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We investigate the excitation and radiation of near-inertial internal gravity waves
continuously excited by a latitudinally confined temporally fluctuating wind in a
numerical model of a stratified ocean on a β-plane at mid-latitude. The surface wind
forcing contains both high- and low-frequency components which excite propagating
waves and a baroclinically unstable zonal jet respectively. Wentzel–Kramers–Brillouin
(WKB) ray theory implies that near-inertial waves propagate strictly towards the
equator. We seek to refine this view here by (i) adding the non-traditional Coriolis
force (accounting for the horizontal component of the Earth’s rotation) into the
equations of motion, in order to allow poleward sub-inertial propagation to occur,
and (ii) relaxing the conceptual constraint of no zonal variability, to allow the zonal
jet to undergo instability, to meander and to sustain an active field of mesoscale
eddies, potentially impacting the excitation of near-inertial waves. The key results
are that, while (i) permits weakly stratified waveguides with sub-inertial poleward
wave propagation to develop in accord with theory, the sub-inertial energy flux
observed is very small compared with the equatorward flux. Thus, in terms of
energy radiated from the storm track, non-traditional effects are small for wind-driven
near-inertial waves. The consequences of (ii) are much more pronounced. Refinement
(ii) produces a radiating wave field that is bidirectional, i.e. with both poleward
and equatorward components. We show that the presence of regions of significant
background vorticity with horizontal scales significantly smaller than the width of the
storm track provides the scale selection mechanism to excite waves with sufficiently
super-inertial frequencies to propagate poleward distances of the order of 1000 km.

Key words: geostrophic turbulence, internal waves, waves in rotating fluids

1. Introduction
Inertia–gravity internal waves are ubiquitous dynamical features in a stratified flow

influenced by rotation Ω = |Ω|, such as the atmosphere or the ocean. Considering
only the locally vertical component of rotation and linearizing the equations of motion,
the resulting dispersion relation constrains the allowable frequency ω for propagating
waves to satisfy the range f 6 ω 6 N, where N is the local buoyancy frequency and
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Poleward propagation of near-inertial waves 511

f = 2Ω sin φ is the local Coriolis frequency at latitude φ. In the ocean, propagating
waves at frequencies close to f represent the most energetic and, probably, the most
dynamically significant part of the internal wave spectrum (e.g. Fu 1981). These
waves are usually referred to as near-inertial waves (NIWs). In the upper ocean,
they are thought to be generated by fluctuations in the atmospheric wind stress (e.g.
D’Asaro 1985; D’Asaro et al. 1995). In this paper, we consider the behaviour of
such wind-driven waves, propagating meridionally in a depth-varying stratification,
with an oceanic setting in mind.

Near-inertial waves are often described as if the Earth were locally flat, i.e. the
motions are considered on a plane tangent to the Earth’s surface, co-rotating with Ω
and centred at the latitude under consideration, φ = φ0. In the equations of motion,
written in a Cartesian frame fixed relative to this plane, the Coriolis vector has
two components; one is horizontal (strictly meridional), f̃ = 2Ω cos φ0, and one is
vertical, f = 2Ω sin φ0 + βy, where β = 2Ω cos φ0/r0 is the meridional gradient
of f (r0 is the planetary radius). By including the β-effect in f and considering
constant f̃ , the equations of motion are dynamically consistent in the sense that mass,
energy, potential vorticity and angular momentum are conserved and arise from an
approximate Lagrangian (Dellar 2011). Neglect of the terms involving the horizontal
component f̃ represents the so-called traditional approximation (TA; see Eckart 1960;
Gerkema et al. 2008).

We consider NIWs continuously excited by a meridionally confined temporally
fluctuating wind, and their propagation on the β-plane at mid-latitude φ0 = 45◦
North. The wind forcing, centred at latitude φ0, consists of a zero-mean meridional
component, white in time, which excites NIWs, and a zonal component with temporal
variability defined via a relaxation scheme, which excites and maintains a near-surface
zonal jet-like current with a prescribed mean surface speed beneath the storm track.
Within the TA, this scenario produces wind-generated NIWs at frequencies near local
f0 = 2Ω sin φ0. The propagation is dominantly equatorward, with poleward (slightly
super-inertial) propagating waves reflected back towards the equator at a nearby
turning latitude. Our understanding of wind-generated NIW propagation has been
suggested by theoretical work (Anderson & Gill 1979; Fu 1981; Garrett 2001) as
well as by observations (D’Asaro et al. 1995; Alford 2003; Alford et al. 2016). In
this paper, we expand this problem by adding two dynamical features, relevant to
oceanic flows, which modify the excitation and propagation of the waves.

(i) We first relax the TA by considering the non-traditional (NT) β-plane adding
the horizontal component of the Coriolis force in the equations of motion. This
allows for propagation of sub-inertial NIWs up to several hundred kilometres
further poleward. In particular, the equations suggest that poleward propagating
NIWs may be preferentially guided into regions of weak stratification in the
abyss beyond this point (Gerkema & Shrira 2005a,b), potentially producing
locally enhanced dissipation (Winters, Bouruet-Aubertot & Gerkema 2011). This
deep trapping mechanism has also recently been invoked to explain observations
of bottom enhanced mixing at low latitudes (Holmes, Moum & Thomas 2016).

(ii) Second, we allow the wind-driven zonal jet to undergo baroclinic instability by
relaxing the conceptual constraint of no zonal variability. The jet is thus able to
sustain a turbulent mesoscale eddy field, which can organize the way in which
wind energy is imparted to the surface by shifting the resonant frequency from
the local frequency f0 to the effective inertial frequency feff = f0 + ζ/2, where ζ
is the relative vorticity of the mesoscale flows (Weller 1982; Kunze 1985).
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512 M. Tort and K. B. Winters

Adding ingredients (i) and (ii) to the classical problem of wind-driven NIW
propagation, we show that in terms of altering the overall spatial pattern of the
near-inertial energy flux, NT effects are not significant. In contrast, allowing the
zonal jet-like current to become unstable alters the pattern of the energy flux to
order one. Rather than all of the near-inertial flux radiating equatorward, waves with
sufficiently super-inertial frequencies are able to propagate poleward. The energy flux
carried by these waves is comparable to that carried equatorward.

The main goal of this paper is to explain how the combined effect of wind
and the meandering zonal jet produces this surprising result. The remainder of the
paper is organized as follows. In § 2, we formulate an idealized three-dimensional
(3d) problem for wind-driven NIWs in a mid-latitude stratified ocean forced at the
surface by fluctuating winds. We then describe our numerical approach to developing
high-resolution statistically steady solutions characterized by a baroclinically unstable
jet, an active mesoscale eddy field and radiated NIWs. Our main results are
summarized in § 3. Results under the traditional and NT treatments of the Coriolis
terms are contrasted as well as results from zonally uniform and zonally variable
flows. We interpret our results in § 4, and provide a simple explanation for the
observed poleward wave energy flux when the zonally uniform constraint is relaxed.
Finally, a discussion and conclusions follow in § 5.

2. Methodology
In this section, we describe the set-up of the numerical simulations. Our objective

is to produce flows that are steady on time scales longer than an inertial period.
A predominantly zonal wind excites both a baroclinically unstable zonal jet and
NIWs in a β-plane channel centred at latitude φ0 = 45◦ North. The domain size
is Lx = 400 km in the zonal direction, Ly = 2000 km in the meridional direction
and Lz = 4 km in depth. The 3d Boussinesq equations including both traditional,
f = f0 + βy= 2Ω sin φ0 + βy, and NT, f̃ = 2Ω cos φ0, Coriolis terms are solved using
the spectral model flow_solve described in Winters, MacKinnon & Mills (2004),
Winters & de la Fuente (2012) and, e.g., used in MacKinnon & Winters (2005),
Hazewinkel & Winters (2011), Winters (2015) and Barkan, Winters & McWilliams
(2017). Both zonal and meridional wind forcing are applied near the surface and
confined in the meridional direction to the centre of the domain. Near-inertial waves
are excited by high-frequency (HF) components of zonal and meridional wind, while
the mesoscale eddy field is generated by baroclinic instability of the zonal near-surface
flow sustained by the low-frequency (LF) component of the zonal wind. The flow is
periodic in the zonal direction, and the equations of motions are solved for 06 x6Lx,
−Ly/2 6 y 6 Ly/2 and −Lz 6 z 6 0. The global set-up is sketched in figure 1.

2.1. Equations of motion and forcing
We consider the rotating stratified Boussinesq equations of motion on the NT β-plane
(Grimshaw 1975),

Dtu− fv + f̃ w+
1
ρ0
∂xp= (D+B+ S)[u] +Fu, (2.1)

Dtv + fu+
1
ρ0
∂yp= (D+B+ S)[v] +Fv, (2.2)

Dtw+ f̃ u+
g
ρ0
ρ +

1
ρ0
∂zp= (D+ S)[w], (2.3)
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Storm track
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FIGURE 1. Schematic of the problem set-up. Wind forcing is applied in the storm track
region and is meridionally and surface confined. The zonal jet is in approximate thermal-
wind balance with a meridional gradient of density. The total planetary rotation vector
Ω is considered by adding the NT Coriolis parameter f̃ to the problem, i.e. 2Ω = ( f0 +

βy)z+ f̃ y. Lateral sponge layers and bottom drag are applied.

φ0 (deg.) g (m s−1) f0 (s−1) f̃ (s−1) β (m−1 s−1) ρ0 (kg m−3)

45 9.81 1.0284× 10−4 1.0284× 10−4 1.6143× 10−11 1000

TABLE 1. Physical parameters.

Dtρ =Dρ + S[ρ − ρi], (2.4)
∇ · u= 0, (2.5)

where Dt = ∂t + u∂x + v∂y + w∂z is the Lagrangian derivative, u= (u, v, w) is the 3d
velocity, ∇· is the Cartesian divergence operator, g is the gravitational acceleration, ρ0

is a constant reference density and ρ and p are the total density and pressure fields
respectively. Values of the physical parameters are defined in table 1.

The right-hand sides of (2.1)–(2.5) are given in terms of the wind forcing Fu and
Fv, a high-order diffusion operator D, a near-bottom drag operator B and a relaxation
operator S that is confined to the sponge regions shown in figure 1. These operators
are defined below and the values of their parameters are given in table 2.

Forcing. Wind forcing is imposed through the near-surface-concentrated body force
terms Fu and Fv, applied respectively to the zonal and meridional components of
the momentum equations. These terms vary in time and space according to Fu =

Au(t)W(y, z) and Fv =Av(t)W(y, z), where Au and Av are functions of time only and
W(y, z) is a meridionally centred near-surface windowing function defined as

W(y, z)= sech2

(
y
L0

)
exp

(
−

(
z
√

2H0

)2
)
. (2.6)
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FIGURE 2. (a) Frequency spectra of the zonal coefficient Au (black thick line) and the
meridional coefficient Av (black thin line) of the wind forcing. (b) NCEP reanalyses (2016)
of zonal surface wind at 1000 Pa during winter 2016 in the North Atlantic Ocean at
latitude φ0 = 45◦.

Tdamp (h) λdamp (km) Tdrag (days) λdrag (m) σ0 (m s−2) L0 (km) H0 (m) Tr (h) u0 (m s−1)

2 100 100 3 dz 2.5× 10−5 100 75 6 0.375

TABLE 2. The coefficients of the forcing terms.

The zonal coefficient Au is calculated at each time step by Au(t) = −(u(t) − u0)/Tr,
where u0 is a target mean speed, Tr is the relaxation time and u is the spatially
averaged zonal surface current in x ∈ [0, Lx], y ∈ [−L0, L0],

u(t)=
∫ Lx

0
dx
∫ L0

−L0

dy u(x, y, z= 0; t). (2.7)

The meridional coefficient Av is an N-element array, where N is the total number of
time steps of the simulation. Each element is normally distributed with zero mean
and variance σ 2

0 . The frequency spectra of Au and Av, taken from a 3d simulation in
which eddies are present and shown in figure 2(a), indicate that over the near-inertial
frequency range fs to fn, corresponding to f at southern (y=−Ly/2) and northern (y=
Ly/2) ends of the computational domain, both components of the wind forcing are
approximately white. This is by construction for the meridional component Av and
a consequence of the relaxation scheme for the zonal component Au. As justification
for the temporal behaviour of the imposed wind forcing, we note that the frequency
spectrum of observed zonal surface winds from the mid-latitude North Atlantic Ocean
during winter 2016 (NCEP reanalyses 2016) is also approximately white in the near-
inertial band fs to fn and decaying at higher frequencies. Neither the modelled wind
forcing nor the observed winds in the North Atlantic storm track have a particularly
energetic or distinctive character at near-inertial frequencies; i.e. the wind provides a
wide range of frequencies at which the ocean could, in principle, respond.

Damping. As the wind provides a continuous input of energy to the flow, damping
is necessary to achieve a steady-state flow. Here and throughout, by steady flow we
mean a flow that varies on the fast inertial time scale, approximately 17 h, but remains
statistically steady, without obvious trends on a longer time scale of roughly a month.
First, waves that are excited beneath the storm track near the central latitude can and
do propagate laterally towards higher and lower latitudes. These waves are absorbed
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in sponge regions via Rayleigh damping S . The explicit form of this damping is

S[·] =−T−1
damp

(
exp

(
−

(
y+ Ly/2
λdamp

)2
)
[·] + exp

(
−

(
y− Ly/2
λdamp

)2
))
[·], (2.8)

so that non-zero values are forced towards zero over a time scale Tdamp. The spatial
extent of these damping regions is approximately given by λdamp. These terms protect
the interior of the domain from unwanted reflections at the lateral boundaries.

Second, the mean component of the zonal wind excites a zonal current which,
although near-surface concentrated, penetrates to the full depth of the ocean. When
this current is baroclinically unstable, eddies form which undergo an upscale energy
transfer. Without a damping mechanism, such eddies pair and eventually grow to the
size of their domain. As a model for the myriad of damping mechanisms that act to
arrest this upscale cascade, such as internal wave excitation at a rough bottom, we
adopt the simple approach often taken in studies of geophysical turbulence of a flat
bottom augmented with a drag law. Here, we employ linear bottom drag B applied
over an approximate thickness of λdrag,

B[·] =−T−1
drag

Lz

λdrag

√
2
π

exp

−( z+ Lz
√

2λdrag

)2
 [·], (2.9)

where the linear drag coefficient T−1
drag has a typical value O(10−7–10−6) (Cessi, Young

& Polton 2006).
Finally, to damp motions in the fluid interior at the smallest resolvable scales, we

need to introduce diffusion operators that will act efficiently at the smallest resolvable
scales but have essentially no direct influence on the dynamics at all larger scales. One
of the advantages of spectral models is that operators with known spatial and temporal
characteristics are trivial to implement. Here, we use high-order hyperdiffusion terms
D in both the momentum and buoyancy equations, where

D[·] = ν∗H
(
∂2p

∂x2p
+
∂2p

∂y2p

)
[·] + ν∗V

(
∂2p

∂z2p

)
[·], (2.10)

and the order of the operator is set to p = 4. Closure coefficients νH
∗

and νV
∗

are
specified such that the dissipation time scales (ν∗H(2π/dx)2p)−1 and (ν∗V(2π/dz)2p)−1

are equal to 5 dt, where dx= dy, dz are the horizontal and vertical resolutions and dt
is the time step.

2.2. Zonally uniform 2d simulations
We first run 2d simulations with no zonal dependence starting with an ocean at rest
with a prescribed stratification that depends on depth and latitude. The initial density
profile ρi(y, z) is constructed as a weighted average between northern, ρn(z), and
southern, ρs(z), profiles, with the weight γ (y) varying in the meridional direction
only,

ρi(y, z)= [1− γ (y)]ρs(z)+ γ (y)ρn, (2.11)

γ (y)=
1
2

[
1+ tanh

(
y
L0

)]
. (2.12)
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FIGURE 3. (a) Southern, ρs− ρ0 (dashed line), and northern, ρn− ρ0 (solid line), density
profiles as a function of depth z. The reference density ρ0 is equal to 1000 kg m−3. (b)
Meridional gradient of potential vorticity ∂yq at central location y= 0, non-dimensionalized
by β/L0.

 0
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FIGURE 4. One-year time-averaged background jet profile, where the zonal velocity u(y, z)
is superimposed by the density field ρ(y, z). The density and the zonal jet are in thermal-
wind balance and NIWs (arrows in the figure) propagate equatorward under the TA. The
contour intervals are 0.1 kg m−3 for the density ρ and [20, 30, 40] cm s−1 for u. The
vertical dashed lines correspond to the measurement locations ±ym=±400 km used in § 3.

Both the northern and the southern density profiles consist of a surface mixed layer
of thickness approximately 50 m, a strongly stratified pycnocline and a weaker
stratification at depth. Introducing small transition scales, we construct smooth
differentiable profiles using hyperbolic tangents as in Winters (2015). The profiles ρs

and ρn are shown in figure 3(a) as a function of depth z. The horizontal scale of ρi

is L0, which is also the width of the forcing window W . The zonal wind forcing
produces a surface-intensified zonal jet that is meridionally confined to the centre
of the domain (−L0 6 y 6 L0), in thermal-wind balance with the stratification (see
figure 4), and with a maximum surface speed of around 50 cm s−1. In this 2d flow,
the wind-driven jet quickly approaches a steady state and the zonal forcing coefficient
Au decays to zero. The meridional coefficient Av, however, remains highly variable
by construction, and this excites waves that propagate away meridionally.
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Run name Number of grid points Time step
nx × ny × nz dt (s)

2d-NT-r1 r1: 1× 321× 257 240
2d-TA-r3 r3: 1× 1281× 513 60
2d-NT-r3 r3 60
3d-NT-r1 r1: 64× 321× 257 240
3d-NT-r2 r2: 128× 641× 513 120
3d-NT-r3 r3: 256× 1281× 513 60

TABLE 3. The convention for the various runs and their numerical parameters. The label
2d indicates zonally uniform runs (i.e. without eddies), while 3d indicates runs with a
mesoscale eddy field. The label TA indicates runs under the TA, while NT indicates runs
relaxing the TA.

We integrate (2.1)–(2.5) with ∂x ≡ 0 for three years, judging that the system has
reached a steady state at this point. The zonal jet is in thermal-wind balance with
the stratification, and internal waves are radiated almost completely equatorward at an
approximately steady rate until they are damped when they reach the southern sponge
layer. We analyse the escaping waves at north and south measurement latitudes ±ym=

±400 km that are located both away from the central excitation zone and outside the
sponge layers.

Our naming convention for the various runs indicates whether the flow is
constrained to the eddy-suppressing 2d limit or allowed to evolve in 3d, whether
the Coriolis force is treated traditionally (TA) or non-traditionally (NT), and the
spatial resolution (ri, i= 1, 2, 3), as indicated in table 3. Analyses are conducted over
a period of one month using output data sampled at 10 min intervals after the flow
has been judged to have reached steady state.

2.3. Three-dimensional simulations with an active eddy field
For these runs, we relax the constraint of no zonal variability and simulate steady 3d
flows with both waves and eddies using the steady 2d simulations to construct the
initial conditions. The 2d steady-state mean potential vorticity gradient ∂yq, where

∂yq≡ (∂yyu− β)
N2

g
− (∂yu+ f0 + βy)

∂yN
2

g
, (2.13)

is shown in figure 3(b) at latitude φ0, and has a zero crossing at depth z≈−850 m.
Here, the overbars indicate temporal averaging over times longer than the inertial
period, and

N2
(y, z)=−

g
ρ0
∂zρ(y, z). (2.14)

From a linear perspective, the Charney–Stern–Pedlosky criterion states that for
baroclinic instability to occur, the meridional potential vorticity gradient of a zonal
jet has to change sign in the vertical (Phillips 1954; Pierrehumbert & Swanson
1995; Smith 2007; Roullet et al. 2011). The 2d zonal jet is thus subject to the
baroclinic instability associated with the zero crossing. We performed a linear stability
analysis of the profile (2.13), solving eigenvalue problem (3.2) in Smith (2007). The
growth rate of the instability is σ ≈ 0.03f0, associated with a zonal wavenumber

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

69
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.698


518 M. Tort and K. B. Winters
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FIGURE 5. The time evolution of the total kinetic energy E of nested runs at resolutions
r1, r2 and r3. The dashed lines mark the steady-state period, run 3d-NT-r1, integrated for
five years, and 3d-NT-r2 and 3d-NT-r3, both integrated for six months. Run 3d-NT-r1 is
run starting from the third year of run 2d-NT-r1.

k ≈ 2π/(200 km). We therefore expect our steady 2d profile to be unstable to 3d
perturbations. With this in mind, we extend our 2d results in the zonal direction
taking Lx = 400 km, corresponding to twice the scale of the most unstable mode
according to linear stability theory. We then perturb this baroclinically unstable flow
with small-amplitude broad-banded noise and restart the simulation.

Our goal is to analyse wind-driven flows with zonal jets, eddies and NIWs
simulated with sufficient resolution to capture a rich eddy field that may be producing
filaments, fronts and sub-mesoscale motions. Achievement of a steady state at the
required spatial and temporal resolution starting from a quiescent ocean is beyond our
computational capabilities. Rather, we patch together a sequence of simulations with
increasing resolution. The steady state of simulation 3d-NT-r3 is obtained by running
multiple nested simulations. Initializing (at t= 3 years) with the perturbed 2d solution
from 2d-NT-r1, we run a five-year low-resolution simulation, 3d-NT-r1, to capture
the initial adjustment of the flow into 3d as it undergoes forced baroclinic instability.
During the first two years, the volume integrated kinetic energy increases rapidly as
baroclinic instabilities spin up an eddy field (see figure 5). Although the adjustment
process is apparently complicated, with a significant overshoot after about a year, the
flow settles into an approximately steady state after about two years. Over the last
three years, the kinetic energy fluctuates about a steady value that is significantly
higher than the initial value due to the presence of an active eddy field. The final
state of simulation 3d-NT-r1 is then interpolated onto a finer spatial grid to start the
higher-resolution simulation 3d-NT-r2, in which newly resolvable small-scale motions
are rapidly produced and a steady state is quickly attained in six months. This process
is repeated to obtain our highest-resolution flow, 3d-NT-r3. Judging this flow to be a
better resolved version of the forced steady states achieved at lower resolution, we
then analyse the final month of this run, again using a sampling frequency of 10 min.
Alhough the final run is relatively short in duration, the combination of increased
spatial resolution and correspondingly increased temporal resolution makes this the
most expensive run in the series.

Figure 6 shows representative snapshots of the vertical component of the surface
vorticity ζ = ∂xv − ∂yu normalized by f0 (i.e. the Rossby number) for the different
nested runs. At the end of the 2d run, the surface vorticity field associated with
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FIGURE 6. (Colour online) The surface Rossby number Ro= ζ/f0 (see the colourbar on
the right). (a–d) The initial state of 3d-NT-r1 (perturbed 2d zonal jet from the final state
of 2d-NT-r3) and the final states of 3d-NT-r1, 3d-NT-r2 and 3d-NT-r3.

the zonal jet is two adjacent bands of positive and negative vorticity, perturbed by
alternating parallel bands associated with the radiating waves. After the flow adjusts
into 3d, the adjacent bands of opposite-signed vorticity characterizing the zonal jet
have attained significant structure and exhibit meanders on scales comparable to the
width of the storm track itself, as well as distinct cores and smaller-scale vorticity
filaments. While all of the 3d runs are qualitatively similar at their common larger
scales, the highest-resolution run exhibits numerous significantly smaller eddies and
finer filaments.

3. Results
We now present our results, focusing on the radiation of NIWs away from the storm

track. Our analysis of NIW radiation requires us to separate HF motions from the LF
motions associated with the meandering zonal jet and mesoscale eddies. To do this, we
follow Danioux, Klein & Rivière (2008) and introduce a low-pass filter to decompose
any time-dependent variable X into LF and HF components XLF and XHF,

XLF(x, y, z; t)=
1
Tf

∫ t+Tf /2

t−Tf /2
X(x, y, z; t′) dt′, (3.1)

XHF(x, y, z; t)= X(x, y, z; t)− XLF(x, y, z; t), (3.2)

where Tf = 2π/f0. This method implicitly assumes that the time variation of the LF
flow is small over an inertial period, which is a reasonable assumption since the slow
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FIGURE 7. Horizontally averaged kinetic energy frequency spectra at the surface (thick
black line), at z = −50 m (thick grey line), at z = −500 m (thin black line) and at
z=−2500 m (thin grey line). The data are from simulation 2d-TA-r3. The vertical solid
lines are from left to right ω = [ f0, 2f0, 3f0] and the dashed line is at ω≈f0 = 1.046f0,
corresponding to the turning latitude yc = 295 km. The GM spectral slope ω−2 is shown
for reference.

time scale is related to the vertical vorticity ζ , and the Rossby number Ro= ζ/f0 of
the averaged flow is small (〈Ro〉6 0.1).

3.1. Zonally uniform 2d flow without mesoscale eddies
To build intuition, we first consider the problem with the wind, the resulting zonal jet
and the radiating internal waves in the absence of a mesoscale eddy field.

3.1.1. Near-inertial response
Frequency spectra of the meridionally averaged (excluding the sponge regions)

kinetic energy at different depths for simulation 2d-TA-r3 are shown in figure 7. The
frequency response of the ocean is dominated by the mid-domain inertial frequency
f0. Much weaker peaks at the first two harmonic frequencies are also identifiable,
suggesting a nearly linear behaviour for the NIWs. The Garrett–Munk (GM; Garrett
& Munk 1972) spectral slope ω−2 is also shown for reference. The GM spectrum is
a useful description of the oceanic internal wave field taking into account all sources
of internal wave excitation, e.g. the wind blowing on the ocean surface, internal tide
generation at depth, lee-wave formation by geostrophic flow over seafloor topography,
and spontaneous emission through loss of balance. In our model, we take into account
only wind-driven internal waves excited by an idealized wind forcing. This simple
model does not capture most of the internal wave dynamics at any particular ocean
location. The result, apparently, is a steeper slope of the frequency spectra than
predicted by GM. A different result, given the lack of topographic effects, would
have perhaps been surprising.

3.1.2. Wave propagation
A snapshot of the HF part of the meridional velocity vHF (figure 8a) shows a clear

asymmetry between north and south about the centre of the domain, y= 0. Although
animations of these images are easier to interpret, even a single image reveals the
characteristics along which NIW energy is radiated. It is immediately apparent that
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FIGURE 8. (Colour online) The HF part of the meridional velocity as a function of
latitude and depth at a given time: (a) run 2d-TA-r3, (b) run 2d-NT-r3. The dashed
black line represents the critical latitude for a wave travelling at frequency ω≈f0 = 1.046f0.
The turning point yc is depth-dependent including the NT terms and allows a poleward
propagation of NIWs as a result of critical reflections. The black solid lines are the
measurement locations ±ym=±400 km, where meridional fluxes are calculated and plotted
in figure 9.

the wave propagation is away from the storm track and predominantly towards the
equator.

When seeking time-harmonic solutions of the linearized equations of motion
proportional to exp(−iωt), one can obtain a separatrix dividing the domain between
regions of wave-like hyperbolic behaviour and evanescent parabolic behaviour
(Gerkema & Shrira 2005a,b; Winters et al. 2011). In the absence of a zonal jet,
i.e. when N(z) is a function of depth z only, this separatrix is also called a critical
latitude yc(z) and takes the form

yc(z)=
1
β

−f0 ±ω

√
N2
−ω2

− f̃ 2

N2 −ω2

 . (3.3)

In this problem, the oceanic response is mostly near-inertial (see figure 7), i.e. the
frequencies of the waves excited can be written as ω ∈ [ f0 − ε, f0 + ε], with ε� f0.
The positive root of (3.3) corresponds to a critical latitude yc > 0 and is close to the
forcing region even for the maximal value of ω= f0+ ε. The negative solution is not
of interest, corresponding to a latitude in the southern hemisphere, well outside the
domain of interest here. Under the TA, f̃ = 0, and the separatrix is depth-independent
with yc= (ω− f0)/β. Guided by this linear theory, we have estimated the approximate
location of yc by eye, for the maximal value of ε, based on the inferred characteristics.
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FIGURE 9. Time-averaged meridional fluxes at fixed latitudes ±ym = ±400 km: (a) run
2d-TA-r3, (b) run 2d-NT-r3. In both simulations, the poleward flux is very small.

The corresponding frequency, ω≈f0 = f0+β× 295 km= 1.046f0, is indicated in figure 7
and is close to or within the observed inertial peak.

To quantify the difference between pole- and equatorward wave radiation, we define
the meridional energy flux F(y, z) as

F(y, z)=
∫ Lx

0
dx

1
T

∫ t0+T

t0

pHF(x, y, z; t)vHF(x, y, z; t) dt, (3.4)

where T is the analysis period of approximately 30 days and t0 is year 3 for 2d
runs and year 9 for 3d runs. We then calculate F at the measurement locations y=
±ym. We choose ym = 400 km so that the measurement locations are outside both
the forcing region and the sponge regions near y=±Ly/2. Poleward and equatorward
fluxes calculated at y=±ym are shown in figure 9(a) as a function of the depth z for
simulation 2d-TA-r3. The flux ratio between north and south, defined as

∣∣∣∣Fn

Fs

∣∣∣∣=
∣∣∣∣∣∣∣∣∣
∫ 0

−Lz

F(ym, z) dz∫ 0

−Lz

F(−ym, z) dz

∣∣∣∣∣∣∣∣∣ , (3.5)

is approximately equal to 0.03, and we conclude therefore that the poleward wave
energy flux is negligible compared with the equatorward flux.

3.1.3. The effect of the horizontal component of the Coriolis force
We now ask whether the solutions are appreciably different if we add realism

by incorporating the horizontal component of the Coriolis force. For comparison, a
snapshot of vHF is shown in figure 8(b) for simulation 2d-NT-r3. As in the traditional
case (figure 8a), the asymmetry is clear between north and south about the centre of
the domain at latitude y= 0, but the two images also have distinct differences. In the
south, the energy paths are tilted compared with their traditional counterparts. This
is a known consequence of adding NT effects to the dispersion relation, as noted in
Winters et al. (2011).

Even though it appears that most of the energy propagates equatorward, it is
apparent that there is some poleward propagation along newly possible energy paths
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that do not exist under the TA. Critical reflections, when characteristics are tangent
to the flat bottom boundary, can occur when NT effects are taken into account.
The focused rays that result from near-critical reflection are then trapped within
a waveguide, bounded by the bottom boundary and the depth-dependent separatrix
yc(z). For typical ocean stratification, the location of the separatrix is always shifted
poleward. The shift is negligible in the upper ocean where N is relatively large,
but much more significant in the deep ocean where N is much smaller (Gerkema
& Shrira 2005a). We again pick out by eye an approximate upper ocean turning
latitude of y = 295 km. A wave excited in the storm track region at frequency ω≈f0
can propagate poleward until it reaches its turning point yc(z), again drawn with a
dashed line in figure 8(b). In the particular case (visible in the figure) when the wave
reaches the floor z = −4 km at latitude 295 km, critical reflection occurs and the
wave propagation further to the north is at locally sub-inertial frequencies (Winters
et al. 2011).

We now quantify the meridional fluxes as we did in the traditional case. Looking at
figure 9(b), where F(y, z) is plotted at both latitudes, ±ym =±400 km, the poleward
flux is still negligible compared with the equatorward flux. Even though the NT flux
ratio is of the same order of magnitude as its traditional counterpart, i.e. small, NT
effects increase the flux ratio by approximately 33 %. The increased poleward flux in
the NT case appears to be primarily at depths below approximately 1800 m, and this
observation is consistent with the ray paths that can be inferred from figure 8 and
the rough estimate of the position of the separatrix.

3.2. Wind-driven NIWs in the presence of a meandering jet and eddies
We now examine the flow of primary interest: the near-inertial oceanic response to
variable localized wind forcing that drives a baroclinically unstable meandering zonal
jet and a coupled field of energetic eddies subject to the full Coriolis acceleration.

3.2.1. Near-inertial response
Frequency spectra of the horizontally averaged kinetic energy at different depths

are shown in figure 10. As in runs 2d-TA-r3 and 2d-NT-r3 (not shown), the spectra
reveal an active internal wave field with a pronounced peak centred at mid-domain
frequency f0, but the harmonics [2, 3] f0 have disappeared. The inertial peak is wider
than the narrow frequency peak in the zonally uniform runs. Within the near-inertial
peak, super-inertial frequencies are excited up to approximately ω>f0 = 1.12f0 in 3d,
corresponding to a critical latitude of yc = 750 km, whereas in 2d, frequencies are
excited up to ω≈f0 = 1.046f0, corresponding to yc = 295 km. As in the 2d runs, the
spectral slopes are steeper than ω−2 and do not match the generic GM slope in the
HF continuum.

3.2.2. Wave propagation
Allowing the jet to develop in 3d and spawn eddies, the solution looks significantly

different. A snapshot of the HF part of the meridional velocity vHF is plotted in
figure 11. The asymmetry between north and south does not appear as clearly as it
does in the zonally uniform runs. The propagation is away from the storm track but
not predominantly towards the equator. Due to eddy interactions, the characteristics
along which NIW energy is radiated are not easily discernible in the upper ocean.
Indeed, the primary effect of turbulent geostrophic flow on NIWs is scattering of
the waves, leading to a redistribution of their energy in wavenumber space (Danioux
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FIGURE 10. Horizontally averaged kinetic energy frequency spectra at the surface (thick
black line), at z = −50 m (thick grey line), at z = −500 m (thin black line) and at
z = −2500 m (thin grey line). The data are from run 3d-NT-r3. The vertical back line
represents the inertial peak f0 and the dashed vertical line is ω>f0 = 1.12f0, corresponding
to a critical latitude of yc = 750 km. The GM spectral slope ω−2 is shown for reference.
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FIGURE 11. (Colour online) The HF part of the meridional velocity as a function of
latitude and depth at a given time. The data are from run 3d-NT-r3. The locations
±ym = ±400 km are the measurement locations where meridional fluxes are calculated
and plotted in figure 12.

& Vanneste 2016). Near-inertial waves generated in cyclones with ω = feff > f can
propagate poleward provided that they enter less cyclonic (or even anticyclonic)
regions.

The presumed poleward propagation is confirmed by quantifying the meridional flux
F(y, z) at both latitudes y=±ym, which is plotted in figure 12(a). Surprisingly, both
equatorward and poleward fluxes have the same order of magnitude. The flux ratio is
0.6, i.e. 15 times larger than the flux ratio calculated in run 2d-NT-r3. We conclude
that allowing the zonal jet to meander and to expel mesoscale eddies increases the
poleward propagation of NIWs tremendously. Furthermore, zonally averaged surface
spectra are plotted in figure 12(b) at both latitudes y = ±ym to compare poleward
and equatorward propagation. The southern spectrum has a peak at the mid-domain
frequency f0 while the northern spectrum has a peak centred at frequency ω>f0 . As
expected, the energies contained in both peaks have comparable magnitudes. In the
north, super-inertial energy is contained in a continuous range of frequencies, and a
significant amount of it can travel up to 1000 km poleward.
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FIGURE 12. (a) Time-averaged meridional fluxes at fixed latitudes ym = ±400 km. The
data are from run 3d-NT-r3. (b) Zonally averaged surface frequency spectra computed at
latitudes ±ym. The data are from run 3d-NT-r3. The spectra computed at latitudes −ym and
ym are indicated respectively with grey and black solid lines. The vertical black and grey
lines are respectively ω= f0+βym and ω= f0−βym. The peak of the southern spectrum is
very near ω= f0. The peak of the northern spectrum is a continuous range of frequencies
from f0 + βym to f0 + β × 1000 km. The vertical dashed lines are from left to right ω=
f0 + βy for y= 0, 750, 1000 km.

4. Interpretation of the results
Our objective here is to explain how the presence of the meandering unstable jet and

eddies enables the excitation of super-inertial waves that are not seen when the eddies
are absent and the jet is zonally uniform. We begin by adopting a simplified linear
viewpoint and noting that waves that propagate away from their source region must
satisfy the linear dispersion relation that is embedded in the Sturm–Liouville problem.

4.1. Radiating waves satisfy the linear dispersion relation
Let us consider propagating waves far from the storm track, e.g. measured at latitude
±ym outside of the excitation region. They have frequency, horizontal and vertical
scales that satisfy the dispersion relation defined by the well-known Sturm–Liouville
eigenvalue problem (e.g. Winters & D’Asaro 1997),

d
d2z

ŵm(z)+ (k2
m + l2

m)
N(z)2 −ω2

f 2 −ω2
ŵm(z) = 0. (4.1)

Here, we use the f -plane approximation, assuming that the inhomogeneities of the
medium occur at scales much larger than the wave itself. Indeed, the horizontal scales
of NIWs are O(10–80) km in our simulations, and the slopes of the isopycnals are
almost horizontal (see figure 4) at locations ym=±400 km, so that the terms ∂yN and
the βy can be neglected in the equations of motion.

In (4.1), m is the vertical mode number, km and lm are respectively the zonal and
meridional wavenumbers associated with m, and ω is the eigenfrequency. The terms
ŵm are the eigenfunctions of the eigenvalue problem, which describe the vertical
velocity field w. The equation is written under the TA, NT effects being small, as
we concluded in § 3. Moreover, the wave field present in simulation 2d-NT-r3 is well
represented by (4.1) (not shown). In what follows, we anticipate the ocean frequency
response based on the wave spatial scale selection process.
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4.1.1. On a proposed selection process for the spatial scales of wind-driven waves
Gill (1984) developed a modal formalism for describing the subsequent excitation

of sub-mixed layer motions and showed that the energy projects predominantly on
the lowest vertical modes. This has been observed by, e.g., Chen, Reid & Nowlin
(1996), Chant (2001) and Alford (2003) for local wind-driven waves. A projection of
kinetic energy flux onto normal modes using (4.1) shows that approximately 80 % of
the kinetic energy flux is contained in the first five vertical modes for run 2d-NT-r3,
and confirms therefore a low-mode response.

The wind stress (imposed through the body force terms Fu and Fv) has a finite
extent L0 in the meridional direction. The meridional wavenumber decomposition of
the wind stress can be understood by analogy with a Fourier transform of a localized
Gaussian signal with variance L0. Therefore, the largest response is at meridional
wavenumber l = 0, and we expect large horizontal scales to dominate the spectrum.
The rate of spectral decay, and thus the relative importance of smaller scales, will
depend on the width of the localized signal L0. Because L0 = 100 km is quite large
in our simulations, we expect low-horizontal-wavenumber propagating waves. Later,
we will see that additional horizontal scales smaller than L0 are established by the
flow itself and may contribute to excite waves with larger horizontal wavenumbers.

4.1.2. Frequency response
In principle, zonal and meridional winds provide a wide range of frequencies at

which the ocean could respond. Indeed, as discussed previously, both components of
the wind forcing are white between fs = f0 − βLy/2 and fn = f0 + βLy/2. However,
the frequencies of propagating waves generated in the storm track should match
low vertical mode number m and small horizontal wavenumber Km =

√
k2

m + l2
m, as

suggested above. According to the Sturm–Liouville problem (4.1), the ocean response
is a narrow near-inertial peak centred at frequency f0.

4.2. Excitation mechanisms for super-inertial waves
The imposed HF wind forcing can excite super-inertial internal waves in two ways.
First, the flow can act to shift the lower frequency limit for internal waves and produce
super-inertial waves on the poleward side of the zonal jet. Super-inertial waves can
also be excited if they are forced over smaller horizontal scales. To illustrate these
two mechanisms, an additional set of simplified 2d experiments were run.

4.2.1. Presence of cyclonic shear
An approximate dispersion relation for NIWs propagating in a geostrophic shear

flow was derived by Kunze (1985) assuming that the horizontal spatial scale of the
waves is comparable to the scale of the geostrophic flow and that their frequency is
close to inertial. Under these approximations, the relative geostrophic vorticity ζ acts
to shift the lower bound of the internal waveband from the planetary value of the
Coriolis frequency f to an effective Coriolis frequency feff = f + ζ/2. For wind-driven
low-mode waves with l� m, the waves excited in such a scenario will have a near-
inertial peak at feff > f and are thus able to propagate poleward until they reach their
critical latitude.

To illustrate this effect, we contrast a pair of idealized 2d runs that differ slightly
from all other runs discussed in this paper in that the initial density stratification is
independent of latitude, i.e. with ρs = ρn. The only difference between the two runs
is the value of the target mean speed used to compute the forcing coefficient Au and,
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as a result, the magnitude of the ambient cyclonic vorticity in the poleward portion
of the wind-forced region.

When the target speed is set to u0, the north–south flux ratio is 0.1, indicating
relatively little excitation of super-inertial waves. Doubling the target speed to 2uo,
however, increases this ratio to 0.25. With increased ambient vorticity, a larger fraction
of the waves excited have frequencies near feff > f0, and thus there is an increases in
the fraction of poleward wave energy flux. As the scales u0 and L0 for this simple
demonstration are comparable to those in the more complicated simulation we are
attempting to interpret, these results demonstrate the utility of the simple Kunze (1985)
dispersion relation in the advective–refractive regime of the simulation of primary
interest. We also note that modifying the ambient vorticity by a factor of two does
not substantially affect the overall wind work, as indicated by the remotely measured
total wave energy flux.

4.2.2. Presence of small horizontal scales
For the lowest vertical wave modes, excitation of smaller horizontal scales implies

propagating waves at higher frequencies. A simple way of introducing smaller
horizontal scales in the problem is to shrink the meridional extent of the storm track
L0. Indeed, when L0 becomes small yet remains finite, the relative importance of
smaller scales in the forcing increases. Again, we contrast a pair of idealized 2d
runs similar to the previous ones, but we remove the background vorticity by setting
Au = 0. The two runs differ only in the width of the storm track L0.

We observe that the north–south flux ratio is 0.04 for the relatively wide forcing
region with L0 = 100 km, while it reaches 0.34 for the case with a narrower forcing
region with L0 = 10 km. Reducing the storm track width by a factor of 10 increases
the relative importance of smaller horizontal scales in the forcing, increases the
frequency of the internal waves excited and thus increases the relative importance of
poleward NIW radiation. In this example, the effect is substantial: the north–south
flux ratio increases by a factor of 8.5.

4.3. Super-inertial waves radiating poleward from a storm track
We now have all of the elements required to understand the significant increase in
poleward internal wave radiation when the zonal jet is allowed to go unstable, meander
and shed eddies. In steady state, the effective width of the jet is reduced and its
ambient vorticity is increased relative to the artificially constrained zonally uniform
simulation (see figure 6). The poleward frequency response in the 3d problem is a
near-inertial peak that is broader than the corresponding peak towards the equator
(see figure 12). Excitation at frequencies higher than f0 produces poleward propagating
low-mode waves that escape the generation region. The super-inertial excitation results
from the ambient cyclonic vorticity that becomes established on the poleward side of
the meandering jet over horizontal scales that are finite but significantly smaller than
the width of the storm track.

The effectiveness of ambient vorticity in shifting the excitation frequency of waves
depends on both the magnitude of the ambient vorticity itself and the meridional
horizontal length scale over which the vorticity is present. For example, a very small
region of significantly enhanced ambient vorticity will not produce a significant
poleward flux because the surface area of such a region is too small to extract
significant work from the wind. For waves at a given observed super-inertial frequency,
there are two potential mechanisms for their generation. The first is direct excitation
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at feff , assuming that the region over which feff exists is large enough that low-mode
waves are constrained to be very near feff by the dispersion relationship. The second
is direct excitation over a smaller region characterized by higher ambient vorticity.
Owing to the smaller horizontal scale at which this excitation occurs, the dispersion
relation requires that low-mode waves be excited with an additional frequency shift
beyond that induced by the ambient vorticity. These two mechanisms act together to
produce a relatively broad near- but super-inertial frequency response well poleward
of the excitation region.

Within the storm track, the relationship between the ambient vorticity and the
associated surface area is determined by the nonlinear dynamics of the forced,
meandering and eddy-shedding jet. This in turn controls the interplay between the
two mechanisms of § 4.2, the width of the poleward near-inertial peak in figure 12
and the north–south flux ratio of the radiating NIWs.

5. Summary and discussion
The wind blowing on the ocean surface generates oceanic motions with a large

range of frequencies. One part of the kinetic energy is contained in LF motions,
mesoscale currents and eddies, which are strongly constrained by the Earth’s rotation
to follow the balance between the Coriolis and the pressure gradient forces. Winds
also create NIWs, which are HF and unbalanced motions with frequencies close
to the inertial frequency f = 2Ω sin φ. Both dynamics have been considered in the
present problem using high-resolution numerical simulations solving the Boussinesq
equations on the β-plane.

Because the storm track region is horizontally quite widespread, the HF wind
excites low-vertical-mode (Gill 1984) waves at large horizontal scale. To satisfy the
dispersion relation, the frequency content of those waves is near-inertial at mid-domain
frequency f0. This problem has been refined for realism by (i) incorporating the NT
Coriolis force in the equations of motion and (ii) relaxing the zonally uniform
constraint allowing the zonal jet to become baroclinically unstable, to meander and
to expel mesoscale eddies.

On the β-plane, retaining the NT Coriolis force modifies the dispersion relation
of internal waves. In particular, linear theory shows that NIWs are able to propagate
poleward of their inertial latitude and can be focused and trapped in the deep weakly
stratified ocean. This phenomenon is observed in our NT zonally uniform experiment,
where new paths guide sub-inertial energy in weakly stratified deep ocean, increasing
by 33 % the poleward near-inertial propagation. Even so, most near-inertial energy
propagates equatorward and NT effects remain weak.

After relaxing the zonally uniform constraint, the propagation becomes almost
equally distributed between north and south. This propagation is due to both
near-inertial and super-inertial excitation. The latter results from the combined effect
of the presence of significant cyclonic shear and small horizontal scales. The two
mechanisms of § 4.2 become significant in the 3d problem because the baroclinically
unstable zonal jet thins compared with its zonally uniform counterpart, creating
higher values of vertical vorticity in a relatively small region. Therefore, in addition
to shifting the inertial frequency, the meandering jet introduces horizontal scales
smaller than the scale of the storm track itself. Both mechanisms act together to
enhance near- but super-inertial wave excitation and poleward radiation, comparable
to equatorward radiation.

We have presented here a new mechanism by which an LF turbulent zonal jet
modifies the propagation of NIWs excited by HF winds significantly. Even though
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theory and observations have suggested that the propagation of wind-driven internal
waves is mainly towards the equator, Alford (2003) has observed poleward propagation
in the North Pacific and North Equatorial Atlantic Oceans.
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