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To understand the heterogeneous spatial effect on predator–prey models, we study
the behaviour of the positive steady states of a predator–prey model as certain
parameters are small or large. We compare the case when the model has a spatial
degeneracy with the case when it does not have such a degeneracy. Our results show
that the effect of the degeneracy can be clearly observed in one limiting case, but not
in the others.

1. Introduction and main results

Let Ω0, Ω ⊂ R
N be two smooth bounded domains that satisfy Ω̄0 ⊂ Ω, and let

a(x) be a continuous non-negative function satisfying

a(x) ≡ 0 in Ω̄0, a(x) > 0 in Ω̄ \ Ω̄0.

For any Ω∗ ⊂ Ω, we denote by λD
1 (Ω∗) the first eigenvalue of the Dirichlet problem

−∆u = λu in Ω∗, u = 0 on ∂Ω∗.

Let λ, µ and β be positive constants. In [3], the authors showed that the ‘degenerate’
predator–prey model

−∆u = λu − a(x)u2 − βuv in Ω,

−∆v = µv

(
1 − v

u

)
in Ω,

∂νu = ∂νv = 0 on ∂Ω

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(1.1)
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can behave very differently from the perturbed non-degenerate model

−∆u = λu − [a(x) + ε]u2 − βuv in Ω,

−∆v = µv

(
1 − v

u

)
in Ω,

∂νu = ∂νv = 0 on ∂Ω,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(1.2)

where ε is a positive constant, ν is the outward unit normal vector on ∂Ω and ∂ν =
∂/∂ν. Here, following [3], we call (1.1) a degenerate model because the coefficient
a(x) vanishes on part of the domain Ω. It was proved in [3] that (1.2) always has
a positive solution, but, for (1.1), when

λ > λD
1 (Ω0) > µ,

there is no positive solution for all small positive β. For parameters in these ranges,
making use of this essential difference between (1.1) and (1.2), it was proved in [3]
that the positive solutions (uε, vε) of (1.2) can develop sharp spatial patterns when
ε > 0 is small. On the other hand, it was shown in [3] that, under the condition

µ > λ � λD
1 (Ω0), (1.3)

problem (1.1) has at least one positive solution (u, v) for any β > 0. Due to this fact
and the a priori estimates established in [3], it is easy to show that, under (1.3),
for small ε > 0, any positive solution (uε, vε) of (1.2) is close to a positive solution
(u, v) of (1.1), and, hence, no sharp spatial patterns of (uε, vε) can be observed.

In order to gain further understanding of (1.1) and (1.2) (in particular, to know
whether (1.1) and (1.2) still exhibit any essential differences when (1.3) is satisfied),
we consider in this paper several limiting cases of these systems. To be more specific,
assuming (1.3), we shall discuss the limiting behaviour of the positive solutions
of (1.1) and (1.2) for the cases β → 0+, β → ∞ and µ → ∞, respectively. In
ecological terms, these cases may be interpreted as, respectively, weak-predator,
strong-predator and small-predator diffusion.

It emerges that, in the weak-predator case, the effect of the degeneracy can be
clearly observed in the limit, where the positive solutions of (1.1) exhibit sharp
spatial patterns, while those of (1.2) do not have such patterns; in the strong-
predator case, the limiting behaviours of (1.1) and (1.2) are the same; in the small-
predator diffusion case, the limiting behaviours of (1.1) and (1.2) are similar.

More precisely, suppose that (1.3) holds. The main results of this paper are then
as given in the following theorem.

Theorem 1.1 (limiting behaviour as β → 0+). Let (u, v) � (uβ , vβ) be a positive
solution of (1.1). We then draw the following conclusions:

(a) limβ→0+(uβ(x), vβ(x)) = (∞,∞) uniformly on Ω̄0;

(b) along any sequence of β decreasing to 0, there is a subsequence {βn} such that

lim
n→∞

(uβn , vβn) = (u, v) uniformly on any compact subset of Ω̄ \ Ω̄0,
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where (u, v) is a positive solution of the system

−∆u = λu − a(x)u2 in Ω \ Ω̄0,

−∆v = µv

(
1 − v

u

)
in Ω \ Ω̄0,

∂νu|∂Ω = ∂νv|∂Ω = 0, u|∂Ω0 = v|∂Ω0 = ∞;

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(1.4)

(c) if there exists ξ > 0 such that a(x)d(x, Ω0)−ξ is bounded for all x ∈ Ω \
Ω̄0 close to ∂Ω0, then (1.4) has a unique positive solution (u, v) and the
convergence in (b) holds for β → 0+;

(d) if (u, v) � (uβ , vβ) is a positive solution of (1.2), then

lim
β→0+

(uβ(x), vβ(x)) = (Uε, Vε)

uniformly over Ω̄, where Uε and Vε are the unique positive solutions to

−∆U = λU − [a(x) + ε]U2, ∂νU |∂Ω = 0,

and

−∆V = µV

(
1 − V

Uε

)
, ∂νV |∂Ω = 0,

respectively.

Theorem 1.2 (limiting behaviour as β → +∞). Let (u, v) � (uβ , vβ) be a positive
solution of (1.1). Then limβ→∞(uβ , vβ) = (0, 0) uniformly on Ω̄. The same holds
for positive solutions of (1.2).

Theorem 1.3 (limiting behaviour as µ → +∞). Let (u, v) � (uµ, vµ) be a positive
solution of (1.1). Then uµ → w in C1(Ω̄) and vµ → w uniformly on any compact
subset of Ω, where w is the unique positive solution of

−∆w = λw − [a(x) + β]w2 in Ω, ∂νw = 0 on ∂Ω. (1.5)

A similar conclusion holds for the positive solutions of (1.2), except that the limiting
function is the unique positive solution of

−∆w = λw − [a(x) + ε + β]w2 in Ω, ∂νw = 0 on ∂Ω. (1.6)

To better understand the behaviour of the positive solutions (uβ , vβ), the limits

lim
β→0+

(
uβ

‖uβ‖∞
,

vβ

‖vβ‖∞

)
and lim

β→∞

(
uβ

‖uβ‖∞
,

vβ

‖vβ‖∞

)

will also be discussed.
In [3], the situation 0 < λ < λD

1 (Ω0) was also considered and it was shown that,
in this case, both (1.1) and (1.2) have positive solutions for every µ > 0 and
β > 0. Using the techniques in [3], it can be shown that the corresponding limiting
behaviours of (1.1) and (1.2) are the same in each of the three cases (β → 0+,
β → ∞ and µ → ∞); we leave the details to the interested reader.
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In [1], the Lotka–Volterra predator–prey model with certain degeneracies was
examined. As pointed out in [3], the effects of the degeneracy on the Lotka–Volterra
model differ considerably from those on the predator–prey model considered in [3]
and here.

The rest of the paper is organized as follows. In § 2, we consider the weak-predator
case, and theorem 1.1 is proved there. In § 3 we discuss the strong-predator case
and give the proof of theorem 1.2 and related results. The small-predator diffusion
case is studied in § 4, where theorem 1.3 is proved.

2. The weak-predator case: proof of theorem 1.1

In this section, we discuss the behaviour of (1.1) and (1.2) as β decreases to 0,
all other parameters being positive and fixed. We assume (1.3) throughout this
paper. We shall discuss (1.1) first. As will become clear soon, the analysis is rather
involved. In contrast, the asymptotic behaviour of (1.2) is easy to understand, and
will be considered at the end of this section.

We start with a technical lemma.

Lemma 2.1. Assume that (ũi, ṽi) is a positive solution of (1.1) with β = βi. Let
{ki}, {�i} be two sequences of positive numbers satisfying

�i

ki
,
ũi

ki
,
ṽi

�i
� C

for some positive constant C and all i. If(
ũi

ki
,
ṽi

�i

)
→ (ũ, ṽ) weakly in H1(Ω) × H1(Ω) and strongly in L2(Ω) × L2(Ω),

and
ũ �≡ 0 and ũṽ ≡ 0 in Ω,

then it must hold that λ � µ.

Proof. Define

ui =
ũi

ki
and vi =

ṽi

�i
.

We then have

−∆ui = λui − a(x)kiu
2
i − βi�iuivi � λui in Ω,

−∆vi = µvi

(
1 − �i

ki

vi

ui

)
in Ω,

∂νui = ∂νvi = 0 on ∂Ω.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.1)

Multiplying the first equation of (2.1) by ui and integrating over Ω, we deduce that∫
Ω

|∇ui|2 dx � λ

∫
Ω

u2
i . (2.2)

From the second equation of (2.1) we see that µ is the first eigenvalue of the
problem

−∆w +
µ�ivi

kiui
w = µw in Ω, ∂νw = 0 on ∂Ω,
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and vi is the corresponding eigenfunction. It follows from the variational character-
ization of the first eigenvalue that

∫
Ω

[
|∇φ|2 +

µ�ivi

kiui
φ2

]
� µ

∫
Ω

φ2, ∀φ ∈ H1(Ω).

Taking φ = ui, we have
∫

Ω

[
|∇ui|2 +

µ�iuivi

ki

]
� µ

∫
Ω

u2
i .

Therefore, by (2.2) we can deduce that

λ

∫
Ω

u2
i +

∫
Ω

µ�iuivi

ki
� µ

∫
Ω

u2
i .

As �i/ki � C, and uivi → ũṽ ≡ 0 in L1(Ω), and ui → ũ in L2(Ω), we have∫
Ω

µ�iuivi

ki
→ 0 as i → ∞,

and, hence,

λ

∫
Ω

ũ2 � µ

∫
Ω

ũ2. (2.3)

Since ũ �≡ 0 by assumption, it follows from (2.3) that λ � µ.

Lemma 2.2. Let (uβ , vβ) be a positive solution of (1.1). Then

lim
β→0+

‖uβ‖∞ = lim
β→0+

‖vβ‖∞ = ∞.

Proof. By a simple comparison argument to the differential equation of vβ we obtain

‖vβ‖∞ � ‖uβ‖∞. (2.4)

We first prove that limβ→0+ ‖uβ‖∞ = ∞. Assume on the contrary that, along a
certain sequence of β decreasing to 0, ‖uβ‖∞ is bounded from above; then, by (2.4),
‖vβ‖∞ is also bounded from above. In this case, we claim that minΩ̄ uβ � δ for some
positive constant δ and all β in that sequence. In fact, if minΩ̄ uβ → 0 as β → 0+

along some subsequence, by applying the Harnack inequality to the differential
equation of uβ , it follows that

‖uβ‖∞ = max
Ω̄

uβ � C min
Ω̄

uβ → 0

for some positive constant C that depends only on λ, Ω and the bounds of ‖uβ‖∞
and ‖a‖∞.

Define
ûβ =

uβ

‖uβ‖∞
.

Then ûβ satisfies

−∆ûβ = λûβ − a(x)ûβuβ − βûβvβ in Ω, ∂ν ûβ = 0 on ∂Ω.
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Note that 0 � ûβ � 1 and, by the assumptions, a(x)uβ → 0, βvβ → 0 as β → 0+

(along the sequence). By standard regularity results for elliptic problems (see [7])
we find that ûβ → û in C1(Ω̄) along a further subsequence for some non-negative
function û, and û satisfies

−∆û = λû in Ω, ∂ν û = 0 on ∂Ω.

Since λ > 0, this implies that û ≡ 0, which is a contradiction, as maxΩ̄ û = 1. This
proves our claim that minΩ̄ uβ � δ.

By standard regularity results for elliptic problems, we now find that, along a
subsequence, uβ → u in C1(Ω̄) for some positive function u, and u satisfies

−∆u = λu − a(x)u2 in Ω, ∂νu = 0 on ∂Ω. (2.5)

Since λ � λD
1 (Ω0), we know that problem (2.5) has no positive solution. This con-

tradiction completes our proof of the fact that

lim
β→0+

‖uβ‖∞ = ∞.

Note that ûβ satisfies

−∆ûβ = λûβ − a(x)ûβuβ − βûβvβ � λûβ in Ω, ∂ν ûβ = 0 on ∂Ω. (2.6)

As 0 � ûβ � 1, it follows that
∫

Ω

(|∇ûβ |2 + û2
β) � (1 + λ)

∫
Ω

û2
β � (1 + λ)|Ω|.

Therefore, given any sequence of β decreasing to 0, we can extract a subsequence
along which ûβ converges to some û ∈ H1(Ω) weakly in H1(Ω) and strongly in
L2(Ω). Since ‖ûβ‖∞ = 1, we also have ûβ → û in Lp(Ω) for all p > 1. It is obvious
that 0 � û � 1. From (2.6) we also have

0 � ûβ � (1 + λ)(I − ∆)−1ûβ .

Since ûβ → û in Lp(Ω) for all p > 1, the above inequality implies that ûβ → 0 in
L∞(Ω) if û ≡ 0. Since ‖ûβ‖∞ = 1, this is impossible and, hence, û �≡ 0.

For any compact subset K ⊂ Ω \ Ω0, from the equation for ûβ we obtain

λ

∫
Ω

ûβ =
∫

Ω

a(x)‖uβ‖∞û2
β + β

∫
Ω

vβ ûβ

� ‖uβ‖∞

∫
K

a(x)û2
β

� aK‖uβ‖∞

∫
K

û2
β ,

where aK = minK a(x) > 0. Since ‖uβ‖∞ → ∞, we deduce from the above inequal-
ity that

∫
K

û2 = lim
∫

K
û2

β = 0. Consequently,

û ≡ 0 in Ω \ Ω0. (2.7)
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For later use, let us note that, since ∂Ω0 is smooth, (2.7) implies that û|Ω0 ∈
H1

0 (Ω0). We are now ready to show that limβ→0+ ‖vβ‖∞ = ∞. If this is not true,
then, along a sequence of β converging to 0, we have∫

Ω

(|∇vβ |2 + v2
β) � (1 + µ)

∫
Ω

v2
β � C

for some positive constant C that does not depend on β. Therefore, subject to a
subsequence, vβ converges to some v ∈ H1(Ω) weakly in H1(Ω) and strongly in
L2(Ω). Since ‖vβ‖∞ is bounded in β, we also find that vβ → v in Lp(Ω) for all
p > 1.

Since ûβ satisfies
−∆ûβ = λûβ − βvβ ûβ in Ω0,

in view of βvβ → 0 in L∞(Ω), and ûβ → û in Lp(Ω) for all p > 1 and (2.7), we
conclude that ûβ → û uniformly on any compact subset of Ω0, and û satisfies (in
the weak sense)

−∆û = λû in Ω0, û = 0 on ∂Ω0.

Due to (2.7) and û �≡ 0, we obtain λ = λD
1 (Ω0) and û > 0 in Ω0. Hence,

uβ → ∞ uniformly on any compact subset of Ω0. (2.8)

For any ϕ ∈ C∞
0 (Ω0), we have

∫
Ω0

∇vβ∇ϕ = µ

∫
Ω0

vβϕ − µ

∫
Ω0

v2
β

uβ
ϕ.

In view of (2.8), it follows that

−∆v = µv in Ω0, v � 0 on ∂Ω0.

Since µ > λD
1 (Ω0), this is possible only if v ≡ 0 on Ω̄0. This fact, combined

with (2.7), yields ûv ≡ 0 in Ω. Taking kβ = ‖uβ‖∞, �β = 1 in lemma 2.1, we
deduce that λ � µ, since û �≡ 0. This is a contradiction to (1.3). Lemma 2.2 is thus
proved.

Lemma 2.3. Let (uβ , vβ) be a positive solution of (1.1). Then, along any sequence
of β decreasing to 0, there exists a subsequence {βn} such that uβn → ∞ uniformly
on any compact subset of Ω0, and uβn

→ u in C1(Ω̄ \ Ωδ
0) for any 0 < δ 
 1, where

Ωδ
0 = {x ∈ Ω : d(x, Ω0) < δ} and u is a non-negative function satisfying

−∆u = λu − a(x)u2 in Ω \ Ω0, ∂νu = 0 on ∂Ω.

Proof. Define
ûβ =

uβ

‖uβ‖∞
and v̂β =

vβ

‖vβ‖∞
.

Then −∆ûβ � λûβ and −∆v̂β � µv̂β . Therefore, similar to the proof of lemma 2.2,
there exist two non-negative and non-trivial functions û, v̂ ∈ H1(Ω) such that,
along a subsequence of the given sequence of β,

(ûβ , v̂β) ⇀ (û, v̂) in [H1(Ω)]2, (ûβ , v̂β) → (û, v̂) in [Lp(Ω)]2, ∀p > 1.
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Moreover, v̂ �≡ 0 in Ω0. In fact, if v̂ ≡ 0 in Ω0, then ûv̂ ≡ 0 in Ω by (2.7). Since
‖vβ‖∞ � ‖uβ‖∞ and û �≡ 0 in Ω, taking kβ = ‖uβ‖∞, �β = ‖vβ‖∞ in lemma 2.1,
we obtain λ � µ. This is a contradiction.

It is obvious that ûβ satisfies

−∆ûβ = λûβ − β‖vβ‖∞ûβ v̂β in Ω0. (2.9)

We claim that β‖vβ‖∞ is bounded. If this is not true, subject to a subsequence, we
may assume that β‖vβ‖∞ → ∞. For any ϕ ∈ C∞

0 (Ω0), by (2.9) we have∫
Ω0

∇ûβ∇ϕ = λ

∫
Ω0

ûβϕ − β‖vβ‖∞

∫
Ω0

ûβ v̂βϕ.

It follows that
∫

Ω0
ûv̂ϕ = 0. Therefore, ûv̂ ≡ 0 in Ω0. Using (2.7) we obtain ûv̂ ≡ 0

in Ω. Similarly, we can apply lemma 2.1 to the above and conclude that this is
impossible.

Subject to a subsequence, we may assume that β‖vβ‖∞ → b ∈ [0,∞). Then ûβ

converges to û uniformly on any compact subset of Ω0 and (û, v̂) satisfies (in the
weak sense)

−∆û = λû − bv̂û = (λ − bv̂)û in Ω0, û = 0 on ∂Ω0. (2.10)

Using û � 0, û �≡ 0 and (2.7), we conclude by Harnack’s inequality that û > 0 in
Ω0. Therefore, uβ → ∞ on any compact subset of Ω0. As v̂ �≡ 0 in Ω0, from (2.10),
we conclude that b = 0 if and only if λ = λD

1 (Ω0).
By [4], the boundary blow-up problem

−∆U = λU − a(x)U2, x ∈ Ω \ Ω0, ∂νU |∂Ω = 0, U |∂Ω0 = ∞

has a minimal positive solution, which we denote by Uλ. Since uβ satisfies

−∆uβ = λuβ − a(x)u2
β − βuβvβ � λuβ − a(x)u2

β , x ∈ Ω \ Ω0,

∂νuβ |∂Ω = 0, uβ |∂Ω0 < ∞,

by [4, lemma 2.1] we have

uβ(x) � Uλ(x) in Ω \ Ω0. (2.11)

Therefore,

−∆vβ = µvβ

(
1 − vβ

uβ

)
� µvβ

(
1 − vβ

Uλ

)
, x ∈ Ω \ Ω0,

∂νvβ |∂Ω = 0, vβ |∂Ω0 < ∞.

Let Vλ be the minimal positive solution of

−∆V = µV (1 − U−1
λ V ), x ∈ Ω \ Ω0,

∂νV |∂Ω = 0, V |∂Ω0 = ∞.

By [4, lemma 2.1] we have

vβ(x) � Vλ(x) in Ω \ Ω0. (2.12)
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Since ‖vβ‖∞ → ∞, (2.12) implies that

v̂β → 0 uniformly on any compact subset of Ω̄ \ Ω̄0, and, hence, v̂ ≡ 0 in Ω \ Ω0.
(2.13)

By (2.11), (2.12) and the standard regularity result for elliptic equations, we see
that, for any sequence of β decreasing to 0, there exists a subsequence {βn} such
that, for any 0 < δ 
 1, uβn → u in C1(Ω̄ \ Ωδ

0) for some non-negative function u,
and u satisfies

−∆u = λu − a(x)u2 in Ω \ Ω0, ∂νu = 0 on ∂Ω.

This completes the proof.

We shall show that the limit function u in lemma 2.3 satisfies

u > 0 in Ω \ Ω0, u = ∞ on ∂Ω0.

As a consequence, u is a positive solution of the following problem:

−∆u = λu − a(x)u2, x ∈ Ω \ Ω̄0,

∂νu|∂Ω = 0, u|∂Ω0 = ∞.

}
(2.14)

We now need another technical lemma.

Lemma 2.4. Let {hi(x)} and {ai(x)} be two sequences of continuous functions sat-
isfying

(i) ‖hi‖∞, ‖ai‖∞ � C for some positive constant C and all i,

(ii) ai(x) > 0 on Ω̄ \ Ω̄0 for all i, and ai(x) → 0 uniformly on Ω̄0.

Assume that ui is a positive solution of the problem

−∆ui = hi(x)ui − ai(x)u2
i in Ω, ∂νui = 0 on ∂Ω.

If
ui → ∞ uniformly on any compact subset of Ω0, (2.15)

then
ui → ∞ uniformly on Ω̄0 as i → ∞.

Proof. We adapt some of the techniques given in [4,5]. As Ω0 is smooth, there exists
R > 0 such that, for any x ∈ ∂Ω0, there is an interior tangent ball of Ω0 at x with
radius R, i.e. Bx(y; R) ⊂ Ω0 and ∂Bx(y; R) ∩ ∂Ω0 = {x}, where y ∈ Ω0 and R > 0
are the centre and radius of Bx(y; R), respectively.

Define ui(xi) = minΩ̄0
ui. To prove our result, it is sufficient to prove that

ui(xi) → ∞ as i → ∞. We assume on the contrary that there exists a subse-
quence of {ui(xi)}, still with the same notation, such that ui(xi) � C for some
positive constant C. Using (2.15), it is easy to see that, subject to a subsequence,
either xi ∈ ∂Ω0 or xi → x0 ∈ ∂Ω0 as i → ∞. Choose Ωi ⊂ Ω0 as follows:

Ωi =

{
Ω0 if xi ∈ ∂Ω0,

{x ∈ Ω0 : d(x, ∂Ω0) > d(xi, ∂Ω0)} if xi ∈ Ω0.
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Then Ωi ⊂ Ω0, and Ωi has the same smoothness as that of Ω0 and, for all large i,
there is an interior tangent ball of Ωi at xi with radius R, which we denote by
B(yi; R).

Claim. There exist σ > 0 and ci → ∞ such that

ui(x) � ui(xi) + ciψi(x) for 1
2R � |x − yi| � R, (2.16)

where ψi(x) = e−σ|x−yi|2 − e−σR2
.

In fact, as hi(x) is uniformly bounded, we may choose a large constant σ >
2NR−2 such that σ2R2 − 2Nσ − |hi(x)| > 0 on Ω̄ for all i. When 1

2R � |x−yi| � R,
a direct calculation yields

∆ψi + hi(x)ψi = (4σ2|x − yi|2 − 2Nσ + hi(x))e−σ|x−yi|2 − hi(x)e−σR2

� (σ2R2 − 2Nσ + hi(x))e−σ|x−yi|2 − hi(x)e−σR2

> (σ2R2 − 2Nσ)e−σR2

> 0. (2.17)

Choose a compact subset

K ⊂ Ω0 such that
⋃
i

B(yi; 1
2R) ⊂ K.

In view of (2.15), there exist c∗
i → ∞ such that ui(x) > ui(xi)+c∗

i (e
−σR2/4−e−σR2

)
for all x ∈ B(yi; 1

2R) ⊂ K. Define εi = maxΩ̄0
ai(x). By hypothesis (ii), εi → 0 as

i → ∞. Let ci = min{c∗
i , ε

−1/2
i }; then ci → ∞ and

ui(x) > ui(xi) + ci(e−σR2/4 − e−σR2
), ∀x ∈ B(yi; 1

2R) ⊂ K. (2.18)

We now consider the following problem:

−∆w = hi(x)w − ai(x)w2, x ∈ Bxi(yi; R) \ B̄(yi; 1
2R),

w|∂Bxi
(yi;R) = ui(xi), w|∂B(yi;R/2) = ui(xi) + ci(e−σR2/4 − e−σR2

).

}
(2.19)

In view of (2.18), ui is a super-solution of (2.19). Define

wi(x) = ui(xi) + ciψi(x).

Then wi satisfies the boundary conditions of (2.19). Since ‖hi‖∞, ui(xi) � C, 0 <
ψi(x) � 1, and ai(x) � εi, by (2.17) we find that, for x ∈ Bxi(yi; R) \ B̄(yi; 1

2R),

∆wi + hi(x)wi − ai(x)w2
i � ci(σ2R2 − 2Nσ)e−σR2

+ hi(x)ui(xi) − ai(x)w2
i

� ci(σ2R2 − 2Nσ)e−σR2 − C2 − 2εi(C2 + c2
i )

� ci(σ2R2 − 2Nσ)e−σR2 − (1 + 2εi)C2 − 2
> 0 for i � 1 (since ci → ∞).

Therefore, for large i, wi is a sub-solution of (2.19). By [6, lemma 2.1], this implies
that ui � wi in B̄xi

(yi; R) \ B(yi; 1
2R), i.e. (2.16) holds. This proves our claim.
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Choose a positive constant k such that ‖ai‖∞ � k for all i and consider the
following problem:

−∆u = hi(x)u − ku2, x ∈ Ω \ Ω̄i,

∂νu|∂Ω = 0, u|∂Ωi = ui(xi).

}
(2.20)

Since ui(xi) = minΩ̄i
ui, 0 and ui are sub- and super-solutions of (2.20), respec-

tively. So, (2.20) has a non-negative solution ũi. In fact, ũi is positive by the strong
maximum principle. By [6, lemma 2.1] we may deduce that

ui(x) � ũi(x) in Ω̄ \ Ωi.

We consider next a further auxiliary problem:

−∆u = Cu − ku2, x ∈ Ω \ Ω̄i,

∂νu|∂Ω = 0, u|∂Ωi
= C,

}
(2.21)

where ‖hi‖∞, ui(xi) � C. By [4, lemma 2.3], problem (2.21) has a unique positive
solution u∗

i . It is obvious that u∗
i is uniformly bounded on Ω̄ \ Ωi with respect to i.

Since ‖hi‖∞, ui(xi) � C, u∗
i is a super-solution of (2.20). Therefore, ũi � u∗

i on
Ω̄ \ Ωi by [6, lemma 2.1]. In particular, ‖ũi‖L∞(Ω\Ωi) is bounded in i. Then the Lp-
estimates and the Sobolev imbedding theorems imply that ‖ũi‖C1(Ω̄\Ωi) depends
only on the structure of Ωi and the bounds of ‖hi‖∞, ‖ũi‖L∞(Ω\Ωi), ui(xi) and
|Ω \ Ωi|. Because

‖hi‖∞, ‖ũi‖L∞(Ω\Ωi), ui(xi) � C,

|Ω \ Ω0| � |Ω \ Ωi| � 2|Ω \ Ω0|, Ωi → Ω0, and Ωi has the same smoothness as that
of Ω0, it follows that

‖ũi‖C1(Ω̄\Ωi) � C

for some positive constant C and all i. In particular, |∇ũi(xi)| � C for all i. Since

ui(x) � ũi(x) in Ω̄ \ Ωi, ui(xi) = ũi(xi),

we have
∂ui(xi)

∂ηi
� ∂ũi(xi)

∂ηi
� C,

where ηi = (yi − xi)/|yi − xi|.
On the other hand, as ui(x) � wi(x) ≡ ui(xi)+ ciψi(x) in B̄xi

(yi; R) \ B(yi; 1
2R)

and ui(xi) = wi(xi), we have

∂ui(xi)
∂ηi

� ∂wi(xi)
∂ηi

= ci
∂ψ(xi)

∂ηi
= ci[2σRe−σR2

] → ∞,

since ci → ∞. This contradiction finishes the proof.

Theorem 2.5. Let (u, v) � (uβ , vβ) be a positive solution of (1.1). We then draw
the following conclusions:

(a) limβ→0+(uβ(x), vβ(x)) = (∞,∞) uniformly on Ω̄0;

https://doi.org/10.1017/S0308210500004704 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500004704


770 Y. Du and M. X. Wang

(b) along any sequence of β decreasing to 0, there is a subsequence {βn} such that

lim
n→∞

(uβn
, vβn

) = (u, v) uniformly on any compact subset of Ω̄ \ Ω̄0,

where (u, v) is a positive solution of the system

−∆u = λu − a(x)u2 in Ω \ Ω̄0,

−∆v = µv

(
1 − v

u

)
in Ω \ Ω̄0,

∂νu|∂Ω = ∂νv|∂Ω = 0, u|∂Ω0 = v|∂Ω0 = ∞;

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.22)

(c) if there exists ξ > 0 such that a(x)d(x, Ω0)−ξ is bounded for all x ∈ Ω \
Ω̄0 close to ∂Ω0, then (2.22) has a unique positive solution (u, v) and the
convergence in (b) holds for β → 0+.

Proof. Note that uβ satisfies

−∆uβ = [λ − β‖vβ‖∞v̂β(x)]uβ − a(x)u2
β in Ω, ∂νuβ = 0 on ∂Ω.

Define hβ(x) = λ − β‖vβ‖∞v̂β(x). Along any sequence of β decreasing to 0, from
the proof of lemma 2.3, we already know that β‖vβ‖∞ is bounded. We may assume
that β‖vβ‖∞ → b ∈ [0,∞). Therefore, ‖hβ‖∞ is bounded in β. For any sequence
βi → 0+, taking hi(x) = hβi

(x), ai(x) = a(x) and ui(x) = uβi
(x) in lemma 2.4,

and making use of lemma 2.3, we obtain ui → ∞ uniformly on Ω̄0 as i → ∞.
Consequently,

uβ → ∞ uniformly on Ω̄0 as β → 0+. (2.23)

For fixed large positive constant M , consider the problem

−∆w = hβ(x)w − ‖a‖∞w2, x ∈ Ω \ Ω̄0,

∂νw|∂Ω = 0, w|∂Ω0 = M.

}
(2.24)

Analogously to the discussion to problem (2.20) we find that (2.23) has a unique
positive solution wM (x). By continuity we see that there exists ε = ε(M, β) > 0
such that wM (x) � 1

2M for all x ∈ {x ∈ Ω \ Ω0 : d(x, ∂Ω0) < ε}. By (2.23)
and [6, lemma 2.1] we deduce that uβ � wM on Ω̄ \ Ω0, provided that β 
 1.

Let u be the limit of uβ in lemma 2.3. Then u = limβn→0+ uβn � wM > 0 in
Ω̄ \ Ω0 and u(x) � 1

2M for all x ∈ {x ∈ Ω \Ω0 : d(x, ∂Ω0) < ε}. As M is arbitrary,
it follows that u|∂Ω0 = ∞ and, hence, u is a positive solution of (2.14).

We now consider vβn , where {βn} is any sequence decreasing to 0. A simple sub-
and super-solution argument shows that the problem

−∆v = µv

(
1 − v

minΩ̄0
uβn

)
in Ω0, v = 0 on ∂Ω0

has a unique positive solution vn and, due to (2.23), it can easily be seen that
vn → ∞ uniformly on any compact subset of Ω0. By [6, lemma 2.1], we can easily
see that vβn

� vn in Ω0. We can now apply lemma 2.4 to the equation for vβn
with

hn(x) = µ, an(x) = µu−1
βn

(x), to conclude that vβn
→ ∞ uniformly in Ω̄0. Hence,

vβ → ∞ uniformly in Ω̄0 as β → 0+.

https://doi.org/10.1017/S0308210500004704 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500004704


Asymptotic behaviour of a predator–prey model 771

Suppose now that {βn} is the sequence along which uβ converges to u. Since
uβn(x) → u(x) > 0 and vβn(x) � Vλ(x) in Ω \ Ω̄0, analogously to the discussion
to uβ , we can deduce that, subject to a subsequence, vβn → v in C1

loc(Ω̄ \ Ω̄0) and
v is a positive solution of the following problem

−∆v = λv

(
1 − v

u

)
in Ω \ Ω̄0,

∂νv|∂Ω = 0, v|∂Ω0 = ∞.

⎫⎪⎬
⎪⎭ (2.25)

This proves conclusions (a) and (b) in the theorem.
Conclusion (c) follows from [2]. Indeed, under the extra condition on a(x), by [2,

theorem 3.2], (2.14) has a unique positive solution. By [2, lemma 2.2], the unique
positive solution u(x) of (2.14) satisfies

C1d(x, Ω0)−γ � u(x) � C2d(x, Ω0)−γ , x ∈ Ω \ Ω̄0,

for some positive constants γ, C1 and C2. This in turn implies that ã(x) = µu(x)−1

satisfies a condition similar to that for a(x) near ∂Ω0 and, hence, we can apply [2,
theorem 3.2] to (2.25) to conclude that it has a unique positive solution v. Therefore,
(2.22) has a unique positive solution. This implies that the convergence of (uβ , vβ)
in conclusion (b) holds for β → 0+.

Theorem 2.6. If (u, v) � (uβ , vβ) is a positive solution of (1.2), then

lim
β→0+

(uβ(x), vβ(x)) = (Uε, Vε)

uniformly over Ω̄, where Uε and Vε are the unique positive solutions to

−∆U = λU − [a(x) + ε]U2, ∂νU |∂Ω = 0,

and

−∆V = µV

(
1 − V

Uε

)
, ∂νV |∂Ω = 0,

respectively.

Proof. The proof of this theorem is easy. Let {βn} be an arbitrary sequence decreas-
ing to 0, and denote (un, vn) = (uβn

, vβn
). A simple sub- and super-solution argu-

ment shows that
un � ε

λ
, vn � ε

λ
.

Using these estimates and a sub- and super-solution argument again, we deduce

un, vn � [λ − β(ε/λ)]
‖a‖∞ + ε

.

We can now apply standard regularity theory for elliptic equations to conclude that,
subject to a subsequence, (un, vn) converges to some (U, V ) in [C1(Ω̄)]2 and, by
our estimates for un and vn, U and V are positive solutions to

−∆U = λU − [a(x) + ε]U2, ∂νU |∂Ω = 0,
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and

−∆V = µV

(
1 − V

U

)
, ∂νV |∂Ω = 0,

respectively. It is well known that the equation for U (and, hence, that for V ) has
a unique positive solution. Therefore, (uβ , vβ) → (U, V ) as β → 0+.

We now consider the asymptotic behaviour of

ûβ =
uβ

‖uβ‖∞
and v̂β =

vβ

‖vβ‖∞
.

From the proof of lemma 2.3, we already know that, for any given sequence of β
decreasing to 0, there exist two non-negative and non-trivial functions û, v̂ ∈ H1(Ω)
such that, along a subsequence of the given sequence of β,

(ûβ , v̂β) ⇀ (û, v̂) in [H1(Ω)]2, (ûβ , v̂β) → (û, v̂) in [Lp(Ω)]2, ∀p > 1.

Moreover, v̂ satisfies (2.13), v̂ �≡ 0 in Ω0, û ≡ 0 on Ω\Ω0 and û is a positive solution
to (2.10).

As ‖vβ‖∞ � ‖uβ‖∞, subject to a subsequence, we may assume that

‖vβ‖∞
‖uβ‖∞

→ ξ ∈ [0, 1].

By the interior estimate for elliptic problems and the Sobolev imbedding theorem
we find that ûβ → û in C1

loc(Ω0). Since û > 0 in Ω0 and v̂β → v̂ in Lp(Ω), it follows
from

−∆v̂β = λv̂β

(
1 − ‖vβ‖∞

‖uβ‖∞

v̂β

ûβ

)
in Ω0

and from (2.13) that v̂ satisfies

−∆v̂ = µv̂

(
1 − ξ

v̂

û

)
in Ω0, v̂ = 0 on ∂Ω0. (2.26)

Since v̂ �≡ 0, by the Harnack inequality we see from (2.24) that v̂ > 0 in Ω0. As
µ > λD

1 (Ω0), we must have ξ > 0.
Therefore, we have the following result.

Theorem 2.7. Let (u, v) � (uβ , vβ) be a positive solution of (1.1). Then, along
any sequence of β decreasing to 0, there is a subsequence {βn} along which(

uβ

‖uβ‖∞
,

vβ

‖vβ‖∞

)
→ (û, v̂)

weakly in [H1(Ω)]2 and strongly in [Lp(Ω)]2 for any p > 1, where û and v̂ are
positive in Ω0 and û = v̂ ≡ 0 in Ω̄ \ Ω0. Moreover, (û, v̂) satisfies

−∆û = λû − bûv̂ in Ω0,

−∆v̂ = µv̂

(
1 − ξ

v̂

û

)
in Ω0,

û = v̂ = 0 on ∂Ω0,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.27)

for some constants b � 0, ξ ∈ (0, 1]; b = 0 if and only if λ = λD
1 (Ω0).
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Remark 2.8. The constants b and ξ in (2.27) can be uniquely determined when the
spatial dimension N = 1. In this case, it is easy to adapt the arguments in [8] to show
that (2.27) has a unique positive solution. Using this fact and ‖û‖∞ = ‖v̂‖∞ = 1,
one can uniquely determine b and ξ. We omit the details for the sake of brevity.

3. The strong-predator case: proof of theorem 1.2

Since our proofs for (1.1) and (1.2) are the same, we combine the two problems into
one by agreeing that ε = 0 is possible in (1.2). Therefore, we assume ε � 0 in this
section.

Let (uβ , vβ) be a positive solution to (1.2) with ε � 0. We need to show that

lim
β→∞

(‖uβ‖∞, ‖vβ‖∞) = (0, 0).

First, a simple comparison argument gives ‖vβ‖∞ � ‖uβ‖∞ for all β > 0. Define

ûβ =
uβ

‖uβ‖∞
, v̂β =

vβ

‖vβ‖∞
;

then, from the inequalities −∆ûβ � λûβ and −∆v̂β � µv̂β , we deduce, by argu-
ments similar to those following (2.6), that, given any sequence of β increasing
to ∞, there exist two non-negative and non-trivial functions û, v̂ ∈ H1(Ω) such
that, along a subsequence,

(ûβ , v̂β) ⇀ (û, v̂) in [H1(Ω)]2, (ûβ , v̂β) → (û, v̂) in [Lp(Ω)]2 ∀p > 1.

From the inequality

λ|Ω| � λ

∫
Ω

ûβ =
∫

Ω

[a(x) + ε]ûβuβ + β‖vβ‖∞

∫
Ω

ûβ v̂β � β‖vβ‖∞

∫
Ω

ûβ v̂β ,

we deduce that if β‖vβ‖∞ is unbounded in β, then, subject to a subsequence,∫
Ω

ûv̂ = lim
β→∞

∫
Ω

ûβ v̂β = 0.

Hence, ûv̂ ≡ 0 on Ω and, by lemma 2.1, we arrive at a contradiction: λ � µ.
Therefore, β‖vβ‖∞ is bounded in β and, consequently,

‖vβ‖∞ → 0 as β → ∞.

We claim that ‖uβ‖∞ is bounded in β. If this assertion is not true, then, by
passing to a subsequence, ‖uβ‖∞ → ∞. Analogously to the proof of lemma 2.2,
û satisfies (2.7). Since β‖vβ‖∞ is bounded in β, we may assume that, subject to
a subsequence, β‖vβ‖∞ → b ∈ [0,∞). Then ûβ converges to û uniformly on any
compact subset of Ω0 and (û, v̂) satisfies

−∆û = λû − bûv̂ in Ω0, û = 0 on ∂Ω0.

Since û ≡ 0 in Ω \ Ω0, and û �≡ 0 in Ω, the Harnack inequality implies that û > 0
in Ω0. Note that

−∆v̂β = µv̂β

(
1 − vβ

‖uβ‖∞ûβ

)
in Ω0;
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it follows from ‖uβ‖∞ → ∞, vβ → 0 and ûβ → û > 0 in Ω0 that

−∆v̂ = µv̂ in Ω0, v̂ � 0 on ∂Ω0.

As µ > λD
1 (Ω0), it must hold that v̂ ≡ 0 in Ω0. This fact, combined with (2.7),

yields ûv̂ ≡ 0 in Ω. By lemma 2.1 we again deduce a contradiction.
We now prove limβ→∞ ‖uβ‖∞ = 0. We assume on the contrary that, by passing

to a subsequence, ‖uβ‖∞ � δ > 0. Since ‖uβ‖∞ and β‖vβ‖∞ are bounded in β,
from similar considerations as above, there exist two non-negative and non-trivial
functions u, v̂ ∈ H1(Ω) such that, by passing to a subsequence,

uβ → u in C1(Ω̄), v̂β ⇀ v̂ in H1(Ω), v̂β → v̂ in Lp(Ω) ∀p > 1,

and ‖u‖∞ � δ. Moreover, if β‖vβ‖∞ → b, then it can easily be seen that (u, v̂)
satisfies

−∆u = λu − [a(x) + ε]u2 − bv̂(x)u in Ω, ∂νu = 0 on ∂Ω.

The Harnack inequality gives u > 0 on Ω̄. In view of ‖vβ‖∞ → 0 and uβ → u > 0
on Ω̄, it follows from

−∆v̂β = µv̂β

(
1 − ‖vβ‖∞v̂β

uβ

)
in Ω, ∂ν v̂β = 0 on ∂Ω,

that v̂ satisfies

−∆v̂ = µv̂ in Ω, ∂ν v̂ = 0 on ∂Ω.

This is impossible since µ > 0 and v̂ � 0, v̂ �≡ 0. Hence, limβ→∞ ‖uβ‖∞ = 0. This
completes the proof of theorem 1.2.

Remark 3.1. As before, define

ûβ =
uβ

‖uβ‖∞
, v̂β =

vβ

‖vβ‖∞
;

then along any sequence of β increasing to ∞, there is a subsequence along which

(ûβ , v̂β) ⇀ (û, v̂) in [H1(Ω)]2, (ûβ , v̂β) → (û, v̂) in [Lp(Ω)]2 ∀p > 1,

and (û, v̂) is a positive solution of the system

−∆û = λû − bûv̂ in Ω,

−∆v̂ = µv̂

(
1 − ξ

v̂

û

)
in Ω,

∂ν û = ∂ν v̂ = 0 on ∂Ω,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.1)

where ξ ∈ (0, 1], b > 0.

Remark 3.2. The positive constants b and ξ in (3.1) can be uniquely determined
when the spatial dimension N = 1. In this case a simple variation of the arguments
in [8] shows that (3.1) has a unique positive solution, which is necessarily the
constant solution

(û, v̂) =
(

ξ
λ

b
,
λ

b

)
.

Since ‖û‖∞ = ‖v̂‖∞ = 1, we must have (û, v̂) = (1, 1) and, hence, b = λ, ξ = 1.
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4. The small-predator diffusion case: proof of theorem 1.3

As in § 3, we again consider (1.1) and (1.2) simultaneously by regarding ε in (1.2)
as only non-negative. Suppose that (uµ, vµ) is a positive solution of (1.2) with ε � 0
fixed.

As before, by a simple comparison argument we have

‖vµ‖∞ � ‖uµ‖∞, ∀µ. (4.1)

Step 1 (there exists 0 < C < ∞ such that ‖uµ‖∞, ‖vµ‖∞ � C for all µ � µ0).
We may assume that ε = 0; the conclusion for ε > 0 follows from a standard
comparison argument. By (4.1), we need only to prove ‖uµ‖∞ � C for all µ � µ0.
Assume on the contrary that, by passing to a subsequence, ‖uµ‖∞ → ∞ as µ → ∞.
Set

ũµ =
uµ

‖uµ‖∞
, ṽµ =

vµ

‖vµ‖∞
.

Then due to the inequality −∆ũµ � λũµ and the boundedness of ṽµ in L2(Ω), there
exist two non-negative functions ũ and ṽ such that, by passing to a subsequence:

(i) ũµ → ũ weakly in H1(Ω), and strongly in Lp(Ω) for all p > 1;

(ii) ṽµ → ṽ weakly in L2(Ω);

(iii) ũ ≡ 0 in Ω \ Ω0, ũ �≡ 0 in Ω.

Moreover, taking ki = ‖uµ‖∞, �i = ‖vµ‖∞ in the proof of lemma 2.1, we obtain
the inequality (2.2) with ui = ũµ and∫

Ω

|∇ũµ|2 + µ
‖vµ‖∞
‖uµ‖∞

∫
Ω

ũµṽµ � µ

∫
Ω

ũ2
µ. (4.2)

Since 0 � ũµ, ṽµ � 1, by passing to a subsequence, we may assume that ũµṽµ ⇀ ũṽ
in L2(Ω).

We claim that limµ→∞ ‖vµ‖∞ = ∞. If this is not true, by passing to a subse-
quence, we may assume that ‖vµ‖∞ → m ∈ [0,∞). For any ϕ ∈ C∞

0 (Ω0), in view
of

−∆ũµ = λũµ − β‖vµ‖∞ũµṽµ in Ω0,

we obtain ∫
Ω0

∇ũµ∇ϕ = λ

∫
Ω0

ũµϕ − β‖vµ‖∞

∫
Ω0

ũµṽµϕ.

Therefore, ∫
Ω0

∇ũ∇ϕ = λ

∫
Ω0

ũϕ − mβ

∫
Ω0

ũṽϕ.

Since ũ ≡ 0 in Ω \ Ω0, we see that ũ is a weak solution of

−∆ũ = λũ − mβṽũ in Ω0, ũ = 0 on ∂Ω0.

The Harnack inequality asserts that ũ > 0 in Ω0. Since 0 � ũµ(x), ṽµ(x) � 1, we
can also prove that ũµ → ũ uniformly on any compact subset of Ω0.

https://doi.org/10.1017/S0308210500004704 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500004704


776 Y. Du and M. X. Wang

For any ϕ ∈ C∞
0 (Ω), from the second equation of (1.2) we have

− 1
µ

∫
Ω0

ṽµ∆ϕ =
∫

Ω0

ṽµϕ

(
1 − ‖vµ‖∞

‖uµ‖∞

ṽµ

ũµ

)
. (4.3)

Using ‖vµ‖∞ � C, ‖uµ‖∞ → ∞ and ũµ → ũ > 0 uniformly on any compact subset
of Ω0, we obtain from (4.3) that

∫
Ω0

ṽϕ = 0, which implies that ṽ ≡ 0 in Ω0.

Therefore, ũṽ ≡ 0 in Ω, and, hence,

lim
µ→∞

∫
Ω

ũµṽµ = 0. (4.4)

In view of ‖vµ‖∞ � ‖uµ‖∞ and ũµ → ũ in L2(Ω), it follows from (2.2), (4.2) and
(4.4) that

0 �
∫

Ω

ũ2 = lim
µ→∞

∫
Ω

ũ2
µ � lim

µ→∞

∫
Ω

ũµṽµ = 0. (4.5)

This is a contradiction, since ũ is not identically zero.
Therefore, ‖vµ‖∞ → ∞ as µ → ∞. Then, from

λ|Ω| � λ

∫
Ω

ũ2
µ =

∫
Ω

a(x)ũµuµ + β‖vµ‖∞

∫
Ω

ũµṽµ � β‖vµ‖∞

∫
Ω

ũµṽµ,

it follows that ∫
Ω

ũṽ = lim
µ→∞

∫
Ω

ũµṽµ = 0,

i.e. (4.4) holds. We can obtain (4.5) using a method similar to the above. This gives
a contradiction. This proves step 1.

Step 2 (there exists c > 0 such that minΩ̄ vµ, minΩ̄ uµ � c, for all µ � µ0).
We first prove minΩ̄ uµ � c for all µ � µ0. Assume on the contrary that, by passing
to a subsequence, minΩ̄ uµ → 0 as µ → ∞. In step 1 showed that ‖uµ‖∞, ‖vµ‖∞ � C
for some positive constant C and all µ � µ0. Applying the Harnack inequality to
the first equation of (1.2), we find that maxΩ̄ uµ � M minΩ̄ uµ for some positive
constant M that is independent of µ � µ0. Therefore, ‖uµ‖∞ → 0 as µ → ∞, and
so does ‖vµ‖∞ by (4.1). This shows that uµ, vµ → 0 uniformly on Ω̄ as µ → ∞.

As before, we define

ũµ =
uµ

‖uµ‖∞
.

Then ũµ → ũ weakly in H1(Ω) and strongly in Lp(Ω) for all p > 1, and ũ is a
non-negative and non-trivial solution of the problem

−∆ũ = λũ in Ω, ∂ν ũ = 0 on ∂Ω.

This is impossible since λ > 0. The proof for minΩ̄ uµ � c is complete.
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We show next that minΩ̄ vµ � minΩ̄ uµ. Indeed, suppose minΩ̄ vµ = vµ(x0), x0 ∈
Ω̄. Then, by [9, lemma 2.1], we find from the equation for vµ that

µvµ(x0)
(

1 − vµ(x0)
uµ(x0)

)
� 0.

Therefore,
min

Ω̄
vµ = vµ(x0) � uµ(x0) � min

Ω̄
uµ.

This completes the proof for step 2.

Step 3 (completion of the proof). From step 1, the function λuµ − [a(x) + ε]u2
µ −

βuµvµ is uniformly bounded on Ω̄ with respect to µ. Applying the elliptic estimate
and the Sobolev imbedding theorem to the differential equation of uµ, it follows
that, by passing to a subsequence, uµ → u in C1,α(Ω̄) for some positive function u
satisfying c � u � C. Since vµ is bounded in L2(Ω), by passing to a subsequence,
vµ ⇀ v in L2(Ω) for some positive function v satisfying c � v � C. In the following
we shall prove that v = u. This will be done by proving vµ → u uniformly on any
compact subset of Ω.

Fix x0 ∈ Ω. As u ∈ C(Ω̄) and u(x) � c on Ω̄, for any fixed small σ : 0 < σ < c,
there exists a δ > 0 sufficiently small such that

u(x0) − 1
2σ < u(x) < u(x0) + 1

2σ in B̄(x0, δ), (4.6)

where B(x0, δ) = {x ∈ Ω, |x − x0| < δ}. In view of uµ → u uniformly on B̄(x0, δ)
we have that

u(x) − 1
2σ < uµ(x) < u(x) + 1

2σ for all x ∈ B̄(x0, δ) and µ � 1.

Consequently,

u(x0) − σ < uµ(x) < u(x0) + σ for all x ∈ B̄(x0, δ) and µ � 1. (4.7)

We now consider the following two auxiliary problems:

−∆wµ = µwµ

(
1 − wµ

u(x0) − σ

)
in B(x0, δ), wµ = 0 on ∂B(x0, δ). (4.8)

−∆zµ = µzµ

(
1 − zµ

u(x0) + σ

)
in B(x0, δ), zµ = ∞ on ∂B(x0, δ). (4.9)

Using [6, lemmas 2.2 and 2.3], problems (4.8) and (4.9) have unique positive solu-
tions wµ and zµ, respectively, and

wµ → u(x0) − σ, zµ → u(x0) + σ (4.10)

uniformly on any compact subset of B(x0, δ). From (4.7) we see that vµ is a super-
solution of (4.8) and a sub-solution of (4.9). By [6, lemma 2.1], wµ � vµ � zµ in
B(x0, δ). Therefore, by (4.10),

u(x0)−σ = lim
µ→∞

wµ(x) � limµ→∞vµ(x) � limµ→∞vµ(x) � lim
µ→∞

zµ(x) = u(x0)+σ
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uniformly on any compact subset of B(x0, δ). By the arbitrariness of σ we see that
limµ→∞ vµ(x0) = u(x0). Since the convergence in (4.10) is uniform in x0, we easily
see that vµ → u uniformly on any compact subset of Ω. Therefore, v = u.

From the first equation of (1.2) we now see that u satisfies (1.6). Since a(x)+ ε+
β � β > 0, it is well known that (1.6) has a unique positive solution w. Therefore,
the entire family of functions uµ and vµ converge to w. The proof of theorem 1.3 is
complete.

Remark 4.1. In fact, we can show that vµ → w uniformly in Ω̄. To see this, for
any x0 ∈ ∂Ω, we can extend uµ and vµ (by reflection across ∂Ω) to B(x0, δ) such
that vµ is a positive solution of

−Lv = µv

(
1 − v

uµ

)
, x ∈ B(x0, δ),

where L is a second-order elliptic operator independent of µ and

L = ∆ on B(x0, δ) ∩ Ω.

We can then argue as above to show that vµ → u uniformly on any compact subset
of B(x0, δ). By a standard finite covering argument, we see that vµ → u uniformly
on Ω̄.
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