
J. Fluid Mech. (2015), vol. 784, pp. 74–108. c© Cambridge University Press 2015
doi:10.1017/jfm.2015.585

74

Diffusion-flame ignition by shock-wave
impingement on a supersonic mixing layer

César Huete1, Antonio L. Sánchez1,†, Forman A. Williams1 and
Javier Urzay2

1Department of Mechanical and Aerospace Engineering, University of California, San Diego,
9500 Gilman Drive, La Jolla, CA 92093-0411, USA

2Center for Turbulence Research, Stanford University, Stanford, CA 94305-3024, USA

(Received 9 July 2015; revised 27 September 2015; accepted 1 October 2015;
first published online 30 October 2015)

Ignition in a supersonic mixing layer interacting with an oblique shock wave is
investigated analytically and numerically under conditions such that the post-shock
flow remains supersonic. The study requires consideration of the structure of the
post-shock ignition kernel that is found to exist around the point of maximum
temperature, which may be located either near the edge of the mixing layer or in its
interior, depending on the profiles of the fuel concentration, temperature and Mach
number across the mixing layer. The ignition kernel displays a balance between the
rates of chemical reaction and of post-shock flow expansion, including the acoustic
interactions of the chemical heat release with the shock wave, leading to increased
front curvature. The analysis, which adopts a one-step chemistry model with large
activation energy, indicates that ignition develops as a fold bifurcation, the turning
point in the diagram of the peak perturbation induced by the chemical reaction as
a function of the Damköhler number providing the critical conditions for ignition.
While an explicit formula for the critical Damköhler number for ignition is derived
when ignition occurs in the interior of the mixing layer, under which condition the
ignition kernel is narrow in the streamwise direction, numerical integration is required
for determining ignition when it occurs at the edge, under which condition the kernel
is no longer slender. Subsequent to ignition, for the Arrhenius chemistry addressed,
the lead shock will rapidly be transformed into a thin detonation on the fuel side
of the ignition kernel, and, under suitable conditions, a deflagration may extend far
downstream, along with the diffusion flame that must separate the rich and lean
reaction products. The results can be helpful in describing supersonic combustion for
high-speed propulsion.

Key words: free shear layers, laminar reacting flows, shock waves

1. Introduction
The design of non-premixed combustion systems for supersonic propulsion faces

difficulties associated with the high flow velocity, which limits the residence time
available for completion of the chemical reaction in the combustion chamber. Since
flame propagation is precluded by the flow velocities needed in these applications,
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combustion stabilization must rely on autoignition of the fuel–air mixture. The
autoignition times of most fuel–air mixtures are strongly dependent on the temperature,
with the consequence that the resulting autoignition distance is very sensitive to the
existing boundary conditions. In supersonic combustion, autoignition is facilitated
by the elevated temperature found in the air stream and also by the added internal
heating associated with viscous dissipation acting in the highly strained mixing layers
separating the air and fuel streams. Local compression by shock waves impinging
on mixing layers also promotes autoignition in non-premixed systems by raising
the temperature of the shocked gas, which is the phenomenon addressed in this
paper. Ignition triggering by shock-wave impingement is of particular relevance for
propulsion systems employing hydrocarbon fuels because their associated autoignition
times are considerably larger than those of more reactive fuels, such as hydrogen,
thereby placing more stringent constraints on the completion of the combustion
process in the available residence time.

The compressible flow found in the combustion chambers of supersonic-combustion
ramjets (scramjets) often involves oblique shocks, formed in the combustor by
interactions of the air stream with wedged walls and fuel injectors. Although these
shock waves are generally undesirable for an efficient operation of propulsion systems,
in that they induce total-pressure loss, their interaction with the mixing layers that
separate the fuel and air streams was shown by Marble, Hendricks & Zukoski (1987)
to have a beneficial effect on the overall combustion efficiency by increasing the
reactant mixing rate. This aspect of the shock–mixing layer interaction process has
been examined in the past in non-reacting flows (Menon 1989; Lu & Wu 1991;
Marble 1994; Nuding 1996; Brummund & Nuding 1997; Génin & Menon 2010;
Zhang et al. 2015). By way of contrast, the enhancement of the chemical reaction
by shock heating and the conditions needed to achieve ignition in this interacting
compressible-flow configuration do not seem to have been analysed in earlier work.

Although the prevailing conditions are turbulent in the high-Reynolds-number
flows present in supersonic-combustion chambers, a laminar flow configuration is
investigated in this initial study of shock-induced ignition in supersonic mixing
layers as a necessary preliminary step in developing understanding of the non-trivial
thermo-acoustic interactions that determine the occurrence of ignition in these systems.
Specifically, we consider a laminar mixing layer separating supersonic parallel streams
of air and fuel moving at different velocities. An oblique shock wave generated on
the air side, with initial incident angle σ∞, impinges on the mixing layer at a given
downstream location, as shown in the schematic view of figure 1, where the air
stream is located on the upper side. The general layout, including the consideration
of a shock wave originated on the air side, is motivated by observed interactions
between oblique shocks and mixing-layer flows in scramjet combustors; see, for
instance, figures 5 and 11 of Waidmann et al. (1994) and figure 4 of Laurence et al.
(2013).

Previous work relevant to our analysis falls into two major categories, namely,
studies of autoignition processes leading to diffusion-flame formation in laminar
mixing layers free from shock impingement, and studies of chemically frozen
interactions of shocks with laminar mixing layers. The former problem was addressed
in the seminal asymptotic analysis of Liñán & Crespo (1976), who identified the key
competing physicochemical phenomena and delineated the parametric dependences
of the different ignition regimes for systems with a strong temperature dependence
of the chemical reaction rate. In particular, they found that, in configurations where
one of the streams is significantly hotter than the other (the air being hotter in most
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FIGURE 1. Sketch of the mixing layer–shock wave configuration investigated. The blowup
shows upstream mixing-layer profiles of temperature (thick curves) and fuel mass fraction
(thin curves) obtained with M′−∞ = 1.5 and T ′−∞/T

′
∞ = 0.375 for M′∞ = 2.0 (dashed

curves) and M′∞=5.0 (solid curves), with δm=2[DFx/U′∞]1/2 representing the mixing-layer
thickness, computed at a given downstream location x with use made of the fuel diffusivity
DF and air-stream velocity U′∞; see Huete et al. (2015) for details of the associated
computations.

propulsion applications), the chemical reaction is confined to a concentrated region
near the hot side of the mixing layer. The analysis, including effects of non-negligible
consumption of the deficient reactant, identifies a hot-side reactive–diffusive ignition
kernel that determines the critical ignition distance. In supersonic mixing layers,
however, the ignition-kernel structure may differ, and, moreover, the peak temperature
is not always on the air side. Although the air is hotter than the fuel, the temperature
profile may develop a maximum at an intermediate location as a result of the effect
of viscous dissipation when the existing shear is sufficiently high and the temperature
difference between the two streams is not too pronounced.

These temperature-profile modifications are illustrated in figure 1, which shows
self-similar profiles of temperature and fuel mass fraction determined numerically for
a mixing layer with fuel-side Mach number M′−∞ = 1.5 and fuel-to-air temperature
ratio T ′−∞/T

′
∞ = 0.375 for two different values of the air-stream Mach number M′∞.

These sample integrations including viscous dissipation neglect variations of the mean
molecular weight and assume a fuel Lewis number of unity, with thermal diffusion
neglected, as is appropriate for fuels that have properties close to those of air, such
as ethylene, which has been employed in recent supersonic-combustion research
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(Dolvin 2008). A detailed description of the mixing-layer formulation employed in
the integrations can be found in Huete et al. (2015).

As can be seen in figure 1, for the temperature ratio T ′−∞/T
′
∞ = 0.375 considered,

the heating associated with viscous dissipation when M′∞= 2 is not sufficiently intense
to promote the appearance of a local maximum inside the mixing layer, so that the
temperature profile remains monotonic. For this case, therefore, autoignition would
tend to occur near the air boundary, as described by Liñán & Crespo (1976). The
temperature monotonicity disappears as shear is increased above a given threshold
value, as can be seen in the results for M′∞= 5, which exhibit a pronounced maximum
in the temperature profile at an intermediate location in the mixing layer. This has a
significant effect on the resulting ignition distance, as noted by Jackson & Hussaini
(1988) and Grosch & Jackson (1991). The ignition kernel moves to the location of
maximum temperature, where the concentrations of both reactants are comparable
with those found in their respective feed streams, so that the incipient chemical
reaction can be described with effects of reactant consumption neglected in the first
approximation, giving rise to a different ignition regime than that associated with a
monotonic temperature profile. All of these early analytical studies of ignition, aimed
at developing fundamental knowledge, employed a one-step Arrhenius model with
large activation energy for the chemical reaction, thereby enabling analytical results
to be developed. Our analysis below is based on this same chemistry. More realistic
chemistry descriptions have been employed in later work on mixing-layer ignition,
in particular in connection with hydrogen–air systems, as reviewed by Sánchez &
Williams (2014).

Concerning the second type of investigation relevant to our work, namely
non-reacting shock interactions with non-uniform streams, a fundamental contribution
to the understanding of the interplay of an oblique shock and a chemically frozen
laminar shear layer is the pioneering study of Moeckel (1952), who described the
acoustic interactions occurring behind the shock in an ideal gas with constant heat
capacities when the post-shock flow remains supersonic everywhere. By neglecting the
effect of the pressure waves reaching the shock from behind, he was able to derive
an approximate analytical method to determine the shape of the curved shock front
in terms of the non-uniform Mach-number distribution across the mixing layer. His
method was later generalized by Whitham (1958) to other shock-wave problems, and
was more recently used by Buttsworth (1996) as a basis to describe the supersonic
vorticity field in shocked mixing layers with the objective of assessing mixing
augmentation (note that this last author seems to have been unaware of the previous
work). These analyses of shock–mixing layer interactions pertained to supersonic
mixing layers subjected to oblique shocks with incident angles sufficiently small
for the post-shock flow to remain supersonic all across the mixing layer. Moeckel’s
method is no longer applicable when incident flow conditions are reached such that
the shocked gas becomes subsonic, because the character of the problem then changes
from hyperbolic to elliptic, involving acoustic coupling of the flow with the shock
wave in the subsonic region.

The shock–mixing layer interaction leads to a much more complicated flow
structure when the low-velocity stream is subsonic, the shock wave approaching
the mixing layer from the supersonic side. In that case, the perturbations generated
by the shock-wave impingement propagate upstream on the subsonic side, altering
significantly the flow and deflecting the incoming mixing layer. Previous investigations
of the resulting shock-reflection problem have been restricted to weak shocks (Riley
1960; Huete et al. 2015), including upstream perturbations of small amplitude,
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a case for which the theory of shock–boundary layer interaction developed by
Lighthill (1950, 1953) was found to be instrumental in deriving analytical results.
The interaction of transonic mixing layers with shocks of finite strength, including
significant perturbations on the subsonic side upstream from the shock, appears to be
a difficult problem not treated previously, in which the unknown location of the shock
wave is coupled with the mixing-layer deflection. This problem deserves attention in
the future.

In the limit of large activation energy, describing the strong temperature sensitivity
of the heat release rate present in most fuels, the solution in the ignition regime
is in the first approximation that corresponding to the chemically frozen problem,
which is described in § 2. The Euler equations are formulated there in characteristic
form, which helps to clarify the acoustic interactions occurring in the post-shock flow,
including their influence on the shock curvature. We shall show that, under most but
not all conditions, the flow behind the curved front undergoes an expansion that cools
the gas downstream from the shock. As a result of the induced temperature decrease,
the conditions most favourable for ignition are found immediately behind the shock, in
a region around the peak temperature of the shocked gas. The thickness of this region,
which is small compared with the mixing-layer thickness for large activation energies,
is determined by the post-shock expansion rate. Since the ignition region is small,
when describing the weakly reactive flow in the ignition kernel, the reactive Euler
equations can be linearized following the standard (Frank-Kamenetskii 1969) approach,
providing the formulation given in § 3. The two regimes identified in figure 1 will
be seen to require separate analyses, which are given in § 4 for ignition inside the
mixing layer at a temperature maximum and in § 5 for ignition near the air boundary.
The post-ignition development of the heat release profiles is described in § 6, where
relationships to detonations are addressed. Finally, concluding remarks are given
in § 7.

2. The interaction of an oblique shock with a supersonic mixing layer

In the following analysis, Cartesian coordinates (x, z) will be used to describe the
mixing layer, with x aligned with the unperturbed flow and z being the corresponding
transverse coordinate, as indicated in figure 2. Except for the fuel mass fraction Y ,
which does not change across the shock, a prime ′ will be used to denote properties
in the unperturbed flow upstream from the shock wave, while unprimed symbols will
be used for the flow properties in the post-shock region. Besides the pressure p′= p′∞,
which is uniform, the mixing layer is defined by the transverse distributions of fuel
mass fraction Y(z), Mach number M′(z) and temperature T ′(z), which evolve from
the values found in the air stream, Y(∞) = 0, M′(∞) = M′∞ and T ′(∞) = T ′∞, to
reach the values Y(−∞)= 1, M′(−∞)=M′−∞ and T ′(−∞)= T ′−∞ in the fuel stream,
with M′−∞ < M′∞ and T ′−∞ < T ′∞ in typical applications. As previously mentioned,
while the Mach number normally decreases monotonically with distance from the air
boundary, depending on the extent of viscous-dissipation heating, the maximum of the
temperature profile may be reached either on the air side or at an intermediate location
inside the mixing layer, leading to two different shock-induced ignition scenarios that
are analysed separately below.

The interaction of the shock with the mixing layer results in a complicated
free-boundary problem in which the shape of the curved shock front, defined by
the incident angle σ(z), is coupled to the post-shock flow. The solution requires
integration of the Euler equations downstream from the shock. At the shock, the
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FIGURE 2. (Colour online) A schematic view of the characteristic curves in the post-shock
flow; the inset shows the local coordinate system used for the description of the ignition
kernel.

different properties can be evaluated in terms of σ and M′ for a given value of the
specific heat ratio γ by use of the Rankine–Hugoniot relations, including the jumps
of temperature and pressure,

T
T ′
= FT(M′, σ )= [2γM′2 sin2 σ + 1− γ ][(γ − 1)M′2 sin2 σ + 2]

(γ + 1)2M′2 sin2 σ
, (2.1)

p
p′∞
= Fp(M′, σ )= 2γM′2 sin2 σ + 1− γ

γ + 1
, (2.2)

the clockwise flow deflection,

ν = Fν(M′, σ )= tan−1

{
2(M′2 sin2 σ − 1) cot σ
2+M′2[γ + cos(2σ)]

}
, (2.3)

and the post-shock Mach number,

M = 1
sin φ

[
2+ (γ − 1)M′2 sin2 σ

2γM′2 sin2 σ + 1− γ
]1/2

, (2.4)

where φ = σ − ν. For a given value of M′ > 1, there exists a critical value of σ that
renders the post-shock flow sonic, to be calculated from (2.3) and (2.4) with M = 1.
The resulting boundary line σ(M′) is plotted in figure 3 for γ = 1.4 and γ = 1.2,
selected as limiting representative values characterizing the conditions found in
typical applications. The figure also shows the lower boundary value σ = sin−1(1/M′)
corresponding to infinitesimally weak shocks, along with other curves, to be discussed
later.
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FIGURE 3. (Colour online) The three red curves represent the limiting values of σ
corresponding to an infinitesimally weak shock, neutral oblique-shock transmission and
sonic post-shock conditions. The black curves represent isolines of the function Λ+
defined in (4.8) (solid curves) and of the function κ defined in (4.19) (dashed curves).
The two panels correspond to results for (a) γ = 1.4 and (b) γ = 1.2.
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The solution simplifies when the post-shock flow remains supersonic, that being
the case considered in the present analysis. The Euler equations can be formulated in
characteristic form, with three different characteristic lines crossing any given point,
i.e. the streamline and the two Mach lines, with different characteristic equations
applying along each of them. The corresponding form of the equations is given
below for chemically frozen flow. The modified equations that describe the ignition
problem are to be presented in the next section.

In the absence of chemical reaction, the entropy is conserved along the streamlines,
a condition that can be expressed in the form

dT
T
− γ − 1

γ

dp
p
= 0 on

dz
dx
= tan λ, (2.5)

where λ is the (anticlockwise) local angle of deflection of the streamlines with respect
to the horizontal. On the other hand, manipulation of the conservation equations of
continuity and momentum provides two additional characteristic equations, each
corresponding to one of the Mach lines. In terms of p and λ, the equations read
(Hayes & Probstein 2004)

dp
p
± γM2

√
M2 − 1

dλ= 0 on
dz
dx
= tan(λ±µ), (2.6)

where

µ= sin−1

(
1
M

)
(2.7)

is the angle of inclination of the two Mach lines relative to the local flow direction,
as depicted in figure 2. The integration along the streamlines and along the C+

characteristic lines dz/dx = tan(λ + µ) starts at the shock, with corresponding initial
conditions evaluated from the Rankine–Hugoniot relations given above (e.g. λ = −ν
at the shock). On the other hand, the C− characteristics originate in the shocked
air stream above the mixing layer, so that the associated uniform values of p∞
(> p′∞) and λ∞ = −ν∞ must be used as initial conditions in the integration, which
must be continued until the C− characteristic line intersects the shock, providing
the information needed at each point to determine the shock curvature dσ/dz. As
a consequence of the existence of the C− characteristics reaching the shock from
above, the value of σ(z) at a given height z∗, which depends on the local value of
M′(z∗) through the Rankine–Hugoniot relations, depends also on the distribution of
T ′(z) and M′(z) for z > z∗, because they determine the non-uniform field along the
C− characteristic intersecting the shock at z= z∗.

Clearly, therefore, even in the chemically frozen case, the determination of the
shock-front shape σ(z) is a complicated non-local problem that requires numerical
integration. To the best of our knowledge, such a computation has not been attempted
yet. The complexity of the associated calculation was acknowledged in the early
work of Moeckel (1952), who developed an approximate analytic method for
determining the shock shape σ(z) in which the waves generated at the shock by
the shock–flow interaction process are taken into account, while the waves originated
by internal reflection in the non-uniform post-shock region are entirely neglected. As
explained by Whitham (1958), Moeckel’s method amounts to applying the relation
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dp/p= γM2 dλ/
√

M2 − 1, corresponding to the C− characteristic line, along the shock
front, thereby yielding

dp
p
=− γM2

√
M2 − 1

dν. (2.8)

Using
dp
p
= Ap dM′ + Bp dσ (2.9)

and
dν = Aν dM′ + Bν dσ (2.10)

in (2.8) finally provides

dσ
dM′
=−Ap + γM2Aν/(M2 − 1)1/2

Bp + γM2Bν/(M2 − 1)1/2
(2.11)

as a local expression for the shock curvature, where

Ap = 1
Fp

∂Fp

∂M′
, Bp = 1

Fp

∂Fp

∂σ
, Aν = ∂Fν

∂M′
and Bν = ∂Fν

∂σ
(2.12a−d)

can be evaluated explicitly in terms of σ and M′ from the Rankine–Hugoniot relations
(2.2) and (2.3). In Moeckel’s simplified approach, integration of (2.11) with initial
condition σ = σ∞ at M′ =M′∞ provides σ(M′), thereby determining σ(z) for a given
upstream Mach-number distribution M′(z).

For the following ignition analysis, it is of interest to note that, under most
conditions, the C+ characteristic lines issuing from the shock represent an expansion
wave that reduces the pressure (and therefore the temperature) along the streamlines
downstream from the shock. The prevalence of expansion waves can be demonstrated
by identifying the upstream conditions under which neutral oblique-shock transmission
is achieved (i.e. the post-shock flow is neither expanded nor compressed locally). If
the effect of the downstream disturbances on the shock is neglected, following the
approximation adopted by Moeckel (1952), then the condition for neutral transmission
is that dp= dν = 0, with dp and dν given in (2.9) and (2.10). The associated curve
of neutral transmission

sin2 σ = γ + 1
2γ
− 1
γM′2

, (2.13)

derived by using (2.2) and (2.3) to evaluate the coefficients (2.12) in (2.9) and (2.10),
is plotted in figure 3. A compression appears in the post-shock flow when the value
of σ is larger than the neutral-transmission value, a criterion satisfied in a relatively
small corner region in the M′–σ diagram of figure 3 bounded by the curve of neutral
transmission and the limiting curves M = 1 and M′ sin σ = 1. In the absence of
the approximation yielding (2.13), identification of the neutral-transmission condition
becomes a non-local problem not identifiable as a region in figure 3, but post-shock
compression would be expected to be a comparatively rare occurrence in any event.
This small parametric region is therefore not considered further hereafter.

Our near-shock ignition analysis pertains instead to conditions that place the system
inside the extended parametric region corresponding to values of σ > sin−1(1/M′)
below the neutral-transmission curve, when the gas downstream from the shock cools
down as a result of the expansion, so that the peak temperature is found immediately
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downstream from the shock. Then, because of the strong temperature sensitivity of
the chemical reaction, we find in the vicinity of the shock front a small ignition
kernel where the incipient chemical reaction is competing with the flow expansion.
Critical conditions for ignition will be determined by examining whether weakly
reactive solutions exist in this ignition kernel. It will be found that, if heat release
rates are too large, then such solutions fail to exist, corresponding to ignition having
occurred. The analysis will show that, in addition to the existing background wave
system of the chemically frozen flow, the ignition event is fundamentally influenced
by the additional pressure waves generated by the chemical heat release, which are
seen to interact with the shock front, modifying its curvature and the associated jump
conditions.

3. Formulation of the weakly reactive problem
Since the chemical reaction displays a strong temperature dependence, ignition

occurs near the point z= zo where the post-shock temperature of the chemically frozen
solution reaches its peak value. The local weakly reactive flow can be described as a
perturbation to the frozen solution using a Cartesian coordinate system that includes
the streamwise distance s along the post-shock streamline that departs from z = zo
and the associated transverse coordinate n pointing towards the air side. Both of these
are scaled with the characteristic mixing-layer thickness δ, to be defined precisely
in (4.1), comparable in order of magnitude to the thickness δm used to represent the
sample profiles shown in figure 1. A sketch indicating the local coordinate system is
given in the inset of figure 2, the relevant angles also being indicated on the figure.

3.1. Linearized weakly reactive equations
A one-step model will be used for the chemical reaction, with the mass of fuel
consumed per unit volume and unit time given in terms of the local fuel mass fraction
Y and temperature T by the Arrhenius expression ω̃= ρYB exp(−Ta/T), involving the
gas density ρ, the frequency factor B and the activation temperature Ta, which in our
analysis is assumed to be large compared with the ignition-kernel temperature. The
expression adopted for the reaction rate assumes that the fuel is the limiting reactant
in practical applications, while the consumption of the oxidizer has no effect during
the ignition stage, so that the local oxidizer mass fraction in the ignition kernel can
be conveniently absorbed in the definition of the constant frequency factor B. In this
simple model, q̃ represents the amount of heat released per unit mass of fuel burnt.
The governing equations for the flow are obtained by linearizing the reactive Euler
equations around the post-shock solution found at z = zo, with a Frank-Kamenetskii
linearization adopted for the exponential temperature dependence of the reaction rate,
as is needed to describe ignition events (Williams 1985). The procedure is identical to
that used in classical textbooks (Hayes & Probstein 2004) when deriving characteristic
equations for supersonic isentropic flows, with the condition of constancy of entropy
replaced in our analysis by the equations describing the chemical heat release along
the streamlines. We begin by writing the conservation equations in their primitive
form and proceed to derive the characteristic equations, which differ from those
given above in (2.5) and (2.6) owing to the presence of the chemical reaction. The
linearization will allow us to define characteristic variables I± that effectively replace
p and λ in the integration along the Mach lines C±.

The basic state is defined by the local post-shock non-reactive-flow values of the
flow deflection, temperature, pressure, Mach number and streamwise velocity, denoted
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by λo = −νo, To, po, Mo and Uo = Mo
√
(γ − 1)cpTo at z = zo, with cp denoting the

specific heat at constant pressure. The problem can be formulated in terms of the
pressure and temperature perturbations p̄ = (p − po)/po and T̄ = (T − To)/To and
the ratio V̄ = V/Uo of the transverse velocity V to the unperturbed velocity Uo (i.e.
V̄ = λ− λo in the linear approximation adopted here). These dimensionless variables
can be used to write the streamwise and transverse components of the momentum
balance equation in the form

γM2
o − 1
γM2

o

∂ p̄
∂s
− ∂T̄
∂s
+ ∂V̄
∂n
= 0, (3.1)

γM2
o
∂V̄
∂s
+ ∂ p̄
∂n
= 0, (3.2)

after the continuity equation and the equation of state are used to express the
perturbations of density and streamwise velocity in terms of p̄, T̄ and V̄ . In terms of
these variables, the energy and fuel conservation equations become

∂T̄
∂s
− γ − 1

γ

∂ p̄
∂s
=Qω (3.3)

and
∂Y
∂s
=−ω, (3.4)

where Q = q̃/(cpTo) is a dimensionless chemical heat release and, after the Frank-
Kamenetskii linearization exp[βT̄/(1+ T̄)] ' exp(βT̄),

ω=
(

B
Uo/δ

)
e−βY eβT̄ (3.5)

is the non-dimensional reaction rate. The dimensionless activation temperature β =
Ta/To is the large parameter for the asymptotic description below.

The problem can be conveniently formulated in characteristic form by combining
(3.1)–(3.3) linearly to give

∂I±

∂s
± 1√

M2
o − 1

∂I±

∂n
= γM2

o

M2
o − 1

Qω (3.6)

for the characteristic variables

I± = p̄± γM2
o√

M2
o − 1

V̄, (3.7)

which can be used to rewrite (3.3) as

∂T̄
∂s
− γ − 1

2γ
∂

∂s
(I+ + I−)=Qω. (3.8)

Equations (3.4), (3.6) and (3.8) supplemented with (3.5) are the basis for the local
description of thermal ignition events in two-dimensional steady supersonic flows.
Similar linearized equations have been employed in analyses of ignition of a gaseous
reactive mixture subject to a localized energy source (Vázquez-Espí & Liñán 2001).
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3.2. Boundary conditions
As can be inferred from (3.3) and (3.4), the fuel mass fraction Y and the dimensionless
entropy perturbation T̄ − (γ − 1)p̄/γ evolve along the streamlines n = const., while
the characteristic variables I± are seen in (3.6) to evolve along the Mach lines

C±: s+ n
tan φo

=
(

1
tan φo

± 1
tanµo

)
(n− ns), (3.9)

involving the local downstream-flow inclination φo = σo − νo with respect to the
shock. Here, ns denotes the value of n corresponding to the point where the Mach
line intersects the shock, whose location is defined in this linear approximation by
the straight line s + n/tan φo = 0. As indicated earlier, since the normal component
of the velocity behind the shock is subsonic (i.e. µo > φo), the C− characteristics
always reach the shock, while the C+ characteristics originate there. Therefore, below,
in writing the boundary conditions for (3.4), (3.6) and (3.8), we need to specify the
values of Y , T̄ and I+ at the shock, while the boundary value of I− along a given
C− characteristic must be specified outside the ignition kernel, thereby introducing
appreciable complexity into application of the boundary conditions. A zero boundary
value of I− must be used for all characteristics C− in analysing ignition occurring
near the air-side edge of the mixing layer to be consistent with the uniform conditions
found in the air stream. When ignition occurs inside the mixing layer far from the
air boundary, however, a linear distribution I− ∝ ns must in general be considered
instead, as indicated below in (4.4), with the proportionality coefficient determined
in general from the numerical computation of the chemically frozen flow for z > zo.
Note that, if the simplified strategy proposed by Moeckel (1952) is adopted for
the base computation of the shock-wave shape, then the resulting boundary value
I− is identically zero everywhere along the shock. In this approximation, which
is reasonably accurate under a wide range of conditions, as discussed by Moeckel
(1952), adoption of the boundary condition I− = 0, strictly valid only for ignition
events occurring right at the air boundary, would give reasonably accurate predictions
of ignition conditions even when the reactive kernel is located at an intermediate
transverse location inside the mixing layer.

The composition does not change across the chemically inert shock, so that the
boundary condition for the fuel mass fraction along the shock line s+n/tan φo=0 can
be directly evaluated in terms of the upstream transverse distribution Y(z). Since the
heat released in the reaction may perturb the shock, the boundary values of T̄ and
I+ are obtained by analysing the local jumps of temperature, pressure and velocity
across the shock. Linearizing the Rankine–Hugoniot relations (2.1)–(2.3) around the
upstream values of the temperature, Mach number and incident angle T ′o, M′o and σo

at z= zo yields

T̄ = T̄ ′ + ATM̄′ + BT σ̄ , p̄= ApM̄′ + Bpσ̄ and V̄ =−AνM̄′ − Bν σ̄ (3.10a−c)

for the post-shock perturbations in terms of T̄ ′ = (T ′ − T ′o)/T
′
o, M̄′ = M′ − M′o and

σ̄ =σ −σo. The coefficients Ap, Bp, Aν and Bν for the pressure and transverse-velocity
perturbations, defined above in (2.12), as well as the accompanying coefficients

AT = 1
FT

∂FT

∂M′
and BT = 1

FT

∂FT

∂σ
(3.11a,b)
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for the temperature perturbations are to be obtained from evaluations of the
Rankine–Hugoniot relations (2.1)–(2.3) and their derivatives at M′ =M′o and σ = σo.
The corresponding post-shock values of the characteristic variables I± are given by

I± = A±M̄′ + B±σ̄ , (3.12)

with

A± = Ap ∓ γM2
o√

M2
o − 1

Aν and B± = Bp ∓ γM2
o√

M2
o − 1

Bν, (3.13a,b)

as follows from the definitions given in (3.7). While the distributions of M′ and T ′
upstream from the shock are independent of the post-shock flow and can be prescribed
in the ignition analysis, the local shock curvature σ̄ depends on the incipient chemical
reaction through the value of I− reaching the shock from above, as can be seen by
solving (3.12) for

σ̄ =−A−

B−
M̄′ + 1

B−
I−. (3.14)

Using this expression in (3.10a−c) and (3.12) finally yields

T̄ = T̄ ′ +
(

AT − BT

B−
A−
)

M̄′ + BT

B−
I− (3.15)

and

I+ =
(

A+ − B+

B−
A−
)

M̄′ + B+

B−
I− (3.16)

for the boundary values of T̄ and I+ at the shock. Since the coefficients BT and B− are
always positive, the increase in I− associated with the chemical reaction acting along
the characteristic C− results in increasing values of the shock curvature and post-shock
temperature, as dictated by (3.14) and (3.15).

4. Ignition at a local temperature maximum
We consider first ignition events occurring when the peak temperature To of the

non-reacting shocked gas occurs at an intermediate location zo across the mixing layer.
That is the case when the associated upstream temperature profile T ′(z) displays a
maximum across the mixing layer as a result of viscous dissipation, as occurs for
M′∞ = 5 in the computations of figure 1. Note that, since the temperature of the
shocked gas depends also on the variation of M′, the resulting transverse location
zo is slightly displaced upwards with respect to the location where T ′(z) reaches
its peak value. Observation of (3.5) reveals that the ignition regime corresponds to
small temperature increments T̄ = (T − To)/To ∼ β−1� 1, as required to increase the
chemical reaction rate by an amount of order unity. These temperature increments
are associated with small decrements Yo − Y ∼ β−1� 1 in fuel mass fraction. Since
the fuel mass fraction Y = Yo at z = zo is of order unity, in analysing ignition, the
chemical reaction rate (3.5) can be evaluated with use made of the unperturbed fuel
mass fraction Yo, thereby circumventing the need to integrate (3.4). The associated
errors, of order β−1, are comparable to those introduced by the Frank-Kamenetskii
linearization employed in writing (3.5). The problem therefore reduces to that of
integrating (3.6) and (3.8) for a given boundary distribution of I− for s>−n/tan φo
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and n � 1, with the boundary values of T̄ and I+ at the shock s + n/tan φo = 0
evaluated with use made of (3.15) and (3.16).

In writing the boundary conditions below, to achieve a maximum simplification we
shall employ

δ = sin φo

sin σo

(
dM′

dz

)−1

z=zo

(4.1)

as a definition for the mixing-layer thickness, thereby reducing the local upstream
Mach-number distribution to

M̄′ = ns, (4.2)

where ns = (sin φo/sin σo)(z − zo)/δ identifies a given point along the shock wave.
Correspondingly, the chemically frozen temperature distribution immediately behind
the shock, which peaks at ns = 0, can be expressed as

T̄ =−Γ̄Tn2
s , (4.3)

where Γ̄T is a measure of the local curvature of the temperature profile. In the linear
approximation, the boundary condition for the C− characteristic equation can be stated
in terms of the far-field value,

I− = Γ −ns, (4.4)

of the characteristic variable I− along the Mach line C− that intersects the shock at
n = ns, where the factor Γ − depends on the chemically frozen interactions of the
primary isentropic waves with the post-shock Mach-number gradients outside the
ignition kernel.

In the following ignition analysis, the coefficients Γ̄T and Γ − in (4.3) and (4.4) will
be assumed to be known quantities of order unity, which must be obtained a priori
for a specific mixing layer–shock wave configuration as part of the chemically frozen
numerical computation of the shock-wave shape for z> zo, a non-trivial computational
problem in general, which, however, is simplified if Moeckel’s approximation is
employed. Although the assumed ordering in principle could be violated if, for
example, the temperature profile in the inert mixing layer were extremely sharply
peaked, the present ordering applies in the vast majority of realistic cases. Fortunately,
moreover, the value of Γ̄T will be seen to be inconsequential for the analysis, in that
the critical ignition condition at leading order is independent of the slow boundary
variation displayed in (4.3). In addition, although Γ − does influence the base pressure
gradient along the streamlines, which is given later in (4.8), its value can be expected
to be moderately small in many situations (if Moeckel’s approximation is used in the
shock-wave calculation, then Γ − = 0).

4.1. Frozen flow behind the shock
To identify the scales of the ignition kernel, it is convenient to determine first the
temperature distribution found behind the shock when the flow is chemically frozen.
Setting ω = 0 in (3.6) and integrating yields I±F along the Mach lines (3.9), where
the subscript F is used to denote the chemically frozen variables. Using the shock
boundary value (4.4) for I−F and the accompanying boundary value

I+F
ns
=
(

A+ − B+

B−
A−
)
+ B+

B−
Γ − (4.5)
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evaluated from (3.16) yields the distributions

I−F =−Γ −
n+ s tanµo

tanµo/tan φo − 1
, (4.6)

I+F =
(

A+ − B+

B−
A− + B+

B−
Γ −
)

n− s tanµo

tanµo/tan φo + 1
, (4.7)

which can be used to compute the pressure p̄F = (I+F + I−F )/2 and its associated
constant streamwise gradient

−∂ p̄F

∂s
=Λ = tanµo

2

[
A+ − (B+/B−)A−
tanµo/tan φo + 1

]
+ tanµo

2

[
B+/B−

tanµo/tan φo + 1
+ 1

tanµo/tan φo − 1

]
Γ −. (4.8)

This pressure gradient appears in (3.8), causing the temperature to vary along the
streamlines according to

T̄F =−Γ̄Tn2 − γ − 1
γ

Λ

(
s+ n

tan φo

)
, (4.9)

obtained by integrating (3.8) with ω= 0, where s+ n/tan φo is the distance from the
shock measured along a streamline n= const.

The first term in (4.8),

Λ+ = tanµo

2

[
A+ − (B+/B−)A−
tanµo/tan φo + 1

]
, (4.10)

a function of the local values of the incident Mach number M′o and incident angle σo,
corresponds to the intrinsic expansion emanating from the curved shock, whereas the
second term,

Λ− = tanµo

2

(
B+/B−

tanµo/tan φo + 1
+ 1

tanµo/tan φo − 1

)
Γ −, (4.11)

accounts for the influence of the external acoustic field transmitted along the C− Mach
lines. As previously noted, Λ− vanishes for conditions under which the magnitude
of the secondary waves induced in the non-uniform flow downstream from the shock
is negligibly small. Under most conditions of interest, its associated contribution to
Λ, which may reinforce or attenuate the expansion rate depending on its sign, is
anticipated to have a lesser quantitative effect, in agreement with Moeckel’s postulate.

Isocurves of Λ+, which vanishes for the conditions of neutral transmission indicated
in (2.13), are shown in figure 3. The ignition analysis given below pertains to cases
with Λ > 0, the prevailing conditions below the neutral-transmission curve provided
that Λ− remains moderately small. In the small corner regions of the figure, previously
indicated to be excluded because of their lack of appreciable practical interest, the
negative value of Λ implies that the pressure and the temperature actually increase
with distance from the shock in the frozen flow, thereby not competing with the
chemical heat release.
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4.2. Ignition analysis for β� 1
In the limit of large activation temperature β � 1 considered here, the perturbations
associated with the chemical reaction can be described by introducing the rescaled
variables θ = β(T̄ − T̄F) and J± = β(I± − I±F ). According to (4.9), the ignition kernel,
where the temperature departs from its peak value by an amount of order T̄ ∼ β−1,
extends over streamwise distances of order s+ n/tan φo∼β−1 and transverse distances
of order n∼ β−1/2, suggesting the introduction of the stretched coordinates

ξ = γ − 1
γ

Λβ

(
s+ n

tan φo

)
and η= Γ̄ 1/2

T β1/2n (4.12a,b)

for the description of the ignition kernel. The above scaling indicates that, in the limit
β � 1, the ignition kernel is thin in the streamwise direction provided that the base
temperature profile is not extremely sharply peaked, i.e. for values of Γ̄T such that
Γ̄

1/2
T �Λβ1/2. These rescaled variables reduce (3.6) and (3.8) to(

1± tanµo

tan φo

)
∂J±

∂ξ
± γ Γ̄

1/2
T tanµo

(γ − 1)Λβ1/2

∂J±

∂η
= γ (tan2 µo + 1)D e−η

2−ξeθ , (4.13)

∂θ

∂ξ
=D e−η

2−ξeθ + γ − 1
2γ

∂

∂ξ
(J+ + J−), (4.14)

where

D = γQBYo e−β

(γ − 1)ΛUo/δ
(4.15)

is the relevant ignition Damköhler number. The latter is defined as the ratio of
the characteristic residence time γ δ/[(γ − 1)ΛβUo] required for the temperature to
decrease due to the effect of the post-shock gas expansion by a relative amount of
order β−1 to the characteristic chemical time [βQBYo e−β]−1 required to increase the
temperature as a result of the chemical heat release by that same relative amount. As
can be seen in (4.13), in the stretched coordinates the Mach lines (3.9) become

C±: ξ − (γ − 1)Λβ1/2

γ Γ̄
1/2

T

(
1

tan φo
± 1

tanµo

)
η= const. (4.16)

The integration along the C− characteristics must be initiated with the boundary value

J− = 0. (4.17)

On the other hand, the boundary conditions for the reactive perturbations at the shock
front ξ = 0 are given by

θ = BT

B+
J+ = BT

B−
J−, (4.18)

as follows from the linearized Rankine–Hugoniot relations (3.15) and (3.16), since
T̄ ′ as well as M̄′ and its coefficients are all determined by the unperturbed flow,
unaffected by the heat release, as previously demonstrated.

The integration of (4.13) and (4.14) subject to the boundary conditions (4.17)
and (4.18) determines the weakly reactive flow in the ignition kernel, including the
temperature distribution θ = θs(η) immediately behind the shock. It is worth noting
that the value of J− at ξ = 0, determined by integrating (4.13) across the ignition
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kernel, is always positive, indicative of a compression wave, which increases the
shock-front curvature as it interacts with the shock, as dictated by (3.14), thereby
strengthening the shock and resulting in an augmented post-shock temperature θs > 0,
as can be seen in (4.18) since BT/B− is always positive. Equation (4.14) describes the
subsequent evolution of the temperature perturbation along the streamlines resulting
from the heat released by the chemical reaction, which has a twofold effect. The
first term on the right-hand side of (4.14) represents the direct effect of the local
heat release rate, which tends to increase the temperature, whereas the second term
represents the expansion induced by the chemical reaction, a non-local effect that
tends to reduce the temperature. As seen below, these two counteracting effects have
comparable magnitude, leading to downstream temperature gradients that can be
either positive or negative depending on the upstream conditions, as measured by the
parameter κ defined later in (4.19).

4.3. Leading-order solution
The problem can be solved analytically for large values of the non-dimensional
activation energy β� 1, because the transverse derivatives in (4.13) become negligible
in the first approximation (i.e. the Mach lines (4.16) simplify to η= const.), thereby
reducing the leading-order problem to the integration of a set of ordinary differential
equations in the coordinate ξ . The solution is facilitated by replacing the variables
J− and J+ by the normalized characteristic variable J̃ = (BT/B−)J− and the pressure
perturbation π =β(p̄− p̄F)= (J−+ J+)/2. Eliminating the induced streamwise pressure
gradient in (4.14) by linear combinations with (4.13) and defining the parameters

κ = B−

γBT

tanµo/tan φo − 1
tan2 µo + 1

[
1− (γ − 1)(tan2 µo + 1)

(tanµo/tan φo)2 − 1

]
, (4.19)

and

∆= γBT

B−
tan2 µo + 1

tanµo/tan φo − 1
D (4.20)

yields the modified energy equation

∂θ

∂ξ
= κ∆ e−η

2−ξeθ . (4.21)

In these variables the characteristic equations (4.13) become

∂ J̃
∂ξ
=−∆ e−η

2−ξeθ , (4.22)

∂π

∂ξ
=− B−/BT

tanµo/tan φo + 1
∆ e−η

2−ξeθ . (4.23)

The problem at leading order reduces to the integration of the three ordinary
differential equations (4.21)–(4.23) with boundary conditions J̃ = 0 as ξ →∞ and
θ = J̃ = (BT/Bp)π at ξ = 0 as follows from (4.17) and (4.18).

The reduced formulation indicates that the solution depends fundamentally on two
parameters, namely, the reduced Damköhler number ∆ of (4.20) and the parameter
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κ of (4.19), the latter measuring the competition between the cooling rate associated
with the flow expansion induced by the chemical reaction

γ − 1
2γ

∂

∂ξ
(J+ + J−)=− (γ − 1)(tan2 µo + 1)

(tanµo/tan φo)2 − 1
D e−η

2−ξeθ (4.24)

and the direct heat release rate of the chemical reaction D e−η2−ξeθ . The ratio of these
two rates is the second term in the square brackets of (4.19). The direct heat release
dominates when this ratio is smaller than unity, yielding positive values of κ , whereas
the induced expansion prevails when it is larger than unity, yielding negative values
of κ .

It is noteworthy that κ can be calculated in terms of the values of σo and M′o of
the approach shock unperturbed by the heat release, independently of the chemical
reaction rate parameters. Its isocontours are plotted in figure 3. As can be seen in
that figure, although depending on the incident flow conditions, this parameter may
take either positive or negative values, corresponding to a temperature perturbation
θ that either increases or decreases monotonically along the streamline (as indicated
by (4.21)); it is positive in virtually all practical cases. The minimum value κ =−1,
incidentally, is approached for weak shocks with M′o sin σo = 1.

Adding (4.22) times κ and (4.21) and integrating the resulting chemistry-free
equation yields

θ + κ J̃ = (1+ κ)θs(η) (4.25)

when the condition θ = J̃ at ξ = 0 is used to evaluate the result. Using also the post-
shock temperature θs to evaluate a first quadrature of (4.21) at ξ = 0 yields

θ − θs = ln[1− κ∆ e−η
2
eθs(1− e−ξ )]−1. (4.26)

Since J̃ must vanish as ξ →∞, the perturbed temperature distribution (4.26) must
satisfy θ = (1+ κ)θs for ξ→∞, as follows from (4.25), thereby yielding the nonlinear
algebraic equation

θs = 1
κ

ln
(

1
1− κ∆ e−η2eθs

)
, (4.27)

which determines implicitly the post-shock temperature distribution θs(η) for given
values of ∆ and κ . The leading-order solution is completed by integrating a chemistry-
free linear combination of (4.21) and (4.23) to give

π = Bp

BT
θs − B−/BT

tanµo/tan φo + 1
θ − θs

κ
(4.28)

for the pressure perturbation resulting from the chemical reaction. Since Bp/BT and
B−/BT are always positive, the pressure perturbation given in (4.28) is largest at the
shock, where πs= (Bp/BT)θs > 0, and then decays monotonically with the streamwise
distance ξ irrespective of the value of κ , in agreement with the negative sign preceding
the reaction term in (4.23).
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FIGURE 4. The variation of the rescaled temperature increment θs(0)with the Damköhler
number ∆ obtained from (4.27) for different values of the heating-rate parameter κ .

4.4. Discussion of the results
The leading-order solution for the temperature of the weakly reactive flow for γ =
1.4 is shown in figures 4–6. Figure 4 displays the variation with ∆ of the peak post-
shock temperature θs(0), reached at η= 0, for different values of κ , as obtained from
evaluations of (4.27). It is seen that the resulting curves exhibit a turning point at

∆=∆c =
(

1
1+ κ

)(1+κ)/κ
, (4.29)

which can be obtained from straightforward differentiation of (4.27). Figure 4 indicates
that the equation ∆ = ∆c determines the critical condition for the existence of a
weakly reactive solution, in that no solution for θs(0) exists if ∆ > ∆c, while two
values of θs(0) are found for ∆ < ∆c when κ > −1, the upper value representing a
non-physical, statically unstable condition. The limiting case κ =−1 of infinitesimally
weak shocks, for which the curve in Figure 4 does not show a turning point but
rather a vertical asymptote at ∆ = 1, is of limited interest in applications, because
the associated temperature jump across the shock would be negligibly small.

For values of ∆ < ∆c(κ), therefore, the lower branch in the curve of figure 4
determines the peak shock temperature θs(0), while the associated temperature
perturbation θ(ξ, η) is given by (4.26) once the shock distribution θs(η) is computed
from (4.27). Sample results corresponding to κ=1 are shown in figure 5. In particular,
temperature distributions along the shock θs(η) are given for several values of ∆
up to the ignition value ∆c. The accompanying ignition-kernel field of perturbed
temperature θ(ξ, η) is plotted for ∆ = 0.2. As expected, since the value of κ used
in figure 5 is positive, the temperature perturbation θ is seen to increase downstream
from the shock, from the shock value θs, that being the situation encountered in
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FIGURE 5. (Colour online) The temperature increase resulting from chemical reaction
corresponding to a heating-rate parameter κ = 1.0 obtained from evaluations of (4.26)
and (4.27), including (a) post-shock temperature profiles θs(η) for different values of the
Damköhler number ∆ and (b) isothermal curves for ∆= 0.2.

most practical cases, as can be inferred from the evaluations of κ shown in figure 3.
Negative values of κ in the range −1 6 κ < 0, found in a thin parametric region
adjacent to the infinitesimally weak boundary in figure 3, yield the opposite trend, that
is, temperatures decreasing rather than increasing along the streamlines downstream
from the shock, that being illustrated in figure 6 for κ =−0.5, which shows isocurves
of θ(ξ, η) for ∆= 0.4.

It is worth pointing out that the pressure increment induced by the heat release
rate π can be readily evaluated in terms of the temperature perturbation using (4.28).
Except for a positive scaling factor of order unity (Bp/BT), the resulting pressure
distribution along the shock, πs(η) = (Bp/BT)θs(η), is identical to the temperature
distribution θs(η) shown in figures 5 and 6. Unlike the temperature, however, the
pressure is always a decreasing function of the distance from the shock ξ , as
mentioned earlier.

For the diffusionless systems considered here, it is remarkable that, in this
configuration, ignition occurs as a fold bifurcation in the curve representing the peak
value of the reactive perturbation (i.e. the value of θs or πs at η = 0) as a function
of the reduced Damköhler number ∆, with the critical conditions determined from
a boundary-value problem of the Frank-Kamenetskii type in which pressure waves,
rather than heat conduction, provide the basic energy transfer mechanism. Corrections
to the leading-order results given here could be obtained by introducing expansions
for the different flow variables in powers of β−1/2. The first-order corrections would
be associated with the transverse derivatives neglected in (4.13), whereas computation
of corrections of order β−1 and higher would require additional consideration of
fuel consumption along with departures from the Frank-Kamenetskii linearization.
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FIGURE 6. (Colour online) Same as figure 5 for κ = −0.5, with the isothermal curves
plotted for ∆= 0.4.

Because of the presence of the turning point, in examining these higher-order terms
one should pose the problem as that of determining the value of the parameter ∆ that
provides a given value of the temperature perturbation at the origin θs(0). Besides
expansions for the different flow variables in powers of β−1/2, an additional expansion
∆=∆0+ β−1/2∆1+ β−1∆2+ · · · must then be introduced in the asymptotic solution
for a fixed value of θs(0), with ∆0 being the curve shown in figure 4, thereby enabling
corrections to the bifurcation curve ∆–θs(0) to be determined through the additional
terms ∆1, ∆2, . . . , which would lead to improved predictions in the critical ignition
Damköhler number.

5. Ignition near the hot boundary
In most practical supersonic-combustion devices, the air temperature at the entrance

to the combustor is much larger than the temperature of the fuel. As a result, the
peak temperature across the fuel–air mixing layer may still occur at the air boundary
despite the effect of viscous dissipation. The oblique shock further increases this
peak temperature, promoting the chemical reaction. Unlike the ignition scenario
analysed above, the amount of fuel available is limited when ignition occurs near
the mixing-layer edge, so that fuel consumption needs to be accounted for when
investigating the existence of weakly reactive solutions, as was done by Liñán &
Crespo (1976) in their shock-free ignition analysis. It will be found that the resulting
ignition kernel is non-slender, so that its description requires numerical integration of
the complete ignition equations along the characteristic lines. It is worth pointing out
that, although the analysis given here is for a one-step reaction with Arrhenius rate,
mixing-layer ignition can be expected to occur always near the hot boundary whenever
the controlling chemistry has a temperature dependence that is much stronger than
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the reactant-concentration dependence, as occurs for most fuels of practical interest,
including hydrogen, for which the resulting homogeneous ignition times exhibit a
moderately weak variation with the equivalence ratio but a much more pronounced
dependence on the initial temperature (Sánchez & Williams 2014).

5.1. Upstream flow profiles

As seen in appendix A, for a laminar mixing layer of thickness δm = 2[DFx/U′∞]1/2,
defined in terms of the fuel diffusivity DF, with streamwise location x� δm and air-
stream velocity U′∞, the profiles of fuel mass fraction Y , Mach number M̄′=M′−M′∞
and temperature T̄ ′= (T ′− T ′∞)/T

′
∞ admit near the air side the universal description

−M̄′ =− T̄ ′

ΓT
= Y
ΓY
=C

exp[−(z/δm)
2]

(z/δm)
, (5.1)

including identical exponential decay rates when all molecular diffusivities are taken
to be equal (i.e. unity Prandtl and Lewis numbers). Here, the factors C, ΓT and ΓY

are positive constants of order unity, whose specific values depend on the upstream
mixing-layer evolution and the boundary conditions found on the fuel side.

The ignition kernel is defined in this case by the near-edge region where we
find relative departures of the post-shock temperature from its boundary value
T∞ to be of order β−1, now with β = Ta/T∞, since the maximum immediate
post-shock temperature To now is T∞. The kernel, then, occurs at the small values
M̄′ ∼ T̄ ′ ∼ Y ∼ β−1. For definiteness, we shall define the transverse location zi of the
ignition kernel from the equation

−M̄′ = β−1 =C
exp[−(zi/δm)

2]
(zi/δm)

, (5.2)

yielding an asymptotically large value (zi/δm) ∼ (ln β)1/2. For the description of
the ignition kernel, the origin of the non-dimensional streamwise and cross-stream
coordinates s and n will be placed at the shock-front location where z= zi.

Expanding (5.1) about zi reveals that the transverse dimension of the ignition region
δi, where we find relative variations of the different properties of order β−1, is of order
δi/δm ∼ (zi/δm)

−1 ∼ (ln β)−1/2 � 1. For the analysis of ignition events near the hot
boundary, it is convenient to use this characteristic length δi to scale the problem, so
that the resulting dimensionless coordinates s and n will differ from those appearing
in the starting equations (3.1)–(3.4). Adopting the specific expression

δi

δm
=
(

2zi

δm

)−1 sin φ∞
sin σ∞

(5.3)

for defining the characteristic length δi reduces the expansion of the upstream
boundary distributions (5.1), up to terms of order (ln β)−1/2, to

−βM̄′ =−β T̄ ′

ΓT
= β Y

ΓY
= e−n, (5.4)

with n used to identify a given point along the shock front s+ n/tan φ∞ = 0.
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5.2. Problem formulation
Introducing the rescaled variables

y= β Y
ΓY
, Θ = β T − T∞

T∞
and J ± = β

(
p− p∞

p∞
± γM2

∞√
M2∞ − 1

V
U∞

)
, (5.5a−c)

of order unity in the ignition region, reduces the conservation equations, (3.6)
and (3.8) with (3.4), to

∂J ±

∂s
± tanµ∞

∂J ±

∂n
= γ (tan2 µ∞ + 1)q Da y eΘ, (5.6)

∂Θ

∂s
− γ − 1

2γ
∂

∂s
(J + +J −)= q Da y eΘ, (5.7)

∂y
∂s
=−Da y eΘ, (5.8)

where the relevant Damköhler number and heat release parameters now are

Da= Bβe−β

U∞/δi
and q= ΓY q̃

cpT∞
, (5.9a,b)

the former involving the characteristic residence time U∞/δi in the ignition kernel,
consistent with the scale δi selected for the coordinates s and n. Since the air stream
is uniform, we must impose J − = 0 for the value of J − approaching the ignition
kernel along each characteristic C−. The additional conditions

y= e−n, (5.10)

Θ =−
(
ΓT + AT − BT

B−
A−
)

e−n + BT

B−
J −, (5.11)

J + =−
(

A+ − B+

B−
A−
)

e−n + B+

B−
J − (5.12)

apply along the shock front s=−n/tan φ∞. Equation (5.10) states that the composition
does not change across the shock, while (5.11) and (5.12) correspond to the linearized
Rankine–Hugoniot conditions (3.15) and (3.16).

As before, it is convenient to formulate the problem by isolating the pressure and
temperature perturbations introduced by the chemical reaction with use of the modified
variables ΘR=Θ −ΘF and J ±

R =J ±−J ±
F , where the subscripts F and R denote

in each expression the chemically frozen solution and the reactive perturbation thereto,
respectively. In the absence of chemical reaction, J −

F = 0 everywhere. Using this
result in evaluating the boundary condition (5.12) for J +

F and integrating (5.6) along
the C+ characteristics gives

J +
F =−

(
A+ − B+

B−
A−
)

exp
(
− n− s tanµ∞

tanµ∞/tan φ∞ + 1

)
. (5.13)

This can be used, together with the condition J −
F = 0, to compute the pressure-

gradient term in (5.7). Integrating the resulting equation with the boundary value of
ΘF at the shock evaluated from (5.11) with J − = 0 provides

ΘF =−EP e−n

[
exp

(
s+ n/tan φ∞

1/tan φ∞ + 1/tanµ∞

)
− 1
]
− ET e−n (5.14)
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where

EP = γ − 1
2γ

(
A+ − B+

B−
A−
)

and ET = ΓT + AT − BT

B−
A−. (3.15a,b)

The accompanying chemically frozen fuel mass fraction, determined by integration of
∂y/∂s = 0 with boundary condition y = e−n at s = −n/tan φ∞, is simply given by
yF = e−n. For the formulation below, which employes the reactive perturbations ΘR

and J ±
R , we choose not to express y as the sum of yF and the perturbation associated

with the chemical reaction, because for that variable the decomposition does not result
in any significant simplification.

The reactive perturbations are determined by integrating

∂J ±
R

∂s
± tanµ∞

∂J ±
R

∂n
= γ (tan2 µ∞ + 1)qDa y eΘF+ΘR, (5.16)

∂ΘR

∂s
− γ − 1

2γ
∂

∂s
(J +

R +J −
R )= qDa y eΘF+ΘR, (5.17)

∂y
∂s
=−Da y eΘF+ΘR, (5.18)

with boundary conditions

y= e−n and
ΘR

BT
=J −

R

B−
=J +

R

B+
(5.19a,b)

at the shock front s=−n/tan φ∞ and a vanishing value

J −
R = 0 (5.20)

on the air boundary (i.e. for n→∞ and s>−n/tan φ∞).
Straightforward evaluations of the different Rankine–Hugoniot functions for given

values of M′∞, σ∞ and γ provide the constants AT , BT , A+, A−, B+ and B− as well as
the values of the flow deflection ν∞ and the post-shock Mach number M∞ needed to
determine the angles µ∞= sin−1(M−1

∞ ) and φ∞= σ∞− ν∞. The additional parameters
involved in the problem are related to the shape of the temperature profile upstream
from the shock, which enters in the formulation through the parameter ΓT appearing
in (5.15), and to the chemical reaction, which enters through the reduced chemical
heat release q and the Damköhler number Da.

5.3. Discussion of results
Equations (5.16)–(5.18) subject to the boundary conditions given in (5.19) and (5.20)
were solved numerically by integrating along the three characteristics with a first-order
explicit method, giving the results shown in figures 7–9. These sample integrations
correspond to ΓT = 1 with M′∞= 5, σ∞= 20◦ and γ = 1.4, yielding AT = 0.168, BT =
2.31, A+ = 0.191, A− = 0.651, B+ =−0.240, B− = 11.8, µ∞ = 14.7◦ and φ∞ = 9.33◦.
Different values of q and Da were considered to investigate the dependence of the
solution on the reaction exothermicity and on the reaction rate, as discussed below.
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FIGURE 7. (Colour online) The ignition kernel obtained by numerical integration of
(5.16)–(5.18) for M′∞ = 5, σ∞ = 20◦, γ = 1.4, ΓT = 1 and q = 2 for (a) Da = 0.2 and
(b) Da = 0.403. The shaded contours represent the fraction of heat released 1 − y/yF,
while the solid curves are isolines of pressure increment due to chemical reaction π =
(J +

R +J −
R )/2.

5.3.1. The structure of the ignition kernel
Figure 7 shows ignition kernels for q = 2 and two different values of Da. The

solution is represented with use made of n− s tanµ∞ and n+ s tanµ∞ in the abscissa
and ordinate axes, so that the C− and C+ characteristics are vertical and horizontal
lines in the plots, respectively, while the streamlines n = const. appear as oblique
lines with negative slope. The region where chemical reaction occurs is revealed by
using shaded contours for the fraction of heat released 1 − y/yF, where yF = e−n

is the chemically frozen fuel mass fraction. The structure of the ignition kernel is
visualized with use made of the pressure perturbation produced by the chemical
reaction π = (J +

R +J −
R )/2, which progressively grows in the ignition kernel with

increasing values of the Damköhler number until ignition conditions are reached
for a critical value of Da of order unity. The lower Damköhler number Da = 0.2
selected in figure 7 is illustrative of conditions far from ignition, while Da = 0.403
corresponds to the largest Damköhler number for which a solution could be found in
this case, as explained below.

The integration begins on the air side of the mixing layer, where the reactive
perturbations are negligibly small as a result of the exponentially small fuel mass
fraction found there. With negligible pressure perturbations, each fluid particle
evolves independently in the quasi-isobaric background flow, burning downstream
from the shock at a fixed finite distance that is inversely proportional to the
Damköhler number, as can be seen by integrating (5.18) with ΘF + ΘR = 0 to
give y= e−n exp[−Da(s+ n/tan φ∞)], where s+ n/tan φ∞ is the streamwise distance
from the shock. This simple solution with finite induction length and exponentially
small perturbations begins to evolve on approaching values of n of order unity, where
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the existing richer mixtures allow for more vigorous chemical reaction, whereas
the lower unperturbed post-shock temperatures ΘF tend to freeze the reaction rate.
As in the case of ignition in the interior of the mixing layer analysed earlier, the
dynamics is further complicated by the existence of pressure waves induced by
the chemical reaction, including expansion waves along the C+ characteristics and
compression waves along the C− characteristics. The latter are seen to reach the
shock, strengthening it and increasing the reaction rate immediately behind through
the associated temperature increase.

The interplay between all of these competing effects results in the ignition-kernel
structures displayed in figure 7. The integrations reveal that the decreasing value
of the background temperature ΘF eventually becomes dominant for sufficiently
large negative values of −n� 1, preventing the chemical reaction from occurring in
the vicinity of the shock. As −n increases, the background post-shock temperature
decreases rapidly according to ΘF = −ET e−n, resulting in induction lengths that
become increasingly large. The associated reaction layer separating the fresh mixture
from the hot products turns away from the shock, evolving to approach asymptotically
the streamline slope as the induction length becomes exponentially large, as seen
clearly in figure 7(b).

5.3.2. Ignition as a fold bifurcation
For the value of the heat release q = 2 selected in the integrations of figure 7,

the numerical integrations failed to converge for values of Da > 0.403, figure 7(b)
representing the critical case Da= 0.403. Additional computations using refined grids
and implicit rather than explicit integration schemes did not modify this critical
maximum value. The critical solution displayed in figure 7(b), involving an ignition
kernel with finite induced pressure, exhibits a rather sharp transition from a solution
with constant induction length to a solution with an exponentially increasing induction
length.

The results indicate that the mechanism leading to ignition is similar to that
encountered when ignition occurs at a local temperature maximum inside the
mixing layer, in that in both cases ignition occurs as a fold bifurcation in the
curve representing the peak perturbation induced by the chemical reaction in terms
of the relevant Damköhler number. In the present analysis, it is convenient to
use the induced pressure perturbation π as a representation of the extent of the
chemical reaction, since the increase of this quantity is a suitable measure of the
pressure–reaction interactions leading to ignition. As in the case of ignition at a
temperature maximum, the peak value of π is seen to occur always adjacent to
the shock. Therefore, to illustrate the bifurcation character of the ignition process,
profiles of perturbed pressure along the shock πs are represented in figure 8 for
different values of the Damköhler number Da, including the values Da = 0.2 and
Da = 0.403 considered in figure 7. The resulting curves are to be compared with
those given in figures 5 and 6 for θs, the latter proportional to πs according to (4.28).
In both cases, the pressure perturbation develops a sharp peak as Da approaches the
critical value. The rapid variation of the peak pressure near the critical conditions is
shown in an inset of figure 8, which constitutes the appropriate bifurcation curve in
this case, fundamentally equivalent to the curves shown in figure 4 for ignition at
a local temperature maximum. While the previous analytical results of § 4 enabled
the description of the whole bifurcation curve to be derived, only the lower branch
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FIGURE 8. (Colour online) The pressure increase resulting from chemical reaction along
the shock obtained for different values of Da with M′∞ = 5, σ∞ = 20◦, γ = 1.4, ΓT = 1
and q= 2; the inset represents the evolution of the peak value of πs with Da.
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FIGURE 9. (Colour online) The variation with q of the critical Damköhler number at
ignition as obtained from numerical integrations for M′∞=5, σ∞=20◦, γ =1.4 and ΓT =1.

of the bifurcation curve up to the turning point is described in the inset of figure 8,
the upper branch corresponding to unstable solutions that are not accessible in the
numerical integrations.
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The critical value of Da at bifurcation depends strongly on the parameter q,
a non-dimensional measure of the heat released per unit mass of fuel burnt. As
the value of q decreases, the effect of fuel consumption becomes more significant,
with the consequence that the development of ignition requires a larger Damköhler
number when all other flow parameters are kept unchanged. This is illustrated in
figure 9, where it can be seen that the exponential dependences present in the
problem translate into a strong dependence of the ignition Damköhler number on
q. In corresponding problems for which heat conduction rather than acoustic-wave
propagation is responsible for transmitting the temperature field generated by the
chemical heat release at the edge of the mixing layer, as in Liñán & Crespo
(1976), there is a critical value of q below which the fold bifurcation disappears
and is replaced by a continuous transition to a thin diffusion flame involving a lean
deflagration propagating across the mixing layer from the hot boundary. The physical
mechanism for this continuous development is not present in the inviscid problem
addressed here. The fold bifurcation therefore persists, the critical Damköhler number
for ignition growing to extremely large values as q decreases, which may be inferred
from figure 9.

6. Post-ignition scenarios

The local ignition analyses described in §§ 4 and 5, which are based on investigations
of small departures from the chemically frozen post-shock state, identified the critical
conditions for existence of a weakly reactive solution in the vicinity of the most
reactive point. Because of the strong temperature dependence of the chemical reaction
rate, the size of the ignition kernel, defined as the streamwise length required for
the post-shock expansion resulting from the front curvature to freeze the chemical
reaction, is found to be a small fraction of the mixing-layer thickness δm. The ratio of
the associated residence time (comparable to the acoustic time in the limit considered
here) to the relevant chemical time evaluated with the local peak temperature defines
the relevant Damköhler number of the flow. Ignition is found to be associated with a
critical Damköhler number above which no solution to the Frank-Kamenetskii ignition
problem is found.

For subcritical values of the Damköhler number, the flow expansion freezes the
chemical reaction at the edge of the ignition kernel. Since the total amount of fuel
consumed is negligibly small, the associated reactive perturbations can be neglected
in the first approximation when describing the flow outside. The non-reacting inviscid
mixing layer continues to evolve in a non-slender post-shock region of characteristic
size δm, where we find relative pressure variations of order unity. At downstream
distances large compared with δm, the inviscid evolution of the mixing layer ceases
as the pressure settles to a uniform value, intermediate between p′∞ and p∞. The
inviscid acoustic interactions leave the mixing layer deflected at an angle that
depends on the Mach numbers M′∞ and M′−∞ of the incoming streams and that
can be calculated from the angle of the slip stream in the classical wave interaction
description (Landau & Lifshitz 1987). This downstream mixing layer will have
modified transverse distributions of temperature, Mach number and species mass
fractions as a consequence of the acoustic interactions that it has experienced. The
subsequent evolution of the mixing layer that emerges from the acoustic region occurs
over long distances that are of order U∞δ2

m/DF� δm, associated with residence times
of the order of the diffusion time across the mixing layer δ2

m/DF. The resulting slender
isobaric flow can be described in the boundary-layer approximation, accounting for

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

58
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.585


102 C. Huete, A. L. Sánchez, F. A. Williams and J. Urzay

Hot air

Hot air

Hot air

Fuel

Fuel

Fuel

Max
pressure Ignition

kernel

Ignition
kernel

Streamline
Expansion

Expansion

Streamline

Incident
shock wave

Splitter
plate

Splitter
plate

Splitter
plate

Incident
shock wave

Incident
shock wave

Ignition

Lean deflagration

Lean deflagration

Rich deflagration
Diffusion flame

Diffusion flame

Diffusion flame

Rich detonation

Rich detonation

Lean detonation

Lean
detonation

Ignition

Ignition

(a)

(b)

(c)

FIGURE 10. (Colour online) Schematic view of different post-shock configurations
corresponding to (a) subcritical values of the Damköhler number, (b) shock-induced
ignition near the air-side boundary and (c) shock-induced ignition in the interior of the
mixing layer above the stoichiometric point. The insets in (b) and (c) represent the ignition
kernels for the weakly reactive solutions described in §§ 4 and 5, respectively.

the effect of viscous dissipation. An analysis analogous to that of Liñán & Crespo
(1976) would be necessary for assessing the occurrence of ignition in this downstream
region in terms of an alternative ignition Damköhler number involving the ratio of
the residence time δ2

m/DF to the characteristic chemical time based on the post-shock
conditions downstream from the acoustic region. The resulting flow is schematically
represented in figure 10(a).

For supercritical values of the Damköhler number, there must exist cases with very
large activation energies and small heat release parameters, corresponding to very

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

58
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.585


Ignition by shock-wave impingement on a supersonic mixing layer 103

large Damköhler numbers, in which the total amount of post-ignition heat release
remains everywhere small compared with the local thermal enthalpy, allowing the
heat release to evolve as a perturbation in a flow that is supersonic everywhere.
This heat release, which would remain inviscid if the characteristic heat release
time remains small compared with the cross-stream diffusion time, could not result
in an evolution to a weak detonation because the near-Rayleigh-line flow would
encounter the strong-detonation branch first. The weak heat release perturbation to
the non-reacting flow field thus would result in strongly overdriven detonations,
varying in the transverse direction across the deflected mixing layer. Since the wave
interaction processes that are responsible for the approach to Chapman–Jouguet
conditions are likely to be insufficient, the oblique detonations would remain strong
in most cases, and with the increasing heat release associated with increasing fuel
concentration this would result in the near-shock region developing a significantly
perturbing vigorous chemical reaction in a short induction region of thickness much
smaller than the size of the ignition kernel. The tendency towards onset of the
well-known cellular instability of detonations with the decreasing overdrive caused
by the increased heat release may well give rise to an instability that drives the lead
shock away from it smooth trajectory of evolution, generating cells. The flow field
nevertheless would remain supersonic everywhere if the detonation were sufficiently
oblique and the Mach-number change across the mixing layer were small enough, but
in many realistic situations the flow in the (x, z) fixed frame will become subsonic
downstream from the lead shock of the detonation. While this introduces local elliptic
acoustic interactions that will affect the strength of the detonation, and therefore its
manner of evolution across the mixing layer, it cannot modify the approaching mixing
layer, which is supersonic throughout.

Computation of the propagation of the detonation across the mixing layer and the
evolution of its strength is a very challenging problem in gas dynamics with finite-rate
heat release. The description is simplified when an infinitely fast reaction model is
adopted for the ignited section of the shock front (i.e. below the ignition point), with
the resulting detonation appearing in the first approximation as an infinitesimally
thin front separating the unperturbed cold flow from the equilibrium products. In
this approximation, the computation of the flow at distances of order δm requires
integration of the Euler equations subject to modified Rankine–Hugoniot conditions,
including a jump in stagnation enthalpy that depends on the transverse location
through the associated upstream distribution of reactants. If ignition occurs at the
hot boundary, as described in § 5, then the modified jump conditions would apply
all across the mixing layer, and the associated post-shock flow would be everywhere
in equilibrium, resulting in the flow configuration sketched in figure 10(b). By way
of contrast, if ignition occurs at an intermediate location, the case considered in
§ 4 represented schematically in figure 10(c), then a non-reacting shock would be
found above the ignition point and a detonation front below, with the downstream
streamline departing from the ignition point correspondingly separating a chemically
frozen region from a region in chemical equilibrium, across which a deflagration
aligned with the flow eventually should develop far downstream, where molecular
transport becomes relevant. If the flow downstream from the shock remains supersonic,
then the conservation equations can be formulated in characteristic form, resulting in a
problem, similar to that described in § 2 for the shock wave–mixing layer interaction,
that would determine the shock and detonation front shapes. Correspondingly, an
approximation equivalent to that of Moeckel (1952) could be useful in that case to
derive an explicit expression for the distribution of the incident angle σ(z).
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The shape of the detonation depends on the distribution of reactants, temperature
and Mach number across the mixing layer, as well as on the post-shock and
post-detonation thermodynamic states that vary with these properties and that affect
the shape through inviscid interactions carried (if the flow remains supersonic) by the
characteristics that reach the front. The heat release is maximum at the stoichiometric
point and then decreases towards the fuel side as the mixture becomes richer. For
ignition near the air-side boundary, as occurs when the variations of T ′(z) and M′(z)
are not too pronounced, one possible result that may be expected to arise when
the effect of heat release is dominant in determining the shape of the detonative
front is that the detonative front may evolve from concave to convex, including an
inflection point near the stoichiometric point. The detonation remains concave when
the upstream velocity across the mixing layer decreases sufficiently rapidly towards
the fuel side, giving a front shape similar to that of the non-reacting situation, that
being the case represented in figure 10(b). Since the streamline originating at the
stoichiometric point separates a region without fuel from a region without oxygen,
a trailing diffusion flame develops through molecular transport processes, extending
far downstream, burning the excess oxygen found above the stoichiometric point (i.e.
behind the fuel-lean section of the detonation) with the excess fuel found below (i.e.
behind the fuel-rich section of the detonation). Overall, this constitutes a tribrachial
structure, including a detonative front with lean and rich branches on both sides of
the stoichiometric point, which serves as the origin for a trailing diffusion flame
that extends over streamwise distances of the order of δm times the local Reynolds
number. Illustrated in figure 10(b), this can be compared with the structure identified
by Liñán & Crespo (1976) in their shock-free ignition analysis, with the lean and
rich detonative fronts replacing in our case the deflagrations of their analysis.

The resulting flow structure is more complicated when ignition occurs in the
middle of the mixing layer. The schematic view of figure 10(c) corresponds to this
situation, with the ignition point separating the non-reacting shock found above from
a detonation below. If the ignition point lies above the stoichiometric point, then
the downstream flow evolution at distances of order U∞δ2

m/DF � δm includes a lean
deflagration departing from the ignition point and a diffusion flame departing from the
stoichiometric point, that being the case illustrated in figure 10(c). The downstream
flow is different when the ignition point lies below the stoichiometric point. The
rich deflagration that originates at the ignition point would propagate upwards as
it develops, crossing the stoichiometric line, where it becomes lean. The diffusion
flame develops only downstream from this crossing point, i.e. the flow along the
stoichiometric streamline downstream from the shock remains chemically frozen until
it is ignited by the deflagration crossing from below. Additional complicating effects
may further modify the flow depicted in figure 10(c). For example, detonations may
possibly develop on both sides of the ignition point for a sufficiently strong ignition
kernel, and possibilities of detonation failure as weak mixtures are approached in the
wings raise further uncertainties. All of these considerations illustrate the wealth of
novel phenomena that may arise from shock wave–mixing layer interactions in the
presence of chemical reactions.

The above descriptions assume that the ignition kernel serves to anchor the
detonation. If the mixture were sufficiently reactive for the propagation velocity of the
strong detonation to be sufficiently high and the incoming stream were sufficiently
slow, then the resulting detonation could propagate upstream along the mixing
layer. For smaller values of x, the detonation front would then encounter increasing
transverse gradients, resulting in a decreasing propagation velocity, as discussed by
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Calhoon & Sinha (2005). Eventually, a liftoff location would be reached at which
the detonation is stabilized. Although studies of detonations propagating in transverse
gradients have been attempted recently Kessler, Gamezo & Oran (2012), much further
work is warranted to assess the relevance of this phenomenon in connection with
scramjet combustion applications.

7. Concluding remarks

The ignition analyses that have been developed here help to clarify the manner
in which shock waves may promote ignition in supersonic mixing layers to lead to
establishment of diffusion flames in supersonic flows. Two different conditions have
been identified, one in which ignition first occurs in the interior of the mixing layer, in
the vicinity of the point at which the post-shock gas temperature is a maximum, and
the other in which the ignition develops at the hot-stream edge of the mixing layer.
While the analyses are different for these two conditions, the first being analytical but
the second necessitating both numerics and taking reactant consumption into account,
they both lead to fold-bifurcation descriptions of ignition in a Frank-Kamenetskii
approach. A novel aspect is that, for these shock-induced ignition problems, the
cooling processes that compete with the chemical heat release involve inviscid gas
dynamic acoustic-wave propagation instead of the familiar diffusive heat conduction.
The description, however, applies only to one-step Arrhenius heat release chemistry
with a large activation energy. Further research is warranted for investigating the
extent to which this description may apply to the heat release chemistry of real
scramjet fuels, such as hydrogen.

It is worth mentioning that the condition for the validity of the ignition analyses
developed here is that the flow is supersonic across the ignition kernel and above (in
the post-shock region that extends towards the high-speed air stream), regardless
of whether the flow eventually becomes subsonic on the fuel side outside the
ignition kernel. For example, the local descriptions of the ignition kernels and the
resulting critical ignition conditions apply also to configurations involving transonic
mixing layers with subsonic fuel streams, provided that the ignition kernel is located
sufficiently close to the air side for the post-shock flow to remain locally supersonic.

A further aspect worthy of emphasis is the fact that the analysis has been developed
here only for laminar mixing layers, while the supersonic flow is turbulent in the vast
majority of situations of interest. The competing mechanisms identified in connection
with the laminar case can be anticipated to play also a fundamental role in turbulent
environments. Since in turbulent mixing-layer flows the fluctuations of temperature
and velocity are relatively small compared with the local mean values, it is the
profiles of mean temperature and velocity found upstream from the shock-wave
impingement point that determine in the first approximation the mean curvature of
the shock across the mixing layer as well as the resulting transverse profile of mean
post-shock temperature. Just as in the laminar case considered here, because of the
high temperature sensitivity of the reaction rate, ignition in turbulent flows tends to
occur around the point of peak temperature, and the dominant cooling mechanism
competing with the chemical heat release to determine the size of the ignition kernel
is the post-shock expansion resulting from the mean shock-front curvature. This
leads to negative streamwise temperature gradients comparable to the mean transverse
gradients, thereby much larger than those associated with the streamwise turbulent
heat flux. These considerations indicate that in the presence of turbulence the location
and size of the ignition kernel could be determined to a good approximation from the
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computation of the steady inviscid interaction of the incident shock with the pre-shock
transverse profiles of mean temperature and velocity, the latter computed by merely
replacing the laminar diffusivities of the mixing layer by turbulent diffusivities.

Despite these similarities between the laminar and turbulent cases, the ignition
dynamics in turbulent flows can be expected to be very different, owing to the role
of turbulent temperature fluctuations (Libby & Williams 1980). In particular, although
the size and location of the ignition kernel are not affected strongly by turbulence, the
resulting critical ignition conditions would differ significantly from those evaluated by
simply applying the formulae developed here to the mean profiles of turbulent flow,
especially when ignition occurs near the air side, where the ignition dynamics is more
sensitive to intermittent fluctuations. Because of the strong temperature dependence
present in the problem, ignition would be affected mainly by the most energetic
eddies associated with the integral scales, which have the largest fluctuations of
temperature, and also the largest fluctuations of velocity, the latter leading to shock
wrinkling causing additional temperature fluctuations comparable in magnitude to
those found in the mixing layer upstream from the shock. The role of the smaller
eddies all the way down to the Kolmogorov scale is expected to be secondary, so that
the influence of turbulence remains inviscid and could be addressed in the framework
of the unsteady Euler equations. Earlier work on interactions of turbulence with shock
waves and detonations becomes relevant in that respect (see e.g. Huete, Sánchez &
Williams 2013, 2014, and references therein). Large-eddy simulation of supersonic
turbulent ignition problems (O’Brien et al. 2014) should account for the interactions
identified herein in guiding developments of appropriate local subgrid models for
shock-induced ignition. A great deal of additional research therefore remains to be
done in this general area.
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Appendix A
Simplified expressions for the shape of the different profiles at the edge of the

mixing layer can be obtained by considering the simplified boundary-layer form of
the conservation equations near the air boundary. For instance, the transport equation
for the fuel takes the form

U′∞
∂Y
∂x
+ V ′∞

∂Y
∂z
=DF

∂2Y
∂z2

, (A 1)

with U′∞ representing the free air-stream velocity, V ′∞< 0 the entrainment velocity and
DF the molecular diffusivity of the fuel. At a given downstream location x, the decay
of the fuel mass fraction as z increases can be expressed as

Y ∝ erfc
{[

z− zY −
∫ x

0
(V ′∞/U

′
∞) dx

]/
δm

}
, (A 2)

an exact solution of (A 1) involving the transverse translation zY and the local
mixing-layer thickness δm = 2[DFx/U′∞]1/2, with erfc representing the complementary
error function. If needed for increased accuracy, this description can be corrected by
incorporation of a virtual origin in the streamwise coordinate x.
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For z� δm the error function expression (A 2) simplifies to

Y ∝ exp[−(z/δm)
2]/(z/δm). (A 3)

If, in addition, all molecular diffusivities are taken to be equal by assuming unity
Prandtl and Lewis numbers in writing the boundary-layer form of the energy and
momentum equations near the mixing-layer edge, then similar expressions of the form
(T ′ − T ′∞)/T

′
∞ ∝ exp[−(z/δm)

2]/(z/δm) and (U′ − U′∞)/U
′
∞ ∝ exp[−(z/δm)

2]/(z/δm)

are obtained for the temperature and streamwise-velocity departures from the air-side
values. These can be used to finally express the near-edge solution in the form

−M̄′ =− T̄ ′

ΓT
= Y
ΓY
=C

exp[−(z/δm)
2]

(z/δm)
, (A 4)

where the factors C, ΓT and ΓY are positive constants of order unity, whose specific
values, which vary with the temperature and velocity of the fuel stream, depend on
the evolution of the flow upstream from the location x considered.
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