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Abstract

This paper presents the development of an optimization methodology for selecting the lowest monetary cost combinations
of building technologies to meet set operational energy reduction targets. The new optimization algorithm introduced in this
paper departs from the notion that optimal design choices over a large set of design parameters and properties can be driven
by energy targets. We assume that design parameters are determined by many concurrent considerations fighting over the
attention span of the design team. Our approach starts from a design outcome and asks the question, which set of discrete
technologies are the right mix to reach an energy target in the cost optimal way? Such an approach has to face the challenge
that the properties of market-available building technologies have a discrete nature that makes their optimal selection a com-
binatorial problem. The optimization algorithm searches the discrete combinatoric space by maximizing the following ob-
jective function: calculated energy savings divided by premium cost, where cost is defined as the additional cost over a base-
line solution. The algorithm is codified into a custom MATLAB script and when compared to prescriptive methodologies
is shown to be more cost effective and generically applicable given a palette of building technology alternatives and their
corresponding cost data.

Keywords: Architectural Design; Building Simulation; Computational Design; Design Alternatives; Design Decision
Making; Design Optimization; Optimization Algorithm

1. INTRODUCTION

1.1. Combinatorial problem

The manufacturers of building materials, systems, and tech-
nologies continue to create larger palettes of products and
levels of accomplishment within each product. Each instance
of a technology or system is considered to have effectiveness
in its own right that can be ranked against others in its class.
For example, the levels of accomplishment of chillers, boil-
ers, and heat recovery units would be determined by their
macrosystem efficiencies. These macro system efficiencies
such as the coefficient of performance of a chiller would be
the ratio of heat energy removed compared to the energy con-
sumed by the system and could be ranked in order within its
class from the highest to lowest ratio. The level of accom-
plishment of a certain property or technology parameter is
an important distinction from the performance of the whole
building. Although each accomplishment level (expressed
as values of a technology parameter) can be ranked in order,

its role in the resulting performance of the whole building is
only comprehensible in the outcome of energy use by the
whole building system.

The diversity of technologies and discrete technology solu-
tions exponentially increase the already broad spectrum of
available design alternatives. The vast array of alternatives
available for buildings can be seen as a discrete combinatorial
space made up of all the possible combinations of levels of
accomplishment from each technology category. Surveying
this combinatorial design space reveals a dizzying number
of possible technology combinations. For example, given
16 technology types with between two and seven levels of ac-
complishment each, more than 1 billion unique combinations
exist. The motivation to explore this combinatorial space of
technology options is to develop a rigorous methodology
for finding low-cost solutions that meet the energy-savings
goals required by the national energy codes, which enforce
better performing buildings.

1.2. Energy reduction policy

The American Institute of Architects was the first to adopt the
2030 challenge, which was developed by the nonprofit Archi-
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tecture2030, with the goal that all new buildings designed in
the year 2030 and after will use net-zero site energy. The Eu-
ropean Union, the United Kingdom, and the Korean govern-
ment are also pursuing legislation for zero-carbon buildings
and expect to reach this goal in 2050, 2019, and 2025 respec-
tively. In this instance, the net-zero building uses zero energy
at the site, meaning the energy produced at the site must meet
or exceed the energy consumed by the building. The pathway
toward this goal requires an incremental and affordable en-
ergy-savings strategy. Many prescriptive building codes and
guidelines such as LEED, the ASHRAE Advanced Energy
Design Guide in the United States, and Passivhaus in the
United Kingdom present a step-by-step method to reduce
building energy use. These guides do not necessarily result
in the selection of financially viable technology combina-
tions, and hence do not provide a cost-effective path for own-
ers to meet the current energy-savings goals enforced by gov-
erning energy codes.

1.3. Prescriptive-based methodologies

Passivhaus describes their methodology as “the world’s lead-
ing fabric first approach to low energy buildings.” The Pas-
sivhaus ideology and rating system is interesting because it
is composed of both prescriptive requirements and a perfor-
mance rating. The Passivhaus Designer’s Guide is a prescrip-
tive methodology with an emphasis on selecting glazed and
opaque fabric elements that meet minimum conduction cri-
teria, airtightness, solar shading, mechanical ventilation
with heat recovery, and primary energy appliances (Passiv-
haus, n.d.). The ASHRAE Advanced Energy Design Guide-
lines were developed as a prescriptive methodology for small
to medium office buildings, as well as other types to achieve
30% to 50% energy savings with variations provided for
each of the US climate zones. The design guide documents
also include conceptual ideas about integrated design
frameworks and workflow arrangements that will help facili-
tate the production of energy efficient buildings (ASHRAE,
n.d.). These guidelines, as well as other prescriptive meth-
odologies, are formed with requirements for specific en-
ergy-savings technologies and the level of accomplishment
required to meet their minimum recommendation. The types
of building envelope, ventilation, heating, cooling, and light-
ing technologies outlined in these guides and building codes
are used as a basis, but also include others such as renewables
that reduce site energy when selecting a palette of technolo-
gies used in comparison of building performance for this
study.

1.4. Optimization-based methodology

Parametric studies are often used by designers to select
building technologies that reduce energy use in a one factor
at a time approach. In this approach, one input variable is
manually updated for each simulation run while all others

are kept constant. “This method is often time-consuming
while it only results in partial improvement because of com-
plex and non-linear interactions of input variables on simula-
ted results” (Nguyen et al., 2014). Moreover, it will fail when
there exists interactions between input variables, as demon-
strated in Wu and Hamada (2009, p. 173).

Metaheuristic algorithms such as genetic algorithms can
explore the combinatorial design space much more efficiently
than parametric studies. They are effective at locating the
maximum or minimum of highly nonlinear objective func-
tions. Because executing building simulations is often com-
putationally expensive, the number of simulations needed
to search for an optimum point is also an important considera-
tion in choosing optimization algorithms for optimizing
building technologies. However, metaheuristic algorithms of-
ten require a large number of evaluations of the objective
function. For example, in Salminen et al. (2012), with a
six-parameter search space, the implementation of a genetic
algorithm explored a total of 27% of the combinatorial space
of solutions. This is clearly not much more efficient than an
exhaustive search. As the combinatorial design space expands
to include more technology options and there are more alter-
natives to test, the efficiency of the search technique to reach
an optimum point becomes more important. Some other pop-
ular optimization algorithms described in Nguyen et al.
(2014) are not suitable for the building technology selection
problem in this paper. Gradient-based methods are only ap-
plicable if all building technology decisions that need to be
made can be represented by continuous variables. Note that
in building design studies, BEopt (Christensen et al., 2006)
and GenOpt (Wetter & Wright, 2003) are popular optimiza-
tion methods that fall in this category. The branch and bound
method for solving integer programs is not only time consum-
ing but also requires a lower bound to be generated for each
node or subproblem.

The problem that this paper attempts to address is a non-
convex combinatorial optimization problem. Nonconvex
combinatorial optimization problems are in general extremely
difficult to solve for global optimality. No method that does
not completely enumerate (explicitly or implicitly) all possi-
ble solutions can guarantee global optimality (Colorni et al.,
1996; Blum & Roli, 2003). This paper proposes a greedy
heuristic optimization algorithm, that is, an algorithm that
makes a locally optimal choice at each step (see chap. 16 of
Leiserson et al., 2001), to select energy technologies to
meet a given energy target at minimal cost. It is a stepwise op-
timization method that changes the level of achievement of a
single energy technology at each step in such a way that the
energy-savings-to-cost ratio is improved by the greatest
amount. For the initial study, we focused on two levels of en-
ergy savings: 30% and 50%, which are selected as the targets
in the ASHRAE Energy Design Guide. It is expected that
each level can be reached by applying different combinations
of technology solutions. A comparison with prescriptive de-
sign guides and procedures for the same energy-savings tar-
gets is demonstrated.
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2. METHODOLOGY

2.1. Case study buildings

Two buildings were selected to study the application of the
optimization methodology’s ability to reach lowest cost tech-
nology mixes and compare with the way current existing pre-
scriptive techniques achieve energy savings (Fig. 1). A 10-
story 8467-m2 office and a 15-story 60-unit 6028-m2 apart-
ment building have been selected as representations of proto-
typical Korean buildings.

For this case study, the buildings are situated in the urban
capital city of Seoul, Korea. The weather data used in the
study is from the Incheon airport at latitude 37.48 degrees
and longitude 126.55 degrees.

The two prototypical buildings are modeled with a norma-
tive energy modeling tool, the energy performance coeffi-
cient (EPC), which calculates the yearly energy use intensity
(EUI) of each building with the given climate data. The fol-
lowing sections show the development and application of
the optimization framework to meet the energy reduction tar-
gets. We then compare the resulting optima with the results
we would obtain by following the procedures laid out in pre-
scriptive design guides. Our optimization approach and the
prescriptive techniques are then compared in their ability to
reach the desired energy targets of 30% and 50% energy sav-
ings, whereas the monetary cost of each mix will be compared
across alternative approaches as well.

2.2. Modeling approach

This study uses a normative energy calculation approach that
is defined by ISO 13970 and CEN 15603. The ISO-CEN
whole-building energy modeling approach has been coded

into an Excel calculator that solves algebraic heat balance
equations with averaged monthly weather data. The calcula-
tor’s output is an EUI, that is, the yearly energy used per
unit floor area in kilowatt hours per square meter per year
(kWh/m2/year), and it is used mostly in benchmarking the
building’s performance rating as an EPC (Lee et al., 2011).
This approach offers significant advantages over dynamic
simulation based tools such as those promulgated by ASH-
RAE 90.1 and its Appendix G based LEED scoring of the
EA credits. The main advantages are reduced modeling
effort, increased transparency and avoidance of modeler’s
bias, increased model accountability and reduction or absence
of computation time. The EPC approach removes modeler’s
bias, a set of subjective judgments and manipulations re-
quired by the modeler making decisions about how to repre-
sent input values that cannot be taken directly from observa-
ble information in the design specs, and instead uses a set of
normative modeling assumptions and scenarios (Kim et al.,
2012). The normative model this study utilizes is composed
of algebraic heat balance equations and is therefore more
transparent than a corresponding dynamic simulation model,
which numerically solves partial differential equations that
describe the full complexity of dynamic physical behavior.
The latter requires much more computation time than the sim-
plified calculations encoded in the standard. The normative
modeling methodology has been shown to lead to the same
ranking of alternatives as the detailed dynamic simulation
models. The reason for this surprisingly good behavior is
that simplified calculations do much better in comparative
analysis than in predicting absolute outcomes. Recent work
shows, for example, that a normative model produces the cor-
rect ranking and prioritization of energy conservation mea-
sures (Heo et al., 2011). When testing different competing
technologies against each other, we are basically performing

Fig. 1. Elevations of apartment and office buildings.
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a comparative analysis. This substantiates that the underlying
engine for finding the optimal mix of technologies is based on
the normative model. A specially adapted version was devel-
oped for this purpose, making sure that all technologies and
solutions were adequately represented in the energy perfor-
mance calculation.

The resulting EPC calculation tool is used by the optimiza-
tion algorithm to evaluate the combinatorial space of technol-
ogy parameters in the two selected prototypical buildings. It
should be stressed that the optimization problem is only well
posed at the whole-building level. As a consequence, optim-
ality can be defined only at the whole-building energy out-
come level. Any attempt at a prescription of subset technol-
ogy parameters will likely lead to a suboptimal building
because the performance of any single technology cannot
be judged on its own, but only as part of the whole-building
system. Augenbroe (2011) asserts that the method of optimiz-
ing the building or a building system by simply selecting the
components with the highest achievement is inadequate for
many system theoretic problems. Rather, the whole build-
ing’s performance must be evaluated as a function of all tech-
nology parameters. The whole-building model approach ac-
counts for the logical fit of energy systems by calculating
for the interactive affects between the energy demand of pas-
sive systems (heat transfer through windows and walls) and
the efficiency of active (heating, cooling, and lighting) and
generation (photovoltaic and solar thermal) systems used to
satisfy those demands (Augenbroe & Park, 2005).

Prescriptive energy codes and guidelines bias the technol-
ogies that the design team selects because guidelines, by def-
inition, trail developments available in the market. Therefore,
they list only a segment of the technologies available at the
time of application. Any list of prescribed technologies is in-
herently reflective of the regulators’ bias and limits the num-
ber of acceptable strategies. Instead, a whole-building energy
performance indicator such as EUI, which can account for the
complexities and interactions between different technologies,
should be used to benchmark buildings.

A performance-based approach allows for compliance
through innovation and does not restrict the path selected to
reach the energy performance requirement. For example, in
a design space of 16 parameters and more than 1 billion total
possible combinations, the prescriptive compliant building is
just one data point in a vast array of possible solutions that
meet an energy reduction target and most likely is not the
monetary cost optimal one. In this instance, the 16-parameter
design space is selected to capture all of the building technol-
ogy categories (envelope, heating, cooling, lighting, ventila-
tion, domestic hot water, appliances, and building controls)
that typically constitute building codes, design guides, and
prescriptive methodologies with the addition of solar thermal
and photovoltaic energy generation technologies but at incre-
mental levels of achievement and cost. The selected pa-
rameter set does not include thermal storage technologies,
such as ice storage, because they are implemented to reduce
energy demand at peak times and do not necessarily reduce

the energy consumed on site. If these possible combinations
are seen as a potential population of typical buildings, then a
Monte-Carlo random sampling method can be used to enumer-
ate a portion of this population. Figure 2 shows an example
population of virtual realizations of Korean office buildings
as a probability density function from 10,000 technology
combinations. In this population, where the baseline building
has an EUI of 300 kWh/m2/year, 55 of the samples meet the
30% energy-savings target and 235 meet the 50% target
(each instance representing a particular mix in the considered
building). The developed optimization methodology searches
the combinatorial space, or potential population of instances
of technology mixes applied to the considered building, for
the single instance that meets the energy-savings objective
at the lowest monetary cost.

2.3. Baseline definitions

The baseline buildings in this study were created by applying
the prescriptive requirements that are described in the Build-
ing Energy Saving Design Guidebook, published by the Kor-
ean Energy Management Corporation (Kemco, n.d.). Kemco
outlines minimum allowable U-values for the building’s en-
velope based on the building’s location and associated cli-
mate within Korea. The Korean building code varies for
each of its three regions: Central, Southern, and Jeju Island.
Seoul is in the Central Region of Korea, so the building codes
that apply there are used to determine the baseline buildings’
properties (Table 1).

The occupancy schedule for the office building is defined
as 100% occupancy for normal weekday operation: Monday
to Friday, 9:00 a.m. to 6:00 p.m., with no other occupied
times. The occupancy schedule for the apartment building
is interpolated at hourly points from a continuous model (Ri-
chardson, 2008). The occupancy schedules are held constant
throughout each model and represent a normative approach to
evaluating energy-savings technology alternatives. When cal-
culated with the normative model, which includes energy
consumed for heating, cooling, ventilation, lighting, plug
loads, and hot water, the baseline office and apartment build-
ings’ yearly energy use intensities are 320 and 346 kWh/m2/
year, respectively. The heating and cooling demand for the
baseline office building, before efficiencies of mechanical
equipment are considered, are 66 and 49 kWh/m2/year, re-
spectively; the demands for the baseline apartment building
are 69 and 35 kWh/m2/year, which demonstrates that the cen-
tral region of Korea is a heating-dominated climate zone.

2.4. Cost function

The cost function this study aims to minimize is a linear sum
of the premium monetary costs of 16 technologies (identified
by technology parameters) at their levels of achievement.
Each technology’s level of achievement is also in order of in-
creasing cost because any technology with the same or a
lower level of achievement at a higher cost than the previous
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instance would be excluded from the selection of technolo-
gies. The premium monetary cost is defined as the cost of
any technology’s level of achievement cost minus baseline
cost. For each technology, we define a cost evaluation func-
tion with the technology parameters and certain building-spe-
cific parameters as its arguments. For each evaluation of the
cost function, the cost all of applied technologies are summed
to calculate total premium cost.

For any technology that is not included in the baseline
building but is added later, as in the case of renewables and
heat recovery, the premium cost is just the total cost of the
technology because the baseline cost of that parameter is
zero. Because the baseline cost is subtracted from the cost
of each added technology, the “premium” cost of the baseline
building equals zero.

The cost function can be written as

C(x) ¼
Xp

i¼1
Ai(xi),

where xi [ 0, 1, . . . , nif g, xi ¼ 0 represents the baseline, and
xi ¼ 1, 2, 3, . . . , ni represents the achievement levels ordered
along increasing cost (i.e., if j , k, Ai( j) , Ai(k)). For each
Ai, which is the cost function for technology i, Ai(0) ¼ 0;
therefore, C(0) ¼ 0.

It should be noted that this method of costing removes the
time sensitivity of technology cost and excludes net present
value or return on investment calculation because the main
goal of the optimization algorithm is to meet an instantaneous
energy reduction target at the time of construction at mini-
mum capital investment cost. The 16-technology parameters
considered and their corresponding levels of accomplishment
with individual premium costs based on system size are given
in Figure 3.

2.5. Optimization

To search the large discrete combinatorial space of technol-
ogy alternatives, an optimization algorithm is developed
into a MATLAB code that automates the testing of combina-
tions of technologies in a combined ascent and descent
method, which can be initialized at any point, that is, at any

Fig. 2. Population of potential buildings.

Table 1. Korean building codes

Korean Envelope
Conductivity

Standards

Roof U
Value

(W/m2 K)

Wall U
Value

(W/m2 K)

Window
U Value

(W/m2 K)

Central region 0.2 0.363 2.1
Southern region 0.24 0.45 2.4
Jeju Island region 0.29 0.58 3.1
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Fig. 3. Accomplishment levels of technology parameters, their premium costs, and technology levels selected by optimization algorithm
for Korean apartment and office buildings. Selected technology levels are indicated by the shaded cells.
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specific set of technologies to begin the search for an opti-
mum. In this paper, we initialize the combined ascent–
descent procedure from the baseline building where all
technologies are equal to the lowest or baseline level of
accomplishment. The algorithm then ascends in steps by se-
lecting the single alternative that maximizes the objective
function, energy savings divided by monetary cost or E/C
ratio, until the energy-savings target is reached directly or ex-
ceeded. When the energy-savings target is exceeded, the al-
gorithm performs the procedure in reverse, by stepping
down levels of accomplishment (in such a way that the E/C
ratio is maximized and the energy-savings constraint is satis-
fied) until any further step would result in the violation of the
energy-savings constraint. The algorithm is expected to find
the solution with close to minimum cost because the least
cost solution that meets a given target, say, T, for E will
give the largest value of T/C (because C is minimized), as-
suming that T is exactly achievable. In this study, the switch
to the descent procedure can be seen in Figure 4 at the ridge
where the optimization path reverses and steps down to reach
the final value of the E/C ratio.

The developed combinatorial optimization approach is un-
like previous optimization studies because it does not reduce
the discrete nature of technology accomplishments by contin-
ualizations between minimum and maximum property val-
ues, but retains the ability to produce unique solutions from
currently available discrete technology options and products.
One reason to support the creation of custom MATLAB code
for optimization is that even powerful off-the-shelf software
such as Phoenix Integration’s Model Center is unable to exe-
cute optimization algorithms with discrete input parameter
values. Even with an automated process in MATLAB, enu-
merating the full factorial set of combinatoric options is com-
putationally prohibitive; the main computational burden is
the evaluation of the energy savings of the more than 1 billion
technology achievement level combinations utilizing our Ex-
cel implementation of the normative building energy model.

2.6. Optimization algorithm

The optimization algorithm is specified below.

C(x) ¼ cost function
E(x) ¼ energy savings function

x ¼ {0, . . . , n1}� � � � �{0, . . . , np}
T ¼ minimum required energy savings

C(x) ¼
Xp

i¼1
Ai(xi),

where xi [ 0, 1, . . . , nif g and the Ai’s are increasing func-
tions, that is, Ai(xk) . Ai(xl) if k . l. Assume that E(0) �
T � E((n1, . . . , np)T ) (i.e., the energy savings is between
that achieved with the baseline technologies and that achieved
with all technology parameters at their highest level of
achievement) and E((n1, . . . , np)T ) ¼ maxfE(x): x [ xg

(i.e., the maximum energy savings is achieved with all tech-
nology parameters at their highest level of achievement).

Initialize: Specify a starting solution x0. Compute E(x0).
Set x ¼ x0. If E(x0) . T, use Descent Procedure. If
E(x0) , T, use Combined Ascent and Descent Procedure

Descent Procedure:

1. Set V ¼ f1, . . . , pg.
2. For i [ V, set xi ¼ x. If xi

i . 0, set xi
i ¼ xi

i � 1 and
compute S(xi) ¼ E(xi)/C(xi). Otherwise, set V ¼
Vn{i}.

3. If V ¼1, stop and return x. Otherwise, find
k ¼ argmax{S(xi): i [ V}.

4. If E(xk) � T, set x ¼ xk and return to Step 2. Other-
wise, set V ¼ Vn{k} and return to Step 3.

Combined Ascent and Descent Procedure:

1. Set V ¼ f1, . . . , pg.
2. For i [ V, set xi ¼ x. If xi

i , ni, set xi
i ¼ xi

i þ 1 and
compute S(xi) ¼ E(xi)/C(xi). Otherwise, set V ¼
Vn{i}.

3. Find k ¼ argmaxfS(xi): i [ Vg and set x ¼ xk.
4. If E(xk) � T, find l ¼ argminfC(xi): i [ V, E(xi) �

Tg, and set x ¼ xl. Otherwise, return to Step 2.
5. Apply descent procedure with x as starting point.

3. RESULTS AND DISCUSSION

3.1. Optimization results

The energy-savings targets for the optimization are set for
30% and 50% of the EUI for the prototypical apartment
and office building. The energy-savings target forms the con-
straint, while the objective is the minimization of the premium
cost function. The ridges at the end of the optimization proce-
dure, seen in each of the two optimization graphs in Figure 4,
are sets that are very close to the optimal point but happen to be
located where technology accomplishment levels can still be
decreased. The optimization algorithm’s descent procedure
continues to step down the level of technology accomplish-
ment until the energy-savings target as a constraint is violated.

This study assumes that given two technology achievement
level combinations that achieve energy savings greater than the
target, the decision maker prefers the one with the smaller cost.
Thus, even though the technology combinations on the ridge
of the final descent procedure are very close to the optimum,
the technology levels are stepped down until any further step-
ping down would violate the energy-savings constraint.

To highlight the insights that can be garnered from our ap-
proach, we present a few salient results (Fig. 3). The technol-
ogy parameters that the optimization algorithm selects for the
30% energy-savings target apartment building are improved
sealants (ACH¼ 0.20), Energy Star appliances, double low-E
glazing, and solar hot-water installed on 25% of the roof
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Fig. 4. Comparison of optimization results and prescriptive design guides for Korean apartment and office buildings. Blue lines plot the
percentage energy savings versus cost for technology-level combinations visited by optimization algorithm when the energy-savings target
is set to 50%. The starting point is the origin. The algorithm increases the technology level of a technology parameter at each step until the
energy savings exceed the target. Then, the algorithm reduces the technology levels and terminates when further reduction causes the
energy-savings target constraint to be violated (the termination point is the last point that does not violate the energy-savings target con-
straint, as indicated by a red circle.)
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area. For the office building with the 30% target, the optimiza-
tion algorithm selected improved sealants [air changes/h
(ACH)¼ 0.13], Energy Star equipment, and triple low-E glaz-
ing. In the optimization process to reach the 50% energy-
savings target for the apartment building, the algorithm
selected occupancy sensors, dimmer switches, rotating heat
exchangers, improved sealants (ACH ¼ 0.20), photovoltaics
on 25% of the roof area, Energy Star equipment, T-10 flores-
cent lighting, SIP wall panels with 190.5-mm polystyrene in-
sulation, triple low-E windows, and solar hot water on 25% of
the roof area. In the optimization process to reach the 50%
energy-savings target for the office building, the algorithm
selected dimmer switches, 20% exhaust air recirculation, im-
proved sealants (ACH ¼ 0.13), Energy Star equipment,
139.7-mm extruded polystyrene roof insulation, 203.2-mm
insulated concrete form work, and 41-mm quadruple glazing.

3.2. Prescriptive method results

To rate the outcome of the Passivhaus compliant design in this
study, the impact of the Passivhaus guidelines on the office
and apartment building’s EUI are calculated with our norma-
tive model. For the office and apartment buildings in this case
study, the Passivhaus guidelines required selecting the tech-
nologies: slowly rotating heat exchangers, improved sealing
(ACH ¼ 0.13/0.20 office/apartment), 139.7-mm polystyrene
roof insulation, SIP wall panels with 139.7-mm polystyrene
insulation, and 41-mm quadruple glazing. The office and
apartment buildings recorded a 35.6% and 36.0% energy sav-
ings, respectively, as a reduction in EUI in our calculations.

In this case study, we assume that the prototypical Korean
apartment and office buildings have been through the design
development stage and are being optimized for materials,
lighting, and heating and cooling systems, so the focus of
the application is the specific level of achievement for each
of the associated technology parameters. For this study, the
recommendations are applied for US climate zone 4, Balti-
more, which is a coastal city two degrees of latitude north
of the Korean Capital, Seoul (Kottek et al., 2006).

The technologies that were required for the apartment and
office buildings to meet ASHRAE Energy Design Guide
standards are daylight sensors, occupancy sensors, high-effi-
ciency boiler for heating and hot water, improved sealants
(ACH¼ 0.13/0.20 office/apartment), Energy Star equipment,
high-efficiency florescent lighting, 139.7-mm polystyrene
roof insulation, and SIP wall panels with 88.5-mm polysty-
rene insulation. The office and apartment buildings recorded
43.75% and 43.0% reductions in EUI, respectively, as calcu-
lated by our model.

3.3. Discussion

Analysis of the optimization routine to reach 50% energy
savings shows that the algorithm starts by reducing energy
loses by limiting infiltration into the building and in the
middle steps further reduces the heating and cooling de-

mand by decreasing the envelope conduction in the win-
dows and walls. As the procedure climbs over 30% savings,
the routine selects more solar thermal and photovoltaic en-
ergy generation technologies to reduce the overall energy
consumption. The building envelope parameters are in-
creased to the highest levels of accomplishment and the
heating and cooling demand is reduced further such that
the value of the solar thermal and photovoltaic panels for
energy production diminishes and they are actually removed
during the descent procedure. To compare the final results
of how the optimization methodology performs at selecting
energy-savings technologies against the prescriptive meth-
odologies, we can compare their ability to maximize the ra-
tio of energy savings divided by the premium cost ratio
(Figs. 5 and 6).

3.4. Further applications

The optimization algorithm developed in this study could be ex-
tended as a tool to study hypothetical situations based on trends
in technology development and price forecasting. The tool
could be used to answer questions such as how much will the
cost of a certain technology have to fall before its selection is
advantageous over others of the same type? The optimization
process could be made an integral part of performance-based
energy codes, such that building owners would have more de-
sign alternatives than those listed in current (partly prescriptive)
codes to develop energy-efficient buildings.

In the briefing and developing requirements stage, the op-
timization process could also be used to determine appropri-
ate energy-savings targets given the owner’s budget limit to
spend on premium energy conservation measures.

The optimization tool could be even more powerful and
widely applicable if cost data were published by manufactur-
ers as openly as the physical characteristics of their systems. If
the availability of cost data increased, then it would be possi-
ble to make more accurate longitudinal projections for cost in-
creases such that net-present value could be transparently cal-
culated along with the lifetime cost of operational energy use
of the building. These lifetime costs could then be aggregated
to transparently find total operations and maintenance costs
for each technology combination. If the optimization target
was shifted to minimize total energy cost expenditures rather
than site energy use, then the modeling approach could be ex-
tended to include thermal storage technologies that reduce
high-cost demand peaks.

The results from the optimization can also be used to
make more informed general predictions about which com-
binations will produce cost-optimal solutions in buildings of
similar size, type, function, and climate given a similar pal-
ette of technology parameters and cost information. The op-
timization approach could also be extended to select tech-
nologies for retrofit strategies to demonstrate a more cost-
effective path to bringing existing buildings up to current
levels of energy code compliance than generic prescriptive
guidelines.
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Fig. 6. Energy savings/premium cost for an apartment building.

Fig. 5. Energy savings/premium cost for an office building.
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4. CONCLUSION

We introduced an optimization algorithm to maximize the ra-
tio of energy savings divided by cost (E/C) of an energy-sav-
ings technology mix. The evaluation of the (E/C) ratio is ap-
plied to an apartment building and an office building located
in Korea. The (E/C) ratio ranking demonstrates that existing
prescriptive methodologies are much less efficient than the
optimization algorithm at reducing the prototypical build-
ings’ EUI at the lowest premium cost (Figs. 5 and 6). The
E/C ratio for 50% optimization in the office building is dem-
onstrated to be a 3.25 times improvement over the Passivhaus
Guide and a 5 times improvement over the ASHRAE Design
Guide. For the apartment building, the 50% optimization
demonstrates a 1.31 times improvement over the Passivhaus
Guide and a 2.95 time increase over the ASHRAE Design
Guide. The optimization methodology is shown to produce
superior performance in terms of finding the lowest cost solu-
tions to energy-savings targets for prototypical apartment and
office buildings (Fig. 4). This result further reinforces the
concept of performance-based thinking in that the perfor-
mance indicator, EUI, is a function of all the building param-
eters and can be optimized only at the whole-building level
rather than suboptimizing (or prescribing) a subset of technol-
ogy components. Furthermore, this result identifies the weak-
nesses of prescriptive energy-savings methodologies in that
they do not provide cost-efficient solutions to meet the en-
ergy-savings targets imposed by national energy codes and
desired by building owners.
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