+1)

〉
t, a.s., (3.6)

for k = 1, . . . , n − 1. These two equations will allow us to define parameters equivalent to
λk,k+1 and σ 2

k,k+1 for time-dependent systems of empirical data.
Suppose now that we have a time-dependent system {Z1(τ ), Z2(τ ), . . .} of positive-valued

data observed at times τ ∈ {1, 2, . . . , T}, where T > 1. Let

Nτ = #{Z1(τ ), Z2(τ ), . . .} and N = N1 ∧ · · · ∧ NT , (3.7)
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where # represents cardinality. Let ρτ : N→N be the rank function for the system
{Z1(τ ), Z2(τ ), . . .} such that ρτ restricted to the subset {1, . . . , Nτ } is the permutation with
ρτ (i) < ρτ (j) if Zi(τ ) > Zj(τ ) or if Zi(τ ) = Zj(τ ) and i < j, and for i > Nτ , ρτ (i) = i. We define
the ranked values {Z(1)(τ ) ≥ Z(2)(τ ) ≥ · · · } such that Z(ρτ (i))(τ ) = Zi(τ ) for i ≤ Nτ , and for
definiteness we can let Z(k)(τ ) = 0 for k > Nτ . With these definitions, we have Z[k](τ ) =
Z(1)(τ ) + · · · + Z(k)(τ ), for k = 1, . . . , N and τ ∈ {1, 2, . . . , T}.

We can mimic the time averages (3.5) and (3.6) to define the parameters

λk,k+1 �
2

T − 1

T−1∑
τ=1

(
Z[k](τ + 1) − Z[k](τ )

Z(k)(τ )
−

N∑
i=1

1{ρτ (i)≤k}
Zi(τ + 1) − Zi(τ )

Z(k)(τ )

)
(3.8)

and

σ 2
k,k+1 �

1

T − 1

T−1∑
τ=1

((
log Z(k)(τ + 1) − log Z(k+1)(τ + 1)

)

− (
log Z(k)(τ ) − log Z(k+1)(τ )

))2
, (3.9)

for k = 1, . . . , N − 1.

Definition 3.2. Suppose that {Z1(τ ), Z2(τ ), . . .}, for τ ∈ {1, 2, . . . , T}, with T > 1, is a time-
dependent system of positive-valued data with N, λk,k+1, and σ 2

k,k+1 defined as in (3.7),
(3.8), and (3.9). The first-order approximation of {Z1(τ ), Z2(τ ), . . .} is the first-order family
{gk, σ 2

k }k∈N with

gk = 1

2
λk−1,k − 1

2
λk,k+1 for k = 2, . . . , N − 1;

g1 = −1

2
λ1,2, gk = gk−1 ∧ 0 for k ≥ N;

σ 2
k = 1

4

(
σ 2

k−1,k + σ 2
k,k+1

)
for k = 2, . . . , N − 1;

σ 2
1 = σ 2

2 + (
σ 2

2 − σ 2
3

)
1{2σ 2

2 >σ 2
3 }, σ 2

k = σ 2
k−1 + (

σ 2
k−1 − σ 2

k−2

)∨ 0 for k ≥ N.

(3.10)

If the first-order model {X1, . . . , XN} defined by (3.2) with parameters (3.11) satisfies

lim
T→∞

1

T

∫ T

0

(
log X(k)(t) − log X(k+1)(t)

)
dt ∼=

1

T

T∑
τ=1

(
log Z(k)(τ ) − log Z(k+1)(τ )

)
, (3.11)

for k = 1, . . . , N − 1, then we say that the system {Z1(τ ), Z2(τ ), . . .} is rank-based. If the
system {Z1(τ ), Z2(τ ), . . .} is rank-based and the first-order model {X1, . . . , XN} defined by
(3.2) with parameters (3.10) is a quasi-Atlas model, then it follows from (2.10) and (3.11) that

1

T

T∑
τ=1

(
log Z(k)(τ ) − log Z(k+1)(τ )

)∼= σ 2
k,k+1

2λk,k+1
, (3.12)
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for k = 1, . . . , N − 1. In this case, the slope parameters for the first-order approximation apply
to the distribution curve for the empirical system {Z1(τ ), Z2(τ ), . . .}, and this motivates the
next two definitions.

Definition 3.3. A first-order family is Zipfian if its slope parameters sk = 1, for k ∈N. A time-
dependent rank-based system is Zipfian if its first-order approximation is Zipfian.

We see that, in terms of the parameters g and σ 2, an Atlas family is Zipfian if and only if
σ 2 = 2g, in which case αk = k in (2.9) and

Rk = k − 1

k
· k − 2

k − 1
· · · 1

2
= 1

k
, (3.13)

as in (2.11) and (2.18). Since many empirical distributions are not Zipfian but rather quasi-
Zipfian, we need to formalize this concept for first-order families.

Definition 3.4. A first-order family is quasi-Zipfian if its slope parameters sk are nondecreasing
with s1 ≤ 1 and

lim
k→∞ sk ≥ 1,

where this limit includes divergence to infinity. A time-dependent rank-based system is quasi-
Zipfian if its first-order approximation is quasi-Zipfian.

For a quasi-Atlas family that is not an Atlas family, we see that in terms of the parameters
g, σ 2

1 , and σ 2
2 of (2.8), the family is quasi-Zipfian if and only if σ 2

1 + σ 2
2 ≤ 4g.

By these definitions, a Zipfian system is also quasi-Zipfian. Because the slope parameters
sk are approximately equal to minus the slope of a log–log plot of size versus rank, Definition
3.4 implies that a time-dependent rank-based system will be quasi-Zipfian if this log–log plot
of its first-order approximation is concave with slope not steeper than −1 at the highest ranks
and not flatter than −1 at the lowest ranks.

Zipf’s law originally referred to the frequency of words in a written language [44], with the
system {Z1(τ ), Z2(τ ), . . .}, where Zi(τ ) represents the number of occurrences of the ith word
in a language at time τ . To measure the relative frequency of written words in a language it
is not possible to observe all the written words in that language. Instead, the words must be
sampled, where a random sample is selected (without replacement), and the frequency versus
rank of this random sample is studied. For example, in Wikipedia [42] 10 million words in
each of 30 languages were sampled and the resulting distribution curves were created. If the
sample is large enough, the distribution of the sampled data should not differ materially from
the distribution of the entire data set, at least for the higher ranks.

An advantage that arises from using sampled data is that it is possible to keep the total num-
ber of data in the sample constant over time. The total number of written words that appear in a
language is likely to increase over time, and this increase could bias estimates of some param-
eters. Sampling the data will remove such a trend from the data, since a constant number of
words can be sampled at each time. Accordingly, in all cases we shall assume that global trends
have been removed from the data, either by sampling or by some other means of detrending.

Since we have assumed that we have a constant sample size or that the data have been
detrended, the total count of our sampled data will remain constant, so

Z1(τ ) + Z2(τ ) + · · · = constant, (3.14)

for τ ∈ {1, 2, . . . , T}, where in the case of the Wikipedia words the constant would be 10
million.
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Suppose we have a time-dependent system of positive-valued data {Z1(τ ), Z2(τ ), . . .}, for
τ ∈ {1, 2, . . . , T} with T > 1, and we observe the top n ranks, for 1 < n < N, with N from (3.7),
along with Z[n](τ ) = Z(1)(τ ) + · · · + Z(n)(τ ). Since the total value of the sampled data in (3.14)
is constant, for large enough n it is reasonable to expect the relative change of the top n ranks
to satisfy

Z[n](τ + 1) − Z[n](τ )

Z[n](τ )
∼= 0, (3.15)

for τ ∈ {1, 2, . . . , T − 1} as n becomes large, at least on average over time. This condition is
essentially a ‘conservation of mass’ criterion for {Z1(τ ), Z2(τ ), . . .}, in which the total ‘mass’
(3.14) of the system remains constant, at least on average over time. It is useful to normalize
the values Z(k)(τ ) and Z[n](τ ) by measuring them relative to the largest value Z(1)(τ ), in which
case (3.15) becomes

1(
Z[n](τ )/Z(1)(τ )

) Z[n](τ + 1) − Z[n](τ )

Z(1)(τ )
∼= 0,

for τ ∈ {1, 2, . . . , T − 1} as n becomes large, at least on average over time. For the first-order
family {gk, σ 2

k }k∈N, this expression allows us to use the ranked weight ratios Rk and R[n] of
(2.17) and (2.19), and motivates the following definition.

Definition 3.5. The first-order family {gk, σ 2
k }k∈N is conservative if, for T > 0,

lim
n→∞

1

R[n]
En

[
1

T

∫ T

0

dX[n](t)

X(1)(t)

]
= 0.

For the system {Z1(τ ), Z2(τ ), . . .}, for τ ∈ {1, 2, . . . , T}, the replacement of processes
in the top n < N ranks by processes in the lower ranks over the time interval [τ, τ + 1] is
measured by

Z[n](τ + 1) −
N∑

i=1

1{ρτ (i)≤n}Zi(τ + 1),

or (
Z[n](τ + 1) − Z[n](τ )

)−
(

N∑
i=1

1{ρτ (i)≤n}
(
Zi(τ + 1) − Zi(τ )

))
.

While some replacement from lower ranks is necessary, it seems reasonable to expect that the
system will be ‘complete’ in the sense that, on average, the relative proportion of the mass that
is replaced becomes arbitrarily small for large enough n, i.e. that

1

Z[n](τ )

(
Z[n](τ + 1) − Z[n](τ ) −

N∑
i=1

1{ρτ (i)≤n}
(
Zi(τ + 1) − Zi(τ )

))∼= 0,

for τ ∈ {1, 2, . . . , T − 1} and large enough n. As in Definition 3.5, in terms of the first-order
approximation of {Z1(τ ), Z2(τ ), . . .}, this becomes

1

R[n]
En

[
1

T

∫ T

0

dX[n](t)

X(1)(t)
− 1

T

∫ T

0

(
N∑

i=1

1{rt(i)≤n}
dXi(t)

X(1)(t)

)]
∼= 0, (3.16)
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for T > 0 and large enough n, where N > n and {X1, . . . , XN} is a first-order model defined by
{gk, σ 2

k }k∈N. By Lemma 2.1, this is equivalent to

1

R[n]
En

[
1

T

∫ T

0

X(n)(t)

2X(1)(t)
d�X

n,n+1(t)

]
∼= 0,

for T > 0 and large enough n. Since

lim
T→∞

1

T

∫ T

0
d�X

n,n+1(t) = λn,n+1 = −2
(
g1 + · · · + gn

)
, a.s.,

condition (3.16) corresponds to

1

R[n]
En

[
1

T

∫ T

0
−(g1 + · · · + gn

)X(n)(t)

X(1)(t)
dt

]
∼= 0,

for T > 0 and large enough n. Since En assumes the stationary distribution, this is equivalent to

−(g1 + · · · + gn
) Rn

R[n]

∼= 0,

for large enough n, and with Gn = −(g1 + · · · + gn
)
, we have the following definition.

Definition 3.6. The first-order family {gk, σ 2
k }k∈N is complete if

lim
n→∞

GnRn

R[n]
= 0.

For an Atlas or quasi-Atlas family Gn = ng, so for these families completeness is equiva-
lent to

lim
n→∞

nRn

R[n]
= 0.

The following two propositions show that conservation and completeness are the basis for the
Zipfian nature of the distributions of many systems of time-dependent rank-based data.

Proposition 3.1. An Atlas family is Zipfian if and only if it is conservative and complete.

Proof. For an Atlas model {X1, . . . , Xn} with parameters g > 0 and σ > 0, Itô’s rule implies
that

dXi(t) =
(

σ 2

2
− g + ng1{rt(i)=n}

)
Xi(t) dt + σXi(t) dWi(t), a.s.,

for t ≥ 0 and i = 1, . . . , n. Hence,

dX[n](t) =
(

σ 2

2
− g

)
X[n](t) dt + X[n](t) dM(t) + ngX(n)(t) dt, a.s.,

for t ≥ 0, where M is a local martingale incorporating all of the terms σ dWi(t). From this we
have, for t ≥ 0,

dX[n](t)

X(1)(t)
=
(

σ 2

2
− g

)
X[n](t)

X(1)(t)
dt + X[n](t)

X(1)(t)
dM(t) + ngX(n)(t)

X(1)(t)
dt, a.s.,
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so, for T > 0,

En

[
1

T

∫ T

0

dX[n](t)

X(1)(t)

]
=
(

σ 2

2
− g

)
R[n] + ngRn,

or
1

R[n]
En

[
1

T

∫ T

0

dX[n](t)

X(1)(t)

]
= σ 2

2
− g + ngRn

R[n]
. (3.17)

If an Atlas family is conservative and complete, then as n tends to infinity the first and last
terms of (3.17) converge to zero, so σ 2/2g = 1 and the family will be Zipfian.

If the Atlas family is Zipfian then σ 2/2g = 1, in which case (3.13) holds, so Rk = 1
k , and

R[n] =
n∑

k=1

1

k
= O( log n).

It follows that
ngRn

R[n]
= g

O( log n)
,

so the family is complete, and with σ 2/2 = g the right-hand side of (3.17) converges to zero
as n tends to infinity. Hence, the left-hand side must also converge to zero, so the family is
conservative. �

This proposition has a natural counterpart for quasi-Atlas families.

Proposition 3.2. If a quasi-Atlas family is conservative and complete with

lim
n→∞ R[n] ≥ 2, (3.18)

then it is quasi-Zipfian.

Proof. Let {X1, . . . , Xn} be a quasi-Atlas model with parameters g, σ 2
1 > 0 and σ 2

2 ≥ σ 2
1 ,

such that gk = −g and σ 2
k = σ 2

1 + (k − 1)(σ 2
2 − σ 2

1 ), for k = 1, . . . , n. Itô’s rule implies that

dXi(t) =
(

σ 2
rt(i)

2
− g + ng1{rt(i)=n}

)
Xi(t) dt + σrt(i)Xi(t) dWi(t), a.s.,

for t ≥ 0 and i = 1, . . . , n, so

dX[n](t) =
n∑

k=1

X(k)(t)

(
σ 2

k

2
− g

)
dt + dM(t) + ngX(n)(t) dt, a.s.,

for t ≥ 0, where M is a local martingale incorporating all of the terms σrt(i)Xi(t) dWi(t). As with
(3.17) above, for T > 0,

1

R[n]
En

[
1

T

∫ T

0

dX[n](t)

X(1)(t)

]
= 1

R[n]

n∑
k=1

Rk

(
σ 2

k

2
− g

)
+ ngRn

R[n]
.

Since the family is conservative and complete, the first and last terms of this equation converge
to zero as n tends to infinity, so

lim
n→∞

(
1

R[n]

n∑
k=1

Rk
σ 2

k

2g

)
= 1. (3.19)
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Let us now show that (3.18) implies that s1 ≤ 1. Since 0 < σ 2
1 ≤ · · · ≤ σ 2

n , (3.19)
implies that

1 ≥ lim
n→∞

1

R[n]

σ 2
1

2g
+ lim

n→∞

(
1

R[n]

n∑
k=2

Rk
σ 2

2

2g

)

= lim
n→∞

1

R[n]

σ 2
1

2g
+
(

1 − lim
n→∞

1

R[n]

)
σ 2

2

2g

≥ 1

2

σ 2
1

2g
+ 1

2

σ 2
2

2g
= s1,

where the last inequality follows from (3.18).
We must now show that either limk→∞ sk ≥ 1 or the sk diverge to infinity. Since the σ 2

k
are nondecreasing, as k tends to infinity they must either converge to a finite value σ 2 > 0 or
diverge to infinity. We see from (2.16) that if the σ 2

k diverge to infinity, the same will be true
for the sk. If limk→∞ σ 2

k = σ 2 then limk→∞ sk = σ 2/2g, and since the σ 2
k are nondecreasing,

1 = lim
n→∞

(
1

R[n]

n∑
k=1

Rk
σ 2

k

2g

)
≤ σ 2

2g
.

It follows that limk→∞ sk ≥ 1. �
These two propositions seem remarkably simple. Many empirical systems can be at least

roughly approximated by quasi-Atlas models, and conservation and completeness are proper-
ties that are almost universal in large time-dependent rank-based systems of empirical data. If
these conditions are satisfied, then these two propositions show that Zipf’s law, or at least its
quasi-Zipfian counterpart, will pertain. Perhaps it is this simplicity that leads to the universality
of Zipf’s law for these systems.

4. Examples and discussion

Empirical time-dependent systems often behave like quasi-Atlas families, and in
Example 4.1 below we consider one such system, the capitalizations of US companies (see
Figures 1 and 2). The condition that the variance rates increase with rank seems natural; even
in the original observation of [8] it would seem likely that the water molecules would have buf-
feted the smaller particles more vigorously than the larger ones. Below the top few ranks, the
members of empirical time-dependent systems constantly drift among nearby ranks, and this
could result in linearity of the σ 2

k , at least throughout the middle ranks. Whether the gk = −g
for all k may be more problematic, but this appears to hold at least in Example 4.1, where we
analyze actual data. Since we are usually observing the top part of a larger distribution, there
is ‘leakage’ out of the system, characterized by the last term in (2.2), so the constant −g may
represent the universal draw toward extinction in time-dependent rank-based systems.

Example 4.1. (Market capitalization of companies.) The market capitalization of US com-
panies was studied early on in [37], and here we follow the methodology of [14]. The
capitalization of a company is defined as the price of the company’s stock multiplied by the
number of shares outstanding. Ample data are available for stock prices, and this allows us to
estimate the first-order parameters we introduced in the previous sections.
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FIGURE 1: US capital distribution first-order parameters (smoothed): σ 2
k (solid), −gk (dashed).
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FIGURE 2: US capital distribution, 1990–1999 (solid). First-order approximation (dashed). The dot is the
point at which the slope of the tangent is −1.
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Figure 1 shows the smoothed first-order parameters σ 2
k and −gk for the US capital distribu-

tion for the ten-year period from January 1990 to December 1999. The capitalization data we
used were from the monthly stock database of the Center for Research in Securities Prices at
the University of Chicago. The market we consider consists of the stocks traded on the New
York Stock Exchange, the American Stock Exchange, and the NASDAQ Stock Market, after
the removal of all Real Estate Investment Trusts, all closed-end funds, and those American
Depositary Receipts not included in the S&P 500 Index. The parameters in Figure 1 correspond
to the 5000 stocks with the highest capitalizations each month. The first-order parameters gk

and σ 2
k were calculated as in (3.10) from the parameters λk,k+1 and σ 2

k,k+1 of (3.8) and (3.9),
and then smoothed by convolution with a Gaussian kernel with ±3.16 standard deviations
spanning 100 months on the horizontal axis, with reflection at the ends of the data.

We see in Figure 1 that the values of the parameters −gk are relatively constant compared
to the parameters σ 2

k , which increase almost linearly with rank. The near-constant −gk and
near-linearly increasing σ 2

k suggest that the first-order approximation can be represented by a
quasi-Atlas family. In Figure 2, the distribution curve for the capitalizations is represented by
the solid curve, which represents the average of the year-end capital distributions for the ten
years spanned by the data. The dashed curve is the first-order approximation of the distribution
following (3.12). The two curves are quite close, and this indicates that the time-dependent
system of company capitalizations seems to be rank-based. The dot on the curve between ranks
100 and 500 is the point at which the log–log slope of the tangent to the curve is −1, so this
is a quasi-Zipfian distribution, consistent with Proposition 3.2. Note that if we had considered
only the top 100 companies, the completeness condition, Definition 3.6, would have failed, as
we would expect for an incomplete distribution.

Example 4.2. (Frequency of written words.) Word frequency is the origin of Zipf’s law [44],
but testing our methodology with word frequency could be difficult. Ideally, we would like to
construct a first-order approximation for the data and compare the first-order distribution to
that of the original data. However, the parameters λk,k+1 and σ 2

k,k+1 for the top-ranked words
in a language are likely to be difficult to estimate over any reasonable time frame, since the top-
ranked words probably seldom change ranks. Nevertheless, while the top ranks may require
centuries of data for accurate estimates, the lower ranks could be amenable to analysis similar
to that which we carried out for company capitalizations. Moreover, it might be possible to
combine, for example, all the Indo-European languages and generate accurate estimates of the
λk,k+1 and σ 2

k,k+1 even for the top ranks of the combined data.

We can see from the remarkable chart in Wikipedia [42] that the log–log plots for 30 dif-
ferent languages are (almost) straight. Actually, these plots seem to be slightly concave, or
quasi-Zipfian in nature. It is possible that this slight curvature is due to sampling error at the
lower ranks, which would raise the variances and steepen the slope, but this would have to be
determined by studying the actual data.

Example 4.3. (Random growth processes.) Economists have traditionally used random growth
processes to model time-dependent systems with quasi-Zipfian distributions. For example,
these processes were used in [21] to model the distribution of city populations and in [7] to
construct a piecewise approximation to the distribution curves for the income and wealth of
US households. A random growth process is an Itô process of the form

dX(t)

X(t)
= μ(X(t)) dt + σ (X(t)) dW(t), (4.1)
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for t ≥ 0, where W is Brownian motion and μ and σ are well-behaved real-valued functions.
We can convert this into logarithmic form by Itô’s rule, in which case

d log X(t) =
(

μ(X(t)) − σ 2(X(t))

2

)
dt + σ (X(t)) dW(t), a.s., (4.2)

for t ≥ 0. We shall assume that this equation has at least a weak solution with X(t) > 0, a.s.,
and that the solution has a stationary distribution.

Let us construct n independent and identically distributed copies X1, . . . , Xn of X, all
defined by (4.1) or, equivalently, by (4.2), and assume that the Xi are all in their common
stationary distribution. Let us assume that the log Xi accumulate no local time at triple points,
so we can define the rank processes, and (2.1) and (2.2) will be valid. If the system is asymp-
totically stable we can calculate the corresponding rank-based growth rates gk, but if we know
the stationary distribution of the original process (4.1), then there is a simpler way to proceed.

If we know the common stationary distribution of the Xi, then we can calculate expectations
under this stationary distribution and let

gk =E

[
μ(X(k)(t)) − σ 2(X(k)(t))

2

]
, σ 2

k =E
[
σ 2(X(k)(t))

]
,

for t ≥ 0 and k = 1, . . . , n. Under appropriate regularity conditions on the μ and σ , the expec-
tations here will be equal to the asymptotic time averages of the functions. Since the Xi are in
their stationary distribution, the geometric mean

(
X1X2 . . . Xn

)1/n = (
X(1)X(2) . . . X(n)

)1/n will
also be in its stationary distribution, so for t ≥ 0,(

g1 + · · · + gn
)
t =E

[
log

(
X(1)(t) · · · X(n)(t)

)− log
(
X(1)(0) · · · X(n)(0)

)]= 0.

Hence, g1 + · · · + gn = 0, with g1 + · · · + gk < 0, for k < n, so the gk and σ 2
k define the first-

order model
d log Yi(t) = grt(i)dt + σrt(i)dWi(t), (4.3)

for t ≥ 0 and i = 1, . . . , n, where W1, . . . , Wn is n-dimensional Brownian motion. In this case,
Gn = 0.

If the functions μ and σ in (4.1) are smooth enough, then the system is likely to be rank
based, with the stationary distribution of the first-order model (4.3) close to that of the original
system (4.1). More conditions are required for this stationary distribution to be quasi-Zipfian,
and to achieve a true Zipfian distribution, a lower reflecting barrier or other equivalent device
must be included in the model [22].

Example 4.4. (Population of cities.) The distribution of city populations is a prominent exam-
ple of Zipf’s law in social science. However, as the comprehensive cross-country investigation
of [39] shows, city size distributions in most countries are not Zipfian but rather quasi-Zipfian.
Gabaix [21] hypothesized that the quasi-Zipfian distribution of US city size was caused by
higher population variances at the lower ranks, consistent with Proposition 3.2. Which of the
deviations from Zipf’s law uncovered in [39] are due to population variances that increase with
decreasing city size remains an open question.

There is another phenomenon that occurs with city size distributions. Suppose that rather
than studying a large country like the US, we consider instead the populations of the cities
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in New York State. According to the 2010 US census, the largest city, New York City, had a
population of 8 175 133, while the second largest, Buffalo, had only 261 310, so this distri-
bution is non-Zipfian. The corresponding population of New York State was 19 378 102, so
hypothesis (3.18) of Proposition 3.2 is satisfied, but nevertheless the proposition fails. This
calls for an explanation, and we conjecture that while the population of the cities of New York
State comprise a time-dependent system, this system is not rank based. The population of New
York City is not determined merely by its rank among New York State cities, but is highly
city specific in nature. Hence, we cannot expect the stationary distribution for the gap process
between New York City and second-ranked Buffalo to be exponential, and we cannot expect
the distribution of the system to be quasi-Zipfian.

Example 4.5. (Assets of banks.) Fernholz and Koch [19] showed that the distribution of assets
held by US bank holding companies, commercial banks, and savings and loan associations
are all quasi-Zipfian. This is true despite the fact that these distributions have undergone
significant changes over the past few decades. However, as [20] showed, the first-order
approximations of these time-dependent rank-based systems generally do not satisfy the
hypotheses of Proposition 3.2, since the parameters σ 2

k,k+1 are, in most cases, lower for higher
values of k. Nonetheless, the parameters λk,k+1 vary with k in such a way as to generate
quasi-Zipfian distributions.

Example 4.6. (Employees of firms.) Axtell [2] shows that the distribution of employees of US
firms is close to Zipfian, with only slight concavity. A number of empirical analyses have
shown that for all but the tiniest firms, employment growth in US firms does not vary with firm
size [33]. This observation, together with the slight concavity demonstrated in [2], suggests
that the first-order approximation of US firm employees might be a quasi-Atlas family, which
would explain its quasi-Zipfian nature.

5. Conclusion

We have shown that the stationary distribution of an Atlas family will follow Zipf’s law if
and only if the family is conservative and complete. We have also shown that a quasi-Atlas fam-
ily will have a quasi-Zipfian stationary distribution if the family is conservative and complete,
provided that the largest member does not represent more than one half of the total weight of
the family. Since conservation and completeness are natural conditions for systems of time-
dependent rank-based empirical data, and since many such systems can be approximated by
Atlas or quasi-Atlas families, our results offer an explanation for the universality of Zipf’s law
for these systems.
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