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Marine ice sheet dynamics. Part 2. A Stokes
flow contact problem
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We develop an asymptotic theory for marine ice sheets from a first-principles Stokes
flow contact problem, in which different boundary conditions apply to areas where
ice is in contact with bedrock and inviscid sea water, along with suitable inequalities
on normal stress and boundary location constraining contact and non-contact zones.
Under suitable assumptions about basal slip in the contact areas, the boundary-layer
structure for this problem replicates the boundary layers previously identified for
marine ice sheets from depth-integrated models and confirms the results of these
previous models: the interior of the grounded ice sheet can be modelled as a standard
free-surface lubrication flow, while coupling with the membrane-like floating ice shelf
leads to two boundary conditions on this lubrication flow model at the contact line.
These boundary conditions determine ice thickness and ice flux at the contact line and
allow the lubrication flow model with a contact line to be solved as a moving boundary
problem. In addition, we find that the continuous transition of vertical velocity from
grounded to floating ice requires the presence of two previously unidentified boundary
layers. One of these takes the form of a viscous beam, in which a wave-like surface
feature leads to a continuous transition in surface slope from grounded to floating
ice, while the other provides boundary conditions on this viscous beam at the contact
line.
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1. Introduction
Marine ice sheets are continent-sized ice masses whose base rests on bedrock below

sea level. The most important present-day example is the West Antarctic Ice Sheet,
estimated to hold enough ice to raise sea levels by 3–5 m. As a result, the dynamics
of marine ice sheets has attracted considerable attention over the last five years (e.g.
Vieli & Payne 2005; Pattyn et al. 2006; Solomon et al. 2007; Nowicki & Wingham
2008; Durand et al. 2009; Goldberg, Holland & Schoof 2009; Katz & Worster 2010).

From the perspective of fluid dynamics, the grounded portion of a marine ice
sheet behaves as gravity-driven, lubrication-type thin-film flow, in which shear stress
gradients balance a gravity-induced horizontal pressure gradient. What sets marine
ice sheets apart from other examples of such flows (e.g. Balmforth & Craster 1999)
is the presence of a contact line at which ice lifts off to form a floating ice shelf.
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Marine ice sheet dynamics. Part 2 123

The mechanics of the ice shelf is dominated by extensional stresses (or ‘longitudinal
stresses’ in glaciological parlance).

The theoretical challenge in coupling models for shelves and grounded ice sheets
is to describe the transition from a shear-stress-dominated to an extensional-stress-
dominated flow. In Schoof (2007b), henceforth called Part 1, a theory based on
matched asymptotic expansions was set out for this transition. This theory predicts
that the coupling between grounded sheet and floating shelf leads to two boundary
conditions on the diffusion model that describes ice flow in the interior of the grounded
ice sheet. One of these boundary conditions fixes ice thickness while the other is a
relationship between flux and depth to bedrock at the contact line. Together, these
boundary conditions allow the grounded ice sheet flow to be modelled as a Stefan-type
free boundary problem.

The consequences of these boundary conditions for the large-scale dynamics of
marine ice sheets were explored in Schoof (2007a), and the predictions of Part 1 were
subsequently confirmed by direct numerical solution of a contact problem for marine
ice sheet flow based on the nonlinear Stokes equations that usually underpin ice sheet
models (Durand et al. 2009).

Despite this numerical confirmation, some theoretical questions remain. In
particular, Part 1 was based on a depth-integrated model for the flow of an ice
sheet that experiences rapid sliding in its interior. It is desirable to develop an
analogous theory that uses a first-principles Stokes flow model and reduces this to the
appropriate depth-integrated model, showing that asymptotic matching procedures
employed in Part 1 remain valid. In particular, such an approach should answer
two questions. Firstly, can the theory in Part 1 be extended to cover ice sheets that
experience significant shearing? And secondly, can the transition between grounded
and floating ice be captured in more detail than was possible in Part 1?

The second of these points is particularly relevant: the model in Part 1 predicts
a discontinuity in vertical velocity at the contact line, which, if real, would require
a point force (Wilchinsky & Chugunov 2000). This need not a priori represent a
serious issue, as the model in Part 1 is depth-integrated and based on a thin-film
approximation that may not capture all the details of the transition from grounded to
floating ice but can still compute ice flux correctly. There is also every indication that
the model in Part 1 is mathematically well-posed, and importantly, the predictions of
Part 1 have been confirmed by the direct numerical computations of Durand et al.
(2009) that are not based on any thin-film approximation. However, it is desirable to
understand in detail how the apparent paradox of a vertical velocity discontinuity can
be resolved. In fact, we will see later that the apparent point force is simply a vertical
force that is spread over a region of the shelf that is small compared with the length
scales that are resolved by the depth-integrated model in Part 1. Put another way, the
discontinuity in vertical velocity recognized by Wilchinsky & Chugunov (2000) is not
an actual discontinuity, but a rapid change in vertical velocity near the grounding
line, which is not captured by membrane models and requires consideration of more
local physics involved in bending the ice close to the grounding line.

In this paper, we present an asymptotic approach to the type of Stokes flow contact
problem solved numerically by Durand et al. (2009). The asymptotic structure that we
find mimics that found in Part 1, but requires two extra boundary layers that allow a
continuous vertical velocity field. These additional boundary layers are passive in the
variables modelled in Part 1 (horizontal velocity and ice thickness), and do not affect
the validity of the theory developed there. They do, however, resolve the apparent
surface slope discontinuity and explain some of the features of the ice sheet surface
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Figure 1. Geometry of the problem. Here x and z denote Cartesian coordinates measuring
distance in the horizontal and vertical, respectively, s(x, t) is surface elevation above sea level,
h(x, t) is ice thickness, b(x) is the elevation of bedrock above sea level (so b < 0 where bedrock
is below sea level) and l(x, t) is the lower boundary of the ice; l = b in contact regions and
l > b elsewhere. We assume that there is exactly one contact region which lies upstream of a
contact line (or grounding line) x = xg(t) so that l(x, t) = b(x) for x � xg(t), while l(x, t) >b(x)
for x >xg(t); u = (u, v) denotes ice velocity.

predicted by Durand et al. (2009), most notably an attenuated wave-like surface
feature downstream of the contact line, and a non-zero departure from Archimedean
flotation at the contact line. Moreover, we find that the theory of Part 1 generalizes
straightforwardly to ice sheets that experience shear as well as basal sliding, provided
basal sliding becomes dominant near the contact line, and we set out conditions for
this to be the case.

To allow an easier presentation of these boundary layers, we do make one
simplifying assumption in this paper, to be generalized elsewhere: we restrict ourselves
to ice of constant viscosity, with a linear slip law at the base of the ice, while Part 1
and Durand et al. (2009) used power laws for both. Using these more restrictive
constitutive relations allows us to describe our results in simpler terms, namely by
using the intrinsic length scales that are often identified in models of viscous gravity
currents (e.g. Lister & Kerr 1989).

2. The model
We model the marine ice sheet as a Newtonian fluid at zero Reynolds number

and restrict ourselves to plane flow, with x and z denoting horizontal and vertical
positions, respectively, and with z measured upwards from sea level (figure 1). The
ice sheet is assumed to be in contact with underlying bedrock at z = b(x) to the left
of a moving contact line (or grounding line) at x = xg(t), and afloat to the right of
the contact line (Note that the sign convention for b here is reversed from Part 1,
where b denotes bedrock depth below sea level). Denoting the lower boundary of the
ice by z = l(x, t), this implies l(x, t) = b(x) for x � xg(t), and l(x, t) >b(x) for x > xg(t).
The lower boundary of the ice makes contact with the bed at x = xg , so l continuous
there. We also use s(x, t) to denote ice surface elevation and h = s − l for ice thickness,
while u = (u, v) is ice velocity and p is pressure.
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Marine ice sheet dynamics. Part 2 125

Writing the deviatoric stress tensor in the form

τ =

(
τ1 τ2

τ2 −τ1

)
, (2.1)

force balance and conservation of mass in the fluid domain, l < z < s, require

τ1,x + τ2,z − px = 0, (2.2a)

−τ1,z + τ2,x − pz − ρg = 0, (2.2b)

ux + vz = 0, (2.2c)

where ρ is the density of ice, g is acceleration due to gravity, and subscripts x and z

denote partial derivatives, so ux = ∂u/∂x and τ1,x = ∂τ1/∂x etc. Stress and strain rate
are related through

ux =
1

2η
τ1, (2.2d )

uz + vx =
1

η
τ2, (2.2e)

where the parameter η is viscosity.
At the upper surface, z = s, there is no applied traction, which can be written in

the form

(p − τ1) sx + τ2 = 0, (2.3a)

−p − τ1 − τ2sx = 0. (2.3b)

In addition, the upper surface evolves according to a kinematic boundary condition
with a source term a that describes snowfall or melting (also known as the
accumulation rate):

st + usx = v + a. (2.3c)

At the base of the ice, we need to distinguish between areas of bed contact and non-
contact areas. Downstream of the contact line, the base of the ice is in contact with
ocean water at a height z = l(x, t) above sea level (i.e. at depth −l(x, t) below sea level).
If ρw is the density of sea water, the pressure at this depth is pw = − ρwgl. Assuming
that sea water is inviscid, we get (p −pw)n −τn = 0, where n = (−lx, 1)/

√
1 + l2x is the

upward-pointing normal to the boundary. In addition, the lower boundary satisfies a
kinematic boundary condition analogous to (2.3c), where we use ml in place of a to
denote the rate of ice melting (or accretion if ml < 0). We also require that the base
of the ice in the non-contact area must remain above bedrock, and so obtain the
following conditions for z = l(x, t), x >xg(t):

(p + ρwgl − τ1)lx + τ2 = 0, (2.4a)

−p − ρwgl − τ1 − τ2lx = 0, (2.4b)

lt + ulx = v + ml, (2.4c)

l > b. (2.4d )

In general, the ice will have a finite extent, with an ice front at some location x = xc(t).
For simplicity, we assume here that the ice shelf pinches out there with l = s = 0. More
generally, one would expect a calving front to form with a finite ice thickness h, at
which icebergs break off.

Upstream of the contact line, the base of the ice is at a fixed elevation z = b(x).
We assume zero normal velocity at the bed (no melting or freezing). We also assume
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126 C. Schoof

that the ice sheet can slide over the underlying bedrock, and impose a linear slip
law. Defining n = (−bx, 1)/

√
1 + b2

x and t = (1, bx)/
√

1 + b2
x as the upward-pointing

normal and tangent to the bed, respectively, sliding velocity ut = u · t and basal shear
stress τnt = n · τ t then satisfy τnt = Cut , where C > 0 is constant. (Note that this is
the simplest conceivable friction law, and there are many others in the literature,
for instance those that include a dependence on subglacial water pressure, see e.g.
Lliboutry 1968.) In addition, we impose the following condition for contact with the
bed: the normal stress p − n · τn must attain or exceed the pressure −ρwgb that
sea water would exert on the ice at the same elevation, reflecting the fact that water
would force its way between ice and bed if this were not the case. Hence, we have on
z = b(x), x < xg(t)

v = ubx, (2.5a)

−2bxτ1 + (1 − b2
x)τ2

1 + b2
x

= C
(
1 + b2

x

)1/2
u, (2.5b)

p +
τ1

(
1 − b2

x

)
+ 2bxτ2

1 + b2
x

� −ρwgb. (2.5c)

Strictly speaking, one could allow the possibility that a part of the ice surface in
contact with the bed is just about to be lifted off (see also Durand et al. 2009). In
that case, the conditions (2.5) have to be replaced on those areas with (2.4), but with
l = b instead of (2.4d) and (as the ice is lifting off) the additional constraint v >ubx .
However, such regions cannot persist for finite time intervals (as these conditions lead
to l > b after any finite time), and for this reason we ignore them here.

The significance of the contact inequalities (2.4d) and (2.5c) will be discussed in
much greater detail in a separate paper concerned solely with flow in the vicinity of
the contact line (C. Schoof, 2011, in preparation). Here we remark simply that they
are essential in determining implicitly the position of the contact line xg(t) as the ice
sheet evolves. Without these inequalities, there is apparently nothing to stop us from
fixing the location of xg arbitrarily and still satisfying the equalities in (2.4) and (2.5).
This point is illustrated by the numerical computations of ice flow near a grounding
line in Nowicki & Wingham (2008) and Durand et al. (2009), while a similar situation
is encountered in the study of cavitation at the base of a Stokes flow in Schoof (2005)
and Gagliardini et al. (2007). Similar inequalities also occur in elastic Signorini-type
contact problems (Kikuchi & Oden 1988).

3. A sketch of the flow structure of the marine ice sheet
To motivate the more detailed work below, we sketch the essential features of

the flow here using a number of simplifying assumptions that we will either justify
or dispense with in the analysis in § 4 (I am indebted to one of the referees for
suggesting this presentation). The advantage of the simpler treatment given here is
that it motivates many of the scalings used later. Note that the treatment below is
constructive rather than deductive in the sense that we seek to construct a viable
solution to the marine ice sheet problem (and to identify any limitations on its
validity) rather than to explore all the possible flow structures that could arise from
all possible parameter choices. (An attempt at a deductive approach may be found in
Wilchinsky & Chugunov 2001.) We also give forward references in the sketch here to
the corresponding part of the analysis in § 4.
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Consider the grounded part of the ice sheet, where x <xg . Assume that this has a
low aspect ratio and that extensional stresses are small. Then ice flux is the sum of a
Poiseuille-like contribution due to shearing and a contribution due to slip (§ 4.2). For
a nearly flat bed (so sx ≈ hx),

q = −ρg

η

(
h3

3
+ Lsh

2

)
hx, (3.1)

where we define a slip length scale

Ls = η/C. (3.2)

Physically, Ls is a thickness scale at which slip and shear contribute comparably to
flux.

Now suppose that the ice sheet is in steady state with zero inflow at x = 0, in which
case

q(x) =

∫ x

0

a(x ′) dx ′ (3.3)

is a known function. Assume for simplicity that a is concentrated near x =0, so that
q can be treated as constant for most of the domain. Integration of (3.1) then yields

ρg

η

(
h4

12
+

Lsh
3

3

)
= q(x0 − x), (3.4)

where x0 is a constant of integration that we will identify shortly with the approximate
location of the contact line. Rearranging,

1

12
h4 +

1

3
Lsh

3 =
qη

ρg
(x0 − x) = L3

q(x0 − x), (3.5)

where

Lq =

(
ηq

ρg

)1/3

(3.6)

is a viscous length scale (Lister & Kerr 1989). (Physically, Lq is the thickness scale at
which an O(1) surface slope will generate a flux q through shearing. This situation
is never realized in the present case, but nevertheless Lq remains a useful intrinsic
length scale to work with.)

From (3.1) we have a flow that is dominated by shearing if h � Ls , and from
(3.5), this is the case if x0 − x � Lq(Ls/Lq)

4. The flow is dominated by slip if h � Ls ,
corresponding to x0 − x � Lq(Ls/Lq)

4, with both slip and shearing contributing
comparably when h ∼ Ls , x0 − x ∼ Lq(Ls/Lq)

4 (figure 2).
We can also check a posteriori that extensional stress gradients are small and that

the aspect ratio is small, which are the prerequisites for (3.1) to apply. Small surface
slopes hx � 1 (and hence the assumption of a small aspect ratio) are self-consistent
with the solution (3.5) so long as x0 − x � Lq(Lq/Ls)

1/2. Extensional stresses are
greatest in the slip-dominated region, where we have u ∼ − (ρgLs/η)hhx and so
extensional stress behaves as

τ1 = 2ηux ∼ −ρgLs(h
2)xx ∼

2ρgL2/3
s L2

q(x0 − x)−4/3

34/3
, (3.7)

where we have also used (3.5) in the slip-dominated regime, where h ∼ Lq[3(x0 −
x)/Ls]

1/3. In order for (3.1) and therefore (3.5) to apply, the extensional stress gradient
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x = xgLq(Ls/Lq)4 

Ls

Lq(Ls/Lq)2/5

Lq(Ls/Lq)2/25

Lq(Lq/Ls)
1/5

Lq(Lq/Ls)
1/5

Lq(Ls/Lq)2/5

Outer region Extensional stress
boundary layer

Slope boundary
layer

Shelf

Contact line boundary layer width Lq(Lq/Ls)
1/5 

Figure 2. An illustration of some of the length scales that arise in the problem (vertically
exaggerated). Also shown are typical velocity profiles. Note that sliding and shearing are
of comparable magnitude when xg − x ∼ Lq (Ls/Lq )

4, but sliding starts to dominate when

xg − x � Lq (Ls/Lq )
4. Extensional stresses become important when xg − x ∼ Lq (Ls/Lq )

2/5.

τ1,x must be small compared with the pressure gradient ρghx driving the flow. This is
the case when

x0 − x � L3/5
q L2/5

s . (3.8)

From (3.5), we therefore see that extensional stresses are small where h � L6/5
q L−1/5

s ,

or conversely, become important when h ∼ L6/5
q L−1/5

s (§ 4.3).
Provided that Ls � Lq , we can therefore identify three different regions. One

has x0 − x � Lq(Ls/Lq)
4 and h � Ls , and flow is dominated by shearing. When

Lq(Ls/Lq)
4 � x0 − x � L3/5

q L2/3
s , we have L6/5

q L−1/5
s � h � Ls and a flow dominated

by slip, but extensional stresses and surface slopes remain small, with an overlap
region between shear- and slip-dominated regimes when x0 − x ∼ Lq(Ls/Lq)

4 and
h ∼ Ls . Finally, when x0 −x ∼ L3/5

q L2/5
s and h ∼ L6/5

q L−1/5
s , the assumption of negligible

extensional stresses in (3.1) breaks down, but surface slopes are still small as
x0 − x � Lq , and a viscous membrane model is required. Note that this separation of
scales only requires Ls � Lq; this is the parameter regime we assume in this paper.

Whether all four of these regions exist depends on the horizontal extent L of the
ice sheet. We will also assume that we have at least L � L3/5

q L2/5
s , so that at least one

of the regions in which extensional stresses are small exists.
In the region where x0 − x ∼ L3/5

q L2/5
s and h ∼ L6/5

q L−1/5
s , the lubrication flow model

(3.1) no longer holds, as extensional stresses feature at leading order in force balance
(§ 4.3). We have a viscous membrane-like model (Erneux & Davis 1993; Oron, Davis
& Bankoff 1997)

4(ηhux)x − ηu/Ls − ρghhx = 0, uh = q, (3.9)

which matches to (3.1) in a matching region where Lq(Ls/Lq)
4 � x0 − x � L3/5

q L2/5
s

(§ 4.4).
Ice thickness progressively becomes smaller as we pass from the shear-dominated

to the slip-dominated region and finally onto the extensional-stress-influenced region
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x0 − x ∼ L3/5
q L2/5

s . Ice thickness does however not pinch out in the grounded part of

the ice sheet. Instead, ice reaches the contact line x = xg (with x0 − xg ∼ L3/5
q L2/5

s ),
where it begins to float and an ice shelf is attached to the ice sheet. From the contact
inequalities (2.4d) and (2.5c) and an approximately ‘cryostatic’ normal stress p + τ1,
the thickness at the contact line can be approximated as the critical thickness at which
ice begins to float in the Archimedean sense (§ 4.6), so

h(xg) = −ρwb(xg)/ρ. (3.10)

The shelf itself satisfies a viscous membrane model (§ 4.5) similar to (3.9) above and
to the ‘free film’ in e.g. Erneux & Davis (1993),

4(ηhux)x − ρ(1 − ρ/ρw)ghhx = 0, uh = q. (3.11)

The first of these equations integrates to

2ηhux = ρ((1 − ρ/ρw)gh2/4, (3.12)

and the shelf therefore exerts an extensional stress

2ηhux |x=xg
= ρ(1 − ρ/ρw)gh(xg)/4 = −ρw(1 − ρ/ρw)gb(xg)/4 (3.13)

on the grounded ice at the contact line (§ 4.6).
This integration of (3.11) allows us to close the problem (3.9) using (3.10) and (3.13)

and matching with the lubrication-type flow. In the scenario we consider above, q is
prescribed, and the boundary-layer problem (3.9) in fact allows us to compute b(xg)
from the given value of q (the Appendix), and this implicitly locates the contact line
xg in the steady-state case considered here. In a dynamic model, the boundary-layer
problem instead provides a relationship between b(xg) and q at the grounding line,
which then becomes a boundary condition on the non-steady equivalent of (3.3),
which takes the form of a diffusion equation for h.

We are in particular interested in the case where xg is a free boundary whose
location can vary over the entire length L of the ice sheet as accumulation rate a

and hence ice flux q is varied, rather than having the contact line confined to a sharp
drop-off in the bed of the ice sheet. (This is the dynamically most interesting case
of a marine ice sheet, and is relevant to the present-day West Antarctic Ice Sheet.)
The sketch above indicates that this is most easily accommodated if the shelf joins
the region where extensional stress is significant, where ice thickness is ∼ L6/5

q L−1/5
s

(which is small compared with ice thickness in the interior of the ice sheet).
But from (3.10), this indicates that bedrock depth −b below sea level must therefore

also scale with L6/5
q L−1/5

s , which we will assume to be the case in the manner of a
distinguished limit (§ 4.1; this echoes a similar result in Part 1, where depth to bedrock
also had to be small if a balance between mass accumulation

∫ xg

0
a dx and outflow

into the shelf was to be assumed).
The coupling between (3.9) and (3.11) sketched above was achieved by simply

enforcing continuity of velocity, thickness and stress (§ 4.6). However, enforcing these
continuity requirements runs into one problem, namely that the base of the boundary
layer region of the grounded sheet is controlled by bed topography, and is nearly flat,
while the base of the shelf is controlled by the requirement that the shelf be afloat
and by the downstream thinning rate of the membrane-like shelf. This engenders
an apparent discontinuity in the slope at the base of the ice and hence in vertical
velocity. Such a discontinuity cannot exist in reality, as it would require a point force
(Wilchinsky & Chugunov 2000, 2001). A continuous transition is instead ensured by
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a short part of the shelf that acts as a viscous beam (§ 4.7), and essentially spreads out
Wilchinsky–Chugunov’s point force over a small but finite region (‘small’ meaning
short by comparison with the shelf).

If hg = − ρwb(xg)/ρ is ice thickness at the contact line, then beam theory gives

−
ηh3

g

3
vl,xxxx = ρg�s + ρw(1 − ρ/ρw)g�l, (3.14)

where vl is vertical velocity at the base of the ice, and �s and �l are the deflections
of the surface and base of the ice from their Archimedean flotation positions at the
contact line, respectively. In steady state, vertical velocity and deflection of the base
are linked through a kinematic boundary condition, vl = u�lx , with a similar equation
for �s, and by differentiating (3.14) and using u = q/hg , we get

−
ηh3

g

3
vl,xxxxx = ρwg(hg/q)vl − ρghx. (3.15)

The second term on the right-hand side arises from differentiating �s and represents
the rate at which the shelf thins in the downstream direction, which causes the base
of the ice shelf to move up at a mean rate vl ∼ (ρ/ρw)hx/u. The fifth-order differential
equation (3.15) gives a length scale

[ρg/(qη)]−1/5h2/5
g ∼ L3/5

q (L6/5
q L−1/5

s )2/5 = L27/25
q L−2/25

s (3.16)

(using hg ∼ L6/5
q L−1/5

s , and treating ρ/ρw and (1 − ρ/ρw) as O(1)). For Ls � Lq , this

length scale is much smaller than the horizontal length scale L3/5
q L2/5

s , but still longer

than the thickness scale hg ∼ L6/5
q L−1/5

s , justifying the use of a beam model. The viscous
beam bending does not affect extensional stress, thickness or horizontal velocity at
leading order, and coupling (3.9) and (3.11) through these continuity conditions
remains correct.

The beam model (3.15) applies on the ‘floating’ side of the contact line, and there
is no bending on the grounded side. The transition between beam and the grounded
ice requires boundary conditions on the beam equation; specifically, these boundary
conditions are that vertical velocity at the bed as well as vertical shear and bending
moment in the beam vanish at the contact line. To justify them properly requires an
additional boundary layer of horizontal extent equal to ice thickness in which the full
Stokes equations must be solved (§ 4.8).

4. An asymptotic analysis of the model
4.1. Non-dimensionalization

Our goal in this paper is to use asymptotic methods to derive a simplified free
boundary model for the marine ice sheet along the lines of Part 1, showing in detail
the role played by the different components of flow structure sketched in the previous
section. To this end, we scale the model first and identify the relevant small parameters
in which the solution can be expanded.

In the previous section, scales for various boundary layers were derived in terms
of the ‘intrinsic’ length scales Lq and Ls . These boundary layers will ultimately
provide boundary conditions for a simplified free boundary problem that describes
the evolution of ice thickness and the migration of the contact line. We envisage ice
thickness and contact line position to vary over the length scale L of the ice sheet.
Here L is therefore an essential length scale for the problem (amongst other things,
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L sets a natural time scale for the time-dependent flow problem), even though it is
not an intrinsic length scale defined by material properties, unlike Ls and Lq .

In total, we have three length scales, and it is possible to develop an asymptotic
solution in terms of the length-scale ratios Ls/L and Lq/Ls . This is so only because
we have a Newtonian flow with a linear friction law. Intrinsic length scales are much
harder to motivate in the case of the power-law viscosity and friction laws that
were used in Part 1. With a view to allowing the work here to be generalized to
these power-law constitutive relations, we develop our asymptotic approach instead
in terms of an aspect ratio and a stress ratio parameter that we will relate to the
ratios Lq/L and L/Ls , but which can also be defined for more general power-law
constitutive relations.

Our choice of scales is based on the approach in Schoof & Hindmarsh (2010). We
assume that a horizontal length scale [x] = L for the ice sheet is known from the
shape of the underlying bedrock, and that the accumulation rate scale [a] is also
known. This leaves scales for time [t], thickness [h], velocities [u] and [v] and stresses
[τ1] and [τ2] to be determined. We define these six scales implicitly through the six
scale relations

[u] [h] = [a] [x], (4.1a)

[τ2] = ρg [h]2 / [x] , (4.1b)

C [u] = [τ2] , (4.1c)

η [u] /[x] = [τ1] , (4.1d )

[v] /[h] = [u]/[x], (4.1e)

[t] = [x]/[u]. (4.1f )

With velocity [u] defined through (4.1c), these balances are appropriate for a flow in
which slip either dominates or is comparable to shear. The model is scaled as follows:

h = [h] h∗, s = [h]s∗, z = [h] z∗, x = [x] x∗,
t = [t]t∗, a = [a] a∗, ml = [a] m∗

l ,

u = [u] u∗, v = [v] u∗, τ1 = [τ1] τ ∗
1 , τ2 = [τ2] τ ∗

2 , p = ρg [h] p∗.

⎫⎬
⎭ (4.2)

We also define three dimensionless parameters: an aspect ratio ν, a stress ratio ε and
a density ratio:

ν =
[h]

[x]
, ε =

[h] [τ1]

[x] [τ2]
, r =

ρ

ρw

. (4.3)

It will become apparent below that ε is identical to the parameter denoted by the
same symbol in Part 1, with the caveat that our constitutive relations here are more
restrictive than in Part 1. Note that ν and ε can be related to the length scales
L, Ls and Lq . If we take [x] = L, [q] = [u][h] = [a][x] and define Lq = (η[q]/ρg)1/3,
Ls = η/C, then some algebra yields

ν =
Lq

L

(
L

Ls

)1/3

, ε = ν
Ls

L
=

Lq

L

(
Ls

L

)2/3

, (4.4)

Ls = (ε/ν)L, Lq = ν2/3ε1/3L. The sketch in the previous section leads us to consider
the case Lq � Ls and L3/5

q L2/5
s � L and. In terms of ν and ε, these two inequalities

read, respectively

ν5/2 � ε, ε � 1. (4.5)
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132 C. Schoof

Taken together, these immediately ensure a small aspect ratio ν � 1. In Part 1, where
we employed a depth-integrated model from the start, the only explicit requirement
was that ε � 1, and implicitly (to be able to depth-integrate) ν � 1. The above
indicates that the constraint on ν is in fact more restrictive: this is necessary to ensure
that all the boundary layers sketched in § 3 are scale separated, and importantly,
to ensure that the extensional stress boundary layer has a low aspect ratio. For
completeness, we note that we treat the density ratio r ≈ 0.9 as well as 1 − r ≈ 0.1 as
O(1) parameters. This is entirely self-consistent and only requires that ε and hence ν

are sufficiently small for the relevant asymptotic limits to apply. The limit of small
1 − r is clearly also of interest as this quantity, though of fixed value for given
materials, is numerically small. Part 1 indicates that an alternative theory is required
when ε ∼ (1 − r) � 1; due to space constraints, we defer discussion of this limit to
future work.

In view of the discussion in § 3, we anticipate that a leading-order model in which
the contact line can migrate over distances ∼ L will only arise if bed topography
is sufficiently small everywhere (comparable to ice thickness in the extensional stress
boundary layer). The relevant scale is [b] = L6/5

q L−1/5
s , which after some algebra turns

out to be [b] = ε1/5[h], and we define

b = [b]b∗, l = [b]l∗. (4.6)

In what follows, we will treat b∗ as a prescribed, O(1) function of the variable x∗,
assuming that it changes by amounts of O(1) only when x∗ changes by O(1), so that
we can treat its derivative b∗

x∗ as being of O(1), too. This is a somewhat restrictive
assumption on bed topography that we discuss further in § 6; we note however that
the above is analogous to the scaling of bedrock in § 3.3 of Part 1.

For simplicity, we immediately drop the asterisks on scaled variables. In scaled
form, the model (2.2)–(2.5) becomes the following. In ε1/5b < z < s,

ετ1,x + τ2,z − px = 0, (4.7a)

−ετ1,z + ν2τ2,x − pz − 1 = 0, (4.7b)

ux + vz = 0, (4.7c)

2ux = τ1, (4.7d )

uz + ν2vx = ν2ε−1τ2. (4.7e)

Boundary conditions at the upper surface z = s = h + ε1/5b are

(p − ετ1) sx + τ2 = 0, (4.8a)

−p − ν

λ
τ1 − ν2τ2sx = 0, (4.8b)

st + usx = v + a. (4.8c)

On the non-contact parts of the base of the ice, z = ε1/5l, x >xg , we have

ε1/5
(
p + ε1/5r−1l − ετ1

)
lx + τ2 = 0, (4.9a)

−p − ε1/5r−1l − ετ1 − ν2ε1/5τ2lx = 0, (4.9b)

ε1/5(lt + ulx) = v + ml, (4.9c)

l > b, (4.9d )
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while for the contact areas z = ε1/5b, x <xg ,

v = ε1/5ubx, (4.10a)

−2ε6/5bxτ1 + (1 − ν2ε2/5b2
x)τ2

1 + ν2ε2/5b2
x

=
(
1 + ν2ε2/5b2

x

)1/2
u, (4.10b)

p +
ε(1 − ν2ε2/5b2

x)τ1 + 2ν2ε1/5bxτ2

1 + ν2ε2/5b2
x

� −ε1/5r−1b. (4.10c)

Note that the complicated powers of ε appear in these boundary conditions due to
our choice of scales for b above.

4.2. Grounded ice sheet flow: the outer problem

The grounded ice flow in the interior of the ice sheet (0 <xg −x =Ord(1)) is the outer
problem for which the scalings chosen above are appropriate. By insisting that ν and
ε are small, we can omit terms of O(ν), O(ε) and hence of O(ε1/5) in (4.7), (4.8) and
(4.10) to find

τ2,z − px = 0, pz = −1, ux + vz = 0, uz = ν2ε−1τ2 (4.11a)

in the interior of the ice, which is 0< z < s at leading order, with s = h at leading
order. Boundary conditions are

τ2 = 0, p = 0, st + usx = v + a (4.11b)

on z = s, and

τ2 = u, v = 0, p � O(ε1/5) (4.11c)

on z = 0. In the last equality in (4.11a), we have retained the O(ν2ε−1) shearing term
on the right-hand side as a leading-order contribution. This is apparently appropriate
only when ν2ε−1 � 1, or equivalently, when LqL

1/3/L4/3
s � 1 and so L � L4

s /L
3
q .

But reference to § 3 shows that this is nothing more than the restriction that the ice
sheet not be large enough for the shear-dominated regime to appear. A flow in which
sliding is at least as important as shearing is also suggested out by the choice of
scale [u] in (4.1). For the sake of brevity, we assume that this is the case. It should
be clear, however, that it is possible to add the shear-dominated regime through a
rescaling and that the same thin film model as we are about to derive also captures
the shear-dominated regime; we merely chose not to expend journal space on the
relevant rescaling that would formally describe the shear-dominated regime.

The outer problem can be solved for velocity and stress as

p = s − z, τ2 = −(s − z)sx, (4.12)

u = −ssx − ν2

2ε

[
s2 − (s − z)2

]
sx, (4.13)

where the O(ν2ε−1) shearing term could once again be omitted if ν2 � ε. From (4.11a)3,
(4.11b)3 and (4.11c)2, surface evolution is described through the depth-integrated mass
conservation equation

st + qx = a, q =

∫ s

0

u dz. (4.14)

Using the form of u in (4.13), we find

q = −
[
s2sx +

ν2

3ε
s3sx

]
, (4.15)
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which we can identify as the scaled form of (3.1). Therefore

st −
[
s2sx +

ν2

3ε
s3sx

]
x

= a. (4.16)

In addition to the diffusion problem (4.16), we have from the inequality in (4.11c)
the trivial requirement that

s > 0. (4.17)

In other words, ice thickness h ∼ s must not go to zero in the outer region in order
satisfy the contact inequality.

Before we consider what happens closer to the contact line, we should make the
link with Part 1 clearer, as our boundary-layer problem will turn out to be a special
case of that considered in Part 1. The model used in Part 1, with the rheological
coefficients m and n set to unity, can be obtained from (4.7)–(4.10) if we take only
the asymptotic limit ν � 1 and allow ε initially to be of O(1). In that case, it is
easy to show that we obtain from dropping terms of O(ν) and a series of simple
quadratures that u ∼ u(x, t) is independent of z and we get the following ‘free film
with friction’ (Erneux & Davis 1993) or ‘ice stream’ model (Muszynski & Birchfield
1987; MacAyeal 1989; Schoof & Hindmarsh 2010):

4ε(hux) − u − (h − ε1/5b)sx = 0, ht + (uh)x = a, (4.18)

which is of the same form as that studied in Part 1, with ε denoting the same
dimensionless parameter. (To see how this series of quadratures works, see either the
Appendix of Schoof (2006) or the procedure in § 4.3 below). Subsequent use of ε2 � 1
retrieves (4.15) with the O(ν2/ε) shearing term omitted.

4.3. The extensional stress boundary layer

This boundary layer is the part of the grounded ice sheet in which extensional
stresses begin to be important. The sketch of the flow structure in § 3 suggests
that the boundary layer length scale is L3/5

q L2/5
s = ε3/5L, where ice thickness scales as

L6/5
q L−1/5

s = ε1/5[h] = [b]. We expect dimensionless flux to remain O(1) in the boundary
layer, which suggests the rescaling

x − xg = ε3/5X, h = ε1/5H, u = ε−1/5U. (4.19)

Note that these rescalings agree with those for the normal stress boundary layer in
Part 1 for the parameter choice m = n= 1 appropriate for the linear slip law and
Newtonian rheology considered here. We also require additional rescalings for the
remaining variables:

z = ε1/5Z, s = ε1/5S τ1 = ε−4/5T1, τ2 = ε−1/5T2, v = ε−3/5V, p = ε1/5P.

(4.20)

To simplify our notation, we define an aspect ratio ν ′ for the boundary layer as

ν ′ = νε−2/5 =

(
Lq

Ls

)3/5

. (4.21)
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Equations (4.7), (4.8) and (4.10) can now be written in terms of the rescaled variables
as

T1,X + T2,Z − PX = 0, (4.22a)

−T1,Z + ν ′2T2,X − PZ = 0, (4.22b)

UX + VZ = 0, (4.22c)

2UX = T1, (4.22d )

UZ + ν ′2VX = T2, (4.22e)

on b(xg + ε3/5X) <Z <S, with

(P − T1)SX + T2 = 0, (4.23a)

−P − T1 − ν ′2T2SX = 0, (4.23b)

ε4/5St − ε1/5ẋgSX + USX = V + ε4/5a, (4.23c)

on Z = S, where ẋg = dxg/ dt , and

−2ε3/5bxT1 +
(
1 − ν ′2ε6/5

)
b2

xT2

1 + ν ′2ε6/5b2
x

=
(
1 + ν ′2ε6/5b2

x

)1/2
U, (4.24a)

V = ε3/5Ubx, (4.24b)

P +

(
1 − ν ′2ε6/5b2

x

)
T1 + 2ν ′2ε3/5bxT2

1 + ν ′2ε6/5b2
x

� −r−1b, (4.24c)

on Z = b(xg + ε3/5X), X < 0.
These equations simplify if the boundary layer can be treated as having a small

aspect ratio ν ′, or equally, if ν5/2 � ε as imposed in (4.5). In terms of the intrinsic
length scales Lq and Ls , the statement ν5/2 � ε is equivalent to Ls � Lq , which was
the basis for the separation of scales in § 3.

Note also that we assume that b changes significantly over length scales comparable
with the ice sheet size L. Consequently, in the boundary layer, we will treat b(xg +
ε3/5X) ∼ b(xg) as constant at leading order. With these assumptions, the problem
above can be simplified to

T1,X + T2,Z − PX = 0, (4.25a)

−T1,Z − PZ − 1 = 0, (4.25b)

UX + VZ = 0, (4.25c)

T1 = 2UX, (4.25d )

UZ = 0 (4.25e)

on b(xg) < Z < S, with

(P − T1)Sx + T2 = 0, P + T1 = 0, USX = V (4.26)

on Z = S, and

V = 0, T2 = U, P + T1 � −r−1b(xg) (4.27)

on Z = b(xg), all of the above being valid in the contact region, where X < 0.
From (4.25b) and (4.26)2, we find P +T1 = S−Z. Moreover, from (4.25e), U = U (X, t)

is independent of Z (the boundary layer is a plug flow) and from (4.25d), T1 = 2UX is
also independent of Z. Substituting P = S − Z − T1 in (4.25a) gives

2T1,X + T2,Z − SX = 0. (4.28)
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Integrating this from Z = b(xg) to Z = S, using the boundary conditions (4.26)1, (4.27)
as well as (4.25d) and noting that to leading order b is independent of the inner
coordinate X, we find

4 (HUX)X − U − HHX = 0, (4.29a)

where H = S − b(xg) is ice thickness. Meanwhile, integrating (4.25c) from Z = b(xg)
to Z = S and using (4.26)3 and (4.27)2 yields

(UH )X = 0. (4.29b)

Meanwhile, the contact inequality (4.27)3 becomes

H � −r−1b(xg), (4.29c)

with (4.29a)–(4.29c) in the contact region X < 0. For X > 0, we have boundary
conditions at the base of the ice that correspond to contact with sea water, which
require separate treatment in §§ 4.5–4.7.

In (4.29a)–(4.29c), we have the same boundary layer problem as in Part 1 (equation
(3.39) of Part 1 with m = n= 1). We still need to find appropriate boundary conditions
for this boundary layer problem.

4.4. Matching with the outer problem

The outer and boundary layer solutions must match in a matching region where
xg − x � 1 and X � 1. By (4.29b), ice flux UH is constant in the boundary layer, and
we denote this by Q =UH , so U = Q/H . In the matching region, we expect

q ∼ Q, u ∼ ε−1/5U, h ∼ ε1/5H, (4.30)

where q and u are given by (4.13) and (4.15) and U and H are solutions of (4.29).
Rewriting (4.13) in terms of the boundary layer variables S, Z and X gives

u = − ε−1/5

{
SSX +

ν2

2ε4/5

[
S2 − (S − Z)2

]
SX

}
. (4.31)

From (4.30) with U = U (X, t) independent of Z, we see that matching requires the
second term in curly brackets in (4.31) to be small at leading order. In other words,
the outer velocity field must turn into a plug flow in the matching region. This is the
case when the coefficient ν2/ε4/5 = ν ′2 is small, that is, precisely when (4.5)1 is satisfied.
Under these circumstances, we have

u ∼ −ε1/5SSX ∼ −ε1/5U, (4.32)

which corresponds to (4.29a) in the limit of UX → 0, H → ∞ (where H ∼ S). From
this and (4.30), we can therefore identify the relevant matching conditions at leading
order as

U → 0, U ∼ −HHX, as X → −∞, (4.33a)

h → 0, q → Q, as x → x−
g , (4.33b)

x → x−
g denoting the limit taken as xg(t) is approached from below. Note that h → 0

and q = − hhx → Q as x approaches xg from below together imply that Q > 0.
As in Part 1, we see again that matching with the normal stress boundary layer

supplies the required two boundary equations for the diffusion problem (4.16) at the
moving boundary x = xg(t) through (4.33b), one on ice thickness h (or equivalently,
on surface elevation s ∼ h in the outer region) and the other on ice flux q . To close
the outer problem, the flux Q must still be found, which requires the boundary-layer
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problem (4.29) to be solved. To this end, we still need boundary conditions for (4.29)
at the grounding line X = 0. These arise from coupling the normal stress boundary
layer with the ice shelf, which we consider next.

4.5. The ice shelf

The rescalings for stress, velocity and ice thickness in the normal stress boundary layer
were chosen to allow the lubrication flow in the interior of the ice sheet to be coupled
to the ice shelf. If the normal stress boundary layer does couple straightforwardly to
the shelf, then it is natural to expect the same rescalings to apply to the shelf itself.
In addition to (4.19), we define

l(x, t) = L(X, t), ml = ε3/5M. (4.34)

(To motivate the rescaling of basal melt rate al , note that due to a phenomenon
known as the ice pump (Holland & Jenkins 2001), a convection cell is often formed
in the ocean waters below the shelf. This can lead to significant rates of melting far
larger than surface snowfall [a]. Our rescaling of al above is chosen so that basal
melting M can have a leading-order effect on the dynamics of the ice shelf; this
contrasts with the normal stress boundary layer, in which accumulation rate is small
in (4.23c). Below, we assume that M(X, t) is a prescribed function.)

With these rescalings, the model (4.7)–(4.9) now becomes the following: (4.7)–(4.8)
again take the form (4.22)–(4.23), while (4.9) becomes

(P + r−1L − T1)LX + T2 = 0, (4.35a)

−P − r−1L − T1 − ν ′2T2LX = 0, (4.35b)

ε4/5Lt − ε1/5ẋgLX + ULX = V − M, (4.35c)

L > B (4.35d )

on Z = L, X > 0.
We can depth-integrate the shelf model ((4.22), (4.23) and (4.35)) using exactly the

same steps that led to (4.29). From (4.25b) and (4.26)2, we again have P + T1 = S − Z.
At leading order, we then have from (4.35b) that

H = S − L = −r−1L, S = (1 − r)H. (4.36a)

As before, U = U (X, t) and T1 = 2UX are independent of Z at leading order from
(4.25e) and (4.25d). Substituting PX = SX −T1,X in (4.25a) and integrating the resulting
equation as well as (4.25c) from Z =L to Z = S yields, on application of the
appropriate boundary conditions as in the derivation of (4.29a) and (4.29b),

4 (HUX)X − (1 − r)HHX = 0, (4.36b)

(UH )X = −M, (4.36c)

H < −r−1b(xg) (4.36d )

on X > 0. The model (4.36) can be recognized as the standard steady-state ice shelf
model (e.g. MacAyeal & Barcilon 1988). As in the case of the normal stress boundary
layer, the model above is a steady-state model because the advection time scale for
the shelf ( = ε4/5[t]) is much shorter than for the outer region (= [t]).

Integrating (4.36b), we can find strain rate in terms of shelf thickness,

UX = (1 − r)H/8 + C/H, (4.37)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

12
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.129


138 C. Schoof

where C is a constant of integration. Assuming that stress remains bounded as H

becomes small, we obtain C = 0. Hence

UX = (1 − r)H/8, (4.38)

and extensional stress

T1 = 2UX = (1 − r)H/4 (4.39)

is therefore determined by ice thickness alone. We note that this result is independent
of the assumption that the ice shelf is in steady state.

We can go further and find a complete closed-form solution to (4.36) (see also van
der Veen 1983). Integrating (4.36c), we find flux explicitly as

UH = Qs(X, t), Qs(X, t) := Q0 −
∫ X

0

M(X′, t) dX′, (4.40)

where Q0 = UH |X =0 is flux at the grounding line. Then we have H = Qs/U , and the
shelf must end at X = Xc where Qs(x, t) = 0. (In practice, it is more likely that
the shelf will end at an X < Xc where icebergs calve off, but this does not affect
the calculation below.)

Putting H = Qs/U in (4.38),

UX =
(1 − r)Qs

4U
, (4.41)

so, by separation of variables,

U 2(X, t) = U 2
0 (t) +

(1 − r)
∫ X

0
Qs(X

′, t) dX′

2
, (4.42)

where U0 is ice velocity at the grounding line X = 0, and ice thickness can be found
as H = Qs/U .

Of course, Q0 and U0 in the shelf solution must be found through coupling with the
normal stress boundary layer part of the grounded sheet. In fact, our main purpose
here is not to calculate the shape of the ice shelf, but to use the ice shelf model to
determine appropriate boundary conditions on (4.29) at the grounding line X = 0.

4.6. Coupling the extensional stress boundary layer and shelf regions: continuity
considerations and the role of the contact inequalities

It is clear that the form of (4.36) is essentially the same as (4.29), apart from the
absence of a friction term U in (4.36b) and the multiplication of the driving term
−HHX in (4.36) by a buoyancy factor (1 − r). An obvious approach to coupling the
two models is then to enforce continuity of ice velocity U (otherwise the gradient
UX would not be defined and extensional stress at the contact line would have to be
infinite), ice flux UH (to ensure mass conservation) and the depth-integrated normal

stress
∫ S

L
T1 dZ = 2HUX (to ensure force balance). This is precisely what is done in

Part 1, and it allows the boundary layer problem (4.29) to be closed.
Upstream of the grounding line, X < 0, we have H � − r−1b(xg) from (4.29c) while

on the downstream side, X > 0, we have H < − r−1b(xg) from (4.35d). If U and UH

are continuous at X = 0, then so is H , and this implies that ice thickness must be at
the critical value for flotation at leading order,

H = −r−1b(xg) at X = 0, (4.43)

where we must of course have b(xg) < 0, so the ice sheet bed at the grounding line
is indeed below sea level. (Note that (4.29c) and (4.35d) are simply the leading-order
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Figure 3. The solution S for surface elevation from §§ 4.3 and 4.5 plotted against X; here, we
have b(xg) = 2.117 corresponding to Q = 1 (see the Appendix for a method of computing Q
as a function of b(xg)) as well as M = 0. The most important feature of this graph is the break
in slope at the contact line X = 0. The slope discontinuity only appears at this scale. When
one zooms into the region around the slope break, a boundary layer ensures a continuous
transition whose shape is given by figure 4(c).

versions of the contact inequalities (2.4d) and (2.5c), and we can see here how they
determine ice thickness at the contact line.) Meanwhile, continuity of normal stress
and (4.38) implies that

UX = − (1 − r)b(xg)

8r
, at X = 0. (4.44)

The two conditions (4.43) and (4.44) along with (4.33a) provide the required boundary
conditions for the boundary-layer problem (4.29). Moreover, they reproduce the
corresponding boundary conditions (3.40) in Part 1.

The solution of the boundary-layer problem (4.29) with the boundary conditions
(4.33a), (4.43) and (4.44) then determines the relationship between ice flux Q and
depth b in the boundary layer. This problem is exactly the same as that considered
in Part 1 (with the Part 1 parameters m = n=1). By continuity of flux, we must
have Q0 = Q, while continuity of velocity also gives us the constant of integration
U0 = Q/[−r−1B(xg)] in the shelf solution (4.42). We will revisit the solution of (4.29)
with (4.33a), (4.43) and (4.44) in § 5. Before we do so, there is a further complication
to attend to.

The boundary conditions (4.43) and (4.44) are based on the continuity of flux UH ,
velocity U and the velocity gradient UX across the grounding line. These continuity
assumptions also imply that the thickness gradient HX = −HUX/U is also continuous.
Upstream of the grounding line, we however have that S = H − b(xg) and hence we
have SX = HX . Downstream of the grounding line, we have flotation and hence
S = (1− r)H, so SX =(1− r)HX . To show that this discontinuity in slope (see figure 3)
does not invalidate the continuity assumptions leading to (4.43) and (4.44), we have
to consider the transition from grounded to floating ice near the grounding line in
greater detail.

4.7. The slope boundary layer: a beam problem

We seek an additional boundary layer just downstream of the grounding line that
describes the continuous transition in vertical velocity and surface slope and from
grounded sheet to floating shelf. As indicated in § 3, this slope boundary layer takes
the form of a viscous beam problem.

The discontinuity in ice surface slope predicted above results from the requirement
in (4.36a) that the ice shelf be afloat in the Archimedean sense. A continuous change
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in surface slope across the grounding line therefore does not allow the flotation
conditions (4.36a) to be satisfied exactly close to the grounding line. The associated
departures from flotation then induce buoyancy effects that cause ‘bending’ of the
shelf as a viscous beam and ultimately lead to a smooth transition in surface slope.
Mechanically, this bending corresponds to horizontal gradients of shear stress ∂τ2/∂x

playing a significant role.
In § 3, we motivated a length scale ∼ L27/25

q L−2/25
s = ε7/25ν4/5L = ε3/5ν ′4/5L. As the

length scale for the extensional stress boundary layer is ε3/5L, this suggests that we
rescale horizontal distance in the slope boundary layer as

X = ν ′4/5X̃. (4.45)

In addition, the rescalings required to describe the beam-like structure of the vertical
velocity field V in the slope boundary layer are

U = Ũ , V = Ṽ , P = P̃ , T1 = T̃ 1, T2 = ν ′−2/5T̃ 2, (4.46)

L = L̃, S = S̃. (4.47)

We substitute these into (4.22), (4.23) and (4.35) for the floating portion of the ice,

T̃ 1,X̃ + ν ′2/5T̃ 2,Z − P̃ X̃ = 0, (4.48a)

−T̃ 1,Z + ν ′4/5T̃ 2,X̃ − P̃ Z − 1 = 0, (4.48b)

Ũ X̃ + ν ′4/5Ṽ Z = 0, (4.48c)

2Ũ X̃ = ν ′4/5T̃ 1, (4.48d )

ŨZ + ν ′6/5Ṽ X̃ = ν ′8/5T̃ 2 (4.48e)

on L̃ < Z < S̃, and (
P̃ − T̃ 1

)
S̃X̃ + ν ′2/5T̃ 2 = 0, (4.49a)

−P̃ − T̃ 1 − ν ′4/5T̃ 2S̃X̃ = 0, (4.49b)

ν ′4/5ε4/5(S̃t − a) + ε1/5ẋgS̃X̃ + Ũ S̃X̃ = ν ′4/5V (4.49c)

on Z = S̃, as well as(
P̃ + r−1L̃ − T̃ 1

)
S̃X̃ + ν ′2/5T̃ 2 = 0, (4.50a)

−P̃ − r−1L̃ − T̃ 1 − ν ′4/5T̃ 2S̃X̃ = 0, (4.50b)

ν ′4/5ε4/5L̃t + ε1/5ẋgL̃X̃ + Ũ L̃X̃ = ν ′4/5(V + M), (4.50c)

L̃ > b(xg + ε3/5ν ′4/5X̃) (4.50d )

on Z = L̃, X̃ > 0.
Our aim here is to show that the boundary conditions (4.43) and (4.44) can be

justified, and that a beam-like deformation of the shelf near the contact line alleviates
the apparent problem of a discontinuous vertical velocity. To do so, we expand the
dependent variables in powers of ν ′2/5 as

Ũ ∼ Ũ
(0)

+ ν ′4/5Ũ
(2)

+ ν ′6/5Ũ
(3)

+ O(ν ′8/5), Ṽ ∼ Ṽ
(0)

+ O(ν ′2/5), (4.51)

L̃ ∼ L̃
(0)

+ ν ′4/5L̃
(2)

+ O(ν ′6/5), S̃ ∼ S̃
(0)

+ ν ′4/5S̃
(2)

+ O(ν ′6/5), (4.52)

T̃ 1 ∼ T̃
(0)

1 + ν ′2/5T̃
(1)

1 + ν ′4/5T̃
(2)

1 + O(ν ′6/5), T̃ 2 ∼ T̃
(0)

2 + O(ν ′2/5), (4.53)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

12
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.129


Marine ice sheet dynamics. Part 2 141

P̃ ∼ P̃
(0)

+ ν ′2/5P̃
(1)

+ ν ′4/5P̃
(2)

+ O(ν ′6/5), (4.54)

where we have left out first-order terms in ν ′2/5 in the expansions of U , S and L

because these turn out to be zero and we do not wish to labour this point. We will
see below that the expansions given above lead to well-posed higher-order equations
and that there are therefore no missing terms in these expansions.

The leading-order forms of (4.48)–(4.50) are simple and we do not give them here
to save space. Instead, we state the relevant results. From (4.48d), (4.48e), (4.49c) and

(4.50c), Ũ
(0)

, L̃
(0)

and S̃
(0)

are all constants (independent of X̃ and Z) with S̃
(0)

and

L̃
(0)

related through Archimedean flotation,

S̃
(0)

= (1 − r−1)L̃
(0)

. (4.55)

Leading-order pressure is related to extensional stress from (4.48b) as

P̃
(0)

= S̃
(0) − Z − T̃

(0)

1 , (4.56)

and from (4.48a) T̃
(0)

1 is independent of X̃. By matching with the shelf (which
corresponds to the simultaneous limits X̃ → ∞, X → 0), it is easy to show that

Ũ
(0)

= lim
X→0+

U (X, t), T̃
(0)

1 = lim
X→0+

T1 = lim
X→0+

2UX, (4.57)

S̃
(0)

= lim
X→0+

S(X, t), L̃
(0)

= lim
X→0+

L(X, t), (4.58)

where 0+ denotes the limit X = 0 approached from above (i.e. from within the
shelf rather than the extensional stress boundary layer). At leading order, horizontal

velocity Ũ
(0)

and extensional stress T̃
(0)

1 are both constant in the beam region and
equal to their near-contact line values in the shelf, while the same is also true for
surface and base elevations, which are related through Archimedean flotation.

It is however precisely the deviation from Archimedean flotation that explains the
smooth transition in surface slope from grounded sheet to floating shelf, and this
must therefore appear in the beam region at higher order (see also Baral, Hutter &
Greve 2001). We therefore expand the governing equations.

Expanding (4.48d) and (4.48e) gives at O(ν ′4/5),

Ũ
(2)

Z = 0, Ũ
(2)

X̃ = 1
2
T̃

(0)

1 , (4.59)

so that Ũ
(2)

depends only on X̃ and its gradient Ũ
(2)

X̃ is constant (because T̃
(0)

1 is
constant). Expanding (4.48c) yields at O(ν ′4/5),

Ũ
(2)

X̃ + Ṽ
(0)

Z = 0, (4.60)

so that

Ṽ
(0)

= VL(X̃, t) − Ũ
(2)

X̃ (Z − L̃
(0)

), (4.61)

where VL is vertical velocity at the lower boundary of the ice, and we have made use

of the fact that Ũ
(2)

X̃ is constant. Below, VL will play the role usually played by vertical
displacement of the centreline of an elastic beam in standard elastic beam theory.

Next, expanding (4.48d) and (4.48e) to O(ν ′6/5) yields, respectively,

Ũ
(3)

X̃ = 1
2
T̃

(1)

1 , Ũ
(3)

Z + Ṽ
(0)

X̃ = 0, (4.62)
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Hence

Ũ
(3)

= VL,X̃(Z − L̃
(0)

) + UL(X̃, t), T̃
(1)

1 = 2
[
UL,X̃ − VL,X̃X̃(Z − L̃

(0)
)
]
, (4.63)

where UL denotes variations in velocity U at the base of the ice and is independent
of Z.

Next, we consider how deviations from flotation affect the velocity field VL. First,
note that expanding (4.48a), (4.48b), (4.49b), (4.49a) and (4.50a) to O(ν ′2/5) gives

T̃
(1)

1,X̃ + T̃
(0)

2,Z − P̃
(1)

X̃ = 0, T̃
(1)

1,Z − P̃
(1)

Z = 0, (4.64)

with T̃
(1)

1 + P̃
(1)

= 0 on Z = S̃
(0)

and T̃
(0)

2 = 0 on Z = L̃
(0)

as well as on Z = S̃
(0)

. Hence

T̃
(0)

2 = −2

∫ Z

L̃
(0)

T̃
(1)

1,X̃(X, Z′, t) dZ′,

[∫ S̃
(0)

L̃
(0)

T̃
(1)

1 dZ

]
X̃

=

∫ S̃
(0)

L̃
(0)

T̃
(1)

1,X̃ dZ = 0. (4.65)

Noting that there is no O(ν ′2/5) correction to normal stress T1 in the shelf from (4.22),
(4.23) and (4.35), it follows from matching with the shelf that∫ S̃

(0)

L̃
(0)

T̃
(1)

1 dZ = 0. (4.66)

Substituting for T̃
(1)

1 from (4.63) in (4.66), we find a relationship between UL and VL:

UL,X̃ = 1
2
VL,X̃X̃(S̃

(0) − L̃
(0)

). (4.67)

Moreover, expanding (4.48b), (4.49b) and (4.50b) to O(ν ′6/5) yields

T̃
(2)

1,Z + P̃
(2)

Z − T̃
(0)

2,X̃ = 0, (4.68)

with T̃
(2)

1 + P̃
(2)

= (1−r−1)L̃
(2)

on Z = L̃
(0)

and T̃
(2)

1 + P̃
(2)

= S̃
(2)

on Z = S̃
(0)

. Integrating

(4.68) from Z = L̃
(0)

to Z = S̃
(0)

and applying these boundary conditions yields∫ S̃
(0)

L̃
(0)

T̃
(0)

2,X̃ dZ = S̃
(2) − (1 − r−1)L̃

(2)
. (4.69)

However, we have a prescription in (4.65) for T̃
(0)

2 , and with this, we get

−2

∫ S̃
(0)

L̃
(0)

∫ Z

L̃
(0)

T̃
(1)

1,X̃(X, Z′, t) dZ′ dZ = S̃
(2) − (1 − r−1)L̃

(2)
. (4.70)

This is our basic beam problem: the left-hand side is the gradient of the shear force∫ S̃
(0)

L̃
(0) T̃

(0)

2 dZ in the ice (Evatt & Fowler 2007), while the right-hand side describes a

restoring force due to deviations from Archimedean flotation. Substituting for T̃
(1)

1

from (4.63) and (4.67) yields the beam equation for vertical velocity VL:

− (S̃
(0) − L̃

(0)
)3

3
VL,X̃X̃X̃X̃ = S̃

(2) − (1 − r−1)L̃
(2)

, (4.71)

where we can identify the constant coefficient (S̃
(0) − L̃

(0)
)3/3 as a viscous flexural

rigidity for the shelf. Note that we have constructed (4.71) from the equations for
floating ice, and (4.71) therefore holds downstream of the contact line, X̃ > 0.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

12
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.129


Marine ice sheet dynamics. Part 2 143

It remains to link S̃
(2)

and L̃
(2)

back to velocity VL through (4.49c) and (4.50c).

From (4.61), we have Ṽ
(0)|

Z=S̃
(0) − Ṽ

(0)|
Z=L̃

(0) = −Ũ
(2)

X̃ (S̃
(0) − L̃

(0)
). However, expanding

(4.49c) and (4.50c) to O(ν ′4/5), we find

Ũ
(0)

S̃
(2)

X̃ = Ṽ
(0)

on Z = S̃
(0)

, Ũ
(0)

L̃
(2)

X̃ = Ṽ
(0) − M on Z = L̃

(0)
. (4.72)

From this and (4.61), the mean thinning rate for the ice shelf in the slope transition
region can be found at this order:

S̃
(2)

X̃ − L̃
(2)

X̃ = − Ũ
(2)

X̃ (S̃
(0) − L̃

(0)
) + M

Ũ
(0)

. (4.73)

Differentiating (4.71) with respect to X̃ and using (4.73), we finally obtain a closed
equation for VL,

(S̃
(0) − L̃

(0)
)3

3
VL,X̃X̃X̃X̃X̃ +

1

rŨ
(0)

VL =
Ũ

(2)

X̃ (S̃
(0) − L̃

(0)
) + (1 − r−1)M

Ũ
(0)

. (4.74)

The base and surface slopes S̃
(2)

X̃ and L̃
(2)

X̃ can be reconstructed from the solution VL

to (4.74) through (4.61) and (4.72).

Note that the coefficients T̃
(0)

1 , Ũ
(0)

, Ũ
(2)

X̃ , S̃
(0)

and L̃
(0)

in (4.74) are constants
determined by coupling with the shelf problem through (4.58). Assuming that M is a
function of the ‘outer’ ice shelf variable X = ν ′4/5X̃, we also treat M = M(ν ′4/5X̃) ∼ M(0)
as a constant here. A solution is now straightforward to find, although by contrast
with elastic beam equations, we have a fifth- rather than fourth-order differential
equation. The general solution to (4.74) takes the form

VL = r
[
Ũ

(2)

X̃ (S̃
(0) − L̃

(0)
) + (1 − r−1)M

]
+

4∑
k=0

Ak emkX̃, (4.75)

where we have defined

mk =

[
3

rŨ
(0)

(S̃
(0) − L̃

(0)
)3

]1/5

ei(2k+1)π/5. (4.76)

To solve the beam problem fully, we need to find the amplitudes Ak . This requires
boundary conditions for (4.74). One set of boundary conditions is easy to find: as

X̃ → ∞, we clearly need VL = Ṽ
(0)|

Z = L̃
(0) to remain bounded, so A0 = A4 = 0. In fact,

by matching with the ice shelf, we expect from (4.35c) that

lim
X̃→∞

VL(X̃, t) = lim
X→0

[
V (X, Z, t)|Z=L(X,t)

]
= lim

X→0
(ULX − M). (4.77)

However, in the shelf L = − rH and from (4.36c), ULX = − rUHX = r(UXH + M),
and so we expect

lim
X̃→∞

VL = lim
X→0

[rUXH − (1 − r)M]. (4.78)

Bearing in mind (4.58), this is precisely what we obtain from (4.76) if the exponential
terms in (4.76) tend to zero as X̃ → ∞, i.e. if only terms with Re(mk) < 0 are included
in the sum over k. Hence A0 = A4 = 0.

This still leaves the coefficients A1, A2 and A3 to be determined. We have already
matched the beam problem successfully with the shelf solution, and the remaining
coefficients can therefore be determined only by coupling the beam problem with the
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extensional stress boundary layer that lies upstream of the contact line. We expect that
this coupling takes the form of boundary conditions at X̃ =0. However, asymptotic
matching will not help us here: there is no overlap region between the beam and the
extensional stress boundary layer, as they are subject to different boundary conditions
at the base of the ice.

To match, we actually have to introduce yet another boundary layer that straddles
the contact line itself. This boundary layer then not only determines the remaining
coefficients A1, A2 and A3, but also justifies the boundary conditions (4.43) and (4.44)
on the extensional stress boundary layer: we have already seen that ice thickness,
velocity and stress are constant at leading order in the beam region. The arguments
leading up to (4.43) and (4.44) are then correct if the leading-order ice thickness,
velocity and stress in the beam region are also continuous across the contact line. To
show this requires the additional boundary layer straddling the contact line.

We will describe this boundary layer in the next section. For ease of presentation,
we pre-empt its results here, and state the relevant boundary conditions on VL that
allow us to calculate A1, A2 and A3 in (4.76). These are the boundary conditions one
would also find at the contact line of an elastic beam (where VL would have to be
identified as displacement), namely

lim
X̃→0+

VL = lim
X̃→0+

VL,X̃ = lim
X̃→0+

VL,X̃X̃ = 0. (4.79)

Of these, the first condition limX̃→0 VL = 0 can be motivated easily. It shows that the
beam region alleviates the problem of a discontinuous vertical velocity across the

contact line X = X̃ = 0. From (4.49c) and (4.61), we have limX̃→0+ S̃
(2)

X̃ = − Ũ
(2)

X̃ (S̃
(0) −

L̃
(0)

)/Ũ
(0)

= − limX→0+ UXH/U = − limX→0− UXH/U if velocity U , thickness H and
velocity gradient UX are continuous between the normal stress boundary layer and
the ice shelf across X = 0. In the normal stress boundary layer, SX = HX = − UXH/U

from (4.29b), and hence limX̃→0+ S̃
(2)

X̃ = limX→0− SX as expected.
With the boundary conditions (4.79), the solution to (4.74) finally becomes

VL =
[
rŨ

(2)

X̃ (S̃
(0) − L̃

(0)
) − (1 − r)M

]

×

⎧⎪⎪⎨
⎪⎪⎩1 +

cos

(
3π

5
+ m̄ sin

(
2π

5

)
X̃

)
e−m̄ cos(2π/5)X̃ − cos

(π

5

)
e−m̄X̃

2 sin

(
2π

5

)
sin

(π

5

)
⎫⎪⎪⎬
⎪⎪⎭ , (4.80)

where

m̄ =

[
3

rŨ
(0)

(S̃
(0) − L̃

(0)
)3

]1/5

. (4.81)

The amplitude of variations in VL is therefore set by melt rate M , ice thickness

S̃
(0) − L̃

(0)
and horizontal velocity gradient Ũ

(2)

X̃ near the grounding line. Spatially,
variations in VL take the form of an attenuated sine wave of fixed shape with a
wavelength given by the parameter m̄, which in turn depends only on the flexural

rigidity (S̃
(0) − L̃

(0)
)3/3 of the shelf and on the flow speed Ũ

(0)
. The form of VL is

illustrated in figure 4. From this solution, we can reconstruct the base elevation of

the ice L̃
(2)

by integrating (4.50c) from X̃ =0, where we expect the ice to make with
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5 10 15 20
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0

0.5

1.0

1.5

VL

L(2)

S (2)

(a)

(b)

(c)
0

5

10

0
−2

0

2

m– X

Figure 4. The attenuated sine wave form of VL(X̃) given by (4.80) is plotted in (a) against the

variable m̄X̃ for the case of unit ‘amplitude’ rŨ
(2)

X̃ (S̃
(0) −L̃

(0)
)−(1−r)M = 1. Note that the shape

of the wave is independent of any of the model parameters (in particular, it does not depend
on m̄, which only determines its wavelength). The corresponding base and surface elevation are

plotted in (b) and (c) for the case M = 0, in both cases normalized by Ũ
(0)

X̃ (S̃
(0) − L̃

(0)
)/(m̄Ũ

(0)
).

Note that the second-order surface correction S̃
(2)

shown in (c) has a noticeable surface bump
with an adverse slope around m̄X = 4. A similar surface feature has been found by Durand
et al. (2009), see the inset of their figure 2. It is clear that S̃

(2)
shown in (c) represents a

transition from a steep slope at X = 0 to a less steep one as X → ∞; this is what happens
close to the break in slope in figure 3.

contact with the bed, so L̃
(2)|X̃=0 = 0:

L̃
(2)

(X̃, t) =
1

Ũ
(0)

∫ X̃

0

VL(X̃
′
, t) + M dX̃

′
. (4.82)

We have so far not considered the contact inequality (4.50d) here. Anticipating

that the arguments in § 4.6 hold, we will have L̃
(0)

= limX→0+ L = b(xg), in which case

(4.50d) requires L̃
(2)

> 0. This is satisfied by the solution above: with M > 0 and VL > 0

(see figure 4) it follows from (4.82) that L̃
(2)

> 0, and hence the inequality (4.50d) will

be satisfied. Given a solution for L̃
(2)

, the surface elevation S̃
(2)

can then be recovered
from (4.71). In particular, the non-zero deviation of ice thickness from Archimedean
flotation at the grounding line can now be computed at O(ν ′4/5) as

S̃
(2)|X̃=0 = −2(S̃

(0) − L̃
(0)

)3

3
VL,X̃X̃X̃X̃

∣∣
X̃=0

=

(
rŨ

(2)

X̃

(
S̃

(0) − L̃
(0)) − (1 − r)M

)
2(1 +

√
5)rŨ

(0)
m̄

. (4.83)

This confirms the observation of Durand et al. (2009) that ice thickness at the
grounding line is not exactly equal to the critical value for flotation.
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4.8. The contact line boundary layer

As we have just seen, the slope boundary layer cannot be matched directly to the
extensional stress boundary layer. Coupling between these two regions requires yet
another boundary layer straddling the contact line itself. This boundary layer then
captures the switch in boundary conditions and can match to the slope and extensional
stress boundary layers. The horizontal extent of this contact line boundary layer is ice
thickness itself. Close to the grounding line, we therefore rescale horizontal distance
in order to describe a region whose horizontal extent is comparable with its vertical
extent. As ν ′ is the aspect ratio of the extensional stress boundary layer, in which X

denotes horizontal distance from the grounding line, this rescaling takes the form

X̂ = X/ν ′ = X̃/ν ′1/5. (4.84)

(Recall that a tilde refers to variables scaled for the slope boundary layer, while
undecorated upper case variables refer to either the shelf or the extensional stress
boundary layer. We will use hat decorations to denote variables in the contact line
boundary layer.) To accommodate stresses due to the slope boundary layer, we further
define

U = Û , V = V̂ , T1 = T̂ 1, T2 = ν ′−1T̂ 2, P = P̂ , S = Ŝ, L = L̂, (4.85)

so that T̂ 2 = ν ′−3/5T̃ 2; this indicates that the boundary layer is essentially a shear
stress boundary layer. The model (4.7)–(4.10) then becomes

T̂ 1,X̂ + T̂ 2,Z − P̂ X̂ = 0, (4.86a)

−T̂ 1,Z + T̂ 2,X̂ − P̂ Z = 0, (4.86b)

Û X̂ + ν ′V̂ Z = 0, (4.86c)

2Û X̂ = ν ′T̂ 1, (4.86d )

ÛZ + ν ′V̂ X̂ = ν ′T̂ 2, (4.86e)

(4.86f )

on L̂ < Z < Ŝ, with

(P̂ − T̂ 1)ŜX̂ + T̂ 2 = 0, (4.87a)

−P̂ − T̂ 1 − T̂ 2ŜX = 0, (4.87b)

ν ′ε4/5(Ŝt − a) − ε1/5ẋgŜX̂ + Û ŜX̂ = ν ′V̂ , (4.87c)

on Z = Ŝ, and

(P̂ + r−1L̂ − T̂ 1)L̂X̂ + T̂ 2 = 0, (4.88a)

−P̂ − r−1L̂ − T̂ 1 − T̂ 2L̂X̂ = 0, (4.88b)

ν ′ε4/5L̂t − ε1/5ẋgL̂X̂ + Û L̂X̂ = ν ′(V̂ + M), (4.88c)

L̂ > B (4.88d )

on Z = L̂, X̂ > 0, as well as

−2ν ′ε3/5bxT̂ 1 +
(
1 − ν ′2ε6/5b2

x

)
T̂ 2

1 + ν ′2ε6/5b2
x

= ν ′ (1 + ν ′2ε6/5b2
x

)1/2
Û, (4.89a)

V̂ = ε3/5Ûbx, (4.89b)
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P̂ +

(
1 − ν ′2ε6/5b2

x

)
T̂ 1 + 2ν ′ε3/5bxT̂ 2

1 + ν ′2ε6/5b2
x

� −r−1b, (4.89c)

on Z = b, X̂ < 0, while L̂ = b for X̂ � 0 and L̂ is continuous at X̂ = 0.
As in the slope boundary layer, it is again straightforward to show that the leading-

order horizontal velocity, surface and base elevations are constant. For velocity Û , this
follows from (4.86d) and (4.86e), while for surface and base elevations, it follows from
(4.87c), (4.88c) and the continuity of L̂ at the grounding line X̂ = 0. Together with the

fact that Ũ
(0)

, S̃
(0)

and L̃
(0)

are constant in the slope boundary layer, these results justify
the continuity of velocity and ice thickness between the extensional stress boundary
layer and the shelf postulated in § 4.6. Formally, putting Û = Ū +O(ν ′), Ŝ = S̄ +O(ν ′),
L̂ = L̄ + O(ν ′), we get velocity continuity by matching with the extensional

stress and slope boundary layers: Ū = limX̃→0+ Ũ
(0)

= limX→0+ U = limX→0− U . (Recall
again that tildes refer to the slope boundary layer and undecorated variables
refer to extensional stress boundary layer and ice shelf.) Similarly, by matching
S̄ and L̄ with the extensional stress and beam boundary layers, we obtain

thickness continuity: L̄ = b(xg) = L̃
(0)

+ ν ′4/5L̃
(2)|X̃ = 0 = L̃

(0)
(because L̃

(2)|X̃=0 = 0 in

§ 4.7) and limX→0− S = S̄ = S̃
(0)

+ ν ′4/5S̃
(2)|X̃ = 0. However, S̃

(0)
= limX→0+ S(X, t) and

L̃
(0)

= limX→0+ L(X, t). Therefore, surface and base elevation, and hence ice thickness,
is also continuous to leading order as in (4.43).

We still need to justify continuity of extensional stress between the ice shelf and the
extensional stress boundary layer to justify (4.44). This is a simple question of force
balance. With Ŝ = S̄ and L̂ = L̄ constant to O(ν ′) and hence ŜX̂ = L̂X̂ = 0 to O(ν ′),

the boundary conditions (4.87a), (4.88a) and (4.89a) become T̂ 2 = 0 to O(ν ′) on Z = S̄

and Z = L̄. Integrating (4.86a) over a rectangle −R < X <R, L̄ < Z < S̄ and applying
the divergence theorem then yields, to an error O(ν ′),∫ S̄

L̄

(T̂ 1 − P̂ )|X̂=−R dZ =

∫ S̄

L̄

(T̂ 1 − P̂ )|X̂=−R. (4.90)

However, matching with the extensional stress boundary layer shows that T̂ 1 −
P̂ ∼ limX→0− 2T1 as X̂ → −∞, while matching with the slope boundary layer demands
T̂ 1 − P̂ ∼ limX̃→0− 2T̃ 1 as X̂ → ∞. Hence, limX→0− T1 = limX→0+ T1, and the boundary
condition (4.44) follows.

The only thing that remains is to justify the boundary conditions (4.79) on the
beam equation (4.74). This is a fairly technical problem that requires us to consider
higher-order terms in (4.86)–(4.89). We only sketch the relevant treatment below and
defer a full solution to a separate publication (C. Schoof, 2011, in preparation).

The higher-order terms that we consider are those needed to match with the vertical

velocity field Ṽ
(0)

= VL(X̃, t) − Ũ
(2)

X̃ (Z − L̃
(0)

) in the beam boundary layer. If we do not
assume for the time being that the boundary conditions (4.79) on the beam problem
necessarily hold, then, by matching with the slope boundary layer, the far-field vertical
velocity in the contact line boundary layer studied in this section has to behave as

V̂ |Z=0 ∼
5∑

n=0

ν ′n/5 dnVL

dxn

∣∣∣∣
X̃=0

X̂
n
+ o(ν ′) (4.91)

as X̂ → ∞. In other words, the vertical velocity field in the contact line boundary layer
is linked to the vertical velocity field in the beam boundary layer near the contact
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line X̃ = 0. In particular, to show that the boundary conditions (4.79) do hold, we
have to show that the terms with n= 0, 1, 2 in (4.91) must vanish, and while those
with n= 3, 4, 5 can, and in general will, be non-zero.

Equation (4.91) along with the results for Û , Ŝ and L̂ then suggests that an
appropriate expansion for the solution to (4.86)–(4.89) takes the form

U ∼ Ū + ν ′
5∑

n=0

ν ′n/5Û
(n)

+ o(ν ′2), V ∼
5∑

n=0

ν ′n/5V̂
(n)

+ o(ν ′), (4.92)

T1 ∼
5∑

n=0

ν ′n/5T̂
(n)

1 + o(ν ′), T2 ∼ T̂
(0)

2 +

5∑
n=1

ν ′n/5T̂
(n)

+ o(ν ′),

P ∼ (S − Z) + P̂
(0)

+

5∑
n=1

ν ′j/5L̂
(n)

+ o(ν ′),

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.93)

S ∼ S̃
(0)

+ ν ′4/5S̃
(2)|X̃=0 + ν ′Ŝ

(5)
+ o(ν ′), L ∼ L̄ + ν ′

5∑
n=0

ν ′n/5L̂
(n)

) + o(ν ′2). (4.94)

To write the expanded form of (4.86)–(4.89) in more succinct form, we put

Û
(n)

= (Û
(n)

, V̂
(n)

). Omitting the superscripts (n) for simplicity, the nth-order expansion
of (4.86)–(4.89) can then be written in the standard Stokes problem form

∇2Û − ∇P̂ = 0 on B < Z < Ŝ
(0)

, (4.95a)

∇ · Û = 0 on B < Z < Ŝ
(0)

, (4.95b)

ÛZ + V̂ X̂ = 0 on Z = Ŝ
(0)

, (4.95c)

P̂ − 2ŴZ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, n < 4,

S̃
(2)

X̃=0, n = 4,∫ X̂

0

V̂
(0)|

Z=Ŝ
(0) dX̂

′
, n = 5,

on Z = Ŝ
(0)

, (4.95d )

ÛZ + V̂ X̂ = 0 on Z = B, X̂ > 0, (4.95e)

P̂ − 2ŴZ = 0 on Z = B, X̂ > 0, (4.95f )

ÛZ + V̂ X̂ =

{
0 n < 5,

Ū n = 5,
on Z = B, X̂ < 0, (4.95g)

V̂ = 0 on Z = B, X̂ < 0, (4.95h)

together with the contact line inequalities

5∑
n=0

ν ′n/5(P̂ − 2ŴZ)|Z=B � 0, for X̂ < 0,

∫ X̂

0

M(X̂
′
) dX̂

′
+

5∑
n=0

ν ′n/5

∫ X̂

0

V̂
(n)|Z=B dX̂

′
� 0, for X̂ > 0.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.95i )
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Moreover, matching with slope boundary layer gives (4.91), or, reintroducing the
superscripts (n),

V̂
(n)|Z=0 ∼ dnVL

dxn

∣∣∣∣
X̃=0

X̂
n
, (4.95j )

as X̂ → +∞, while matching with the extensional stress boundary layer yields Û
(n) ∼ 0

as X̂ → −∞ for n< 5, and Û
(n)

given by a shearing profile (determined by the O(ν ′)
correction to the leading-order extensional stress boundary layer problem in § 4.3) for
n= 5.

This set of Stokes flow contact problems posed on a strip turns out to be tractable
(though still non-trivially) by the Wiener–Hopf method. We will show in a separate

paper (C. Schoof, 2011, in preparation) that the far-field conditions V̂ |Z=B ∼ Ĉ
(n)

Xn

indeed require the coefficient Ĉ
(n)

to vanish for n= 0, 1, 2 (leading to trivial solutions

for Û
(n)

) provided that M vanishes rapidly enough close to the contact line (which is
physically reasonable as melting occurs due to the advection of warm water, which
must be suppressed as the water-filled gap between ice and bed pinches out as the

contact line is approached). Meanwhile, non-vanishing Ĉ
(n)

are possible for n= 3, 4, 5.
This then justifies the boundary conditions (4.79) for the beam problem and ensures
that the solution to the slope boundary layer is unique, which was what we aimed to
demonstrate in this section.

5. The outer problem revisited
Having gone through a detailed treatment of the boundary layer structure of a

marine ice sheet, we summarize our results here and reconsider the outer problem.
The outer problem (4.16) is a standard, diffusive thin-film free surface flow with shear
and basal slip contributing to flux:

st −
[
s2sx +

ν2

3ε
s3sx

]
x

= a, (5.1)

where s is surface elevation. Note that s can simultaneously be identified as ice
thickness because the topography b(x) of the ice sheet bed is assumed to be small
compared with ice thickness. This problem is essentially of the same form as that
studied in Part 1 and subsequently in Schoof (2007a) (both of which allowed for
power-law constitutive relations). The only additional feature of (5.1) is that it allows
shearing in the ice, unlike the model in Part 1.

Equation (5.1) is posed as a moving boundary problem on the domain (0, xg(t)),
where the contact line location xg can evolve over time. To close the outer problem,
two boundary conditions are required at x = xg(t), and these are supplied by matching
with the extensional stress boundary-layer problem as outlined in §§ 4.3 and 4.4. The
boundary conditions that apply to the outer problem are then

s(xg, t) = 0, q(xg, t) = Q(b(xg(t))), (5.2)

where q = − s2sx − (ν2ε−1/3)s3sx is ice flux and Q(b(xg)) is a function that must be
supplied from the solution of the extensional stress boundary-layer problem, which
we can state in the form of (4.29) with boundary conditions (4.43), (4.44) and (4.33a).
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(1 − r) 

C

Figure 5. The coefficient C in (5.4) as a function of the flotation coefficient (1 − r) shown by
a solid line, computed as described in the Appendix. The asymptotic result C ∼ ((1 − r)/8)1/2

is shown by a dashed line; clearly, this agrees with the numerically computed values of C only
for small (1 − r).

In other words, Q(b(xg)) is determined by the nonlinear eigenvalue problem

4(HUX)X − U − HHx = 0, −∞ < X < 0, (5.3a)

UH = Q, −∞ < X < 0, (5.3b)

U → 0, as X → −∞, (5.3c)

U ∼ −HHX, as X → −∞, (5.3d )

H = −r−1b(xg), at X = 0, (5.3e)

UX = −(1 − r)b(xg)/(8r), at X = 0. (5.3f )

The most important quality of the boundary conditions (5.2) is that the flux
q = Q(b(xg)) at the grounding line can be computed from the bed elevation b(xg)
alone. In fact, it is possible to show that

Q = C

(
−b(xg)

r

)5/2

, (5.4)

where C is a constant that depends only on m, n and r . This result corrects an
assertion made in Part 1, namely that Q behaves as ∼ ((1 − r)/8)1/2(−b(xg)/r)5/2

when b(xg) is small: the correct form of this statement would have been that (5.4)
holds for all b(xg) < 0 and that C ∼ ((1−r)/8)1/2 when (1−r) � 1 (see figure 5). In fact,
Part 1 presented a partial treatment of a more general version of the boundary-layer
problem (5.3), outlining how the flux Q at the grounding line can in principle be
computed. A more complete analysis, including the derivation of (5.4), can be found
in the Appendix.

6. Discussion and conclusions
In this paper, we have taken a first-principles approach to the fluid dynamics

underlying marine ice sheet flow. We have used this to confirm the earlier results of
Schoof (2007b) (Part 1) using matched asymptotic expansion techniques. In particular,
we have shown that the boundary-layer structure for extensional stress near the
grounding line predicted by Schoof (2007b) is preserved when considering a full
Stokes flow model for the marine ice sheet rather than the simplified, depth-integrated
model used in Schoof (2007b). This is consistent with the direct numerical results
recently presented by Durand et al. (2009), who also confirm the earlier theory in
Schoof (2007b).
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The fact that the boundary-layer structure first presented in Schoof (2007b) is
preserved implies that the qualitative behaviour for marine ice sheets outlined in that
paper and also in Schoof (2007a) is confirmed by the results of the present study.
The large-scale (outer) flow of the ice sheet can be described by a classical lubrication
approximation (a ‘shallow ice model’ in glaciological parlance), and the interactions
with the ice shelf at the grounding line can be represented through two boundary
conditions that effectively parameterize extensional stress continuity and incipient
flotation. One of these boundary conditions constrains ice thickness at the grounding
line, while the other gives ice flux through the grounding line as a function of depth
to bedrock there. The implications of these boundary conditions in terms of the local
uniqueness, stability and bifurcations of steady states have been explored in Schoof
(2007a), and the results presented there carry over to the model derived here, which
differs only through including a representation of shearing in the outer flow.

In addition to the boundary-layer structure already described in Schoof (2007b),
we have however also discovered two additional boundary layers very close to the
grounding line that are passive in the large-scale dynamics of the ice sheet but account
for the transition from grounded to floating ice in more detail. In particular, these
extra boundary layers are necessary to explain the transition from a steep surface
slope of the grounded ice near the grounding line to a much less steep surface slope on
the ice shelf across a transition region in which there are noticeable surface undulations
near the grounding line, some of them even with reversed surface slopes as shown in
a recent numerical study by Durand et al. (2009). In this paper, we have shown that
these undulations can be explained by the beam-like behaviour of the shelf very close
to the grounding line.

The parameter regime in which the theory in Part 1 applies is also constrained
more tightly by our work here. In addition to the small stress ratio ε that underpins
the theory in Part 1, we find a second constraint on the aspect ratio ν of the ice sheet,
which must be much smaller than ε2/5. For the case of linear constitutive relations
considered in this paper, this constraint can equally be re-written as a constraint on
intrinsic length scales associated with shearing and sliding: we require the intrinsic
scale for sliding Ls defined in § 3 to be much larger than the intrinsic scale for shearing
Lq .

When this second constraint is not satisfied, the outer flow may still be a lubrication
flow (which requires only ν � 1 rather than the more restrictive ν � ε5/2 � 1), but the
extensional stress boundary layer near the contact line will no longer have a low aspect
ratio ν ′. In that case, the various boundary layers addressed in this paper (which are
scale separated only when this aspect ratio is small) will coalesce. The transition from
sheet to shelf is then likely to involve a single boundary layer whose aspect ratio is of
order unity, as in Chugunov & Wilchinsky (1996) and Nowicki & Wingham (2008).
When ν ′ � 1, the shearing term in (4.16) will also dominate throughout the outer
region, so the breakdown of the theory presented in this paper is linked intrinsically
to the absence of a zone with strong sliding, and is physically likely to apply to
ice masses frozen to their beds. A direct numerical approach (Durand et al. 2009)
is typically required to solve the boundary-layer problem in this case, whereas the
parameter regime considered here has the advantage of being tractable at least semi-
analytically, with mechanical phenomena such as bending and the transition from an
extensional- to a shear-stress-dominated flow occurring on distinct length scales.

In closing, we note that we have made some rather specific assumptions about
bed topography in this paper. Specifically, it should scale as [b] = ε1/5[h] = L6/5

q L−1/5
s ,

where [h] is ice thickness in the outer region and ε a small stress ratio; [b] is therefore

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

12
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.129


152 C. Schoof

small compared with the ice thickness [h] = (L3
qL/Ls)

1/3 (see § 3). The boundary-layer
problem (5.3) then produces an O(1) flux Q(b(xg)) through the grounding line for
an O(1) value of b(xg) < 0, which is the dynamically most relevant scenario. There
are other scenarios, which would translate into either large or small b(xg) in the
boundary-layer problem (5.3). With b(xg) large, mass loss through the contact line as
predicted by (5.4) necessarily exceeds the rate of accumulation over the ice sheet, and
the ice sheet will necessarily shrink until the contact line reaches a position where b is
not large. For sufficiently large b(xg), this shrinkage will occur extremely rapidly, with
the interior of the ice sheet experiencing negligible elevation change while the contact
line retreats. This scenario is explored in greater detail in §§ 3.1 and 3.2 of Part 1.
An extreme case would be a steep drop-off from a bed that is above sea level inland
from the grounding line to a bed that is deep offshore. In that case, the location of
the grounding line is given at leading order by the location of the drop-off, and the
flux through the grounding line is then primarily given by accumulation inland up to
the location of the drop-off. Instead of determining the evolution of the ice mass, the
boundary condition (5.2) then merely serves to determine the exact location of the
grounding line close to the drop-off as a function of the prescribed flux.

By contrast, the case of small b(xg) corresponds to Q � 1. This essentially turns
the marine ice sheet model into a model for a land-terminating ice sheet, in the sense
that the boundary conditions for a land-terminating ice sheet at the ice margin are
precisely of the form (5.2) with Q =0. Neither of these cases is of much dynamic
interest, which is why we chose the distinguished limit that leads to Q =O(1).

This work was supported by a Canada Research Chair at the University of
British Columbia, by NSERC Discovery Grant no. 357193-08 and by the Canadian
Foundation for Climate and Atmospheric Science through the Polar Climate Stability
Network. Many thanks to Gaël Durand for sharing his data and insights, to Eric de
Giuli for pointing me to much of the literature on centre manifolds, and to Sophie
Nowicki and Duncan Wingham for discussions. This manuscript was improved by
the comments of the editor, Grae Worster, as well as those of the referees.

Appendix. The solution of the extensional stress boundary-layer problem
In this appendix, we present a mathematical analysis of the extensional stress

boundary-layer problem (5.3) that controls the flux Q(b(xg)) at the contact line.
Instead of (5.3) we use the more general form of this problem first derived in Part 1
(where the signs of X and B = b(xg) were reversed from the present paper):

4

(
Q

U
|UX|1/n−1UX

)
X

− |U |m−1U − Q

U

(
Q

U

)
X

= 0, for X < 0 (A 1a)

|UX|1/n−1UX = −(1 − r)B/(8r), at X = 0 (A 1b)

U = −rQ/B, at X = 0 (A 1c)

U → 0, as X → −∞ (A 1d )

|U |m−1U ∼ (Q/U )(Q/U )X, as X → −∞, (A 1e)

where m, n are positive rheological constants, and the matching condition (A 1e)
results from the lubrication flow behaviour |U |m−1U ∼ −HHX in the matching region
with H = Q/U . Setting m = n= 1 gives the extensional stress boundary-layer problem
(5.3) considered in this paper (with H = Q/U ). In addition, we know that Q is positive
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from matching with the outer problem, while H � − B/r > 0 in the boundary layer
to satisfy the contact condition, so U = Q/H > 0.

We can show that B and Q enter into this problem only through

θ = −rQ(m+1)/(n+m+3)/B, (A 2)

but not separately by rescaling

U = Q(n+2)/(n+m+3)U, X = Q(2−nm)/(n+m+3)X, (A 3)

which retrieves (A 1) with Q set to unity, B/r replaced by θ , U replaced by U and X

by X. Here show that this problem is solvable only for a unique value of θ (depending
only on r), so that for a given density ratio r ,

Q = θ (m+n+3)/(m+1) (−B/r)(m+n+3)/(m+1) , (A 4)

furnishes a unique relationship between flux Q and depth to bedrock B at the
grounding line. Equation (5.4) is a special case of this, with m = n= 1. Moreover, we
show that θ increases with δ =(1 − r), and that for small δ,

θ ∼
(

δ

8

)n/(n+m+3)

. (A 5)

To do so, we switch to slightly different phase plane variables from Part 1:

ξ = U(m+n+3)/n, Ψ =
|UX|1/n−1UX

U(m+3)/n
. (A 6)

To be definite, since U > 0, we restrict ξ to be non-negative, and Ψ to have the same
sign as UX. Under these transformations, the differential equation (A 1a) becomes

ξX =
m + 3 + n

n
α(ξ, Ψ )ξ 2, (A 7a)

ΨX = α(ξ, Ψ )

[
n − m − 3

n
Ψ ξ +

1

4
|Ψ |−n−1Ψ − 1

4

]
, (A 7b)

where α(ξ, Ψ ) = ξ (mn+n−m−3)/(m+3+n)|Ψ |n−1Ψ . Solutions of (A 1a) that satisfy the
matching conditions (A 1d) and (A 1e), U → 0 and Um ∼ UX/U3 as X → −∞,
now become trajectories that approach the fixed point (ξ, Ψ ) = (0, 1). By a change of

independent variable in (A 7) to ζ =
∫ X

0
α(ξ (X′), Ψ (X′)) dX′, we can absorb α into

the time-like variable and obtain a locally smooth flow in which the fixed point (0, 1)
has a stable and a centre manifold (Carr 1981). From (A 7a), the centre manifold
is unstable, so that in the limit X → −∞, a trajectory can therefore approach the
fixed point only along the centre manifold. Moreover, the fixed point is therefore a
degenerate saddle, so that the centre manifold is, importantly, unique (Sijbrand 1985,
theorem 2). This ensures that there is only one orbit into the fixed point.

To solve (A 1), we also have to ensure that the boundary conditions (A 1b) and
(A 1c) are satisfied. In the phase plane, they require that the orbit starts at a point
at which Ψ ξ = U|UX|1/n−1UX = δ/8, with θ given by the ξ -coordinate of that point
through θ = ξn/(n+m+3). For small δ, we can make use of the fact that Ψ ∼ 1 for
small ξ , so that ξ ∼ Ψ ξ = δ/8, and hence (A 5) holds. More generally, we show that
Ψ ξ increases monotonically and without bound as a function of ξ along the centre
manifold. Since Ψ ξ = 0 at ξ = 0, this ensures that there is a single point at which
Ψ ξ = δ/8, and also that the ξ -coordinate of that point (and hence the corresponding
value of θ) increases monotonically with δ.
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From (A 7), the centre manifold satisfies

dΨ

dξ
=

n − m − 3

n + m + 3

Ψ

ξ
− n

4(n + m + 3)ξ 2
(1 − |Ψ |−n−1Ψ ), (A 8)

and it can be shown that, for small ξ , the centre manifold behaves as Ψ ∼ 1 + 4(n −
m − 3)ξ/n2. We distinguish two cases. If n − m − 3 < 0, then the centre manifold
is below Ψ = 1 near ξ = 0, and, from (A 8), remains below Ψ =1 as (dΨ/dξ ) < 0
when Ψ = 1. Similarly, dΨ/dξ becomes positive as Ψ approaches zero, and Ψ cannot
become negative. Consequently, (A 8) implies dΨ/ dξ > (n − m − 3)/(n + m + 3)Ψ/ξ

and hence
d(Ψ ξ )

dξ
= ξ

dΨ

dξ
+ Ψ >

2n

n + m + 3

Ψ ξ

ξ
. (A 9)

Using Gronwall’s inequality with a small but finite ξ as a starting point then shows
that Ψ ξ is monotonically increasing and grows at least as fast as ξ 2n/(n+m+3).

For n − m − 3 > 0, the centre manifold is initially above Ψ = 1 and similarly
remains there. In addition, dΨ/ dξ > 0 for small ξ . We can then show that dΨ/ dξ > 0
everywhere, ensuring that d(Ψ ξ )/dξ >Ψ > 1, and again that Ψ ξ is monotonically
increasing and unbounded. Differentiating both sides (A 8) and substituting for Ψ/ξ

in the resulting expression from (A 8) yields

d

dξ

(
dΨ

dξ

)
= −

(
2(m + 3)

(n + m + 3)ξ
+

n2

4(n + m + 3)ξ 2Ψ n+1

)
dΨ

dξ

+
n

4(n + m + 3)ξ 2
(1 − Ψ −n). (A 10)

As Ψ > 1, the last term on the right-hand side is positive. It is then clear that dΨ/ dξ

cannot become negative as d2Ψ / dξ 2 > 0 when dΨ/ dξ = 0, and the proof is complete.
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