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To understand the heterogeneous spatial effect on predator-prey models, we study
the behaviour of the positive steady states of a predator—prey model as certain
parameters are small or large. We compare the case when the model has a spatial
degeneracy with the case when it does not have such a degeneracy. Our results show
that the effect of the degeneracy can be clearly observed in one limiting case, but not
in the others.

1. Introduction and main results

Let £2,2 C RY be two smooth bounded domains that satisfy 2o C 2, and let
a(x) be a continuous non-negative function satisfying

a(x)=0 in 2y, a(x)>0 in 2\ .
For any 2% C £2, we denote by AP (£2*) the first eigenvalue of the Dirichlet problem
—Au=MXu in 2", u=0 ondN*.

Let A\, u and 3 be positive constants. In [3], the authors showed that the ‘degenerate’
predator—prey model

—Au = M — a(z)u? — Buv in £2,
—Av = v <1 - U) in {2, (1.1)
u

d,u=0,v=0 on 0f?
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can behave very differently from the perturbed non-degenerate model
—Au = M — [a(z) + e]u® — Buv in {2,

—Av = v <1 - U> in {2, (1.2)
u
o,u=0,v=0 on 0f2,

where € is a positive constant, v is the outward unit normal vector on 92 and 9, =
0/0v. Here, following [3], we call (1.1) a degenerate model because the coefficient
a(z) vanishes on part of the domain 2. It was proved in [3] that (1.2) always has
a positive solution, but, for (1.1), when

A > AV (820) > p,

there is no positive solution for all small positive 5. For parameters in these ranges,
making use of this essential difference between (1.1) and (1.2), it was proved in [3]
that the positive solutions (u., v.) of (1.2) can develop sharp spatial patterns when
€ > 0 is small. On the other hand, it was shown in [3] that, under the condition

p> A= AP (6), (1.3)

problem (1.1) has at least one positive solution (u,v) for any 8 > 0. Due to this fact
and the a priori estimates established in [3], it is easy to show that, under (1.3),
for small € > 0, any positive solution (ue,v:) of (1.2) is close to a positive solution
(u,v) of (1.1), and, hence, no sharp spatial patterns of (u.,v.) can be observed.

In order to gain further understanding of (1.1) and (1.2) (in particular, to know
whether (1.1) and (1.2) still exhibit any essential differences when (1.3) is satisfied),
we consider in this paper several limiting cases of these systems. To be more specific,
assuming (1.3), we shall discuss the limiting behaviour of the positive solutions
of (1.1) and (1.2) for the cases 3 — 0%, 3 — oo and pu — oo, respectively. In
ecological terms, these cases may be interpreted as, respectively, weak-predator,
strong-predator and small-predator diffusion.

It emerges that, in the weak-predator case, the effect of the degeneracy can be
clearly observed in the limit, where the positive solutions of (1.1) exhibit sharp
spatial patterns, while those of (1.2) do not have such patterns; in the strong-
predator case, the limiting behaviours of (1.1) and (1.2) are the same; in the small-
predator diffusion case, the limiting behaviours of (1.1) and (1.2) are similar.

More precisely, suppose that (1.3) holds. The main results of this paper are then
as given in the following theorem.

THEOREM 1.1 (limiting behaviour as 3 — 07). Let (u,v) £ (ug,v3) be a positive
solution of (1.1). We then draw the following conclusions:

(a) limg_, o+ (ug(z),v3(x)) = (00, 00) uniformly on 2y;
(b) along any sequence of 3 decreasing to 0, there is a subsequence {,} such that

lim (ug,,vs,) = (u,v) uniformly on any compact subset of 2\ 2,
n— oo
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where (u,v) is a positive solution of the system

—Au = du—a(x)u® in 2\ 2,
—Av = pv (1 - U) in 2\ o, (1.4)
u

Ovuloo = 0yv]on = 0, ulan, = v]ag, = 00;

(c) if there exists & > 0 such that a(z)d(z,20)~¢ is bounded for all x € 2\
£y close to 082y, then (1.4) has a unique positive solution (u,v) and the
convergence in (b) holds for f — 0%;

(d) if (u,v) £ (ug,vp) is a positive solution of (1.2), then

m_(us(x), va(a)) = (U=, V2)

li
B—0
uniformly over 2, where U, and V. are the unique positive solutions to
—AU = \U — [a(z) +€]U?, 0,Ulsn =0,

and

—AV =uV (1 - (‘J/)’ 0,Vl]an =0,

€

respectively.

THEOREM 1.2 (limiting behaviour as 3 — +00). Let (u,v) £ (ug,vg) be a positive
solution of (1.1). Then limg_,o(ug,vg) = (0,0) uniformly on 2. The same holds
for positive solutions of (1.2).

THEOREM 1.3 (limiting behaviour as 1 — 400). Let (u,v) £ (uy,v,) be a positive
solution of (1.1). Then u, — w in C*(£2) and v, — w uniformly on any compact
subset of {2, where w is the unique positive solution of

—Aw = w — [a(z) + Blw® in 2, dw=0 ondN. (1.5)

A similar conclusion holds for the positive solutions of (1.2), except that the limiting
function is the unique positive solution of

—Aw = w —[a(z) + £+ Blw® in 2, dw=0 ondN. (1.6)

To better understand the behaviour of the positive solutions (ug,vg), the limits

lim (uﬁ7 Y6 > and lim( s , Y6 )
B0+ \ lugllos " [lvg]loo poo\ fluglleo " llvglloo

will also be discussed.

In [3], the situation 0 < A < AP(£2) was also considered and it was shown that,
in this case, both (1.1) and (1.2) have positive solutions for every u > 0 and
(B > 0. Using the techniques in [3], it can be shown that the corresponding limiting
behaviours of (1.1) and (1.2) are the same in each of the three cases (8 — 0T,
0 — oo and p — 00); we leave the details to the interested reader.
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In [1], the Lotka—Volterra predator—prey model with certain degeneracies was
examined. As pointed out in [3], the effects of the degeneracy on the Lotka—Volterra
model differ considerably from those on the predator—prey model considered in [3]
and here.

The rest of the paper is organized as follows. In § 2, we consider the weak-predator
case, and theorem 1.1 is proved there. In §3 we discuss the strong-predator case
and give the proof of theorem 1.2 and related results. The small-predator diffusion
case is studied in §4, where theorem 1.3 is proved.

2. The weak-predator case: proof of theorem 1.1

In this section, we discuss the behaviour of (1.1) and (1.2) as 8 decreases to 0,
all other parameters being positive and fixed. We assume (1.3) throughout this
paper. We shall discuss (1.1) first. As will become clear soon, the analysis is rather
involved. In contrast, the asymptotic behaviour of (1.2) is easy to understand, and
will be considered at the end of this section.

We start with a technical lemma.

LEMMA 2.1. Assume that (4;,0;) is a positive solution of (1.1) with 8 = [3;. Let
{k;}, {€;} be two sequences of positive numbers satisfying

b B
ki kit

for some positive constant C' and all 1. If

<C

(;j, 121) — (@, ) weakly in H*(2) x H'(2) and strongly in L*(£2) x L*(12),

and
©Z0 and =0 in {2,
then it must hold that A > p

Proof. Define

U = Z—: and wv; = Z—Z
We then have
—Au; = My — a(x)kiu; — Biliuiv; < Aug; in £2,
L v
—Av; = p; <1 3 Zl> in £2, (2.1)
&,Ui = ayvi =0 on 0f2.

Multiplying the first equation of (2.1) by u; and integrating over {2, we deduce that

/|Vul|2da: / (2.2)

From the second equation of (2.1) we see that p is the first eigenvalue of the
problem

é‘w:uw in §2, d,w =0 on 912,
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and v; is the corresponding eigenfunction. It follows from the variational character-
ization of the first eigenvalue that

o, Hlivi o 2 1
[lvor+52g] 0 [ & voe @

Liuiv;
[t
(9] 1 2

Therefore, by (2.2) we can deduce that
= / uf
Q

)\/ u2+/ pliugv;
o " Jo ki

As 0;/k; < O, and u;v; — 40 = 0 in L'($2), and u; — @ in L?(§2), we have

Oiu;0; .
/ AN as 1 — 00,
(9]

Taking ¢ = u;, we have

ks
and, hence,
)\/ a? >u/ a?. (2.3)
Q Q
Since @ # 0 by assumption, it follows from (2.3) that A > pu. O

LEMMA 2.2. Let (ug,vg) be a positive solution of (1.1). Then

lim ||u = lim |jv = o0.
Jim gl = Jim, o]

Proof. By asimple comparison argument to the differential equation of vz we obtain

[vglloe < lluplloo- (2.4)

We first prove that limg_,o+ ||ug|loc = 00. Assume on the contrary that, along a
certain sequence of 3 decreasing to 0, ||ug||c is bounded from above; then, by (2.4),
lva||co is also bounded from above. In this case, we claim that ming ug > 0 for some
positive constant ¢ and all 8 in that sequence. In fact, if mingug — 0 as 8 — 0T
along some subsequence, by applying the Harnack inequality to the differential
equation of ug, it follows that

luglloc = max g < C’m(iznug -0

for some positive constant C' that depends only on A, £2 and the bounds of ||ug||s
and ||al| co-

Define w
~ B
’U,g = .
lluslloo

Then g satisfies

7A7:L5 = /\ﬁg - a(l’)ﬁgU3 - 677,51}5 in Q, 8yﬁ5 =0 on 9f2.
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Note that 0 < @ig < 1 and, by the assumptions, a(x)ug — 0, fvg — 0 as f — 07T
(along the sequence). By standard regularity results for elliptic problems (see [7])
we find that 45 — @ in C1(£2) along a further subsequence for some non-negative
function @, and 4 satisfies

—Au=Xi in {2, J,u=0 on 0f2.

Since A > 0, this implies that @ = 0, which is a contradiction, as maxg @ = 1. This
proves our claim that mingsug > 6.

By standard regularity results for elliptic problems, we now find that, along a
subsequence, ug — u in C'1(2) for some positive function u, and u satisfies

—Au=u—a(zx)u® in2, d,u=0 ondf. (2.5)

Since A > AP(£2)), we know that problem (2.5) has no positive solution. This con-
tradiction completes our proof of the fact that

lim ||u = 00.
Jim_ s

Note that g satisfies
—Alg = Mg — a(w)ﬁ@ug — Bugvg < Mg in 2, 0,43 =0 on 02 (2.6)

As 0 < ug < 1, it follows that

xgwmm?+%)<u+xxéa§<a+wnny

Therefore, given any sequence of 5 decreasing to 0, we can extract a subsequence
along which @ converges to some @ € H'(£2) weakly in H'(§2) and strongly in
L%(£2). Since ||ig]|co = 1, we also have @ig — @ in LP(£2) for all p > 1. It is obvious
that 0 < @ < 1. From (2.6) we also have

0<ig < (1+ NI —A) g,
Since @ig — @ in LP(£2) for all p > 1, the above inequality implies that g — 0 in

L>(£2) if & = 0. Since ||ug| o = 1, this is impossible and, hence, @ # 0.
For any compact subset K C {2\ {2y, from the equation for @z we obtain

A g = / a(@)llusll il + B / Vs
0 (9] (9]
> luglloe / a(2)i
K

> ag s / a2,
K

where ax = ming a(x) > 0. Since |lug||cc — 00, we deduce from the above inequal-
ity that [ 4® =lim [}, 43 = 0. Consequently,

a=0 in 2\ Q. (2.7)
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For later use, let us note that, since 92y is smooth, (2.7) implies that @|o, €
Hg(£29). We are now ready to show that limg ,o+ [|vg]|cc = co. If this is not true,
then, along a sequence of 3 converging to 0, we have

[vusP iy <a+n [ <o
0 Q
for some positive constant C' that does not depend on 3. Therefore, subject to a
subsequence, vg converges to some v € H'(§2) weakly in H'(£2) and strongly in
L?(£2). Since ||vg|le is bounded in B, we also find that vz — v in LP(£2) for all
p>1.

Since 1 satisfies

—Alg = Mg — fvglg in (2,

in view of Bug — 0 in L*>°(2), and dg — @ in LP(£2) for all p > 1 and (2.7), we
conclude that &g — @ uniformly on any compact subset of 2y, and @ satisfies (in

the weak sense)
AU =Xt in )y, 4=0 on d.

Due to (2.7) and @ # 0, we obtain A = AP(2) and @ > 0 in 2. Hence,
ug — oo uniformly on any compact subset of 2. (2.8)

For any ¢ € C§°(£2y), we have

,02

VgV =u/ v,aso—u/ Lo,
0 0 20 UB

In view of (2.8), it follows that
—Av=ypv in 2y, v>=0 on 3.

Since u > AP(£2y), this is possible only if v = 0 on (2. This fact, combined
with (2.7), yields 4w = 0 in 2. Taking kg = ||uglle, g =1 in lemma 2.1, we
deduce that A > p, since @ # 0. This is a contradiction to (1.3). Lemma 2.2 is thus
proved. U

LEMMA 2.3. Let (ug,vg) be a positive solution of (1.1). Then, along any sequence
of B decreasing to 0, there exists a subsequence {f3,} such that ug, — oo uniformly
on any compact subset of 2o, and ug, — u in C*(2\ 29) for any 0 < § < 1, where
25 ={x € 2:d(x, ) <} and u is a non-negative function satisfying

—Au = u—a(x)u® in 2\ 2, Ou=0 ond.
Proof. Define
Y
[0loo

. ug .
g = ———— and 7g =
luglloc

Then —Atg < Mig and —Adg < pig. Therefore, similar to the proof of lemma 2.2,
there exist two non-negative and non-trivial functions 4,9 € H'(f2) such that,
along a subsequence of the given sequence of [,

(ﬂg,f}g) - (ﬁ,@) in [Hl(“o)]za (ﬁg,@g) - (ﬁ,f)) in [LP(Q)}Q’ VP > 1.
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Moreover, ¢ #Z 0 in (2. In fact, if & = 0 in {2, then 40 = 0 in 2 by (2.7). Since
lvglloo < lluglleo and @ # 0 in £2, taking kg = ||ugllco, 8 = ||vglleo in lemma 2.1,
we obtain A > p. This is a contradiction.

It is obvious that 4g satisfies

—Alg = Mg — ﬂ”’l)gHooﬁgf}g in 2. (2.9)

We claim that 3||vg||ec is bounded. If this is not true, subject to a subsequence, we
may assume that 3||vg|lcc — 00. For any ¢ € C§°(£20), by (2.9) we have

| Vs =x [ oo Blusll | aniag.
20 29 0

It follows that fﬂo w0y = 0. Therefore, 40 = 0 in (2y. Using (2.7) we obtain 40 = 0
in (2. Similarly, we can apply lemma 2.1 to the above and conclude that this is
impossible.

Subject to a subsequence, we may assume that (||vg|lec — b € [0,00). Then g
converges to ¢ uniformly on any compact subset of {2y and (@, ?) satisfies (in the
weak sense)

—AG =N —biii=(A—bd)i in 2y, @=0 on d. (2.10)

Using & > 0, @ # 0 and (2.7), we conclude by Harnack’s inequality that 4 > 0 in
2. Therefore, ug — co on any compact subset of 2. As ¢ # 0 in (2, from (2.10),
we conclude that b = 0 if and only if A = AP (£2).

By [4], the boundary blow-up problem

—AU = \U —a(x)U?, 2€ 02\, 0Ulope=0, Ulag, =
has a minimal positive solution, which we denote by Uj. Since ug satisfies
—Aug = hug — a(z)uj — Bugvg < Aug — a(z)uj, x € 2\ 2,
dvuglon =0, uglon, < oo,
by [4, lemma 2.1] we have
ug(x) < Ux(z) in 2\ . (2.11)

Therefore,

—Avgzlwg<1—%) <,ng<1—vﬁ>, xz € 2\,
up U)\

Ovvglog =0, wvslag, < oo.
Let V) be the minimal positive solution of

AV =pV(1-U'V), x€ 2\,
8VV|BQ == 07 V‘ago = Q.

By [4, lemma 2.1] we have
vg(z) < Va(z) in 2\ (. (2.12)
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Since ||vg|lcc — 00, (2.12) implies that

95 — 0 uniformly on any compact subset of 2\ {2y, and, hence, ® =0 in 2\ 2.

(2.13)

By (2.11), (2.12) and the standard regularity result for elliptic equations, we see

that, for any sequence of § decreasing to 0, there exists a subsequence {3,} such

that, for any 0 < 0 < 1, ug, — u in C1(£2\ §2) for some non-negative function u,
and u satisfies

—Au=Mu—a(zx)u* in 2\ 2, Ou=0 ondN.
This completes the proof. O
We shall show that the limit function w in lemma 2.3 satisfies
u>0 in2\h, wu=o0 on d.

As a consequence, u is a positive solution of the following problem:

(2.14)

—Au = — a(z)u®, x€ 2\,
dyulan =0, U|8!20 = 00.

We now need another technical lemma.

LEMMA 2.4. Let {h;(z)} and {a;(z)} be two sequences of continuous functions sat-
1sfying

() hilloos llaillee < C for some positive constant C' and all 4,

(ii) a;(z) >0 on 2\ 2o for all i, and a;(z) — O uniformly on (2.

Assume that u; is a positive solution of the problem

—Au; = hi(x)u; —a;(x)u?  in 2, Ou; =0 on IN.

If
u; — 00 uniformly on any compact subset of 2y, (2.15)

then
u; — 0o uniformly on 2y as i — co.

Proof. We adapt some of the techniques given in [4,5]. As {2y is smooth, there exists
R > 0 such that, for any x € 92, there is an interior tangent ball of £2) at z with
radius R, i.e. B;(y; R) C 2y and 0B, (y; R) N 0§29 = {z}, where y € 2o and R > 0
are the centre and radius of B, (y; R), respectively.

Define w;(x;) = ming u;. To prove our result, it is sufficient to prove that
u;(z;) — oo as i — oo. We assume on the contrary that there exists a subse-
quence of {u;(x;)}, still with the same notation, such that u;(z;) < C for some
positive constant C. Using (2.15), it is easy to see that, subject to a subsequence,
either x; € 082y or T; — xg € A2y as i — oo. Choose §2; C 2y as follows:

o 2 if z; € 8!20,
O {z e 2 : d(x,0020) > d(x,09%)}  if x; € Q.
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Then (2; C 2, and §2; has the same smoothness as that of 2y and, for all large ¢,
there is an interior tangent ball of (2; at x; with radius R, which we denote by
B(yi; R).

CLAIM. There exist 0 > 0 and ¢; — oo such that
ui(x) = ui(x;) + eipi(x)  for %R < |z —yi| <R, (2.16)
where Y;(x) = e—olz—yil* _ g—oR*

In fact, as h;(x) is uniformly bounded, we may choose a large constant o >
2N R~2 such that 02 R? — 2No — |h;(z)| > 0 on (2 for alli. When R < [z—y;| < R,
a direct calculation yields

A + hi (@) = (40| — yi]® — 2No + hi(x))e 17 vl" — py(z)e o F
> (62R2 — 2No + hi(z))e 1= vil" — p(z)e
> (0%R? — 2No)e %
> 0. (2.17)
Choose a compact subset

K C 2y suchthat | |B(y:; iR) C K.
' 2

In view of (2.15), there exist ¢ — oo such that u;(x) > u;(x;)+cf(e *"R2/4fe*"R2)
for all € B(y;; iR) C K. Deﬁne £; = maxg, a;(v). By hypothesis (ii), &; — 0 as

i — o00. Let ¢; = min{c},¢; } then ¢; — oo and

wi(x) > wi(z;) + ci(ef"R /4 _ gmoR ), VzeB(y;iR)C K. (2.18)
We now consider the following problem:
—Aw = hi(z)w — a;(z)w?, = € By, (yi; R) \ By:; %R),
—oR?/4 —oR? (219)
w\aB (yi;R) = ui(z;), w|8B(yi;R/2) = ui(r;) + ci(e —€ )-
In view of (2.18), u; is a super-solution of (2.19). Define
w;i(x) = ui(z;) + ().
Then w; satisfies the boundary conditions of (2.19). Since ||A;l|oc, ui(z:) < C, 0 <
¥i(z) <1, and a;(z) < &, by (2.17) we find that, for € By, (yi; R) \ B(yi; 3 R),
> ci(0?R?* — 2No)e_"R2 + hy(2)ui(z5) — aq(x)w?
> ¢i(02R% — 2No)e "% — C? — 26,(C% + ¢2)
> ¢;(02R% — 2No)e " — (1 + 2¢,)C% — 2
>0 fori>1 (since ¢; — 00).

Aw; + hi(z)w; — a;(x )w?

Therefore, for large i, w; is a sub-solution of (2.19). By [6, lemma 2.1], this implies
that u; > w; in B, (yl, R)\ B(y;; 3R), i.e. (2.16) holds. This proves our claim.
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Choose a positive constant k such that ||a;]| < k for all 4 and consider the
following problem:

—Au = hi(z)u — ku?, z€ 02\ “Qi’} (2.20)

Ovulan =0, ulon, = wi(x;).

Since w;(x;) = ming, u;, 0 and wu; are sub- and super-solutions of (2.20), respec-
tively. So, (2.20) has a non-negative solution @;. In fact, 4; is positive by the strong
maximum principle. By [6, lemma 2.1] we may deduce that

ui(x) = a;(x) in 02\ 2.

We consider next a further auxiliary problem:

(2.21)

—Au = Cu—ku?, x€ 02\,
yulan =0, ulog, = C,

where ||h; |00, wi(x;) < C. By [4, lemma 2.3], problem (2.21) has a unique positive
solution u}. It is obvious that u} is uniformly bounded on (2 \ {2; with respect to i.
Since ||hilloo, wi(z;) < C, uf is a super-solution of (2.20). Therefore, @; < u} on
2\ £2; by [6, lemma 2.1]. In particular, %3] 7,0 (2\ ©2,) is bounded in 4. Then the LP-
estimates and the Sobolev imbedding theorems imply that [|@;|[c1(0\o,) depends
only on the structure of §2; and the bounds of |7, ||l Lo\ 02;), wi(2:) and
[£2\ £2;|. Because

176 Ml o 1723 ]| oo 2\ 2,y wi () < C,

[2\ 20] < |02\ £2;] < 2|02\ 2], 2; = 20, and £2; has the same smoothness as that
of (2, it follows that

liller ooy < C
for some positive constant C' and all 4. In particular, |V, (x;)| < C for all 4. Since
we have
i Omi

go;

where 7; = (y; — fﬂi)/|yi - »”Cz‘|~

On the other hand, as u;(z) > w;(z) = u;(2;) + c;tbs(x) in By, (yi; R) \ B(y; 3R)
and u;(z;) = w;(x;), we have
u;(z;) > Owi(xi) _ Ciad)(fﬂi) — e[20Re""] S o0,
since ¢; — oo. This contradiction finishes the proof. O

THEOREM 2.5. Let (u,v) = (ug,vg) be a positive solution of (1.1). We then draw
the following conclusions:

(a) limg o+ (ug(z), v(z)) = (00, 00) uniformly on 2;
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(b) along any sequence of 5 decreasing to 0, there is a subsequence {,} such that

lim (ug,,vs,) = (u,v) uniformly on any compact subset of 2\ 2y,
n— oo

where (u,v) is a positive solution of the system

—Au = \u — a(z)u? in 02\ £,
—Av = v <1 - v) in 2\ o, (2.22)
u

Ovulan = 0yv]an =0, ulan, = v|an, = o0;

(c) if there exists & > 0 such that a(z)d(z,20)™¢ is bounded for all x € 2\
£y close to 02y, then (2.22) has a unique positive solution (u,v) and the
convergence in (b) holds for 3 — 0T.

Proof. Note that ug satisfies
—Aug = [A = BlvgllocVs()]ug — a(z)uf in £, Oyug =0 on 01.

Define hs(z) = XA — B|jvs||c®s(z). Along any sequence of 3 decreasing to 0, from
the proof of lemma 2.3, we already know that 5||vgl/c is bounded. We may assume
that B||vg|lec = b € [0,00). Therefore, ||hg||« is bounded in . For any sequence
Bi — 01, taking h;(x) = hg,(x), ai(z) = a(x) and u;(z) = ug,(x) in lemma 2.4,
and making use of lemma 2.3, we obtain u; — oo uniformly on 2y as i — oo.
Consequently,

ug — oo uniformly on 2y as 8 — 0. (2.23)

For fixed large positive constant M, consider the problem

—Aw = hy(z)w — lallww?, =€ 2\ ”} (2.24)

ay’w|ag =0, w|390 = M.

Analogously to the discussion to problem (2.20) we find that (2.23) has a unique
positive solution wys(x). By continuity we see that there exists e = e(M,3) > 0
such that wy(z) > 5M for all z € {x € 2\ 2 : d(x,002%) < e}. By (2.23)
and [6, lemma 2.1] we deduce that ug > wys on 2\ 2y, provided that § < 1.

Let u be the limit of ug in lemma 2.3. Then u = limg _,o+ ug, = wy > 0 in
2\ 2 and u(z) > M for all z € {x € 2\ (2 : d(z,002) < €}. As M is arbitrary,
it follows that u|gn, = co and, hence, u is a positive solution of (2.14).

We now consider vg, , where {3, } is any sequence decreasing to 0. A simple sub-
and super-solution argument shows that the problem

Av;w(l inf, v=0 ondf

minflo um )
has a unique positive solution v,, and, due to (2.23), it can easily be seen that
v, — 0o uniformly on any compact subset of (2y. By [6, lemma 2.1], we can easily
see that vg, > v, in £2). We can now apply lemma 2.4 to the equation for vg, with
hn(x) = p, an(x) = ,uugl (z), to conclude that vg, — oo uniformly in (2. Hence,
vz — oo uniformly in 2y as 8 — 07.
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Suppose now that {f,} is the sequence along which ug converges to u. Since
ug, () = u(x) > 0 and vg, (z) < Vi(z) in 2\ 25, analogously to the discussion
to ug, we can deduce that, subject to a subsequence, vg, — v in CLL_(£2\ (2) and
v is a positive solution of the following problem

—Av = )\v(l — U) in 2\ o,
u (2.25)

ayv|ag = 0, ’U|aQO = Q.
This proves conclusions (a) and (b) in the theorem.
Conclusion (c) follows from [2]. Indeed, under the extra condition on a(x), by [2,

theorem 3.2], (2.14) has a unique positive solution. By [2, lemma 2.2], the unique
positive solution u(x) of (2.14) satisfies
Crd(z, £20)77 < u(x) < Cod(x, £20)77, x € N2\ o,

for some positive constants v, C; and Cy. This in turn implies that a(z) = pu(x)~?
satisfies a condition similar to that for a(x) near 92y and, hence, we can apply |2,
theorem 3.2] to (2.25) to conclude that it has a unique positive solution v. Therefore,
(2.22) has a unique positive solution. This implies that the convergence of (ug,vg)
in conclusion (b) holds for 3 — 0. O

THEOREM 2.6. If (u,v) £ (ug,vg) is a positive solution of (1.2), then

Jim (us(@). vs(@)) = (U=, V2)

uniformly over 2, where U, and V. are the unique positive solutions to
~AU =\ — [a(z) +€]U?,  0,Ulpn =0,

and

€

v
—AV = ,LLV<]. — U>7 aI/V‘BQ = 0)

respectively.

Proof. The proof of this theorem is easy. Let {3, } be an arbitrary sequence decreas-
ing to 0, and denote (un,v,) = (ug,,vs,). A simple sub- and super-solution argu-

ment shows that -

Unp < X7 Un < X
Using these estimates and a sub- and super-solution argument again, we deduce

A = Be/N)]

Up, U
T allee +e

We can now apply standard regularity theory for elliptic equations to conclude that,
subject to a subsequence, (u,,v,) converges to some (U, V) in [C1(£2)]? and, by
our estimates for u, and v,, U and V are positive solutions to

—AU = )\U — [G(I) + €]U27 ayU|89 = 07
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and

v
—AV = ﬂV(l — U>7 auV|BQ = 07
respectively. It is well known that the equation for U (and, hence, that for V') has
a unique positive solution. Therefore, (ug,vg) = (U, V) as § — 07. O

We now consider the asymptotic behaviour of

R ug

Yp
ug =
sl

and Ug = ——.
l[vg]lo0

From the proof of lemma 2.3, we already know that, for any given sequence of (3
decreasing to 0, there exist two non-negative and non-trivial functions @, o € H*(£2)

such that, along a subsequence of the given sequence of 3,
(@5,05) — (4,0) i [H'(Q)]%,  (ip,0p) = (4,0) in [LP(2)]%, Vp> 1.

Moreover, ¥ satisfies (2.13), 0 #Z 0 in {2y, & = 0 on £2\ {29 and @ is a positive solution
to (2.10).
As Juglloo < |Juglloo, subject to a subsequence, we may assume that

sl , ¢ & 0,1,
l[uglloo

By the interior estimate for elliptic problems and the Sobolev imbedding theorem
we find that 43 — @ in Cf(£29). Since @ > 0 in 2y and 95 — © in LP(£2), it follows

from .
—Aﬁﬁ = )\’IA}B (1 — ||’U'6HOO 136> in QO
luglloo s

and from (2.13) that ¢ satisfies

A= ,w<1 - gZ) in 2y, =0 on . (2.26)

Since © # 0, by the Harnack inequality we see from (2.24) that © > 0 in 2. As
> AP(£), we must have £ > 0.
Therefore, we have the following result.

THEOREM 2.7. Let (u,v) £ (ug,vg) be a positive solution of (1.1). Then, along
any sequence of 3 decreasing to 0, there is a subsequence {8,} along which

us Up ) PN
BB ) (a,0)
(IIUalloo’ llvglloo

weakly in [H'(£2)]* and strongly in [LP(2)]* for any p > 1, where @ and © are
positive in 2y and 4 =0 =0 in 2\ 2. Moreover, (i,0) satisfies

— A= N — bad in 2,
—Ab = i (1 - gZ) in 2, (2.27)
U=170= on 08,

0
for some constants b > 0, £ € (0,1]; b= 0 if and only if A = AP (£2).

https://doi.org/10.1017/50308210500004704 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210500004704

Asymptotic behaviour of a predator—prey model 773

REMARK 2.8. The constants b and £ in (2.27) can be uniquely determined when the
spatial dimension N = 1. In this case, it is easy to adapt the arguments in [8] to show
that (2.27) has a unique positive solution. Using this fact and [|i]lco = ||0]lcc = 1,
one can uniquely determine b and £. We omit the details for the sake of brevity.

3. The strong-predator case: proof of theorem 1.2

Since our proofs for (1.1) and (1.2) are the same, we combine the two problems into
one by agreeing that e = 0 is possible in (1.2). Therefore, we assume € > 0 in this
section.

Let (ug,vg) be a positive solution to (1.2) with € > 0. We need to show that

(uslloos llvglleo) = (0,0).

lim
B—00
First, a simple comparison argument gives ||vgl|co < ||uglloo for all 3 > 0. Define

i ug ; v,
B= T B =
l[usloo [v8loo

then, from the inequalities —Adg < Aug and —Adg < pudg, we deduce, by argu-
ments similar to those following (2.6), that, given any sequence of (3 increasing
to oo, there exist two non-negative and non-trivial functions @,d € H'({2) such
that, along a subsequence,

(4, 95) — (4,9) in [H'(2)]?, (4, 0p) — (4,9) in [LP(2)]* Vp> 1.

From the inequality

A9 2/\/ fw:/[a($)+5]ﬂﬁuﬂ+5||vﬂlloc/ (e >ﬂllv5||oo/ tigdg,
(9] 2 2 2

we deduce that if §||vg||e is unbounded in 3, then, subject to a subsequence,
40 = lim tgtg = 0.
[ o= i [ sy

Hence, 40 = 0 on {2 and, by lemma 2.1, we arrive at a contradiction: A > pu.
Therefore, §||vg||s is bounded in § and, consequently,

lvglloo = 0 as B — oco.

We claim that ||ug|le is bounded in 3. If this assertion is not true, then, by
passing to a subsequence, ||ug|lcc — 00. Analogously to the proof of lemma 2.2,
@ satisfies (2.7). Since f||vg|lcc is bounded in 8, we may assume that, subject to
a subsequence, (||vg|lcc = b € [0,00). Then 4g converges to @ uniformly on any
compact subset of {2y and (i, ) satisfies

—Atu =Xt —buv in 29, w=0 on 9.

Since 4 =0 in 2\ 29, and & Z# 0 in {2, the Harnack inequality implies that @ > 0
in 25. Note that

R R vg .
—Atg = pig (1 - A) in 2;
lluslloctis
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it follows from ||ugl|lcc — 00, vg — 0 and Gz — @ > 0 in 2y that
—AD=p0 in 2y, ©>=0 on 0.

As > AP(82), it must hold that © = 0 in 2. This fact, combined with (2.7),
yields @0 = 0 in 2. By lemma 2.1 we again deduce a contradiction.

We now prove limg_, o ||ug|lcoc = 0. We assume on the contrary that, by passing
to a subsequence, ||uglloo = ¢ > 0. Since |lugll and fBllvglle are bounded in g,
from similar considerations as above, there exist two non-negative and non-trivial
functions u,® € H*(£2) such that, by passing to a subsequence,

ug —u inC'(2), dg—0 inH'Y(2), O5—0 inLP(2)Vp>1,
and ||ul|eo = . Moreover, if B||vg|lcc — b, then it can easily be seen that (u,?)
satisfies

—Au = M — [a(z) + e]u® — bi(z)u in 2, O,u=0 on 9f2.

The Harnack inequality gives u > 0 on 2. In view of [lug|lsc — 0 and ug — u > 0
on {2, it follows from

—Avg = pig (1 - W) in £2, 0,93 =0 on 012,
that © satisfies

—Ab=p0 in {2, 0,0 =0 on 02
This is impossible since ¢ > 0 and © > 0, ¥ # 0. Hence, limg_, ||ug||cc = 0. This
completes the proof of theorem 1.2.
REMARK 3.1. As before, define

R ug n Up
uB = TR /Uﬂ = 7;
l[uglloo [vg]]o0

then along any sequence of [ increasing to oo, there is a subsequence along which

(g, 05) = (4,0) i [H'(Q)]%,  (ip,0p) = (@,0) in [LP(Q)]* ¥p > 1,
and (@, ) is a positive solution of the system
— Al = i — bud in £2,
—Ab = pd <1 - 52) in 0, (3.1)
o,0=0,0=0 on 042,

where £ € (0,1], b > 0.

REMARK 3.2. The positive constants b and £ in (3.1) can be uniquely determined
when the spatial dimension N = 1. In this case a simple variation of the arguments
in [8] shows that (3.1) has a unique positive solution, which is necessarily the

constant solution )
(U/, U) = (gb, b) .

Since ||4]|oo = ||0]|co = 1, we must have (4,0) = (1,1) and, hence, b = X, { = 1.
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4. The small-predator diffusion case: proof of theorem 1.3

As in §3, we again consider (1.1) and (1.2) simultaneously by regarding ¢ in (1.2)
as only non-negative. Suppose that (u,,v,) is a positive solution of (1.2) with e > 0
fixed.

As before, by a simple comparison argument we have

HUMHOO < ”uu”om V. (4.1)

STEP 1 (there exists 0 < C' < oo such that ||u,l/sc, [|[vu|lec < C for all > o).

We may assume that € = 0; the conclusion for € > 0 follows from a standard
comparison argument. By (4.1), we need only to prove ||u, oo < C for all p > po.
Assume on the contrary that, by passing to a subsequence, |lu,||s — 00 as u — oo.

Set
. Uy, - Uy

Uy = Vy = .
P luulls” " vl

Then due to the inequality —Ad,, < A, and the boundedness of 9, in L?({2), there
exist two non-negative functions @ and v such that, by passing to a subsequence:

(i) @, — u weakly in H'(£2), and strongly in LF(£2) for all p > 1;
(ii) 9, — 0 weakly in L?(2);
(iii) @=0in 2\ 2, @ %0 in 2.

Moreover, taking k; = ||uy||oo, €i = ||Vulloc in the proof of lemma 2.1, we obtain
the inequality (2.2) with w; = @, and

[ v = [,z @, (12)
0 ltpllos Jo o)
Since 0 < 4y, 7, < 1, by passing to a subsequence, we may assume that 4,0, — 40
in L2(£2).

We claim that lim, . ||vu]lec = co. If this is not true, by passing to a subse-
quence, we may assume that ||v,||c — m € [0,00). For any ¢ € C§°({2), in view

of
_Aaﬂ = /\ﬂu - /gHU;AHooaMTJM in Qo,
we obtain
/ Vi, Ve = )\/ Uy — BHU#HOO/ Ty Dy p-
20 2 2
Therefore,

VaVy = )\/ tp —mp UVP.
20 20 20
Since 4 = 0 in 2\ 29, we see that @ is a weak solution of
—AT = At —mp0t in (2, 4 =0 on 0.

The Harnack inequality asserts that @ > 0 in §2y. Since 0 < @, (x),0,(x) < 1, we
can also prove that #, — 4 uniformly on any compact subset of (2.
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For any ¢ € C§°(§2), from the second equation of (1.2) we have

1 / i / " < [0plloo O
—= D Ap = ol — ———= ). (4.3)
B J 0, g 0 . HuMHOO Up,
Using [|v,lec < C, ||tuplloc — o0 and @, — @ > 0 uniformly on any compact subset
of £2y, we obtain from (4.3) that

/ U = 0, which implies that 2 =0 in (2.
29
Therefore, 40 = 0 in {2, and, hence,

Jim [ 3,5, = 0. (4.4)
In view of [[vu]leo < ||uplloo and @, — @ in L?(£2), it follows from (2.2), (4.2) and
(4.4) that
< 02 = li 02 < i t,, v, = 0. .
0< /Qu Mh_}rr;o Quu < Hll)rr;o Q“#Uu 0 (4.5)
This is a contradiction, since 4 is not identically zero.
Therefore, ||v,|/cc — 00 as p — co. Then, from

N2 2 [ a2 = [ @i+ Sl [ > Bl [ i
(9] 0 (9] (9]

it follows that

av = lim | .0, =0,
/Q sy
i.e. (4.4) holds. We can obtain (4.5) using a method similar to the above. This gives
a contradiction. This proves step 1.

STEP 2 (there exists ¢ > 0 such that ming v, ming u, > ¢, for all @ > po).

We first prove ming u,, > c for all 1 > 119. Assume on the contrary that, by passing
to a subsequence, ming u, — 0as u — oco. In step 1 showed that ||u, ||, [|vu]|ec < C
for some positive constant C' and all p > pg. Applying the Harnack inequality to
the first equation of (1.2), we find that maxgu, < M mingu, for some positive
constant M that is independent of y1 > po. Therefore, ||u,||o — 0 as p — oo, and
so does ||v,|ls by (4.1). This shows that u,,, v, — 0 uniformly on 2 as p — .

As before, we define

u
o
Uy

gl

Then 1, — @ weakly in H'(£2) and strongly in LP(£2) for all p > 1, and @ is a
non-negative and non-trivial solution of the problem

—Ad= A2 in £2, d,i=0 on 912

This is impossible since A > 0. The proof for ming u, > ¢ is complete.
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~ We show next that ming v, > ming u,,. Indeed, suppose ming v, = v, (o), o €
(2. Then, by [9, lemma 2.1], we find from the equation for v, that

potan) (1 2203) <0

u, (7o)

Therefore,
minv, = v,(rg) = uu(xo) = minw,.
7} Iz}

This completes the proof for step 2.

STEP 3 (completion of the proof). From step 1, the function Au,, — [a(x) + S]HZ —
Buyv,, is uniformly bounded on {2 with respect to p. Applying the elliptic estimate
and the Sobolev imbedding theorem to the differential equation of u,, it follows
that, by passing to a subsequence, u,, — u in C1%(§2) for some positive function u
satisfying ¢ < u < C. Since v, is bounded in L?({2), by passing to a subsequence,
v, — v in L?(§2) for some positive function v satisfying ¢ < v < C. In the following
we shall prove that v = u. This will be done by proving v, — u uniformly on any
compact subset of (2.

Fix 2o € 2. As u € C(£2) and u(z) > ¢ on £2, for any fixed small 0 : 0 < 0 < c,
there exists a & > 0 sufficiently small such that

u(zg) — 30 < u(x) < u(wg) + 30 in B(wo,d), (4.6)

where B(z¢,6) = {z € 2,|z — x| < 6}. In view of u,, — u uniformly on B(z(,d)
we have that

u(z) — 30 < uy(x) <u(z)+ 30 for all & € B(xo,0) and p>> 1.
Consequently,

u(zo) — o < uu(z) <u(wg) +o for all z € B(wg,d) and p > 1. (4.7)
We now consider the following two auxiliary problems:

—Aw, = pw, (1 T Yn ) in B(zo,6), w,=0 ondB(zg,0). (4.8)
u

Xo)— 0O

—Az, =z, <1 - W) in B(xg,0), 2z, =00 ondB(xp,9d). (4.9)

Using [6, lemmas 2.2 and 2.3], problems (4.8) and (4.9) have unique positive solu-
tions w, and z,, respectively, and

wy, — u(xg) — o, zy = u(zo) + 0 (4.10)

uniformly on any compact subset of B(zg,d). From (4.7) we see that v, is a super-
solution of (4.8) and a sub-solution of (4.9). By [6, lemma 2.1], w, < v, < 2, in
B(xg, 6). Therefore, by (4.10),

u(zo) —o = lim wy(x) <lim, , v, (@) <lmy vy (@) < lim z,(z) = u(ze) + 0
pn—00 H—00
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uniformly on any compact subset of B(xg,0). By the arbitrariness of o we see that
lim,, 00 v, (20) = u(xp). Since the convergence in (4.10) is uniform in x¢, we easily
see that v, — u uniformly on any compact subset of {2. Therefore, v = u.

From the first equation of (1.2) we now see that u satisfies (1.6). Since a(z) +¢+
B = >0, it is well known that (1.6) has a unique positive solution w. Therefore,
the entire family of functions u, and v,, converge to w. The proof of theorem 1.3 is
complete.

REMARK 4.1. In fact, we can show that v, — w uniformly in . To see this, for
any o € 012, we can extend u, and v, (by reflection across 02) to B(zg,d) such
that v, is a positive solution of

—Lv = ,uv(l - U), x € B(zo,9),
Uy

where L is a second-order elliptic operator independent of p and
L=A on B(xp,J) NI

We can then argue as above to show that v, — v uniformly on any compact subset
of B(xg,d). By a standard finite covering argument, we see that v, — « uniformly

on 2.
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