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Most of the multivariate counting processes studied in the literature are regular processes,
which implies, ignoring the types of the events, the non-occurrence of multiple events.
However, in practice, several different types of events may occur simultaneously. In this
paper, a new class of multivariate counting processes which allow simultaneous occur-
rences of multiple types of events is suggested and its stochastic properties are studied.
For the modeling of such kind of process, we rely on the tool of superposition of seed
counting processes. It will be shown that the stochastic properties of the proposed class of
multivariate counting processes are explicitly expressed. Furthermore, the marginal pro-
cesses are also explicitly obtained. We analyze the multivariate dependence structure of
the proposed class of counting processes.

Keywords: characterization of multivariate counting processes, complete intensity functions,
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1. INTRODUCTION

In practice, the occurrences of some type of random events are counted and thus, in such
cases, we are dealing with counting processes. A stochastic process {N(t), t ≥ 0} is said
to be a counting process if N(t) represents the total number of events that occur by time
t. Until now, most of the research is focused on the univariate counting process, for which
their stochastic properties have been thoroughly studied. The Markov process, homogeneous
and non-homogeneous Poisson processes (HPP and NHPP), and the renewal process are
the most frequently applied univariate counting processes (Limnios and Oprişan [20] and
Barbu and Limnios [3]).

As mentioned above, so far, most researchers have paid their attention to univariate
counting process. However, stochastically dependent multivariate series of events can be
commonly observed in many contexts (see Cha and Giorgio [11] for plenty of examples).
In this regard, in Cha and Giorgio [11], a new multivariate point process model, called the
multivariate generalized Polya process (MVGPP), has been developed.

One of the critical features of the MVGPP is that it is a “regular process”, which
implies, ignoring the types of the events, the non-occurrence of multiple events. However, in
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some cases, the “regularity condition” in multivariate point processes needs to be relaxed
because, in practice, several different types of events may occur simultaneously. For example,
in insurance risk model, an insurance portfolio frequently consists of two or more insurance
policies or subportfolios. In this case, the insurance portfolio may simultaneously face dif-
ferent types of claims arising from the same catastrophe such as a windstorm or a vehicle
accident (see Chan, Hailiang Yang and Zhang [12], Cai and Li [5] and Woo [26]). As a sim-
plest explanatory model, suppose that {(N1(t), N2(t)), t ≥ 0} is a bivariate claim process,
where Ni(t), i = 1, 2, represents the number of claim causing events in the ith risk process
by time t. Furthermore, some events in the two risk processes are common ones and shared
by {N1(t), t ≥ 0} and {N2(t), t ≥ 0}, whereas the other events are respective ones in the
two processes. Denote by Xij the jth loss at the ith risk process, i = 1, 2, j = 1, 2, · · · ,
and by Li(t), i = 1, 2, the total claim cost by time t in the ith risk process, respectively.
Then Li(t) is defined as Li(t) =

∑Ni(t)
j=1 Xij , i = 1, 2 and, in this case, L1(t) and L2(t) are

stochastically dependent. In insurance risk analysis, the stochastic properties (e.g., joint and
marginal distributions and moments such as mean, variance and covariance) of L1(t) and
L2(t) are of practical interest. Multivariate processes having simultaneous multiple types
of events may also occur frequently in engineering science. For example, in reliability, in
addition to respective recurrent failures, simultaneous failures in two parts in a system may
occur (i.e., two types of events can occur) due to external common fatal shocks (see Marshall
and Olkin [21] and Kundu and Gupta [18,19]).

Therefore, in this paper, our aim is to develop a new multivariate point process without
the regularity property. However, the “marginal regularity” will be retained as in most
univariate point processes. More accurate mathematical definitions of the regularity and
the marginal regularity in multivariate point processes will be given in Section 2. For a
systematic modeling of such kind of process, we rely on the tool of superposition of seed
counting processes. To increase the practical applicability of the developed multivariate
point process, our prime aim will be to keep mathematical tractability and computability
as simple as possible. Another very important goal of this paper will be to develop a class of
multivariate counting processes which possesses positive dependence because, as illustrated
in Cha and Giorgio [11], multivariate series of events occurring in practice are frequently
positively dependent. While this paper basically follows Cha [7] and Cha and Giorgio [11],
especially, the proofs of the positive dependence property for both bivariate and multivariate
cases are significantly different from that in Cha and Giorgio [11] due to structural difference
of the studied models. This will be one of the main contributions of this paper.

The structure of this paper is as follows. In Section 2, using the tool of superposition
of processes, we define a new class of marginally regular bivariate counting processes. It
will be shown that the marginal process of the proposed bivariate counting process becomes
an existing counting process and it has explicit stochastic properties. In Section 3, we
derive the stochastic properties of the proposed class of bivariate counting processes. For
further characterization of it, we suggest an alternative definition for the proposed class
of bivariate counting processes which relies on mixing and, based on it, we analyze the
dependence structure of the developed bivariate process. In Section 4, we briefly discuss the
generalization of the bivariate process to the multivariate case. Finally, in Section 5, some
concluding remarks will be given.

2. STOCHASTIC MODELING OF BIVARIATE COUNTING PROCESS

First, we will start with the case of bivariate counting process and will extend our discus-
sion to the multivariate case afterward. Let {N(t), t ≥ 0}, where N(t) = (N1(t), N2(t)),
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be a bivariate process of our interest. We can then define the marginal counting processes
{Ni(t), t ≥ 0} and, for convenience, they will be called type i counting process, i = 1, 2,
respectively. Furthermore, the events from type i counting process {Ni(t), t ≥ 0} will also
be called type i events. In this paper, our aim is to develop a class of marginally regular
bivariate counting processes. A univariate counting process {N(t), t ≥ 0} is called “regular”
(or “orderly”) if

P (N(t + Δt) − N(t) > 1) = o(Δt), ∀t ≥ 0.

Regularity is intuitively the non-occurrence of multiple events in a small interval. Note that
the regularity in a multivariate process should be more precisely defined (see also Cox and
Lewis [14]). There are two types of regularity in multivariate counting processes: (i) marginal
regularity and (ii) regularity. For a multivariate counting process, we say that the process
is marginally regular if its marginal processes, considered as univariate counting processes,
are all regular. The multivariate process is said to be regular if the “pooled” process is
regular. This type of regularity, of course, implies the marginal regularity. Throughout this
paper, we will assume that the bivariate process {N(t), t ≥ 0} of our interest is “marginally
regular” (but “not regular”) process.

To stochastically model a new class of marginally regular bivariate counting processes,
we first introduce a well-known method of generating dependency which is frequently used
to develop bivariate distributions. The well-known “bivariate Poisson distribution” was
proposed by Campbell [6] and Holgate [16]. Although Campbell [6] obtained it in a different
and more complex way, Holgate [16] obtained the bivariate Poisson distribution (BPD) using
the “trivariate reduction method”. That is, let W1, W2, and W3 be independent Poisson
random variables with the parameters λ1, λ2, and λ3, respectively. Then a discrete bivariate
distribution can be defined by setting

X1 ≡ W1 + W3 and X2 ≡ W2 + W3. (1)

The bivariate distribution defined by (X1,X2) in (1) is called the BPD. It can be easily
shown that the joint probability mass function of (X1,X2) is given by

f(x1, x2) = e−(λ1+λ2+λ3)

min{x1,x2}∑
u=0

λx1−u
1 λx2−u

2 λu
3

(x1 − u)!(x2 − u)!u!
, x1 = 0, 1, 2, . . . , x2 = 0, 1, 2, . . . .

It is also well known that the BPD possesses very convenient properties, for example, all
the marginal distributions are given by the Poisson distributions.

To obtain a marginally regular dependent bivariate counting process, one can extend
the relation between random variables suggested in (1) to that between counting processes.
Thus, a natural extension of the BPD to the bivariate Poisson process can be defined as
follows.

Definition 1 (Bivariate Poisson process (BPP)): Let {Wi(t), t ≥ 0} be the NHPP with the
intensity function λi(t), i = 1, 2, 3, respectively, and assume that they are mutually inde-
pendent. Define a bivariate process {(X1(t),X2(t)), t ≥ 0} as X1(t) ≡ W1(t) + W3(t) and
X2(t) ≡ W2(t) + W3(t), for all t ≥ 0. Then the bivariate process {(X1(t),X2(t)), t ≥ 0} is
called the bivariate Poisson process with the set of parameters (λ1(t), λ2(t), λ3(t)).

The properties of the BPP {(X1(t),X2(t)), t ≥ 0} defined in Definition 1 can be derived
by using those of univariate Poisson process. However, a crucial demerit of the BPP is that
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the degree of dependence is too weak. That is, for t2 > t1 and s2 > s1, if the two intervals
(t1, t2] and (s1, s2] are not overlapping, then

P (X1(t2) − X1(t1) = n1, X2(s2) − X2(s1) = n2)

= P (X1(t2) − X1(t1) = n1)P (X2(s2) − X2(s1) = n2),

for all n1 and n2, due to the independent increments property of the involved Poisson
processes. That is, the numbers of events from {X1(t), t ≥ 0} and {X2(t), t ≥ 0} for any two
non-overlapping intervals are independent. Thus, although the BPP defined in Definition 1
can be conveniently applied in practice, due to the described reason, it would not be suitable
for modeling bivariate series of events that have a stronger dependence.

Thus, now we consider to generate a marginally regular bivariate counting process which
has a stronger dependence. At the same time, the stochastic properties of the bivariate pro-
cess and its marginal processes should be mathematically tractable. For this purpose, we will
consider the generalized Polya process (GPP) as the seed counting processes. To introduce
the Definition of the GPP, the concept of stochastic intensity is needed. For a univariate
orderly counting process {N(t), t ≥ 0} and its past history (i.e., internal filtration) Ht− in
the interval [0, t), the stochastic intensity is defined by (see also Aven and Jensen [1] and
Cha [7]),

λt ≡ lim
Δt→0

P (N(t, t + Δt) ≥ 1|Ht−)
Δt

= lim
Δt→0

P (N(t, t + Δt) = 1|Ht−)
Δt

,

where N(t1, t2), t1 < t2, is the number of events in [t1, t2). The definition of the GPP is as
follows.

Definition 2 (Generalized Polya process (Cha [7])): A counting process {N(t), t ≥ 0} is
called the GPP with the set of parameters (λ(t), α, β), α ≥ 0, β > 0, if

(i) N(0) = 0;
(ii) λt = (αN(t−) + β)λ(t).

Note that the GPP with (λ(t), α = 0, β = 1) reduces to the NHPP with the intensity function
λ(t) and, accordingly, the GPP can be understood as a generalized version of the NHPP.
See Cha [7] for more detailed stochastic properties of the GPP. As mentioned before, one of
the important objectives of this study is to develop bivariate process such that the stochas-
tic properties of the bivariate process and its marginal processes should be mathematically
tractable. Thus, if we follow the modeling procedure suggested in Definition 1 based on the
GPP seed processes, the superposition of two GPPs, which corresponds to the marginal pro-
cess, should be obtained in a mathematically tractable form. For this purpose, before defining
a new bivariate counting process based on the GPP seed processes, we study the condition
under which the superposition of two GPPs results in a GPP again. The following theorem
is about the result on the superposition of two independent GPPs.

Theorem 1: Let {Mi(t), t ≥ 0} be the GPP with the set of parameters (λ(t), α, βi), i = 1, 2,
respectively, and assume that they are independent. Define M(t) ≡ M1(t) + M2(t), t ≥ 0.
Then {M(t), t ≥ 0} is the GPP with the set of parameters (λ(t), α, β1 + β2).
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Proof: Denote by λM
t the stochastic intensity function of {M(t), t ≥ 0}. Then, for the

past history (internal filtration) HM
t− of the process {M(t), t ≥ 0},

λM
t = lim

Δt→0

P
(
M(t, t + Δt) = 1|HM

t−
)

Δt

= lim
Δt→0

P (M(t, t + Δt) = 1|Ti, i = 1, 2, . . . ,M1(t−) + M2(t−);M1(t−) + M2(t−))
Δt

= lim
Δt→0

P (M(t, t + Δt) = 1|M1(t−) + M2(t−))
Δt

,

where T1 ≤ T2 ≤ T3 ≤ · · · < t are the sequential arrival points of the events in {M(t), t ≥ 0}
and the third equality holds due to the Markovian property of the GPP. Note that

lim
Δt→0

P (M(t, t + Δt) = 1|M1(t−) + M2(t−))
Δt

= E(M1(t−)|M1(t−)+M2(t−))

[
lim

Δt→0

P (M(t, t + Δt) = 1|M1(t−),M1(t−) + M2(t−))
Δt

]

= E(M1(t−)|M1(t−)+M2(t−))

[
lim

Δt→0

P (M(t, t + Δt) = 1|M1(t−),M2(t−))
Δt

]
, (2)

where E(M1(t−)|M1(t−)+M2(t−))[·] stands for the expectation with respect to the conditional
distribution of (M1(t−)|M1(t−) + M2(t−)). Observe that, in (2),

lim
Δt→0

P (M(t, t + Δt) = 1|M1(t−),M2(t−))
Δt

= (αM1(t−) + β1)λ(t) + (αM2(t−) + β2)λ(t)

= (α(M1(t−) + M2(t−)) + β1 + β2)λ(t),

which depends on M1(t−) only through M1(t−) + M2(t−). Thus, the conditional expecta-
tion in (2) is just given by

E(M1(t−)|M1(t−)+M2(t−))

[
lim

Δt→0

P (M(t, t + Δt) = 1|M1(t−),M2(t−))
Δt

]

= (α(M1(t−) + M2(t−)) + β1 + β2)λ(t).

Therefore,
λM

t = (αM(t−) + β1 + β2)λ(t),

and {M(t), t ≥ 0} is the GPP with the set of parameters (λ(t), α, β1 + β2). �

Based on Theorem 1, we can now define a new marginally regular bivariate generalized
Polya process (MR-BVGPP) which has the GPPs as the marginal processes.

Definition 3 (Marginally regular bivariate generalized Polya process): Let {Vi(t), t ≥ 0}
be the GPP with the set of parameters (λ(t), α, βi), i = 1, 2, 3, respectively, and assume
that they are mutually independent. Define a bivariate process {(N1(t), N2(t)), t ≥ 0}
as N1(t) ≡ V1(t) + V3(t) and N2(t) ≡ V2(t) + V3(t), for all t ≥ 0. Then the bivariate
process {(N1(t), N2(t)), t ≥ 0} is called the MR-BVGPP with the set of parameters
(λ(t), α, β1, β2, β3).
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From Theorem 1, obviously, the marginal process {Ni(t), t ≥ 0} is given by the GPP,
which is explicitly stated in the following proposition.

Proposition 1: For the MR-BVGPP {(N1(t), N2(t)), t ≥ 0} with the set of parame-
ters (λ(t), α, β1, β2, β3), the marginal process {Ni(t), t ≥ 0} is the GPP with the set of
parameters (λ(t), α, βi + β3), i = 1, 2, respectively.

3. STOCHASTIC PROPERTIES

3.1. Restarting Property and the Joint Distribution of the Number of Events

In this section, we will derive stochastic properties of the MR-BVGPP {(N1(t), N2(t)),
t ≥ 0}. For this, first of all, the understanding of the “restarting property” of a process
would be much helpful.

Definition 4 (Restarting property (Cha [7])): Let t > 0 be an “arbitrary” time point. If
the conditional future stochastic process from t, given the history until time t, follows the
same type of stochastic process with possibly different set of process parameters, then the pro-
cess is called to possess the restarting property. A stochastic process that enjoys the restarting
property is called a restarting process.

The restarting property is explained in a much more detail and several examples for
univariate restarting processes are given in Cha [7]. It is shown that the GPP possesses
this property and, in addition, it “unconditionally” restart (see Theorem 2 of Cha [7]).
Note that the bivariate process {(N1(t), N2(t)), t ≥ 0} in Definition 3 also possesses this
restarting property and it also “unconditionally” restarts, which is explicitly stated in the
following theorem. Furthermore, relying on these properties, the joint distributions of the
number of events in an arbitrary interval or disjoint intervals can be conveniently obtained.
Denote by Hit− the history of Type i process in the interval [0, t), i = 1, 2. For a con-
stant u ≥ 0, define Nui(t) ≡ Ni(u + t) − Ni(u), i = 1, 2, and Vui(t) ≡ Vi(u + t) − Vi(u),
i = 1, 2, 3. Furthermore, throughout this paper, we define Λ(t) ≡ ∫ t

0
λ(x)dx, t ≥ 0.

Theorem 2: Let 0 ≡ u0 < u1 < u2 < · · · < um.

(i) Given (H1u−,H2u−), {(Nu1(t), Nu2(t)), t ≥ 0} is the MR-BVGPP with the set of
parameters (λ(u + t), α, αm1 + β1, αm2 + β2, αm3 + β3), where mi is the realization
of Vi(u−), i = 1, 2, 3, respectively.

(ii) For any u ≥ 0, {(Nu1(t), Nu2(t)), t ≥ 0} is ‘unconditionally’ MR-BVGPP with the
set of parameters (ϕ(t, u), α, β1, β2, β3), where

ϕ(t, u) =
λ(u + t) exp{αΛ(u + t)}

1 + exp{αΛ(u + t)} − exp{αΛ(u)} .

(iii)

P (Ni(u2) − Ni(u1) = ni, i = 1, 2)

=
min{n1,n2}∑

j=0

Γ(j + β3/α)Γ(n1 − j + β1/α)Γ(n2 − j + β2/α)
j!(n1 − j)!(n2 − j)!Γ(β1/α)Γ(β2/α)Γ(β3/α)
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×
(

1 − exp{−α[Λ(u2) − Λ(u1)]}
1 + exp{−αΛ(u2)} − exp{−α[Λ(u2) − Λ(u1)]}

)n1+n2−j

×
(

exp{−αΛ(u2)}
1 + exp{−αΛ(u2)} − exp{−α[Λ(u2) − Λ(u1)]}

)(β1+β2+β3)/α

.

(iv)

P (Ni(uj) − Ni(uj−1) = nij , i = 1, 2, j = 1, 2, . . . ,m)

=
min{n11,n21}∑

j1=0

min{n12,n22}∑
j2=0

· · ·
min{n1m,n2m}∑

jm=0

m∏
i=1

[
Γ(
∑i

k=1 jk + β3/α)

ji!Γ(
∑i−1

k=1 jk + β3/α)

× Γ(
∑i

k=1(n1k − jk) + β1/α)

(n1i − ji)!Γ(
∑i−1

k=1(n1k − jk) + β1/α)
· Γ(

∑i
k=1(n2k − jk) + β2/α)

(n2i − ji)!Γ(
∑i−1

k=1(n2k − jk) + β2/α)

×
(
1 − exp{−αΛ(ui − ui−1|ui−1)}

)n1i+n2i−ji

×
(

exp{−αΛ(ui − ui−1|ui−1)}
)∑ i−1

k=1(n1k+n2k−jk)+(β1+β2+β3)/α
]
,

where
∑i−1

k=1(·) ≡ 0 when i = 1, λ(t|s) ≡ λ(t + s),Λ(t|s) ≡ ∫ t

0
λ(u|s)du.

Proof: Property (i): Note that if (H1u−,H2u−) is given, then the corresponding his-
tories of the seed processes {Vi(t), t ≥ 0}, i = 1, 2, 3, are also specified. Furthermore,
given the histories of the seed processes {Vi(t), t ≥ 0}, i = 1, 2, 3, in the interval [0, u),
due to the Markovian property of the GPP, the future process {(Nu1(t), Nu2(t)), t ≥ 0}
depends only on (V1(u−), V2(u−), V3(u−)). Specifically, given (V1(u−) = m1, V2(u−) =
m2, V3(u−) = m3), the future process {Vui(t), t ≥ 0} follows the GPP with the set of
parameters (λ(u + t), α, αmi + βi), i = 1, 2, 3, respectively. Thus, we have the desired result.

Property (ii): From Theorem 2 of Cha [7], {Vui(t), t ≥ 0} is the GPP with the set of
parameters (ϕ(t, u), α, βi), where

ϕ(t, u) =
λ(u + t) exp{αΛ(u + t)}

1 + exp{αΛ(u + t)} − exp{αΛ(u)} .

Thus, we have the desired result.
Property (iii): Note that Ni(u2) − Ni(u1) = Nu1i(u2 − u1) = Vu1i(u2 − u1) + Vu13(u2 −

u1), i = 1, 2, and thus, from Property (ii), we have

P (Ni(u2) − Ni(u1) = ni, i = 1, 2)

=
min{n1,n2}∑

j=0

Γ(j + β3/α)
j!Γ(β3/α)

(
1 − exp{−α[Λ(u2) − Λ(u1)]}

1 + exp{−αΛ(u2)} − exp{−α[Λ(u2) − Λ(u1)]}

)j

×
(

exp{−αΛ(u2)}
1 + exp{−αΛ(u2)} − exp{−α[Λ(u2) − Λ(u1)]}

)β3/α
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× Γ(n1 − j + β1/α)
(n1 − j)!Γ(β1/α)

(
1 − exp{−α[Λ(u2) − Λ(u1)]}

1 + exp{−αΛ(u2)} − exp{−α[Λ(u2) − Λ(u1)]}

)n1−j

×
(

exp{−αΛ(u2)}
1 + exp{−αΛ(u2)} − exp{−α[Λ(u2) − Λ(u1)]}

)β1/α

× Γ(n2 − j + β2/α)
(n2 − j)!Γ(β2/α)

(
1 − exp{−α[Λ(u2) − Λ(u1)]}

1 + exp{−αΛ(u2)} − exp{−α[Λ(u2) − Λ(u1)]}

)n2−j

×
(

exp{−αΛ(u2)}
1 + exp{−αΛ(u2)} − exp{−α[Λ(u2) − Λ(u1)]}

)β2/α

,

which results in the desired result.
Property (iv): Observe that

P (Ni(uj) − Ni(uj−1) = nij , i = 1, 2, j = 1, 2, . . . ,m)

=
min{n11,n21}∑

j1=0

min{n12,n22}∑
j2=0

· · ·
min{n1m,n2m}∑

jm=0

P (N1(uk) − N1(uk−1) = n1k,

N2(uk) − N2(uk−1) = n2k, V3(uk) − V3(uk−1) = jk, k = 1, 2, . . . ,m)

=
min{n11,n21}∑

j1=0

min{n12,n22}∑
j2=0

· · ·
min{n1m,n2m}∑

jm=0

P (V3(uk) − V3(uk−1) = jk,

V1(uk) − V1(uk−1) = n1k − jk, V2(uk) − V2(uk−1) = n2k − jk, k = 1, 2, . . . , m)

=
min{n11,n21}∑

j1=0

min{n12,n22}∑
j2=0

· · ·
min{n1m,n2m}∑

jm=0

m∏
i=1

P (V3(ui) − V3(ui−1) = ji,

V1(ui) − V1(ui−1) = n1i − ji, V2(ui) − V2(ui−1) = n2i − ji|V3(uk) − V3(uk−1) = jk,

V1(uk) − V1(uk−1) = n1k − jk, V2(uk) − V2(uk−1) = n2k − jk, k = 1, 2, . . . , i − 1)

=
min{n11,n21}∑

j1=0

min{n12,n22}∑
j2=0

· · ·
min{n1m,n2m}∑

jm=0

m∏
i=1

[P (V3(ui) − V3(ui−1)

= ji|V3(uk) − V3(uk−1) = jk, k = 1, 2, . . . , i − 1)

× P (V1(ui) − V1(ui−1) = n1i − ji|V1(uk) − V1(uk−1) = n1k − jk, k = 1, 2, . . . , i − 1)

× P (V2(ui) − V2(ui−1) = n2i − ji|V2(uk) − V2(uk−1) = n2k − jk, k = 1, 2, . . . , i − 1)].

Due to the restarting property of the GPP, the conditional counting process

(Vl(t + ui−1) − Vl(ui−1)|Vl(uk) − Vl(uk−1) = mk, k = 1, 2, . . . , i − 1), t ≥ 0,

which counts the number of events from the time point ui−1, follows the GPP with
the set of parameters (λl(ui−1 + t), α, α

∑i−1
k=1 mk + βl), l = 1, 2, 3, respectively. Then we
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have

P (Ni(uj) − Ni(uj−1) = nij , i = 1, 2, j = 1, 2, . . . , m)

=
min{n11,n21}∑

j1=0

min{n12,n22}∑
j2=0

· · ·
min{n1m,n2m}∑

jm=0

m∏
i=1

[
Γ(
∑i

k=1 jk + β3/α)

ji!Γ(
∑i−1

k=1 jk + β3/α)

×
(
1 − exp{−αΛ(ui − ui−1|ui−1)}

)ji

×
(

exp{−αΛ(ui − ui−1|ui−1)}
)∑ i−1

k=1 jk+β3/α

× Γ(
∑i

k=1(n1k − jk) + β1/α)

(n1i − ji)!Γ(
∑i−1

k=1(n1k − jk) + β1/α)

(
1 − exp{−αΛ(ui − ui−1|ui−1)}

)n1i−ji

×
(

exp{−αΛ(ui − ui−1|ui−1)}
)∑ i−1

k=1(n1k−jk)+β1/α

× Γ(
∑i

k=1(n2k − jk) + β2/α)

(n2i − ji)!Γ(
∑i−1

k=1(n2k − jk) + β2/α)

(
1 − exp{−αΛ(ui − ui−1|ui−1)}

)n2i−ji

×
(

exp{−αΛ(ui − ui−1|ui−1)}
)∑ i−1

k=1(n2k−jk)+β2/α
]
,

which results in the desired result. �

3.2. Characterization Based on the Mixture of BPP

In developing new distributions or counting process models in insurance risk modeling,
the tool of mixing has taken a crucial role (see, e.g., Willmot and Woo [24,25]). To derive
further properties of MR-BVGPP, the following characterization of MR-BVGPP in terms of
the mixture of BPP would take a crucial role. To show the equivalence of any two bivariate
counting processes, we need to show that the two counting processes have the same complete
intensity functions (Cox and Lewis [14], Aven and Jensen [1,2] and Cha and Giorgio [11]).
As explained in Cha and Giorgio [11], a “marginally regular bivariate counting process”
{(N1(t), N2(t)), t ≥ 0} can be specified by the following complete intensity functions:

λ1t ≡ lim
Δt→0

P (N1(t, t + Δt) ≥ 1|H1t−;H2t−)
Δt

= lim
Δt→0

P (N1(t, t + Δt) = 1|H1t−;H2t−)
Δt

,

λ2t ≡ lim
Δt→0

P (N2(t, t + Δt) ≥ 1|H1t−;H2t−)
Δt

= lim
Δt→0

P (N2(t, t + Δt) = 1|H1t−;H2t−)
Δt

,

λ12t ≡ lim
Δt→0

P (N1(t, t + Δt)N2(t, t + Δt) ≥ 1|H1t−;H2t−)
Δt

, (3)

where Hit− ≡ {Ni(u), 0 ≤ u < t} is the history (internal filtration) of the marginal process
{Ni(t), t ≥ 0}, i = 1, 2, and Ni(t1, t2), t1 < t2, represents the number of type i events in
[t1, t2), i = 1, 2, respectively. Note that Hit− can be completely defined in terms of Ni(t−)
and the sequential arrival points of the events 0 ≤ Ti1 ≤ Ti2 ≤ · · · ≤ TiNi(t−) < t in [0, t),
i = 1, 2, where Ni(t−) is the total number of events of type i point process in [0, t), i = 1, 2.

Theorem 3: Let {(N1(t), N2(t)), t ≥ 0} be the MR-BVGPP with the set of parameters
(λ(t), α, β1, β2, β3). Furthermore, let {(N∗

1 (t), N∗
2 (t)), t ≥ 0} be the mixture of the BPP
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with the set of parameters (z1λ(t) exp{αΛ(t)}, z2λ(t) exp{αΛ(t)}, z3λ(t) exp{αΛ(t)}) (given
Z1 = z1, Z2 = z2, Z3 = z3) and the corresponding mixing distributions (pdf) of Z1, Z2, Z3,
given by

fZi
(zi) =

1
Γ(βi/α)

α−βi/αz
βi/α−1
i exp{−zi/α}, 0 < zi < ∞, i = 1, 2, 3,

respectively, where {Zi, i = 1, 2, 3}, are assumed to be mutually independent. Then the
bivariate counting processes {(N1(t), N2(t)), t ≥ 0} and {(N∗

1 (t), N∗
2 (t)), t ≥ 0} share the

same stochastic properties.

Proof: We will derive the complete intensity functions of {(N1(t), N2(t)), t ≥ 0} and
{(N∗

1 (t), N∗
2 (t)), t ≥ 0} and will show that they are the same.

First, we obtain the complete intensity functions λ1t, λ2t and λ12t of {(N1(t), N2(t)),
t ≥ 0} in Definition 3. Observe that

λ1t = lim
Δt→0

P (N1(t, t + Δt) = 1|H1t−;H2t−)
Δt

= lim
Δt→0

P (N1(t, t + Δt) = 1|V1(t−), V2(t−), V3(t−))
Δt

,

where note that V1(t−), V2(t−), V3(t−) are determined if H1t− and H2t− are given and
the equality holds due to the Markovian property of the GPP. Due to the relationship
N1(t) = V1(t) + V3(t),

λ1t = (αV1(t−) + β1)λ(t) + (αV3(t−) + β3)λ(t) = (α(V1(t−) + V3(t−)) + β1 + β3)λ(t)

= (αN1(t−) + β1 + β3)λ(t).

By symmetry, λ2t = (αN2(t−) + β2 + β3)λ(t). Furthermore, similarly,

λ12t = lim
Δt→0

P (N1(t, t + Δt)N2(t, t + Δt) = 1|H1t−;H2t−)
Δt

= lim
Δt→0

P (N1(t, t + Δt)N2(t, t + Δt) = 1|V1(t−), V2(t−), V3(t−))
Δt

= lim
Δt→0

P (V3(t, t + Δt) = 1|V3(t−))
Δt

= (αV3(t−) + β3)λ(t).

Now, we obtain the stochastic intensity functions λ∗
1t, λ∗

2t, λ∗
12t of {(N∗

1 (t), N∗
2 (t)),

t ≥ 0}. Let H∗
1t− and H∗

2t− be the corresponding histories of the marginal processes of
{(N∗

1 (t), N∗
2 (t)), t ≥ 0}. In {(N∗

1 (t), N∗
2 (t)), t ≥ 0}, define V ∗

i (t) as the number of events
in which only type i event occurs in (0, t], i = 1, 2, respectively, and V ∗

3 (t) as the number
of events in which both type 1 and type 2 events occur simultaneously. Then, clearly,
N∗

i (t) = V ∗
i (t) + V ∗

3 (t), i = 1, 2. Define G∗
it− as the history of the process {V ∗

i (t), t ≥ 0},
i = 1, 2, 3. Then, (H∗

it−, i = 1, 2) specifies (G∗
it−, i = 1, 2, 3), and vice versa. Thus,

λ∗
1t = lim

Δt→0

P
(
N∗

1 (t, t + Δt) = 1|H∗
1t−;H∗

2t−
)

Δt

= lim
Δt→0

P
(
N∗

1 (t, t + Δt) = 1|G∗
1t−;G∗

2t−;G∗
3t−
)

Δt
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= lim
Δt→0

P
(
N∗

1 (t, t + Δt) = 1|G∗
1t−;G∗

3t−
)

Δt

= E(Z1,Z3|G∗
1t−;G∗

3t−)

[
lim

Δt→0

P
(
N∗

1 (t, t + Δt) = 1|Z1, Z3;G∗
1t−;G∗

3t−
)

Δt

]
,

where E(Z1,Z3|G∗
1t−;G∗

3t−)[ · ] stands for the expectation with respect to the conditional
distribution of (Z1, Z3|G∗

1t−;G∗
3t−) and

lim
Δt→0

P
(
N∗

1 (t, t + Δt) = 1|Z1, Z3;G∗
1t−;G∗

3t−
)

Δt
= (Z1 + Z3)λ(t) exp{αΛ(t)}.

Denote by Ui1 ≤ Ui2 ≤ · · · the sequential arrival points of the events in the process
{V ∗

i (t), t ≥ 0}, i = 1, 2, 3. Note that the conditional joint distribution of

(G∗
1t−;G∗

3t−|Z1, Z3) = (Ui1, Ui2, . . . , UiV ∗
i (t−), V

∗
i (t−), i = 1, 3|Z1, Z3)

is given by (see, e.g., the proof of Theorem 1 in Cha and Finkelstein [9] and Cha and
Finkelstein [10])

z1ϕ(u11)z1ϕ(u12) · · · z1ϕ(u1m1) exp
{
−z1

∫ t

0

ϕ(x)dx

}

× z3ϕ(u31)z3ϕ(u32) · · · z3ϕ(u3m3) exp
{
−z3

∫ t

0

ϕ(x)dx

}
,

where ϕ(t) ≡ λ(t) exp{αΛ(t)}, uij represents the realization of Uij and mi represents that
of V ∗

i (t−), i = 1, 3, respectively. Thus, the conditional joint distribution of (Z1, Z3|G∗
1t− =

g1t−;G∗
3t− = g3t−), where git− ≡ (ui1, ui2, . . . , uimi

,mi) is the realization of G∗
it−, i = 1, 3,

is given by

zm1
1 zm3

3 exp{−(z1 + z3)
∫ t

0
ϕ(x)dx}fZ1(z1)fZ3(z3)∫∞

0

∫∞
0

vm1
1 vm3

3 exp{−(v1 + v3)
∫ t

0
ϕ(x)dx}fZ1(v1)fZ3(v3)dv1dv3

.

Thus, given (G∗
1t− = g1t−;G∗

3t− = g3t−),

lim
Δt→0

P
(
N∗

1 (t, t + Δt) = 1|G∗
1t− = g1t−;G∗

3t− = g3t−
)

Δt

= λ(t) exp{αΛ(t)}

×
∫∞
0

∫∞
0

(z1 + z3)zm1
1 zm3

3 exp{−(z1+ z3)
∫ t

0
λ(x) exp{αΛ(x)}dx}fZ1(z1)fZ3(z3)dz1dz3∫∞

0

∫∞
0

vm1
1 vm3

3 exp{−(v1 + v3)
∫ t

0
λ(x) exp{αΛ(x)}dx}fZ1(v1)fZ3(v3)dv1dv3

= λ(t) exp{αΛ(t)}
(∫ ∞

0

zm1+1
1 exp{−z1

∫ t

0

λ(x) exp{αΛ(x)}dx}fZ1(z1)dz1

×
∫ ∞

0

zm3
3 exp{−z3

∫ t

0

λ(x) exp{αΛ(x)}dx}fZ3(z3)dz3

+
∫ ∞

0

zm3+1
3 exp{−z3

∫ t

0

λ(x) exp{αΛ(x)}dx}fZ3(z3)dz3
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×
∫ ∞

0

zm1
1 exp{−z1

∫ t

0

λ(x) exp{αΛ(x)}dx}fZ1(z1)dz1

)

×
(∫ ∞

0

vm1
1 exp{−v1

∫ t

0

λ(x) exp{αΛ(x)}dx}fZ1(v1)dv1

×
∫ ∞

0

vm3
3 exp{−v3

∫ t

0

λ(x) exp{αΛ(x)}dx}fZ3(v3)dv3

)−1

= λ(t) exp{αΛ(t)}
{ ∑

i=1,3

[(∫ ∞

0

zmi+1
i exp{−zi

1
α

(exp{αΛ(t)} − 1)}fZi
(zi)dzi

)

×
(∫ ∞

0

vmi
i exp{−vi

1
α

(exp{αΛ(t)} − 1)}fZi
(vi)dvi

)−1]}

= (αm1 + β1)λ(t) + (αm3 + β3)λ(t)

= (αn1 + β1 + β3)λ(t),

where n1 ≡ m1 + m3 is the realization of N∗
1 (t−) = V ∗

1 (t−) + V ∗
3 (t−), and the following

calculation is used: for a non-negative integer k,

∫ ∞

0

zk
i exp{−zi

1
α

(exp{αΛ(t)} − 1)}fZi
(zi)dzi

=
∫ ∞

0

1
Γ(βi/α)

α−βi/αz
k+βi/α−1
i exp

{
−zi

1
α

exp{αΛ(t)}
}

dzi

=
α−βi/α

Γ(βi/α)
Γ(k + βi/α)(

1
α exp{αΛ(t)})k+βi/α

×
∫ ∞

0

1
Γ(k + βi/α)

(
1
α

exp{αΛ(t)}
)k+βi/α

z
k+βi/α−1
i exp

{
−zi

1
α

exp{αΛ(t)}
}

dzi

=
α−βi/α

Γ(βi/α)
Γ(k + βi/α)(

1
α exp{αΛ(t)})k+βi/α

, i = 1, 3,

and

Γ(k + 1 + βi/α) = (k + βi/α)Γ(k + βi/α).

Thus,

λ1t = (αN∗
1 (t−) + β1 + β3)λ(t).

By symmetry, λ∗
2t = (αN∗

2 (t−) + β2 + β3)λ(t). Furthermore,

λ∗
12t = lim

Δt→0

P
(
N∗

1 (t, t + Δt)N∗
2 (t, t + Δt) = 1|H∗

1t−;H∗
2t−
)

Δt

= lim
Δt→0

P
(
N∗

1 (t, t + Δt)N∗
2 (t, t + Δt) = 1|G∗

1t−;G∗
2t−;G∗

3t−
)

Δt
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= lim
Δt→0

P
(
V ∗

3 (t, t + Δt) = 1|G∗
3t−
)

Δt

= E(Z3|G∗
3t−)

[
lim

Δt→0

P
(
V ∗

3 (t, t + Δt) = 1|Z3;G∗
3t−
)

Δt

]
,

where

lim
Δt→0

P
(
V ∗

3 (t, t + Δt) = 1|Z3;G∗
3t−
)

Δt
= Z3λ(t) exp{αΛ(t)}.

Then, by a similar procedure as those described above, it can be shown that

λ∗
12t = (αV ∗

3 (t−) + β3)λ(t).

This completes the proof. �

Remark 1:

(a) From Proposition 1, we can see that the marginal distribution of Ni(t) follows a
negative binomial distribution, i = 1, 2, respectively. Note that a Poisson-gamma
mixture is a negative binomial distribution. Thus, this relation can give a clue for
the relation obtained in Theorem 3.

(b) In actuarial science (e.g., Buhlmann [4]), so-called “contagion models” have been
studied in univariate counting process framework, where the corresponding stochastic
intensity function is the same as the GPP but the parameter α can be both posi-
tive and negative. Thus, it would be very interesting to consider the corresponding
bivariate counting process model with α < 0.

3.3. Dependence Structure

As mentioned earlier, our aim in this paper is to develop a marginally regular process which
possesses a strong positive dependence structure. We will now discuss the dependence struc-
ture of MR-BVGPP. In Cha and Giorgio [11], the following new concept of dependency for
bivariate stochastic processes was defined. See also Cha and Giorgio [11] for some practical
interpretations of this concept.

Definition 5 (Positive quadrant dependent bivariate process (PQDBP)):
A bivariate point process {(Y1(t), Y2(t)), t ≥ 0} is PQDBP if

P (Y1(t2) − Y1(t1) > n1, Y2(s2) − Y2(s1) > n2)

≥ P (Y1(t2) − Y1(t1) > n1)P (Y2(s2) − Y2(s1) > n2),

for all t2 > t1, s2 > s1, n1 and n2.

Note that the PQDBP property implies a rather strong dependency between the
two processes {Y1(t), t ≥ 0} and {Y2(t), t ≥ 0}. For example, it implies positive covari-
ance between the number of events of the two processes in any arbitrary time intervals:
Cov(Y1(t2) − Y1(t1), Y2(s2) − Y2(s1)) ≥ 0, for all t2 > t1, s2 > s1 (see also Cha and Giorgio
[11]). We will now analyze the dependence structure of MR-BVGPP. For this purpose, we
need the following preliminary lemma.
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Lemma 1: Let X be a random variable and g(x), h(x) be real valued functions.

(i) If both g(x) and h(x) are increasing; or if both g(x) and h(x) are decreasing, then
E[g(X)h(X)] ≥ E[g(X)]E[h(X)].

(ii) Let X,Y,Z be mutually independent random variables and g(x, y), h(x, z) be real
valued functions. If both g(x, y) and h(x, z) are increasing in x; or if both g(x, y)
and h(x, z) are decreasing in x, then E[g(X,Y )h(X,Z)] ≥ E[g(X,Y )]E[h(X,Z)].

Proof: The proof of (i) can be found in Joe [17] and Cuadras [15]. We now prove (ii).
Denote by FY (y) and FZ(z) the distribution functions of Y and Z, respectively. For any
Y = y and Z = z,

E[g(X, y)h(X, z)] ≥ E[g(X, y)]E[h(X, z)], (4)

due to (i). Then, from (4),

E[g(X,Y )h(X,Z)] =
∫ ∞

0

∫ ∞

0

E[g(X, y)h(X, z)]dFY (y)dFZ(z)

≥
∫ ∞

0

∫ ∞

0

E[g(X, y)]E[h(X, z)]dFY (y)dFZ(z)

= E[g(X,Y )]E[h(X,Z)]. �

The following Theorem 4 states that MR-BVGPP is a PQDBP.

Theorem 4: Let {(N1(t), N2(t)), t ≥ 0} be the MR-BVGPP with the set of parameters
(λ(t), α, β1, β2, β3). Then {(N1(t), N2(t)), t ≥ 0} is a PQDBP:

P (N1(t2) − N1(t1) > n1, N2(s2) − N2(s1) > n2)

≥ P (N1(t2) − N1(t1) > n1)P (N2(s2) − N2(s1) > n2), (5)

for all t2 > t1, s2 > s1, n1 and n2.

Proof: To show inequality (5) is equivalent to show

P (N∗
1 (t2) − N∗

1 (t1) > n1, N
∗
2 (s2) − N∗

2 (s1) > n2)

≥ P (N∗
1 (t2) − N∗

1 (t1) > n1)P (N∗
2 (s2) − N∗

2 (s1) > n2), (6)

due to Theorem 3. As in the proof of Theorem 3, for {(N∗
1 (t), N∗

2 (t)), t ≥ 0} (which was
defined in Theorem 3), we define V ∗

i (t) as the number of events in which only type i event
occurs in (0, t], i = 1, 2, respectively, and V ∗

3 (t) as the number of events in which both type 1
and type 2 events occur simultaneously. Then, it holds that N∗

i (t) = V ∗
i (t) + V ∗

3 (t), i = 1, 2,
and thus it suffices to show that

P (V ∗
1 (t2) − V ∗

1 (t1) + V ∗
3 (t2) − V ∗

3 (t1) > n1, V
∗
2 (s2) − V ∗

2 (s1) + V ∗
3 (s2) − V ∗

3 (s1) > n2)

≥ P (V ∗
1 (t2) − V ∗

1 (t1) + V ∗
3 (t2) − V ∗

3 (t1) > n1)

× P (V ∗
2 (s2) − V ∗

2 (s1) + V ∗
3 (s2) − V ∗

3 (s1) > n2), (7)

for all t2 > t1, s2 > s1, n1, and n2. Without loss of generality, assume t1 ≤ s1. We will
consider three cases depending on whether the intervals (t1, t2] and (s1, s2] are overlapping
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(partially or fully) or completely separated: Case (i) t2 ≤ s1; Case (ii) s1 < t2 < s2; Case (iii)
s1 < s2 ≤ t2.
Case (i) t2 ≤ s1: In this case, the two intervals are not overlapping and due to the
independent increments property of the NHPP,

P (V ∗
1 (t2) − V ∗

1 (t1) + V ∗
3 (t2) − V ∗

3 (t1) > n1, V
∗
2 (s2) − V ∗

2 (s1) + V ∗
3 (s2) − V ∗

3 (s1) > n2)

= E[P (V ∗
1 (t2) − V ∗

1 (t1) + V ∗
3 (t2) − V ∗

3 (t1) > n1,

V ∗
2 (s2) − V ∗

2 (s1) + V ∗
3 (s2) − V ∗

3 (s1) > n2|Z1, Z2, Z3)]

= E[P (V ∗
1 (t2) − V ∗

1 (t1) + V ∗
3 (t2) − V ∗

3 (t1) > n1|Z1, Z2, Z3)

× P (V ∗
2 (s2) − V ∗

2 (s1) + V ∗
3 (s2) − V ∗

3 (s1) > n2|Z1, Z2, Z3)]

= E[P (V ∗
1 (t2) − V ∗

1 (t1) + V ∗
3 (t2) − V ∗

3 (t1) > n1|Z1, Z3)

× P (V ∗
2 (s2) − V ∗

2 (s1) + V ∗
3 (s2) − V ∗

3 (s1) > n2|Z2, Z3)]

Observe that, given Z1 = z1, Z3 = z3, (V ∗
1 (t2) − V ∗

1 (t1) + V ∗
3 (t2) − V ∗

3 (t1)|Z1 = z1, Z3 = z3)
follows the Poisson distribution with mean value (z1 + z3)

∫ t2
t1

λ(u) exp{αΛ(u)}du. Thus,
as the survival function of a Poisson distribution increases if its mean value increases
(see, e.g., the proof of Theorem 1 in Cha [8]), P (V ∗

1 (t2) − V ∗
1 (t1) + V ∗

3 (t2) − V ∗
3 (t1) >

n1|Z1, {Z3 = v}) is increasing function of v. Similarly, P (V ∗
2 (s2) − V ∗

2 (s1) + V ∗
3 (s2) −

V ∗
3 (s1) > n2|Z2, {Z3 = v}) is also increasing function of v. Then, by Lemma 1-(ii),

E[P (V ∗
1 (t2) − V ∗

1 (t1) + V ∗
3 (t2) − V ∗

3 (t1) > n1|Z1, Z3)

× P (V ∗
2 (s2) − V ∗

2 (s1) + V ∗
3 (s2) − V ∗

3 (s1) > n2|Z2, Z3)]

≥ E[P (V ∗
1 (t2) − V ∗

1 (t1) + V ∗
3 (t2) − V ∗

3 (t1) > n1|Z1, Z3)]

× E[P (V ∗
2 (s2) − V ∗

2 (s1) + V ∗
3 (s2) − V ∗

3 (s1) > n2|Z2, Z3)]

= P (V ∗
1 (t2) − V ∗

1 (t1) + V ∗
3 (t2) − V ∗

3 (t1) > n1)

× P (V ∗
2 (s2) − V ∗

2 (s1) + V ∗
3 (s2) − V ∗

3 (s1) > n2).

Case (ii) s1 < t2 < s2: In this case, the two intervals have the common part (s1, t2] and we
need to use some adequate conditioning in order to cleverly use Lemma 1-(ii). In this case,
the inequality (7) can be written as

P (V ∗
1 (t2) − V ∗

1 (t1) + [V ∗
3 (t2) − V ∗

3 (s1) + V ∗
3 (s1) − V ∗

3 (t1)] > n1,

V ∗
2 (s2) − V ∗

2 (s1) + [V ∗
3 (s2) − V ∗

3 (t2) + V ∗
3 (t2) − V ∗

3 (s1)] > n2)

≥ P (V ∗
1 (t2) − V ∗

1 (t1) + [V ∗
3 (t2) − V ∗

3 (s1) + V ∗
3 (s1) − V ∗

3 (t1)] > n1)

× P (V ∗
2 (s2) − V ∗

2 (s1) + [V ∗
3 (s2) − V ∗

3 (t2) + V ∗
3 (t2) − V ∗

3 (s1)] > n2).

Observe that

P (V ∗
1 (t2) − V ∗

1 (t1) + [V ∗
3 (t2) − V ∗

3 (s1) + V ∗
3 (s1) − V ∗

3 (t1)] > n1,

V ∗
2 (s2) − V ∗

2 (s1) + [V ∗
3 (s2) − V ∗

3 (t2) + V ∗
3 (t2) − V ∗

3 (s1)] > n2)

= E[P (V ∗
1 (t2) − V ∗

1 (t1) + [V ∗
3 (t2) − V ∗

3 (s1) + V ∗
3 (s1) − V ∗

3 (t1)] > n1,

V ∗
2 (s2) − V ∗

2 (s1) + [V ∗
3 (s2) − V ∗

3 (t2) + V ∗
3 (t2) − V ∗

3 (s1)] > n2|Z1, Z2, Z3)],
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and

P (V ∗
1 (t2) − V ∗

1 (t1) + [V ∗
3 (t2) − V ∗

3 (s1) + V ∗
3 (s1) − V ∗

3 (t1)] > n1,

V ∗
2 (s2) − V ∗

2 (s1) + [V ∗
3 (s2) − V ∗

3 (t2) + V ∗
3 (t2) − V ∗

3 (s1)] > n2|Z1, Z2, Z3)

= E(V ∗
3 (t2)−V ∗

3 (s1)|Z1,Z2,Z3)[P (V ∗
1 (t2) − V ∗

1 (t1)

+ [V ∗
3 (t2) − V ∗

3 (s1) + V ∗
3 (s1) − V ∗

3 (t1)] > n1,

V ∗
2 (s2) − V ∗

2 (s1) + [V ∗
3 (s2) − V ∗

3 (t2) + V ∗
3 (t2) − V ∗

3 (s1)]

> n2|Z1, Z2, Z3, V
∗
3 (t2) − V ∗

3 (s1))]

= E(V ∗
3 (t2)−V ∗

3 (s1)|Z1,Z2,Z3)

[
P (V ∗

1 (t2) − V ∗
1 (t1) + V ∗

3 (s1) − V ∗
3 (t1)

> n1 − [V ∗
3 (t2) − V ∗

3 (s1)]|Z1, Z2, Z3, V
∗
3 (t2) − V ∗

3 (s1))

× P (V ∗
2 (s2) − V ∗

2 (s1) + V ∗
3 (s2) − V ∗

3 (t2)

> n2 − [V ∗
3 (t2) − V ∗

3 (s1)]|Z1, Z2, Z3, V
∗
3 (t2) − V ∗

3 (s1))
]
,

where “E(V ∗
3 (t2)−V ∗

3 (s1)|Z1,Z2,Z3)[ · ]” stands for the expectation with respect to the con-
ditional distribution of (V ∗

3 (t2) − V ∗
3 (s1)|Z1, Z2, Z3). Note that, given {Z1, Z2, Z3}, the

processes {V ∗
i (t), t ≥ 0}, i = 1, 2, 3, are mutually independent NHPPs. Furthermore, the

intervals (t1, s1] and (s1, t2] are not overlapping. Thus, V ∗
1 (t2) − V ∗

1 (t1) is independent of
V ∗

3 (t2) − V ∗
3 (s1) and V ∗

3 (s1) − V ∗
3 (t1) is also independent of V ∗

3 (t2) − V ∗
3 (s1). Accordingly,

given {Z1, Z2, Z3}, V ∗
1 (t2) − V ∗

1 (t1) + V ∗
3 (s1) − V ∗

3 (t1) is independent of V ∗
3 (t2) − V ∗

3 (s1)
and we have

P (V ∗
1 (t2) − V ∗

1 (t1) + V ∗
3 (s1) − V ∗

3 (t1) > n1 − v|Z1, Z2, Z3, {V ∗
3 (t2) − V ∗

3 (s1) = v})
= P (V ∗

1 (t2) − V ∗
1 (t1) + V ∗

3 (s1) − V ∗
3 (t1) > n1 − v|Z1, Z2, Z3).

Similarly,

P (V ∗
2 (s2) − V ∗

2 (s1) + V ∗
3 (s2) − V ∗

3 (t2) > n2 − v|Z1, Z2, Z3, {V ∗
3 (t2) − V ∗

3 (s1) = v})
= P (V ∗

2 (s2) − V ∗
2 (s1) + V ∗

3 (s2) − V ∗
3 (t2) > n2 − v|Z1, Z2, Z3).

Therefore, both

P (V ∗
1 (t2) − V ∗

1 (t1) + V ∗
3 (s1) − V ∗

3 (t1) > n1 − v|Z1, Z2, Z3, {V ∗
3 (t2) − V ∗

3 (s1) = v})
and

P (V ∗
2 (s2) − V ∗

2 (s1) + V ∗
3 (s2) − V ∗

3 (t2) > n2 − v|Z1, Z2, Z3, {V ∗
3 (t2) − V ∗

3 (s1) = v})
are increasing in v. Thus, due to Lemma 1, for all fixed Zi = zi, i = 1, 2, 3,

E(V ∗
3 (t2)−V ∗

3 (s1)|Z1,Z2,Z3)

[
P (V ∗

1 (t2) − V ∗
1 (t1) + V ∗

3 (s1) − V ∗
3 (t1)

> n1 − [V ∗
3 (t2) − V ∗

3 (s1)]|Z1, Z2, Z3, V
∗
3 (t2) − V ∗

3 (s1))

× P (V ∗
2 (s2) − V ∗

2 (s1) + V ∗
3 (s2) − V ∗

3 (t2)

> n2 − [V ∗
3 (t2) − V ∗

3 (s1)]|Z1, Z2, Z3, V
∗
3 (t2) − V ∗

3 (s1))
]

≥ E(V ∗
3 (t2)−V ∗

3 (s1)|Z1,Z2,Z3)

[
P (V ∗

1 (t2) − V ∗
1 (t1) + V ∗

3 (s1) − V ∗
3 (t1)

https://doi.org/10.1017/S0269964819000111 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964819000111


500 J.H. Cha and F.G. Bad́ıa

> n1 − [V ∗
3 (t2) − V ∗

3 (s1)]|Z1, Z2, Z3, V
∗
3 (t2) − V ∗

3 (s1))
]

× E(V ∗
3 (t2)−V ∗

3 (s1)|Z1,Z2,Z3)

[
P (V ∗

2 (s2) − V ∗
2 (s1) + V ∗

3 (s2) − V ∗
3 (t2)

> n2 − [V ∗
3 (t2) − V ∗

3 (s1)]|Z1, Z2, Z3, V
∗
3 (t2) − V ∗

3 (s1))
]

= P (V ∗
1 (t2) − V ∗

1 (t1) + [V ∗
3 (t2) − V ∗

3 (s1) + V ∗
3 (s1) − V ∗

3 (t1)] > n1|Z1, Z2, Z3)

× P (V ∗
2 (s2) − V ∗

2 (s1) + [V ∗
3 (s2) − V ∗

3 (t2) + V ∗
3 (t2) − V ∗

3 (s1)] > n2|Z1, Z2, Z3)

= P (V ∗
1 (t2) − V ∗

1 (t1) + [V ∗
3 (t2) − V ∗

3 (s1) + V ∗
3 (s1) − V ∗

3 (t1)] > n1|Z1, Z3)

× P (V ∗
2 (s2) − V ∗

2 (s1) + [V ∗
3 (s2) − V ∗

3 (t2) + V ∗
3 (t2) − V ∗

3 (s1)] > n2|Z2, Z3).

From the above discussion, we have

P (V ∗
1 (t2) − V ∗

1 (t1) + [V ∗
3 (t2) − V ∗

3 (s1) + V ∗
3 (s1) − V ∗

3 (t1)] > n1,

V ∗
2 (s2) − V ∗

2 (s1) + [V ∗
3 (s2) − V ∗

3 (t2) + V ∗
3 (t2) − V ∗

3 (s1)] > n2|Z1, Z2, Z3)

≥ P (V ∗
1 (t2) − V ∗

1 (t1) + [V ∗
3 (t2) − V ∗

3 (s1) + V ∗
3 (s1) − V ∗

3 (t1)] > n1|Z1, Z3)

× P (V ∗
2 (s2) − V ∗

2 (s1) + [V ∗
3 (s2) − V ∗

3 (t2) + V ∗
3 (t2) − V ∗

3 (s1)] > n2|Z2, Z3). (8)

Now taking expectations both sides of (8), we have

P (V ∗
1 (t2) − V ∗

1 (t1) + [V ∗
3 (t2) − V ∗

3 (s1) + V ∗
3 (s1) − V ∗

3 (t1)] > n1,

V ∗
2 (s2) − V ∗

2 (s1) + [V ∗
3 (s2) − V ∗

3 (t2) + V ∗
3 (t2) − V ∗

3 (s1)] > n2)

≥ E
[
P (V ∗

1 (t2) − V ∗
1 (t1) + [V ∗

3 (t2) − V ∗
3 (s1) + V ∗

3 (s1) − V ∗
3 (t1)] > n1|Z1, Z3)

× P (V ∗
2 (s2) − V ∗

2 (s1) + [V ∗
3 (s2) − V ∗

3 (t2) + V ∗
3 (t2) − V ∗

3 (s1)] > n2|Z2, Z3)
]

≥ E
[
P (V ∗

1 (t2) − V ∗
1 (t1) + [V ∗

3 (t2) − V ∗
3 (s1) + V ∗

3 (s1) − V ∗
3 (t1)] > n1|Z1, Z3)

]
× E

[
P (V ∗

2 (s2) − V ∗
2 (s1) + [V ∗

3 (s2) − V ∗
3 (t2) + V ∗

3 (t2) − V ∗
3 (s1)] > n2|Z2, Z3)

]
= P (V ∗

1 (t2) − V ∗
1 (t1) + [V ∗

3 (t2) − V ∗
3 (s1) + V ∗

3 (s1) − V ∗
3 (t1)] > n1)

× P (V ∗
2 (s2) − V ∗

2 (s1) + [V ∗
3 (s2) − V ∗

3 (t2) + V ∗
3 (t2) − V ∗

3 (s1)] > n2),

where the last inequality holds due to Lemma 1-(ii) as both

P (V ∗
1 (t2) − V ∗

1 (t1) + [V ∗
3 (t2) − V ∗

3 (s1) + V ∗
3 (s1) − V ∗

3 (t1)] > n1|Z1, {Z3 = v})
and

P (V ∗
2 (s2) − V ∗

2 (s1) + [V ∗
3 (s2) − V ∗

3 (t2) + V ∗
3 (t2) − V ∗

3 (s1)] > n2|Z2, {Z3 = v})
are increasing in v by the same reason as that stated in Case (i). Thus, we have shown the
desired result.

Case (iii) s1 < s2 ≤ t2: This case can be proved similarly to Case (ii). �

4. GENERALIZATION TO THE MULTIVARIATE PROCESS

The bivariate process {(N1(t), N2(t)), t ≥ 0} studied in the previous sections can be gener-
alized to the multivariate case {N(t), t ≥ 0} = {(N1(t), N2(t), . . . , Nm(t)), t ≥ 0} applying
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similar procedure. A natural extension of the MR-BVGPP in Definition 3 would be as
follows.

Definition 6 (Marginally regular multivariate generalized Polya process (MR-MVGPP)):
Let {Vi(t), t ≥ 0} be the GPP with the set of parameters (λ(t), α, βi), i = 1, 2, . . . ,m + 1,
respectively, and assume that they are mutually independent. Define a multivariate process
{(N1(t), N2(t), . . . , Nm(t)), t ≥ 0} as Ni(t) ≡ Vi(t) + Vm+1(t), i = 1, 2, . . . ,m, for all t ≥ 0.
Then the multivariate process {(N1(t), N2(t), . . . , Nm(t)), t ≥ 0} is called the MR-MVGPP
with the set of parameters (λ(t), α, β1, β2, · · · , βm+1).

Obviously, from Theorem 1, the marginal process {Ni(t), t ≥ 0} is given by the GPP
with the set of parameters (λ(t), α, βi + βm+1), i = 1, 2, . . . ,m. The main results for the MR-
MVGPP can be obtained by applying similar arguments as those described in Sections 2
and 3. For example, when m = 3 (trivariate process), for u2 > u1,

P (Ni(u2) − Ni(u1) = ni, i = 1, 2, 3)

=
min{n1,n2,n3}∑

j=0

P (Vi(u2) − Vi(u1) = ni − j, i = 1, 2, 3, V4(u2) − V4(u1) = j)

=
min{n1,n2,n3}∑

j=0

Γ(j + β4/α)Γ(n1 − j + β1/α)Γ(n2 − j + β2/α)Γ(n3 − j + β3/α)
j!(n1 − j)!(n2 − j)!(n3 − j)!Γ(β1/α)Γ(β2/α)Γ(β3/α)Γ(β4/α)

×
(

1 − exp{−α[Λ(u2) − Λ(u1)]}
1 + exp{−αΛ(u2)} − exp{−α[Λ(u2) − Λ(u1)]}

)n1+n2+n3−2j

×
(

exp{−αΛ(u2)}
1 + exp{−αΛ(u2)} − exp{−α[Λ(u2) − Λ(u1)]}

)(β1+β2+β3+β4)/α

.

As in the bivariate case, the MR-MVGPP can be characterized in terms of mixture of the
multivariate Poisson process (MPP), which is defined in the following definition.

Definition 7 (Multivariate Poisson process): Let {Wi(t), t ≥ 0} be the NHPP the inten-
sity function λi(t), i = 1, 2, . . . ,m + 1, respectively, and assume that they are mutually
independent. Define a multivariate process {X(t), t ≥ 0} = {(X1(t),X2(t), . . . , Xm(t)),
t ≥ 0} as Xi(t) ≡ Wi(t) + Wm+1(t), i = 1, 2, . . . ,m, for all t ≥ 0. Then the multivariate pro-
cess {X(t), t ≥ 0} is called the MPP with the set of parameters (λ1(t), λ2(t), . . . , λm+1(t)).

By showing the equivalence of the complete intensity functions, similarly as before, we
can have the following proposition.

Proposition 2: Let {(N1(t), N2(t), · · · , Nm(t)), t ≥ 0} be the MR-MVGPP with the set of
parameters (λ(t), α, β1, β2, · · · , βm+1). Furthermore, let {(N∗

1 (t), N∗
2 (t), · · · , N∗

m(t)), t ≥ 0}
be the mixture of the MPP with the set of parameters (ziλ(t) exp{αΛ(t)}, i = 1, 2, · · · ,m +
1)) (given Zi = zi, i = 1, 2, · · · ,m) by using the corresponding mixing distributions (pdf) of
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Zi, given by

fZi
(zi) =

1
Γ(βi/α)

α−βi/αz
βi/α−1
i exp{−zi/α}, 0 < zi < ∞, i = 1, 2, . . . ,m + 1,

respectively, where {Zi, i = 1, 2, . . . ,m + 1} are assumed to be mutually indepen-
dent. Then the multivariate counting processes {(N1(t), N2(t), . . . , Nm(t)), t ≥ 0} and
{(N∗

1 (t), N∗
2 (t), . . . , N∗

m(t)), t ≥ 0} share the same stochastic properties.

A new dependence concept for multivariate point processes has been defined in Cha
and Giorgio [11].

Definition 8 (Positive upper orthant dependent multivariate process (PUODMP)): A
multivariate point process {(Y1(t), Y2(t), . . . , Ym(t)), t ≥ 0} is PUODMP if

P (Yi(ti2) − Yi(ti1) > ni, i = 1, 2, . . . ,m) ≥ Πm
i=1P (Yi(ti2) − Yi(ti1) > ni), (9)

for all ti2 > ti1 and ni, i = 1, 2, . . . ,m.

The interpretation of inequality (9) is similar to that in the bivariate case, that is, for
any fixed ti2 > ti1, i = 1, 2, . . . ,m, the m random variables Yi(ti2) − Yi(ti1), i = 1, 2, . . . ,m,
are more likely simultaneously to have large values, compared with m independent random
variables with the same univariate marginal distributions.

We will now show that the MR-MVGPP in Definition 6 is a PUODMP. For this, we
first need two preliminary lemmas.

Lemma 2: Let {U(t), t ≥ 0} be the HPP with intensity 1. Define Φ(t) ≡ ∫ t

0
φ(s)ds, t ≥ 0,

for a non-negative function φ(t), t ≥ 0. Then the following properties hold.

(i) Define W (t) ≡ U(Φ(t)). Then {W (t), t ≥ 0} is the NHPP with intensity function
φ(t).

(ii) For t1 < t2, U(t2) − U(t1) =D U(t2 − t1), where “=D” stands for equality in distri-
bution.

Proof: (i) The process {W (t), t ≥ 0} satisfies the two conditions of the NHPP with mean
function Φ(t) in Definition 1.8 in Çinlar [13] as {U(t), t ≥ 0} is a HPP with intensity 1 and
Φ(·) is a non-negative increasing function. Property (ii) obviously holds for a HPP as it has
the stationary increments property. �

Lemma 3: Let (K1,K2, . . . , Kl) and (L1, L2, . . . , Lr) be random vectors, where L1, L2, . . . ,
Lr are mutually independent. If the components of (K1,K2, . . . , Kl) are respectively
increasing functions of (L1, L2, . . . , Lr) then (K1,K2, . . . , Kl) is an associated random
vector.

Proof: See cases (iv) and (v) of Theorem 3.10.5 in Müller and Stoyan [22]. �

Theorem 5: Let {(N1(t), N2(t), . . . , Nm(t)), t ≥ 0} be the MR-MVGPP with the set
of parameters (λ(t), α, β1, β2, . . . , βm+1). Then {(N1(t), N2(t), . . . , Nm(t)), t ≥ 0} is a
PUODMP:

P (Ni(ti2) − Ni(ti1) > ni, i = 1, 2, . . . ,m) ≥ Πm
i=1P (Ni(ti2) − Ni(ti1) > ni),

for all ti2 > ti1 and ni, i = 1, 2, . . . ,m.
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Proof: Define φ(t) ≡ λ(t) exp{αΛ(t)}, t > 0, Φ(t) ≡ ∫ t

0
φ(s)ds, and Δi ≡ Φ(ti2) − Φ(ti1) =∫ ti2

ti1
φ(s)ds, for i = 1, 2, . . . ,m. Furthermore, let (t∗(1), t

∗
(2), . . . , t

∗
(2m)) be the increasing

arrangement of 2m dimensional vector (t11, t12, t21, t22, . . . , tm1, tm2). (If there are ties in
(ti1, ti2, i = 1, 2, . . . ,m) and, due to this, if there are more than one increasing arrangements,
then (t∗(1), t

∗
(2), . . . , t

∗
(2m)) can be any one of them.) Let {Ui(t), t ≥ 0} be the HPP with inten-

sity 1, i = 1, 2, . . . ,m + 1, and they are mutually independent. Then, due to Proposition 2
and Lemma 2-(i), Ni(t) can be represented as Ni(t) =D Ui(Φ(t)Zi) + Um+1(Φ(t)Zm+1),
i = 1, 2, . . . ,m, where {Ui(t), t ≥ 0}, i = 1, 2, . . . ,m + 1, and {Z1, . . . Zm+1} are indepen-
dent. Furthermore, due to Lemma 2-(ii), Ni(ti2) − Ni(ti1) =D Ui(ΔiZi) + Um+1(ΔiZm+1),
i = 1, 2, . . . ,m. Then

P (Ni(ti2) − Ni(ti1) > ni, i = 1, 2, . . . ,m)

= EZ1,...,Zm+1 [P (Ui(ΔiZi) + Um+1(ΔiZm+1) > ni, i = 1, . . . , m|Z1, . . . Zm+1)]. (10)

In (10), as {Ui(t), t ≥ 0}, i = 1, 2, . . . ,m + 1, and {Z1, . . . Zm+1} are independent,

P (Ui(ΔiZi) + Um+1(ΔiZm+1) > ni, i = 1, . . . , m|Zi = zi, i = 1, 2, . . . ,m + 1)

= P (Ui(Δizi) + Um+1(Δizm+1) > ni, i = 1, . . . , m). (11)

Furthermore,

P (Ui(Δizi) + Um+1(Δizm+1) > ni, i = 1, . . . , m|Ui(Δizi) = ui, i = 1, . . . , m)

= P (Um+1(Δizm+1) > ni − ui, i = 1, . . . , m). (12)

Now, for our proof, we will show that

(Um+1(Δ1zm+1), . . . , Um+1(Δmzm+1))

is a PUOD (positive upper orthant dependent) random vector. For a fixed i, suppose that
the ranks of ti1 and ti2, where ti1 < ti2 , in the increasing arrangement (t∗(1), t

∗
(2), . . . , t

∗
(2m))

are r1 and r2, where r1 < r2, that is, ti1 = t∗(r1)
and ti2 = t∗(r2)

. Define

Q1 ≡ Um+1(Φ(t∗(2))zm+1) − Um+1(Φ(t∗(1))zm+1),

Q2 ≡ Um+1(Φ(t∗(3))zm+1) − Um+1(Φ(t∗(2))zm+1),

. . . , Q2m−1 ≡ Um+1(Φ(t∗(2m))zm+1) − Um+1(Φ(t∗(2m−1))zm+1).

Then Q1, Q2, . . . , Q2m−1 are mutually independent due to the independent increments
property of the HPP and

r2−1∑
j=r1

Qj = Um+1(Φ(t∗(r2)
)zm+1) − (Um+1(Φ(t∗(r1)

)zm+1)

= Um+1(Φ(ti2)zm+1) − (Um+1(Φ(ti1)zm+1)

=D Um+1((Φ(ti2) − Φ(ti1))zm+1) = Um+1(Δizm+1),

due to Lemma 2-(ii). Thus, any component in (Um+1(Φ(ti2)zm+1) − Um+1(Φ(ti1)zm+1), i =
1, 2, . . . ,m) is increasing function of a mutually independent random vector and, due to
Lemma 3, (Um+1(Φ(ti2)zm+1) − Um+1(Φ(ti1)zm+1), i = 1, 2, . . . ,m) =D (Um+1(Δizm+1), i
= 1, 2, . . . ,m) is an associated random vector. As the association implies the PUOD property
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(see, e.g., Theorem 2.4 in Joe (1997)), the random vector (Um+1(Δizm+1), i = 1, 2, . . . ,m)
is PUOD. This also implies

P (Um+1(Δizm+1) > ni − ui, i = 1, . . . , m) ≥
m∏

i=1

P (Um+1(Δizm+1) > ni − ui), (13)

for all ui, i = 1, . . . , m, and, from (12) and (13),

P (Ui(Δizi) + Um+1(Δizm+1) > ni, i = 1, . . . , m)

= EU1(Δ1z1),...,Um(Δmzm)[P (Um+1(Δizm+1) > ni − Ui(Δizi), i = 1, . . . , m)]

≥ EU1(Δ1z1),...,Um(Δmzm)

[
m∏

i=1

P (Um+1(Δizm+1) > ni − Ui(Δizi))

]

=
m∏

i=1

EUi(Δizi)[P (Um+1(Δizm+1) > ni − Ui(Δizi))]. (14)

From (10), (11), and (14),

P (Ni(ti2) − Ni(ti1) > ni, i = 1, 2, . . . ,m)

= EZ1,...,Zm+1 [P (Ui(ΔiZi) + Um+1(ΔiZm+1) > ni, i = 1, . . . , m)]

≥ EZ1,...,Zm+1

[
m∏

i=1

EUi(ΔiZi)[P (Um+1(ΔiZm+1) > ni − Ui(ΔiZi))]

]

= EZ1,...,Zm+1

[
m∏

i=1

EUi(ΔiZi)[P (Ui(ΔiZi) > ni − Um+1(ΔiZm+1))]

]

= EZ1,...,Zm

[
EZm+1 [

m∏
i=1

Gi(Zi, Zm+1)]

]
, (15)

where

Gi(zi, zm+1) ≡ EUi(Δizi)[P (Ui(Δizi) > ni − Um+1(Δizm+1))]

=
∫

ui∈R

P (ui > ni − Um+1(Δizm+1))P (Ui(Δizi) ∈ dui).

Observe that Um+1(Δizm+1) is increasing in zm+1 in the usual stochastic order (Shaked
and Shanthikumar [23]) and thus P (ui > ni − Um+1(Δizm+1)) is increasing in zm+1. This
implies that Gi(zi, zm+1) is increasing in zm+1. Then, by extending Lemma 1-(ii),

EZm+1

[
m∏

i=1

Gi(Zi, Zm+1)] ≥
m∏

i=1

EZm+1 [Gi(Zi, Zm+1)

]
.
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Therefore, from (15),

P (Ni(ti2) − Ni(ti1) > ni, i = 1, 2, . . . , m)

≥ EZ1,...,Zm

[
m∏

i=1

EZm+1

[
EUi(ΔiZi)[P (Ui(ΔiZi) > ni − Um+1(ΔiZm+1))]

]]

=
m∏

i=1

EZi,Zm+1

[
EUi(ΔiZi)[P (Ui(ΔiZi) + Um+1(ΔiZm+1) > ni)]

]

=
m∏

i=1

P (Ni(ti2) − Ni(ti1) > ni),

which completes the proof. �

5. CONCLUDING REMARKS

Multivariate counting processes are practically very useful tools for modeling random occur-
rences of multivariate series of events arising over time intervals. However, until now, very
few practically available multivariate counting processes have been developed and, accord-
ingly, there has been a great discrepancy between desired practical applications and available
useful models. Furthermore, most of the multivariate counting processes studied in the
literature are regular processes, which implies, ignoring the types of the events, the non-
occurrence of multiple events. However, in practice, several different types of events may
occur simultaneously. In this regard, our aim of this paper was to develop a new class of
multivariate counting processes which is not regular and allows mathematical tractability
in various applications.

The multivariate counting process model developed in this paper has many merits from
“application point of view”. First of all, most of the results, including joint distributions of
the number of events, are obtained explicitly. This aspect is practically of great importance
because it allows explicit expression of the likelihood function in estimation procedure.
Furthermore, as studied in this paper, the developed model possesses the restarting property.
Due to this property, one can analyze the counting process observed starting from any
positive time point u > 0 in the same manner as the original process which starts from 0
and, accordingly, the properties can also be explicitly expressed in this case. This also makes
estimation procedure feasible based on the observation which has started from any positive
time point u > 0. In addition, the marginal counting processes of the multivariate process
are the univariate GPPs and one can conveniently use the properties of the GPP when
analyzing marginal processes in the model. Furthermore, as illustrated in the examples on
bivariate or multivariate counting processes that can occur in different areas, multivariate
series of events occurring in practice are frequently positively dependent. It has been shown
that the developed multivariate process possesses a strong type of positive dependence. Due
to these reasons, the developed class of multivariate processes could be applied in various
applications.
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