
J. Fluid Mech. (2012), vol. 706, pp. 470–495. c© Cambridge University Press 2012 470
doi:10.1017/jfm.2012.269

Control of the secondary cross-flow instability
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Transition control by suction in a three-dimensional boundary-layer flow subject to
cross-flow instability is investigated using direct numerical simulation. Whereas the
classical application of (homogeneous) suction at the wall is aimed at modifying the
quasi-two-dimensional base flow to weaken primary cross-flow instability, here the
three-dimensional nonlinear disturbance state with large-amplitude steady cross-flow
vortices (CFVs) is controlled. Strong, localized ‘pinpoint’ suction is shown to be
suitable for altering the CFVs and the associated flow field such that secondary
instability is weakened or even completely suppressed. Thus significant delay of
transition to turbulence can be achieved.
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1. Introduction
Improving the fuel efficiency of aircraft has become an important task. Not only do

airlines benefit from decreasing their direct operational costs by saving increasingly
expensive fuel, but also the environmental aspect has gained growing interest, and
regulators are presently looking at limiting greenhouse gas emissions.

To date, the actual optimizations applied to new airplanes have been limited to
enhanced shaping, higher surface quality and engine improvement, and it is thought
that there is little potential left in these research fields. New concepts have therefore to
be envisaged. Laminar flow control (LFC) provides a total drag reduction potential of
up to 16 % by, for example, realizing 40 % laminar flow on wings and tail planes of a
current airliner (Schrauf 2005).

Intense research on LFC has been carried out within the past few decades. For plane
boundary-layer flows without cross-flow, (homogeneous) suction at the wall has been
shown to delay transition to turbulence significantly by pulling high-momentum fluid
towards the wall, thus enforcing fuller wall-normal profiles of the streamwise velocity
which lead to attenuated growth of Tollmien–Schlichting (TS) instability waves. Also,
active TS wave control, by triggering antiphase disturbances, now allows successful
control of an unstable two-dimensional boundary layer.

As for three-dimensional boundary layers with favourable (negative) streamwise
pressure gradient, suction is employed for a reduction of the basic cross-flow: primary
cross-flow instability leads to growth of steady and travelling cross-flow vortices
(CFVs). Owing to surface roughness, steady CFVs typically prevail and cause early
transition on a swept airliner wing if the sweep angle is larger than ∼25◦. Several
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flight campaigns were conducted in the USA and Europe starting in the early 1960s.
Based on the overviews by Joslin (1998a,b), the most important issues have been
summarized in the direct numerical simulation (DNS) work by Messing & Kloker
(2010). Among others, the Northrop X-21 flight tests, the NASA Jetstar campaign,
the Boeing 757 HLFC test and the Airbus A320 fin test showed reportedly successful
transition delay and significant extensions of laminar flow regions. Slit suction systems
(X-21) as well as suction-hole panels were employed. However, the physics of the
laminar–turbulent breakdown of boundary layers with cross-flow had not been fully
understood at that time. Only later, after fundamental research, the complete cross-flow
transition process was fully elucidated including the secondary instability of CFVs
by means of experiments (see e.g. Bippes 1999; Saric, Reed & White 2003; White
& Saric 2005), theory (see Malik et al. 1999; Koch et al. 2000) and DNSs (see
Wassermann & Kloker 2002, 2003, 2005).

Several other methods aiming at control of cross-flow transition have been
developed meanwhile. Saric, Carrillo & Reibert (1998a,b) proposed the distributed
roughness elements (DRE) technique – for a recent overview, see Saric, Carpenter &
Reed (2008). A one-time excitation of steady CFVs that are spaced more narrowly in
the spanwise direction than the naturally most amplified ones enforces a flow scenario
with, at first, secondarily stable CFVs and thus delays transition to turbulence. The
upstream flow deformation concept (UFD), proposed by Wassermann & Kloker (2002),
pursues a similar goal, not necessarily based on roughness.

Kloker (2008) and also Messing & Kloker (2010) proposed a combination of UFD
and suction leading to the concept of distributed flow deformation (DFD) and in
particular formative suction. A slot-suction panel can be designed such that narrowly
spaced useful vortices are continuously excited and maintained, enhancing the effect
of bare suction. Also, successive panels can be adapted to the altering stability
characteristics of the base flow when proceeding downstream and thus continuously
excite the locally optimal DFD mode.

To date, (homogeneous) suction for LFC has mostly been applied to alter the
base-flow stability characteristics in order to attenuate the growth of primary-instability
disturbances in the linear disturbance state. It was believed that, once the flow is
dominated by large-amplitude, secondarily unstable CFVs, it is no longer amenable to
effective control.

The idea of directly influencing the nonlinear disturbance state with developed CFVs
in the stage of already active secondary instabilities arose from the finding that even
a small velocity component normal to a local shear layer can substantially reduce
the shear-layer instability (see Bonfigli & Kloker 2007; Friederich & Kloker 2008;
Kloker 2008). Localized, strong suction through holes at the wall at the updraft
side of the cross-flow vortex, i.e. the position of the eigenfunction maximum of the
most amplified high-frequency secondary modes, may reduce their growth while also
hampering the vortical motion.

The aim of this paper is to investigate the novel concept to control the secondary
instability of three-dimensional boundary layers by means of localized suction. The
underlying base flow corresponds to the DLR cross-flow ‘Prinzipexperiment’ (see
Bippes 1999, and also Bonfigli & Kloker 2007) and is a model flow for the boundary
layer developing on the upper side of a swept-back airplane wing within the region of
accelerated flow.

This paper is organized as follows: § 2 presents specific points of the numerical
method, § 3 covers the employed base flow and its primary and secondary instability
characteristics, and § 4 shows results of various localized-suction scenarios.
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FIGURE 1. Integration domain and coordinate systems.

2. Numerical method
2.1. Basic set-up

Our sixth-order accurate finite-difference/Fourier spectral numerical method
solves the three-dimensional, unsteady, incompressible Navier–Stokes equations in
vorticity–velocity formulation (for details see Wassermann & Kloker 2002) and is
proven for weak suction (Messing & Kloker 2010). The reference length L̄ = 0.1 m
and the chordwise reference velocity Ū∞ = 14.0 m s−1 (Q̄∞ = 19.0 m s−1) are used
for normalization, if not otherwise stated; the overbar denotes dimensional values.
Here L̄ corresponds to 20 % of the plate’s chord length in the ‘Prinzipexperiment’.
A swept flat plate was used, with a displacement body above inducing a nearly
constant favourable chordwise pressure gradient. The global Reynolds number is
Re = Ū∞L̄/ν̄ = 92 000. The rectangular integration domain consists of Cartesian grid
cells. We use x, y and z to denote the chordwise, wall-normal and spanwise directions
on the flat plate, as shown in figure 1. The corresponding velocity and vorticity vectors
are u = {u, v,w}T and ω = {ωx, ωy, ωz}T. All flow quantities are split into a steady
base flow and a disturbance flow q = qB + q′, which are computed successively. This
procedure allows adapted boundary conditions to be set in each case. Note that the
time mean 〈q′〉 is non-zero for large q′, of course.

In spanwise direction, a Fourier ansatz is used employing K Fourier modes, with the
wavenumbers kγ0, k = 0, . . . ,K and γ0 = 2π/λz,0 = 52.4; the value λz,0 = 0.12 is the
spanwise extension of the integration domain, corresponding to the wavelength of a
strongly amplified CFV mode.

For postprocessing we define a streamline-oriented coordinate system (xs, y, zs),
where xs points in the potential-flow direction (φe) at the upper edge of the integration
domain. The respective velocities and vorticities are normalized by the local base-
flow edge velocity in the xs-direction and marked by a tilde, e.g. ũ′s = u′s/uB,s,e.
Furthermore, an arbitrarily rotated coordinate system (xr, y, zr) is defined according
to xr = (x− x0) cosΦr + (z− z0) sinΦr and zr =−(x− x0) sinΦr + (z− z0) cosΦr.

For disturbance strips and suction holes at the wall, the wall-normal velocity
component can be arbitrarily prescribed. Typically, the disturbance strips are used
to excite low-amplitude steady and unsteady disturbances with wavenumbers kγ0,
frequencies hω0, amplitudes A(h,k) and phases Θ(h,k), where γ0 and ω0 are the
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fundamental spanwise and timewise wavenumber, respectively:

v′(x, y, z, t)= fv(x)

(
K∑

k=1

2A(0,k) cos(kγ0z+Θ(0,k))

+
H∑

h=1

K∑
k=−K

2A(h,k) cos(kγ0z− hω0t +Θ(h,k))

)
. (2.1)

Here fv(x) is a piecewise-defined symmetric fourth-order parabola with zero values,
zero first and second x-derivatives at the ends of the respective strip and a maximum
value of 1; see Wassermann & Kloker (2002).

For the modelled suction holes, a velocity distribution is prescribed according to

v′(x, 0, z)=−vmax cos3

(
πr

dmod

)
, (2.2)

where vmax is the maximum suction velocity in the hole centre, and r and dmod are
the radius and diameter of the modelled hole, with r = {(x− xH)

2+ (z− zH)
2}1/2 and

(xH , 0, zH) being the hole centre coordinates. For more details of the modelled suction
holes, see Messing & Kloker (2010).

Note that a modelled suction-hole velocity distribution needs three parameters to
be defined: the maximum suction velocity vmax , the hole diameter dmod and the
distribution v(r). For the chosen v(r), see (2.2), we need a diameter dmod larger
than the d of an assumed Hagen–Poiseuille suction-channel profile, dmod/d = 1.51, to
yield identical mass flow at the same maximum suction velocity. (Of course, with
suction channel included, the velocity distribution will differ from a Hagen–Poiseuille
profile locally, however insignificantly with respect to the effect of suction on the flow,
see Friederich & Kloker (2011).)

Two-dimensional suction slits with no spanwise variation are prescribed using

v′(x, 0, z)=−vmax cos3

(
π(x− xS)

lmod

)
, (2.3)

where xS defines the slit centre position and lmod the chordwise extension of the
slit. Similar to the holes, here a plane Poiseuille flow profile is assumed and hence
lmod/l = 1.57 to obtain identical mass flow at equal maximum suction velocity, where
lmod = dmod has been chosen.

Careful grid studies have shown that for wall suction with, say, v̄max/Ū∞ > 15 %, the
resulting gradients of the vorticity components require an extremely fine wall-normal
grid at the wall. For suction rates of v̄max/Ū∞ = 0.5, a converged solution is achieved
only with 1ywall being three orders of magnitude smaller than δ1,s. Then, simulations
with the standard explicit four-step fourth-order Runge–Kutta time integrator are no
longer feasible due to the resulting extreme numerical time-step limit dominated by
the viscous terms in the wall-normal direction (1tmax ∼ 1y2

wall). Therefore, we use a
semi-implicit time integration as summarized below.

2.2. Semi-implicit time integration
The momentum equations of the Navier–Stokes equations in vorticity–velocity
formulation using disturbance values can be written as

∂ω

∂t
=−N + 1

Re
1ω =−N + V , (2.4)
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where N and V combine the nonlinear and viscous terms, respectively; 1 is the
Laplace operator.

In our case the time-step limit is dominated by the term Vyy comprising the second
wall-normal derivatives of each vorticity component. We implement an implicit time-
integration scheme for this term according to the trapezoidal rule. Since this yields
O(2) accuracy, a modified Heun method being second-order accurate as well is used
for the remaining explicit time integration for full consistency. A second corrector step
is added to secure A-stability. The scheme reads

ω(l+1)∗ = ω(l) +1t

{
R(l) + 1

2
V (l)

yy +
1
2
V (l+1)∗

yy

}
, (2.5a)

ω(l+1)∗∗ = ω(l) + 1t

2

{
R(l) + R(l+1)∗ + V (l)

yy + V (l+1)∗∗
yy

}
, (2.5b)

ω(l+1) = ω(l) + 1t

2

{
R(l) + R(l+1)∗∗ + V (l)

yy + V (l+1)
yy

}
, (2.5c)

where (l) is the current time level and R substitutes the right-hand side of (2.4)
without Vyy. Each of these equations has the form(

1− 1t

2Re
∂2

∂y2

)
ω(l+1) = R̃, (2.6)

where R̃ includes all remaining explicit parts of the right-hand sides of (2.5).
At the wall (y = 0), the usual formulations for the wall vorticity are used (see

Wassermann & Kloker 2002). They depend on the v-velocity component of the flow
field at the new time level, which in turn depends on the new vorticity values
here. Thus, an iteration procedure has to be carried out for each substep (2.5a–c),
monitoring wall vorticity and starting with the wall-vorticity values of the old time
level: (

1− 1t

2Re
∂2

∂y2

)
ω(l+1)(i+1) = R̃, (2.7)

with (i) being the iteration level. For (2.5a), for example, within each iteration step
the vorticity components for y > 0 are computed, then the v-Poisson equation and
finally the wall-vorticity equations are solved. The updated wall values serve as new
boundary condition for the next iteration step. Note that the right-hand side R̃ remains
constant during the iteration. Five, four and three iteration cycles are used for (2.5a–c),
respectively.

The convective terms in the y-direction still impose a small time step, translating
into an insufficient damping of high-wavenumber modes devised by the alternating
forward/backward-biased differencing of the convective terms in the x-direction.
Therefore, a compact spatial filter is activated in the x-direction.

2.3. Verification
To the best of the authors’ knowledge, there are no publications on non-weak,
localized suction in three-dimensional boundary layers available. Our numerical
method has been well tested and validated for cross-flow transition scenarios as well
as for moderate suction in two- and three-dimensional boundary layers (see Messing
& Kloker 2010). As verification for strong suction and the modified numerical method,
one of the current cases is simulated also with our compressible code that is not based
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FIGURE 2. Downstream development of selected modal ũ′s amplitudes for incompressible
code (lines) and compressible code (symbols) for (a) a reference case without suction and
(b) a case with a single suction hole.

Case Nx Ny K γ0 1x× 103 1y× 105 1z× 103 1t× 104

REF, HOM 3202 209 15 52.4 1.309 7.913/48.238 3.997 1.745
All other 3202 225 15 52.4 1.309 0.659/62.640 3.997 0.655
Nx and Ny represent the number of grid points in x and y direction.
K is the number of the highest Fourier mode in z direction.
1y is the wall-normal step size at the wall / at δs,99 (x= 3.356).
1z= 2π/(2Kγ0).
Integration domain: x ∈ [1.654, 5.845], y ∈ [0.000, 0.077], z ∈ [0.000, 0.1200].

TABLE 1. Simulation parameters.

on vorticity. Until now this code has been run with symmetrical two-dimensional base
flows and without imposed streamwise pressure gradients. Details of the compressible
numerical method, the base-flow calculation and simulation parameters can be found
in appendix A.

The wall-normal resolution can be far more coarse for the compressible case: the
step size 1ywall is 35 times larger, and only 95 grid points are used compared to 225
for the incompressible case. The wall-normal grid stretching yields 1ye/1ywall = 12,
versus 120 for the incompressible case. The resolutions in the downstream and
spanwise directions (1x = 1.309 × 10−3, K = 10) are identical. Still, to obtain a
solution at a given physical time after disturbance activation, the incompressible code
runs more than 14 times faster when a Mach number of 0.2 is chosen for the
compressible case. Note that this does not compare the actual computing time per grid
point and time step value.

Figure 2 shows the downstream modal development of the streamline-oriented
disturbance velocity component ũ′s = u′s/uB,s,e for a reference case without suction
(case REF, see table 1, with K = 10) and a case with a single modelled suction hole
(case 1-H, K = 10; for more details see the next section). In all cases the steady CFV
mode with γ = γ0 = 52.4 has been excited at x = 2.2 as primary disturbance and a
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packet of controlled unsteady disturbances at x = 3.0 has been introduced to check for
secondary instability. The match of the results of the two codes proves the correctness
of the results at the prescribed boundary conditions and used discretization. Moreover,
careful grid studies using higher resolutions, especially K = 15 and 21, clearly show
that the results in figure 2 are converged.

3. Base flow and its stability properties

The investigated base flow refers to the DLR cross-flow ‘Prinzipexperiment’ by
Bippes and co-workers (see Bippes 1999) and has already been considered and
analysed in detail in the DNS work by Bonfigli & Kloker (2007). The nearly constant
favourable pressure gradient imposed corresponds to a Falkner–Skan–Cooke flow with
a Hartree parameter βh of approximately 2/3. However, the experimental flow is not
truly self-similar and small adaptations are necessary to match the experimental base-
flow characteristics, already reported by Bonfigli & Kloker (2007). Boundary-layer
parameters are provided in appendix A (figure 16).

The flow is accelerated in the streamwise direction along the whole integration
domain, and due to the sweep angle Φ∞ = 42.5◦ the maximum of the cross-flow
in the boundary layer increases as well. The shape factor based on the chordwise
displacement and momentum-loss thickness is H12 ≈ 2.26 throughout the domain,
slightly decreasing.

An investigation using primary linear stability theory (not shown) yields the
expected strong instability of the base flow with respect to cross-flow vortex modes.
The highest amplification rates are found for unsteady modes (ω 6= 0). Typically, in
low-turbulence environments, steady cross-flow vortices are observed due to the higher
initial amplitudes of the respective vortex mode and are therefore investigated here.
Strong amplification is found for the steady cross-flow vortex mode γ = 52.4 = γ0,
from now on referred to as mode (0, 1) in double-spectral notation. The fundamental
frequency ω0 = 6.0 is the most amplified as for primary instability.

For the DNS, two successive disturbance strips excite steady and unsteady modes
with momentum input but without net mass flow by prescribing the wall-normal
velocity component at the wall as introduced in (2.1). At x = 2.2 the steady mode
(0, 1) is triggered whereas at x = 3.0 an unsteady, pulse-like disturbance is generated
that includes modes (h,±1), h = 1–50. Exciting spanwise modes with γ = ±γ0 only
does not represent a limitation since, together with the vortex modes (0, 1), (0, 2)
etc. of the prevailing CFV, the full disturbance spectrum is generated nonlinearly at
once.

The downstream modal development of the streamline-oriented disturbance velocity
component ũ′s = u′s/uB,s,e for the reference case REF without suction is shown in
figure 3. A high initial amplitude of mode (0, 1) is chosen to skip the linear
development of the cross-flow vortex mode. The linear stage is extensively discussed
in Bonfigli & Kloker (2007) and left out here to save computational resources. (A
comparison of the induced CFV shows no notable differences to cases where the
fundamental mode was triggered on a lower amplitude level.) At x = 3.00 the steady
and purely three-dimensional part of the mean flow ω = 0 − (0, 0), i.e. the steady part
of the flow field without the spanwise mean (0, 0), reaches 19 %. Secondary instability
sets in immediately, shown by the growth of high-frequency disturbances, e.g. mode
ω = 120 (h = 20). Starting at x = 3.75 nonlinear growth of the low-frequency modes
followed by transition to turbulence can be observed.
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FIGURE 3. Downstream development of modal ũ′s,(h) amplitudes for case REF from Fourier
analysis in time (maximum over y and z, 0 6 ω 6 180, 1ω = 6). The inset shows the physical
time signal of the pulsing.

Note that without unsteady forcing the simulated flow breaks down to turbulence
for x > 5.5 only. In this case the strong convective secondary instability caused
by the large-amplitude CFVs amplifies the small numerical background noise
(O(ũ′s) = 10−12–10−15) and it takes until x = 5.5 to reach the turbulent state. The
forcing of unsteady pulse disturbances has been applied to keep the integration domain
short for the various cases considered.

When examining y–z cross-cuts of the ũ′s amplitude distribution, we find low-
frequency type III modes in the range 6 6 ω 6 48, whereas the high-frequency modes
(ω > 60) reveal the typical type I or z mode amplitude distributions. (The notation
‘y’ and ‘z’ mode follows Malik et al. (1999); see also Bonfigli & Kloker (2007).)
The high-frequency mode ω = 90 reveals the largest amplitude level at x = 3.36.
Figure 4 shows its location with respect to the clockwise-turning CFV visualized by
ũ′s and λ2 isocontours. The pinpoint-suction set-up is visualized by arrows indicating
the prescribed suction velocity at the wall for the later discussed case 1-H with one
suction hole.

The suction position shown is (near-)optimal with respect to the attenuation of
secondary growth and has been found iteratively. It is not exactly beneath the
maximum of the z mode. Note that in a boundary layer with cross-flow the streamline
direction varies with the distance from the wall.

4. Influence of pinpoint suction on the flow instability
We consider the following cases within this section: the reference case REF from § 3

is used as the basis for the transition process without suction and for comparison. All
remaining cases employ the same disturbance generation but additionally some kind
of suction: case HOM shows the effect of homogeneous suction in a chordwise finite
area of the integration domain, case 3-S the effect of three successive spanwise suction
slits, and cases 1-H, 3-H, 3-H* and 9-H are set up with one, three, or nine successive
suction holes at the wall, positioned along the CFV.
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0.01

–0.01

–0.02

0.100.080.060.040.020
z

0.12

y

0.03

–0.03

FIGURE 4. Pinpoint suction set-up: cross-cut at x = 3.356 for case REF. Solid lines show
ũs isocontours (0.05–0.95, with increment 0.1); and dashed lines show λ2 isocontours (−25
to −5, with increment 5). The modal ũ′s amplitude distribution for high-frequency secondary
instability mode ω = 90 is visualized by grey scale (0.3–0.9, with increment 0.2). Arrows
show the pinpoint-suction distribution at the wall as applied for case 1-H (cross-cut through
centre of suction hole). The horizontal dashed line denotes the undisturbed boundary-layer
thickness δs,99.

Case Suction
set-up

vmax vavg cq d × 102 Suction centre
at xH

REF — — — — — —
1-H 1 hole 0.5000 0.2500 cq,0/3 1.73 3.36
3-H, 3-H* 3 holes 0.5000 0.2500 cq,0 1.73 3.36, 3.38, 3.40
9-H 9 holes 0.5000 0.2500 3cq,0 1.73 3.36, 3.38, . . . , 3.52
3-S 3 slits 0.0441 0.0295 cq,0 l= 1.67 3.36, 3.38, 3.40
HOM homogeneous 0.0016 0.0016 cq,0 — 3.15–4.05
Reference suction coefficient cq,0 = 1.6× 10−3.
vmax = v̄max/Ū∞, vavg = v̄avg/Ū∞.

TABLE 2. Simulation set-ups. For all simulations, disturbance strips trigger the primary
vortex mode (0, 1) with an amplitude of A = 9.30 × 10−3 at x1 = 2.20 and the background
pulse including modes (1,±1)–(50,±1) with an amplitude of A = 6.25 × 10−7 at
x2 = 3.00. The spanwise location of suction-hole centres for cases 1-H, 3-H and 9-H
is zH = 0.5λz,0 = 0.06.

Table 1 summarizes the numerical parameters for the various cases, and table 2
gives parameters for disturbance and suction generation.

4.1. Downstream development of disturbances and transition delay
First, the homogeneous suction case is considered. We define a suction coefficient
using the free-stream velocity in chordwise direction by

cq = v̄avgP

Ū∞
, (4.1)

where v̄avg = (1/A)
∫
v dA (A being the orifice area) is the average suction velocity

over the suction orifice and P the porosity of the suction panel. A value
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FIGURE 5. Downstream development of modal ũ′s,(h) amplitudes from Fourier analysis in
time (maximum over y and z, 0 6 ω 6 180, 1ω = 30) for cases (a) HOM and (b) 1-H. Mode
ω = 120 from case REF has been added as reference (dotted line).

of cq,0 = 1.6 × 10−3 on a chordwise extension of the suction domain of lx = 0.9
is chosen for case HOM. The homogeneous suction operates at v = vmax = 0.0016
(P= 1) and covers the complete spanwise domain. The increase of the spanwise mean
(0, 0) between 3.15 6 x 6 4.05 in figure 5(a) is a consequence of the homogeneous
suction. Little influence on the main vortex (ω = 0 − (0, 0)) is observed. A slight
reduction of secondary amplification is found for all considered high-frequency modes
compared to the selected reference mode ω = 120 from case REF that gained
the highest amplification rate. However, transition to turbulence is only marginally
delayed.

The first pinpoint-suction case 1-H is set up by selecting the location of the
suction-hole centre (xH = 3.356, zH = 0.060) and the hole diameter of d = 0.0173 =
2.30δ1,s(xH). The maximum suction velocity is vmax = v̄max/Ū∞ = 0.5, corresponding to
vmax/uB,s,e = 0.413. The hole is located according to figure 4 as discussed above. Slight
variations of the spanwise location of the hole centre have only a minor influence on
the attenuating effect of the suction.

If the reference area from case HOM is considered (Ahom = λz,0 lx), the porosity
for case 1-H yields P = (πd2/4)/Ahom = 0.0022 and the suction coefficient results in
cq = 5.45× 10−4, which is approximately cq,0/3.

The localized suction influences the vortex strength, see figure 5(b). The y–z
maximum of the steady, three-dimensional ũ′s deformation of the flow (ω = 0 − (0, 0))
shows a significant reduction behind the suction hole, its amplitude dropping from
0.30 to 0.17. Secondary growth of all modes is affected immediately and significantly
reduced. Only after x = 4.3 are the former amplification rates regained due to the
regrown CFV.

The influence of the diameter and the mass and momentum input are summarized in
appendix B. We find that the mass flux sucked is the most important parameter with
respect to attenuation of secondary growth, rather than the maximum suction velocity
and thus the wall-normal momentum output.

To increase the sucked mass flow, we add more holes to prevent oversuction caused
by one hole with an unduly large suction velocity v̄avg. Three successive suction holes,
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FIGURE 6. Like figure 5 but for cases (a) 3-H and (b) 3-H*.

each with the same suction parameters as the single hole in case 1-H, are set up,
resulting in cq = cq,0. The hole centres are aligned in a straight line, parallel to the
vortex-core orientation at x= 3.36. Results for the case 3-H are provided in figure 6(a).
In spite of a local increase, the vortex amplitude level is reduced to 0.12 at x = 3.7,
and stronger attenuation of secondary growth can be observed for all unsteady modes.
Transition is shifted to the end of the considered domain. Note that one length unit
(L̄= 0.1 m) corresponds to 133δ1,s at x= 3.36.

In order to check the influence of the spanwise suction-hole position, case 3-H*
is set up with all suction holes shifted by λz,0/2. This is pessimal considering the
spanwise spacing and sense of rotation of the CFVs. Figure 6(b) shows indeed an
enhancement of the CFV strength to a maximum value of more than 53 % at x = 3.65.
However, the overall effect of the suction seems to overcome the misalignment
drawback, and transition is at least not enhanced. Therefore we conclude that a
varying spanwise location of the suction holes can either enhance or weaken the CFV
amplitude, but secondary instability is always weakened due to deformation of the
CFV and the mean suction effect, pulling the flow to the wall.

To further investigate the role of the spanwise position of suction, case 3-S with
three consecutive spanwise slits is set up at the same chordwise locations as for case
3-H. No spanwise variation of suction is present, but in contrast to case HOM it is
localized in the chordwise direction. With our spectral code this is simply achieved
by neglecting v′k(y = 0) for k > 0, since the spanwise slit represents the spanwise
mean component v′k=0(y = 0) of a case with suction holes; cq = cq,0 like for the cases
HOM and 3-H. Figure 7(a) shows that the resulting transition delay lies in between
cases 1-H and 3-H. The chordwise concentration of suction improves transition delay
compared to homogeneous suction; however, the slit suction does not perform as well
as case 3-H at identical cq values.

Finally, nine consecutive holes are arranged in a straight line parallel to the
vortex-core orientation at x = 3.36, employing cq = 3cq,0. Secondary growth and thus
transition to turbulence is eliminated completely; see figure 7(b). The downstream
regrowth of the CFV pulled to the wall is apparently too small to provoke secondary
instability inside the considered domain. In order to enable the formation of possibly
new instability modes, the disturbance pulse from x = 3.0 is repeated at x = 4.0 and
x= 4.5. No secondary growth is observed.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

26
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.269


Control of the secondary cross-flow instability using localized suction 481

 

  

(0, 0)

  

(a)

3.0 3.5 4.0 4.5 5.0

–6

–5

–4

–3

–2

–1

–7

0

(0, 0)

3.0 3.5 4.0 4.5 5.0

–6

–5

–4

–3

–2

–1

–7

0(b)

FIGURE 7. Like figure 5 but for cases (a) 3-S and (b) 9-H.

REF

1-H

3-S

3-H

9-H

HOM

3-H*

50 100 150 200

Transition delay in 
0 250

FIGURE 8. Transition delay of all cases. Downstream locations are taken where the largest
unsteady mode reaches a ũs amplitude of 10−2. Reference displacement thickness of the
undisturbed base flow: δ1,s(x= 4.00)= 7.73× 10−3.

Figure 8 provides a comparison of the transition delay for all cases. The amplitude
level of ũ′s = 10−2 of the largest unsteady mode is used to measure the (relative)
transition shift. Case 1-H is almost as efficient as case 3-S although cq is three
times smaller. Case 3-H shows a 50 % larger transition delay compared to case 3-S
at identical suction rates. For case 9-H onset of transition cannot be detected in the
considered domain.

4.2. Skin friction development

Figure 9 shows the parameter C(x) = ∫ maxt{∂u42.5◦/∂y|y=0} dx. The gradient of the
spanwise mean flow in flight direction ∂u42.5◦/∂y|y=0 is proportional to the skin friction
coefficient. In order to account for fully turbulent flow, we take the maximum value
within one fundamental period of time in our simulation with pulsed disturbances.
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FIGURE 9. Downstream development of the (in streamwise direction) integrated wall-normal
velocity gradient of the spanwise mean velocity component in the direction of the oncoming
flow (Φ∞ = 42.5◦) at the wall, serving as a measure of the skin friction coefficient cf . For
the integration, the maximum over one fundamental period in time has been used in order to
account for a fully turbulent flow (and not pulsed transition).

Parameter C(x) allows for direct comparison of the curves at chordwise locations.
The reference case reveals laminar flow up to x = 4.0. The change in slope indicates
transition to turbulent flow. Case 1-H shows the skin friction increase caused by
suction, pulling high-momentum fluid to the wall, at x= 3.36. However, at x= 4.2 the
increase is compensated by sustaining laminar flow and less skin friction can be found
throughout the integration domain in spite of turbulent flow starting at x= 5.0.

For case 3-H the approximately three times higher increase occurring at x = 3.5
arises from the three consecutive holes and thus three times larger mass flow sucked.
However, for x> 5.1 this case causes less friction drag than case 1-H. Case 9-H shows
an enormous increase around x = 3.5 but the flow stays laminar for so long that it
will eventually outperform all other cases. Cases HOM, 3-S and 3-H* provide similar
results as case 1-H with different locations of transition to turbulence. Note that further
effects like the influence of the suction on the pressure distribution (sink effect) or
the power required for the suction system have not been taken into account in this
evaluation. (We note that suction without additional pumps is currently investigated in
practice. In this case the suction areas are connected to regions of low pressure on an
aircraft.)

4.3. Vortical structures
Figure 10 shows visualizations of vortical structures for five selected cases in a rotated
reference system. The angle Φr = 45.0◦ has been chosen to approximately straighten
the CFVs in the visualization. The snapshot for case REF shows nearly undisturbed
flow up to xr = 1.3. The small structures at xr = 0.8, zr = 0.08 show the disturbance
pulse in an early stage. The turbulent region between xr = 1.5 and xr = 2.0 is caused
by the previous pulse.

For case 3-H the suction holes are marked by black circles. We expect a counter-
rotating vortex pair developing behind the suction orifices such that each vortex
‘transports’ fluid into the hole. In a top view, the vortex emerging to the right turns
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FIGURE 10. Vortex visualization (λ2 = −1), top view, snapshot in time, to scale. A rotated
reference system is used with x0 = 3.2, z0 = 0 and Φr = 45.0◦. Dotted lines refer to cross-cuts
of figures 11–14. Approximately three fundamental spanwise wavelengths are shown.

anticlockwise, i.e. close to the wall against the cross-flow direction, and thus dies out
soon in this case and cannot be discerned (cf. Messing & Kloker 2010). The one
emerging to the left (structure I) turns in clockwise direction like the oncoming CFV,
is shifted to the left and suppressed by the CFV shortly before merging with it. The
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FIGURE 11. Cross-cuts: (a) 3-H-noCFV, xr = 0.60 (x ≈ 3.62); (b) 3-H, xr = 0.60 (x ≈ 3.62);
(c) 9-H-noCFV, xr = 0.82 (x ≈ 3.78); and (d) 9-H, xr = 0.82 (x ≈ 3.78). Panels (a) and (c)
show isocontours with λ2 = −2 (thin lines; case REF added with thick lines) and [w̃r, ṽ]
vectors; panels (b) and (d) show ω̃x,r isocontours (lines, with increment 2, dashed negative
values, zero level not shown). The rotated reference system from figure 10 is used.

oncoming CFV persists and is marginally shifted in positive spanwise direction. The
secondary structures from the pulsing are on much lower amplitude levels compared to
case REF.

Case 3-S shows local dislocation to the left and deformation of the oncoming CFV
above the suction slits but the spanwise location downstream is not altered at all. (The
local, opposite dislocation at the beginning and end of suction might be caused by the
oblique slit orientation with respect to the CFV axis.) Secondary structures are more
pronounced than in case 3-H.

Case 3-H* with pessimal suction-hole locations shows strong deformation of the
primary vortices and only marginal transition delay.

Case 9-H shows strong downstream effects of the nine consecutive suction holes
and a strong positive spanwise shift of the oncoming CFVs. Similar to case 3-H the
left co-rotating vortex emerging from the suction holes can be clearly seen (structure
II), this time almost merging with the CFV. The counter-rotating, right suction vortex,
structure III, does not die out soon but is strong enough to push the oncoming CFV
to the right before it is swallowed by the cross-flow. No structures from the pulse are
visible in the considered domain. For the full dynamics of the flow structures for cases
3-H, 3-H* and 9-H, see the supplementary movies with the online version of the paper
available at http://dx.doi.org/10.1017/jfm.2012.269.

We note that in case 9-H turbulence does not occur near x ≈ 5.5 (xr ≈ 3.3) as
discussed for case REF, in the latter caused by amplification of numerical background
noise. In case 9-H secondary instability is absent, and unsteady disturbances do not
grow, or only grow very weakly.

4.4. Cross-cuts: vortices
To clarify the mechanisms occurring downstream of the suction holes, cross-cuts are
considered in figure 11. A case like case 3-H but without oncoming CFV and without
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pulse is considered (case 3-H-noCFV) to identify the flow field induced by suction in
the undisturbed base flow. Figure 11(a) shows λ2 isocontours in the plane xr = 0.600
from figure 10 for case REF (thick lines) and case 3-H-noCFV (thin lines). The CFV
centre can be found at zr = 0.117, the centre of the co-rotating left suction-induced
vortex at zr = 0.078. Figure 11(b) shows the same cross-cut for case 3-H to clarify
the ‘nonlinear superposition’. The persisting main vortex sits at zr = 0.120, is much
weaker, and the co-rotating suction-hole induced structure can be found at zr = 0.074.
Note the negative values of ω̃x,r, confirming the sense of rotation.

The same procedure is carried out for case 9-H with cross-cuts at xr = 0.824.
Figure 11(c) provides results for case REF and case 9-H-noCFV showing the
respective spanwise vortex locations. Figure 11(d) clearly reveals the positive spanwise
shift of the CFV. The nine consecutive holes induce a stronger vortex pair where:
(i) the persisting left one suppresses the oncoming CFV sufficiently enough to cancel
secondary instability; and (ii) the right one pushes the CFV to the right where the
CFV is at the same time closer to the wall due to the stronger suction. The specific
action of three-dimensional pinpoint suction on the flow is the generation of a vortex
co-rotating with and situated in between the oncoming CFVs, thus weakening them
(cf. the UFD effect described by Wassermann & Kloker (2002)). Of course, the two-
dimensional suction effect is the basis for this. It pulls the flow to the wall, thereby
weakening spanwise gradients as discussed below.

4.5. Cross-cuts: eigenfunctions
The influence of suction on the ur amplitude distribution of secondarily unstable

eigenmodes becomes evident in figure 12. For case REF the low-frequency mode
ω = 30 of type III can be found below the main vortex connected to the local
maximum spanwise gradient, whereas the high-frequency mode ω = 120 is connected
to the local minimum and hence a type I or z mode. We focus on the z mode since
it has the largest amplification rates. Usually, its maximum is also connected to the
maximum wall-normal gradient. Figure 12(b) displays distributions of the spanwise
and wall-normal gradients of the downstream velocity component ũr multiplied by
the wall-normal coordinate y to downgrade near-wall maxima that are not relevant.
At the maximum of the eigenfunction we find uz,max = y(∂ur/∂zr)/uB,s,e = |−1.21|
and uy,max = y(∂ ũr/∂y) = 1.00. Case 3-S reveals a changeover to a y mode, with
uz,max = |−0.38| and uy,max = 1.12. The spanwise mean suction reduces the overall
spanwise shear by pulling the vortex towards the wall. For case 3-H we find
uz,max = |−0.16| and uy,max = 0.77. The hole suction deforms the vortex such that the
flow gradients are additionally reduced. The impact on the main vortex can be found
when comparing the three λ2 distributions where case 3-H shows the weakest main

vortex. If we compare the value
√

u2
z + u2

y|max for cases REF, 3-S and 3-H, we find

1.57, 1.18 and 0.79, respectively, indicating an overall shear reduction, suggesting a
direct measure for attenuation of secondary growth. When comparing the amplification
rates of mode ω = 120 at x = 3.78 from figures 6(a) and 7(a), it turns out that the
growth rates for cases 3-S and 3-H are almost identical, with the amplitudes lower for
case 3-H. In other similar cases not shown, also the secondary growth rates decrease
with decreasing gradient.

An evaluation of case 9-H (figure 13) shows a similar trend. The frequency
ω = 90 is chosen instead of ω = 120 as for figure 12 since it has the highest

amplitude level. Now
√

u2
z + u2

y|max yields the values 0.41, 0.82 and 0.71 at the three

downstream positions shown. Using nine holes consequently further reduces the main
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FIGURE 12. Cross-cuts at xr = 0.82 (x ≈ 3.78): (a,b) REF; (c,d) 3-S; (e,f ) 3-H. Panels
(a,c,e) show ũr isocontours (lines, 0.05 to 0.95, with increment 0.075), λ2 isocontours
(dashed lines, −2 to −12, with increment 2) and the normalized ur amplitude distribution
for mode ω = 30 (shaded, levels 0.3 to 0.9, with increment 0.2). Panels (b,d,f ) show
y(∂ur/∂zr)/uB,s,e isocontours (solid lines, increment 0.2, increment 0.4 for case REF) and
y(∂ ũr/∂y) isocontours (short-dashed, positive; long-dashed, negative values; zero level not
shown, increment 0.05, increment 0.10 for case REF) and normalized ur amplitudes for mode
ω = 120. The rotated reference system from figure 10 is used.

flow gradients, but predicting secondary stability is difficult employing this criterion.
The development of the low-frequency mode shows a non-amplified TS-like amplitude
distribution since no distinguished spanwise gradients exist. The development of mode
ω = 90 tends to switch from a z mode to a y mode. All modes shown are damped or
neutral.

4.6. Cross-cuts: Kelvin–Helmholtz shear
To find a measure for secondary amplification, we follow a procedure described by
Bonfigli & Kloker (2007). A shear-layer plane, oriented perpendicular to the axes of
the secondary vortex structures – direction t – is obtained by artificial amplification
of the respective u, v and w eigenmodes and visual inspection of the corresponding
secondary λ2 structures. Here t is roughly, but essentially not exactly, the direction
of the CFV axis. Figure 14 shows the vorticity component ωx,t perpendicular to the
Kelvin–Helmholtz (KH) shear-layer plane for four cases. (We note that there is a
labelling error for φt in figure 33 of Bonfigli & Kloker (2007). The correct sketch is
shown as the inset in figure 14d of the current paper.) The values found here provide
the expected information. Evaluating wx,t at the respective eigenfunction maximum
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FIGURE 13. Cross-cuts for case 9-H: (a,b) xr = 0.82 (x ≈ 3.78); (c,d) xr = 1.36 (x ≈ 4.19);
and (e,f ) xr = 2.87 (x ≈ 5.23). Panels (a,c,e) show mode ω = 30; panels (b,d,f ) show mode
ω = 90. See figure 12 for details.

delivers the following values for cases REF, 3-S, 3-H and 9-H: 61.5, 40.0, 37.5 and
7.6. Evidently, lower KH shear-layer strength yields smaller secondary amplification.
For all cases, ωx,t at the respective eigenfunction maximum is composed primarily of
a combination of ωy and ωz,r. For cases 3-S and 3-H, ωy basically determined by
∂ur/∂zr is significantly reduced. Additionally, for case 3-H, the KH plane is tilted
more relative to the plane perpendicular to the CFV axis (ψt = 10◦), and thus the
contribution of ωy is additionally decreased. Although the contribution of ωz,r and thus
∂ur/∂y to the ωx,t value is enhanced with increasing angle φt for cases 3-S and 3-H,
this effect is overcompensated by the decreased wall-normal vorticity component. This
causes a changeover from a z mode (figure 14a) to a y mode (figure 14c) comparing
the respective location of the eigenfunction maximum in figure 14. The evaluation for
case 9-H is added to show the virtually vanishing ωx,t component. The strongly altered
orientation of the t plane of a damped mode is of minor relevance. Also, a velocity
component normal to the shear layer in its plane further reduces the instability; see
Bonfigli & Kloker (2007). However, to gain reliable a priori information on secondary
instability properties, a two-dimensional eigenfunction solver, a comprehensive method
using the parabolized stability equations (PSE), or DNS is required.

5. Conclusions
The effects of localized, concentrated suction at the wall on the secondary instability

of a laminar, cross-flow-dominated boundary-layer flow deformed by grown cross-

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

26
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.269


488 T. Friederich and M. Kloker

0.03

0.02

0.01

0.04 0.060.020

y

0.04

0

(b)

0.03

0.02

0.01

0.04 0.060.020

0.04

0

0.03

0.02

0.01

0.04 0.060.020

y

0.04

0

0.03

0.02

0.01

0.04 0.060.020

0.04

0

zr zr

(d)(c)

(a)

y

x

z

t
 

FIGURE 14. Cross-cuts at xr = 0.82 (x ≈ 3.78): (a) REF, φt = 66◦, ψt = 15◦, (b) 3-S,
φt = 91◦, ψt = 16◦, (c) 3-H, φt = 105◦, ψt = 10◦, and (d) 9-H, φt = 54◦, ψt = 7◦. Vorticity
component ωx,t (lines, increment 10, dashed negative values, zero level not shown) and
normalized ur amplitude distribution (shaded, levels 0.5–0.9 with increment 0.1) for mode
ω = 120 (ω = 90 for case 9-H). See the inset in (d) for the definition of the direction t. Note
that φt is measured in the chordwise system and Φr ≈ 45.0◦ has to be subtracted in order to
get the relative angle to the CFV axis direction. The rotated reference system from figure 10 is
used.

flow vortices (CFVs) have been investigated by DNS. The main findings can be
summarized as follows.

(i) Suction can successfully stabilize not only quasi-two-dimensional base flows
with respect to primary instability, which is the classical application of suction in
laminar flow control, but also fully three-dimensional boundary layers with large-
amplitude CFVs, arising from primary cross-flow instability. Then secondary instability
is controlled.

(ii) The first, two-dimensional effect is pulling the CFVs to the wall, thereby
flattening them and reducing spanwise shear. Simultaneously, the effect of local
extrema of wall-normal shear is reduced because their distance to the wall is
diminished. Thus secondary instability is weakened.

(iii) The second effect appears if suction is concentrated not only in chordwise but
also in spanwise direction, namely if it is positioned near the updraft side of each
CFV where the maximum amplitude of the secondary disturbances is situated. At first
it may be thought that suction then directly weakens the rotational fluid motion caused
by the CFV, but it turns out that suction induces a pair of counter-rotating vortices. If
looking downstream and with a basic cross-flow to the left, the right suction vortex
has a rotation opposite to the CFV, and is suppressed shortly downstream by the
basic cross-flow – not depending much on the existence of the CFV. It can, however,
push the CFV away from the suction hole to the right. The left suction vortex rotates
like the CFV, hampering it due to its closeness, before it is eventually suppressed
by it. Hence the effect on the flow is different from two-dimensional, symmetrical
base flows where the (partial) cancellation of an oncoming vortex is caused by an
antiphase/counter-rotating vortex.
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(iv) The consequence of the flow alterations is a significant change of the secondary
stability properties. The travelling secondary vortices are oriented more parallel to the
cross-flow direction, i.e. a changeover from type I (z) modes to type II (y) modes is
forced, and the vertical angle between their axis and the axes of the CFVs is reduced.
Since the shear in the respective (KH) plane perpendicular to their axes is significantly
reduced, their amplification is substantially attenuated, or even halted.

(v) With nine successive holes along the CFV, each having a diameter of about
twice the displacement thickness, and a suction velocity of ∼20 % of the external
velocity, averaged over the hole, complete suppression of secondary instability is
achieved in an example. This corresponds to 36 conventional suction holes (with a
diameter d of one displacement thickness) and a 2–3 times higher than usual suction
velocity averaged over one hole. Thus, the suction rates applied for ‘pinpoint’ suction
are distinctly below the values that might cause local flow tripping. (Our own tentative
DNS investigations on so-called oversuction caused by single holes indicate that, for
the parameters Reδ1,s and d/δ1,s used, the critical suction velocity v̄avg/ūb,s,e lies beyond
45 %.)

(vi) The increase of the wall shear by the concentrated suction is non-negligible but
is far outweighed by the substantial transition delay.

(vii) For practical applications of pinpoint suction, either the position of the CFVs
with respect to the suction holes has to be fixed – for example, by using controllable
actuators upstream – or the slit version may be applied, but that is less effective. Note
that only a few spanwise slits would be necessary.
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Appendix A. Compressible DNS code and compressible base flow
Our compressible code is used to verify the incompressible results. The numerical

method is briefly described in § A.1 and the base-flow computation is summarized in
§ A.2. Section A.3 gives the numerical parameters of the compressible simulation.

A.1. Compressible numerical method
The three-dimensional unsteady compressible Navier–Stokes equations are solved
together with the continuity and energy equations in conservative formulation, where
Q = (ρ, ρu, ρv, ρw,E)T represents the solution vector. The coordinate systems are
identical to the incompressible ones. The specific heat capacities cp and cv as well
as the Prandtl number are assumed to be constant, whereas the temperature–viscosity
dependence is modelled by Sutherland’s law.

The following boundary conditions are employed based on an existing initial flow
field that is designated as base flow. At the subsonic inflow, all base-flow variables are
prescribed and upstream-travelling acoustic waves are allowed to leave the integration
domain. The no-slip isothermal wall with pressure extrapolation for the wall pressure
using ∂p/∂y|wall = 0 includes several disturbance strips where the wall-normal mass
flux component is prescribed to excite steady and unsteady disturbances, similarly
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FIGURE 15. Sketch of the integration domain extensions for base-flow computations. Not to
scale. PNS domain from x̄0 to x̄e. DNS domains from x̄s1, x̄s2 to x̄e12.

to the incompressible code. At the outflow a buffer domain is employed that ramps
all conservative variables to their respective base-flow values. At the free stream
the base-flow values are kept for w, T and ρ, suppressing all disturbances. In
addition, ∂u/∂y|e = 0 allows ue to adequately adapt, and ∂v/∂y|e = −(∂(ρeue)/∂x)/ρe

is exploited to get ve, assuming ∂ρ/∂y|e = 0.
Sixth-order compact finite differences on an orthogonal, but stretched, grid are used

to discretize the streamwise and wall-normal directions. For the spanwise direction,
a Fourier spectral ansatz is implemented to compute the spanwise derivatives. The
explicit four-step fourth-order Runge–Kutta scheme serves as time integrator. All
equations are solved in total variables. Standard normalization is used with reference
length L̄, velocity Ū∞, temperature T̄∞ and density ρ̄∞. An extensive description of the
numerical method can be found in Babucke et al. (2006).

A.2. Compressible base flow
For small Mach numbers the viscous part of the numerical time step limit typically is
dominating and requires a time step proportional to Ma2

∞. For the considered case the
Mach number of the experiment is Ma∞ ≈ 0.05, being computationally too prohibitive.
Therefore, Ma∞ = 0.21 has been chosen. To ensure comparable flow regimes, the Reδ1
ranges are matched.

The compressible base flow is obtained in two steps. First, a solution of the three-
dimensional compressible parabolized Navier–Stokes (PNS) equations with constant
spanwise free-stream velocity and prescribed streamwise pressure gradient is computed
using an extension of the PNS code originally developed by Schmidt (see Schmidt &
Rist 2011). This PNS solution serves as initial and boundary conditions for the second
step, the steady full Navier–Stokes computation, cf. figure 15.

This procedure is necessary for three reasons. Appropriate boundary conditions of
the final DNS domain at the inflow and the upper boundary are required, preventing
significant streamwise transients in this DNS domain. Also, the integration domain of
the (numerically cheap) PNS solution is huge in order to prevent influences of the ad
hoc chosen inflow boundary onto the final DNS domain. Last, matching the flow to the
incompressible case required many iterations, suggesting a fast numerical procedure.

As for the PNS, the dimensionless free-stream velocity distribution ue(x) is
chosen as design variable and matched to the incompressible case. Alternatively, the
pressure distribution could be matched, but matching ue(x) eases comparison with our
incompressible vorticity-based code. The beginning of the PNS integration domain
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is close to the leading edge, far upstream of the DNS domain start in order to
keep influences from the inflow at a minimum where Blasius profiles are prescribed
as an inflow boundary condition. At the upper boundary the streamwise pressure
gradient has to be specified. The compressible Bernoulli equation along a streamline
(subscript s) is considered: ∫

dp̄

ρ̄
+ q̄2

2
= const. (A 1)

When substituting ρ̄ by p̄ using the isentropic relations, (A 1) can be written as
∂ p̄/∂ s̄ = f (ū, ∂ ū/∂ s̄), which is known from the incompressible base flow. Dirichlet
boundary conditions can then be prescribed for T̄e(x̄) and ρ̄e(x̄) using the isentropic
relations. The non-dimensional ue(x) distribution can be matched perfectly to the
incompressible one by this procedure.

The variables for the upstream boundary of the PNS domain at x̄0 = 0.0034 m
depend on the initial choice of the Mach number based on the oncoming flow q̄e(x̄0)=
{w̄e (x̄0)

2+ ūe (x̄0)
2}1/2, set to Maq(x̄0) = q̄e(x̄0)/ā(x̄0) = 0.20. The density is chosen to

be ρ̄(x̄0)= 1.225 kg m−3. To match the kinematic viscosity of the incompressible case
(ν̄ = 1.52 × 10−5 m2 s−1), the temperature is set to T̄e(x̄0) = T̄wall = 303.4 K. We find
q̄e(x̄0) = 69.84 m s−1, and by varying the angle of the oncoming flow such that the
incompressible streamwise velocity distribution ue(x) is met, yielding Φ(x̄0) = 72.58◦,
the spanwise and streamwise velocity components are w̄e(x̄0) = w̄e = 66.63 m s−1 and
ūe(x̄0)= 20.91 m s−1, respectively.

We prescribe free-stream boundary conditions w̄e = const., T̄e(x̄), ρ̄e(x̄), ∂ p̄/∂ x̄(x̄),
thus matching ue(x). For simplicity, Blasius inflow profiles were given, and hence
the resulting cross-flow component ws(y) did not match the distribution obtained
from the DLR experiment and the incompressible base flow. Therefore, we adapt
the solution once at x̄a = 0.0154 m. Enlarging ws(xa, y) gives modified u and w profiles
that match the incompressible cross-flow development that in turn had also been
matched (Bonfigli 2006) to the well-documented experimental development.

The second step, the steady Navier–Stokes solution, is carried out in two parts to
obtain the final base flow. First, a preliminary DNS domain is used employing PNS
velocity profiles at the inflow (x̄s1 = 0.0192 m); see figure 15. Then the final DNS
domain 2 is considered where profiles from the first DNS solution are used for the
inflow boundary condition at x̄s2 = 0.0217 m. Both domains end at x̄e12 = 0.1192 m.
For both DNS domains, PNS values are prescribed at the free-stream boundary.

Note that the final domain for the DNS base flow described here is larger than the
domain used for the unsteady DNS, which covers x̄ ∈ (0.0365 m, 0.0822 m).

Similarly to the incompressible case, the reference velocity is chosen at a flow angle
Φ∞ = 42.5◦ and yields Ū∞ = w̄e,0/ tanφ∞ = 72.72 m s−1. Defining Re = 92 000 and
keeping ν̄ = 1.52 × 10−5 m2 s−1, the reference length is L̄ = 0.01923 m. Additionally,
T̄∞ = T̄(x̄0) and ρ̄∞ = ρ̄(x̄0) are used for normalization.

Boundary-layer parameters for the converged base flow are compared with the
incompressible ones in figure 16. Incompressible and compressible displacement
and momentum thickness are obtained by integrating a pseudo-velocity distribution
up =

∫ ye
0 ωz dy to suppress influences from slightly non-constant u(y) values at

x = const. outside the boundary layer. The wall-normal density variation is neglected
in this calculation of the thickness. The Mach number Ms,e based on ūs,e for the
compressible case (not shown) varies between 0.229 and 0.264 in the compressible
domain. The identical ue development and the nearly constant Hartree parameters
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FIGURE 16. Boundary-layer parameters for incompressible base flow (dotted lines) and
compressible base flow (solid lines). The compressible domain covers x ∈ (1.9, 4.3). Right
ordinates show Reδ1 and Reδ1,s . Values in the left plot are evaluated in the body-fixed
coordinate system, in the right plot the streamline-oriented system is used. Note that to
get the w̃s distribution ws has to be divided by the local us,e value.

Case d/d̂ vmax/v̂max (vmax/v̂max)
2 ṁ∼ d2vmax i∼ d2v2

max

A 1 1 1 1 1

B, C d/d̂ (d̂/d)
2

(d̂/d)
4

1 (d̂/d)
2

B 0.75 1.78 3.16 1 1.78
C 0.6 2.78 7.72 1 2.78

B* d/d̂ d̂/d (d̂/d)
2

d/d̂ 1
B* 0.75 1.33 1.78 0.75 1

d̂ = 201x, v̂max = 0.200u∞ = 0.165us,e

TABLE 3. Mass and momentum fluxes for cases considered in appendix B.

indicate virtually identical flow fields. The slightly increased growth of the boundary-
layer thickness arises from weak compressible effects. The somewhat higher values
for the wall-normal velocity component seem to compensate for the decreasing
density when proceeding downstream, as can be seen from figure 17, where velocity
profiles are compared for the incompressible and compressible case. The location
x = 4.0 has been chosen because the largest deviation is expected there. Also, density
and temperature profiles of the compressible base flow are shown. Note that the
magnitudes of ρ and T vary less than 2 % in the compressible solution.
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FIGURE 17. (a) Base-flow velocity profiles from the incompressible (dashed lines) and
compressible (solid lines) case at x = 4.0. (b) Density (dashed lines) and temperature (solid
lines) profiles at x= 2.0, 3.0, 4.0 (decreasing with increasing x).
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FIGURE 18. Downstream development of modal ũ′s,(h) amplitudes from Fourier analysis in
time (maximum over y and z). Shown are the maximum steady three-dimensional deformation
(ω = 0− (0, 0)) and one selected mode ω = 108 for the reference case and three suction cases
(see table 3).

A.3. Numerical parameters for the compressible case

The validation simulation results shown in figure 2 are obtained with the following
parameters: the integration domains covers 1.900 6 x 6 4.276 and 0.000 6 y 6 0.077
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and is resolved by approximately five million grid points, Nx×Ny×Nz = 1816×95×32,
with 1x= 1.309× 10−3, 1ywall = 2.300× 10−4 and 1z= 3.747× 10−3 (corresponding
to 10 spanwise Fourier modes). The fundamental spanwise wavenumber is γ0 = 52.4
and the time step is 1t = 1.047 × 10−5. The parameters for the disturbance strips and
the suction hole are identical to those described in table 2 for the incompressible case
1-H.

Appendix B. Effect of suction-hole diameter

We consider suction distributions according to (2.2) and calculate mass as well
as momentum fluxes for cases with one suction hole per vortex and varying hole
diameters (see table 3). Case A employs the suction hole with diameter d = d̂ and
maximum suction velocity vmax = v̂max = 0.2u∞. The suction holes in cases B and
C provide the same mass fluxes with the hole diameters decreased by 25 and 40 %,
respectively. For case B* the suction hole is 25 % smaller, set up such that the same
momentum flux is obtained as in case A. Figure 18 shows the downstream modal
development of selected ũ′s amplitudes. We observe an almost identical attenuation of
secondary growth for cases A, B and C whereas case B* results in less attenuation.
The effect of localized suction for the investigated hole set-ups depends on the mass
flux sucked rather than on the momentum flux associated with it.
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