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Maŕıa, Casilla V-110, Avda. España, 1680, Valparáıso, Chile
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In this paper, we study the existence of weak solutions of the quasilinear equation

{
−div(a(|∇u|2)∇u) = λf(x, u) in Ω,

u = 0 on ∂Ω,

where a : R → [0,∞) is C1 and a nonincreasing continuous function near the origin,
the nonlinear term f : Ω × R → R is a Carathéodory function verifying certain
superlinear conditions only at zero, and λ is a positive parameter. The existence of
the solution relies on C1-estimates and variational arguments.
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1. Introduction

In this paper, we deal with the question of the existence of weak solutions of the
problem {

−div(a(|∇u|2)∇u) = λf(x, u) in Ω,
u = 0 on ∂Ω,

(1.1)

where Ω is a bounded domain of R
N with smooth boundary ∂Ω, N > 2, a : R →

[0,∞) is a continuous function, λ is a positive parameter, and f : Ω × R → R is a
Carathéodory function which grows as |u|p−2u near zero for 2 < p < 2∗.

Since quasilinear equations serve as model of a wide class of differential operators,
there has been a considerable amount of works on this subject (see [2–4,16] and
references therein). For our purpose we consider two principal operators: a(t) ≡
1 which reduces (1.1) to the Laplacian case, that is the scalar equation −Δu =
λf(x, u); and a(t) = (1 + t)−1/2 where we obtain the mean curvature operator.
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Notice that in the case of the Laplacian operator, important results have
been obtained for elliptic problems involving superlinear terms, see for example
[1,10,25]. In [1], Ambrosetti and Rabinowitz established an existence of nontrivial
solution when f is subcritical and superlinear at zero. In that paper, they introduced
the standard condition

(AR) There exist θ > 2 and u0 > 0 such that

0 < θF (x, u) � uf(x, u) , |u| � u0 for all x ∈ Ω,

where F (x, u) =
∫ u

0
f(x, s) ds.

which has been later frequently used in the literature. The condition (AR) is quite
natural and important not only to ensure that the Euler–Lagrange functional asso-
ciated with problem has a mountain pass geometry, but also to guarantee that
Palais–Smale sequence of the Euler–Lagrange functional is bounded. In this sense,
several authors have weakened the (AR) condition to encompass these nonlinearities
and proved that the Euler–Lagrange functional associated satisfies the Palais–Smale
condition (see [5,8,9,11,12,16,17,22,26,27] and references therein).

On the other hand, concerning with the mean curvature operator under suitable
conditions at zero and at infinity on the nonlinearity f , results of existence and
non-existence of solutions have been obtained in different works, see for instance
[2,4,7,13–15,20,23] and references therein. Comparing with the Laplacian case,
the previous studies consider the superlinear case and they impose a kind of
superquadraticity condition at infinity, which is implied by the (AR)-condition.

Concerning with local assumptions, we mention that in [19], Nakao considered
linear case with the condition 2a′(t2)t+ a(t) > 0 for any t ∈ R and, by using degree
argument, they studied the existence of global branches from the least eigenvalue
of −Δ and the trivial solution. Meanwhile, a more general setting was considered
by Lorca and Ubilla in [16]. Under certain local hypotheses on a and f , both
independent of the x-variable, and by imposing local monotonicity assumptions at
zero, they showed the existence of solutions.

The purpose of this paper is to obtain existence results of weak solutions by
imposing only local conditions at zero on the functions f and a. Therefore, we have
to deal with major problems, to give some structure on the equation to use Partial
Differential Equation (PDE’s) tools, and, by the local nature of the equation, to
control the C1 norm of the eventual solutions. More precisely, our hypotheses are:

(H1) There are R0 > 0 and ν > 0, such that a ∈ C1([0, R0]; (0,∞)) is a
nonincreasing function and

2a′(t)t+ a(t) > ν , for all t ∈ [0, R0).

(H2) There are p ∈ (2, 2∗ − 1) and a nontrivial continuous function φ ∈ L∞(Ω),
which is positive in an open subset Ω0 of Ω, with positive measure, such that
φ(x) � φ0 for all x ∈ Ω0 and some φ0 > 0 and

lim
u→0

f(x, u)
|u|p−2u

= φ(x),

for x ∈ Ω.
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(H3) There exist q ∈ (2, 2∗), q � p, and s0 > 0 such that

qF (x, u) − uf(x, u) � 0, for all u ∈ (0, s0] and x ∈ Ω,

where F (x, u) denotes the primitive of f , given by F (x, u) =
∫ u

0
f(x, s) ds.

Let us comment on the hypotheses above, (H1) is needed to obtain
C1,α-regularity on the eventual solutions. Moreover, it is necessary to show that
gradient of the eventual solutions are bounded by a constant depending on theirs
L∞-norm. (H2) and (H3) allow us to construct an energy functional of a certain
auxiliary problem, truncated of f and a for large values. Also, our hypotheses
ensure that the associated funcional has the Mountain Pass Geometry, and to show
that the Mountain Pass level goes to 0 when λ tends to infinity. More precisely,
(H2) allow us to obtain that 0 is a local minimum. Meanwhile (H3) is a sort of
Ambrosetti–Rabinowitz type of condition, but θ can be different from p and the
nonlinear term could be slightly superlinear (see for instance [6]). We recall that
the standard (AR) condition was introduced in [1] to ensure the boundedness of
the Palais–Smale sequence.

Let us state our main result.

Theorem 1.1. Assume that conditions (H1), (H2) and (H3) are satisfied. Then,
Problem (1.1) possesses at least one nontrivial solution provided that the parameter
λ > 0 is sufficiently large.

Examples 1.2. Some models where we may apply our main result are:

(1) A generalized mean curvature operator:⎧⎨
⎩−div

( ∇u
(1 + g(|∇u|2))γ

)
= λf(x, u) in Ω

u = 0 on ∂Ω

where g : R → [0,∞) is a continuous and nondecreasing function, γ � 0 and
f : Ω × R → [0,∞) is a continuous function verifying (H2)–(H3).

(2) A slightly superlinear function:{
−div

(
a(|∇u|2)∇u) = λu ln(|u| + 1) in Ω

u = 0 on ∂Ω

where a : [0,∞) → R is a function which verifies (H1). Observe that in this
case, for p = 3 and q ∈ (2, 3), it is easy to see that f verifies (H2) and (H3),
but not the (AR)-condition.

2. Preliminaries

We emphasize that in our result we are assuming only conditions on nonlinearity f
and on the function a near to zero, independently of their growth at infinity. Then,
the associated Euler–Lagrange functional of problem (1.1) could be not necessarily
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well defined. To overcome this difficulty we consider truncated functions. That is,
for R0 > R > 0 let ϕ : R → R defined by ϕ(t) = (1/(2(R0 −R)))(2R0t− t2 −R2)
and the truncated function aR : R → R given by

aR(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
a(t) if t � R,

a(ϕ(t)) if R � t � R0,

a

(
R0 +R

2

)
if t � R0,

and ψ : Ω × R → R given by

ψ(x, s) =
{

f(x, s), |s| � s0;
s1−q
0 f(x, sgn(s)s0)|s|q−1, |s| > s0.

Since ϕ(R) = R, ϕ′(R) = 1, ϕ′(R0) = 0 and ϕ′(t)t− ϕ(t) � 0 for t ∈ [R,R0], then
aR ∈ C1(0,∞),

a′R(t) =

⎧⎪⎨
⎪⎩
a′(t) if t � R

a′(ϕ(t))ϕ′(t) if R � t � R0

0 if t � R0,

and for t � 0

2a′R(t)t+ aR(t) � ν0 > 0,

where ν0 = min{ν, a((R0 +R)/2)}.
To prove our result using variational method, we consider the following auxiliary

problem:

{
−div(aR(|∇u|2)∇u) = λψ(x, u) in Ω
u = 0 on ∂Ω.

(2.1)

Remark 2.1. Note that by definition of function ψ, we have

• There is m0 > 0 such that ψ(y, s) � m0s
p−1 for all (y, s) ∈ Ω0 × [0, s0), and

• Exists L > 0 so that |ψ(x, t)| � L|t|q−1 for (x, t) ∈ Ω × R.

The following lemma is due to Stampacchia, see [24]. It allows us to get an
estimate of the C1,α-norm over the eventual solutions, depending on the L∞-norm
of the nonlinearity.
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Lemma 2.2. Let A = A(η) be a given C1 vector field in R
N , and f = f(x, s) be a

bounded Carathéodory function on Ω × R. Let u ∈ H1
0 (Ω) be a solution of∫

Ω

(A(∇u) · ∇v + f(x, u)v) = 0,

for all v ∈ H1
0 (Ω). Assume that there exist two real numbers 0 < ν < K such that

ν|ξ|2 � ∂Ai

∂ηj
(∇u)ξiξj , and

∣∣∣∣∂Ai

∂ηj
(∇u)

∣∣∣∣ � K,

for all i, j = 1, . . . , N and all ξ ∈ R
N . Then u ∈W 2,r(Ω) ∩ C1,α(Ω) for all α ∈ (0, 1)

and all r ∈ (1,∞). Moreover,

‖u‖1,α � O(ν,K,Ω, ‖f(·, u)‖∞).

Remark 2.3. Note that it is easy to prove that aR is a C1 function and G0 �
aR(t) � γ0 for all t ∈ R

+
0 , where G0 = inft∈[0,R] a(t) and γ0 = maxt∈[0,R0] aR(t).

Moreover, if we let A : R
N → R

N given by A(η) = aR(|η|2)η, then

∂Ai

∂ηj
= 2a′R(|η|2)ηiηj + aR(|η|2)δij .

In this way, for any ξ = (ξ1, . . . , ξn) ∈ R
N we have

∂Ai

∂ηj
ξiξj = 2a′R(|η|2)ξt(ηiηj)ξ + aR(|η|2)|ξ|2

= 2a′R(|η|2)ξ · (η(ξ · η)) + aR(|η|2)|ξ|2

= 2a′R(|η|2)(ξ · η)2 + aR(|η|2)|ξ|2.

Since a′R � 0, using the Cauchy–Schwarz inequality we get

∂Ai

∂ηj
ξiξj � 2a′R(|η|2)|ξ|2|η|2 + aR(|η|2)|ξ|2

= [2a′R(|η|2)|η|2 + aR(|η|2)]|ξ|2

The following lemma is a variant of the well-known Moser iterative scheme, see
for instance [2,18].

Lemma 2.4. Let u ∈W 1,p
0 (Ω) be a solution of problem (2.1), then there exists a

positive constant C1 = C1(Ω, q) such that

‖u‖∞ � C1(λLG−1
0 )1/(2∗−q)‖u‖

2∗−2
2∗−q

2∗ .

Proof. From lemma 2.2 we known that if u is a solution of (2.1), then u ∈ C1,α(Ω).
Since, there is L > 0 so that ψ(x, t) � L|t|q−1, taking v = sgn(u)|u|2k+1 = u2ku as
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a test function in equation (2.1) we obtain

(2k + 1)G0

(k + 1)2

∫
Ω

|∇(uk+1)|2 = G0(2k + 1)
∫

Ω

|∇u|2|u|2k

� (2k + 1)
∫

Ω

aR(|∇u|2)|∇u|2|u|2k

= (2k + 1)
∫

Ω

aR(|∇u|2)(∇u · ∇u)|u|2k

=
∫

Ω

aR(|∇u|)∇u · ∇(u|u|2k)

=
∫

Ω

λψ(x, u)sgn(u)|u|2k+1

� λL

∫
Ω

|u|2k+q

(2.2)

By Poincaré inequality we have(∫
|uk+1|2N/(N−2)

)(N−2)/N

� C

∫
Ω

|∇(uk+1)|2.

Therefore, using Hölder’s inequality, (2.2) reads(∫
|u| 2N(k+1)

N−2

)(N−2)/N

= ‖u‖2(k+1)
2∗(k+1)

� λLC(k + 1)2

(2k + 1)G0

∫
Ω

|u|2k+q

� λLC(k + 1)2

(2k + 1)G0
‖u‖q−2

2∗ ‖u‖2(k+1)
2·2∗(k+1)
2∗−q+2

.

(2.3)

Then

‖u‖2∗(k+1) �
[
λLC(k + 1)2

(2k + 1)G0

] 1
2(k+1)

‖u‖
q−2

2(k+1)
2∗ ‖u‖ 2·2∗(k+1)

2∗−q+2
.

We define k1 such that 2∗ · 2(k1 + 1)/(2∗ − q + 2) = 2∗. Note that k1 + 1 = 1 +
(2∗ − q)/2. Then

‖u‖2∗(k1+1) �
[
λLC(k1 + 1)2

(2k1 + 1)G0

] 1
2(k1+1)

‖u‖
q−2

2(k1+1)

2∗ ‖u‖2∗ .

Define by induction 2∗ · 2(kn + 1)/(2∗ − q + 2) = 2∗(kn−1 + 1), so kn + 1 =
(2∗(2∗ − q + 2)/2)n and

‖u‖2∗(kn+1) �
[
λLC(kn + 1)2

(2kn + 1)G0

] 1
2(kn+1)

‖u‖
q−2

2(kn+1)
2∗ ‖u‖2∗(kn−1+1)

�
[

n∏
i=1

(
λLC(ki + 1)2

(2ki + 1)G0

) 1
2(ki+1)

]
‖u‖1+ q−2

2

∑n
i=1

1
ki+1

2∗ .

(2.4)
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Setting

C1 = C1/(2∗−q) lim
n→∞

n∏
i=1

(
(ki + 1)2

(2ki + 1)

)1/(2(ki+1))

and letting n→ ∞ in (2.4), we obtain

‖u‖L∞(Ω) � C1(λLG−1
0 )

1
2∗−q ‖u‖

2∗−2
2∗−q

2∗ .

�

3. The Mp-geometry

Let AR(t) =
∫ t

0
aR(s) ds and Ψ(x, u) =

∫ u

0
ψ(x, s) ds, we define the functionals

Iλ, J1, J2 : H1
0 (Ω) → R given by

Iλ(u) =
1
2

∫
Ω

AR(|∇u|2)dx− λ

∫
Ω

Ψ(x, u) dx,

J1(u) =
G0

2

∫
Ω

|∇u|2dx− λ

∫
Ω

Ψ(x, u) dx,

and

J2(u) =
γ0

2

∫
Ω

|∇u|2dx− λ

∫
Ω

Ψ(x, u) dx.

It is easy to see that

J1(u) � Iλ(u) � J2(u). (3.1)

The following lemma provides the energy of a solution obtained by the Mountain
Pass Theorem.

Lemma 3.1. Assume (H2), then there exists ρλ > 0, such that we can find explicitly
βλ > 0 such that

Iλ(u) > βλ,

for all u ∈ Xρλ
:= {u ∈ H1

0 (Ω) : ‖u‖H1
0 (Ω) = ρλ}.

Proof. By definition of functional, we have

Iλ(u) =
1
2

∫
Ω

AR(|∇u|2)dx− λ

∫
Ω

Ψ(x, u) dx,

Where, by remark 2.1 and Sobolev inequalities, we have

J1(u) � G0

2
‖u‖2

H1
0 (Ω) − λ

L

q
‖u‖q

Lq(Ω)

�
(
G0

2
− λ

LC

q
‖u‖q−2

H1
0 (Ω)

)
‖u‖2

H1
0 (Ω).
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Setting ρλ := ( qG0
4λLC )1/(q−2), then for u ∈ Xρ we have

J1(u) �
(
G0

4

)(
qG0

4λLC

)2/(q−2)

:= βλ .

Then, by (3.1), we obtain

Iλ(u) � βλ, for all u ∈ Xρλ
,

and the lemma follows. �

Lemma 3.2. Assume (H2), there exists u0 ∈ H1
0 (Ω) such that ‖u0‖H1

0 (Ω) > ρ and
Iλ(u0) � 0.

Proof. Let v ∈ C∞
c (Ω0) be a nonnegative function such that ‖v‖H1

0 (Ω) = 1. Then,
for ζ > 0 we have ψ(x, ζv) � 0 and by remark 2.1, we have

J2(ζv)

=
γ0ζ

2

2
− λ

∫
Ω

Ψ(x, ζv) dx

=
γ0ζ

2

2
− λ

∫
{x: ζv(x)>s0}

Ψ(x, ζv) dx− λ

∫
{x∈Ω0: ζv(x)�s0}

Ψ(x, ζv) dx

� γ0ζ
2

2
− λm0s

p−q
0

ζq

q

∫
{x: ζv(x)>s0}

|v|q dx− λm0
ζp

p

∫
{x∈Ω0: ζv(x)�s0}

|v|p dx

� ζ2

[
γ0

2
− λm0ζ

q−2

(
sp−q
0

q
‖v‖q

q +

(
ζp−q

p
− sp−q

0

q

)∫
{x∈Ω0: ζv(x)�s0}

|v|p dx

)]

Taking ζ0 � ( γ0q
2m0λ‖v‖q

Lq(Ω)
)

1
q−2 with ( ζp−q

0
p − sp−q

0
q ) � 0, by considering u0 = ζ0v,

we have

Iλ(u0) � 0,

and by (3.1) which concludes the proof. �

Remark 3.3. Notice that, if we consider the function

r(t) = γ0ζ
2
0

t2

2
− λm0ζ

q
0‖v‖q

Lq(Ω0)

tq

q
,

then J2(γ(t)) � r(t0), where ζ0 and v are from the proof of lemma above, γ(t) = tζ0v
and tq−2

0 = (γ0ζ
2
0/λm0‖v‖q

qζ
p
0 ). In addition, it is easy to check that

max
0�t�1

Iλ(γ(t)) � max
0�t�1

J2(γ(t)) � r(t0) =
(

(q − 2)γ0

2q

)(
γ0

λm0‖v‖q
q

)2/(q−2)

.
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4. Mountain Pass Solution

In this section, we obtain a critical point of Iλ by using the following standard
version of the Mountain Pass Theorem.

Theorem 4.1 (see [21]). Let X be a real Banach space with dual space X∗ and
J ∈ C1(X,R) be a functional, satisfying the Palais–Smale condition (PS). If u0 ∈ X
and 0 < ρ < ‖u0‖ are such that

a =: max{J(0), J(u0)} < inf
‖u‖=ρ

J(u) =: b ,

then

c = inf
γ∈Γ

sup
t∈[0,1]

J(γ(t))

is a critical value of J with c � b. Where Γ = {γ ∈ C(([0, 1]),X); γ(0) = 0
and γ(1) = u0} is the set of continuous paths joining 0 and u0.

Notice that from lemmas 3.1 and 3.2, the functional Iλ satisfies the geometry of
the Mountain Pass Theorem. Now, for λ > 0 we will show that Iλ satisfies (PS).
Let λ > 0 and {un}n ⊂ H1

0 (Ω) such that

Iλ(un) → c, (4.1)

I ′λ(un) → 0. (4.2)

Now, our goal is to show the boundedness of the sequence {un}. From p > 2, we
have that

o(1) + qc = qIλ(un) − I ′(un)un

=
q

2

∫
Ω

AR(|∇un|2) −
∫

Ω

aR(|∇un|2)|∇un|2

+ λ

∫
Ω

(unψ(x, un) − qΨ(x, un)).

(4.3)

It is not difficult to show that

tψ(x, t) − qΨ(x, t) � −M, ∀ (x, t) ∈ Ω × R

for some M > 0. On the other hand, setting B = {x ∈ Ω : |∇un| � R0} and C =
{x ∈ Ω : |∇un| � R0} we obtain

∫
Ω

[q
2
AR(|∇un|2) − aR(|∇un|2)|∇un|2

]
=
∫
B

[q
2
AR(|∇un|2) − aR(|∇un|2)|∇un|2

]

+
∫
C

[q
2
AR(|∇un|2) − aR(|∇un|2)|∇un|2

]
.
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Note that the integral over C is bounded, then we restrict our attention on the
integral over B. Using the definition of the function ψ we have that∫

B

[q
2
AR(|∇un|2) − aR(|∇un|2)|∇un|2

]

=
∫
B

[
q

2

∫ |∇un|2

0

aR(t)dt− aR

(
R+R0

2

)
|∇un|2

]

=
∫
B

[
q

2

∫ R0

0

aR(t)dt+
q

2

∫ |∇un|2

R0

aR(t)dt− aR

(
R+R0

2

)
|∇un|2

]

=
∫
B

[
q

2

∫ R0

0

aR(t)dt+
q

2
(|∇un|2 −R0)aR

(
R+R0

2

)
− aR

(
R+R0

2

)
|∇un|2

]

=
(q − 2)

2
aR

(
R+R0

2

)∫
B
|∇un|2 +

q

2

∫
B

[∫ R0

0

aR(t)dt−R0aR

(
R+R0

2

)]

=
(q − 2)

2
aR

(
R+R0

2

)
‖un‖2 − (q − 2)

2
aR

(
R+R0

2

)∫
C
|∇un|2

+
q

2

∫
B

[∫ R0

0

aR(t)dt−R0aR

(
R+R0

2

)]

(4.4)
Combining (4.3) and (4.4), we obtain

(q − 2)
2

aR

(
R+R0

2

)
‖un‖2 = o(1) + qc− λ

∫
Ω

(unψ(x, un) − qΨ(x, un))

−
∫
C

[q
2
AR(|∇un|2) − aR(|∇un|2)|∇un|2

]
+

(q − 2)
2

aR

(
R+R0

2

)∫
C
|∇un|2

− q

2

∫
B

[∫ R0

0

aR(t)dt−R0aR

(
R+R0

2

)]
,

which means that ‖un‖ is bounded.

5. Proof of the main result

Let uλ be the MP-solution of the auxiliary problem. Therefore, there is cλ > 0,
critical value of Iλ such that

0 < βλ � cλ � r(t0),

where βλ and r(t0) are from lemma 3.1 and remark 3.3, respectively. More precisely,(
G0

4

)(
qG0

4λLC

)2/(q−2)

� cλ �
(

(q − 2)γ0

2q

)(
γ0

λm0‖v‖q
q

)2/(q−2)

,

that is, for λ > 0

c0λ
−2/(q−2) � cλ � c1λ

−2/(q−2).
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On the other hand, using (H3) we have that

qF (x, t) − f(x, t)t � 0 ∀ (x, t) ∈ Ω × (−s0, s0).

Then

cλ = Iλ(uλ)

=
∫

Ω

AR(|∇uλ|2) − λ

∫
Ω

Ψ(x, uλ)

=
∫

Ω

AR(|∇uλ|2) − λ

q

∫
Ω

(qΨ(x, uλ) − ψ(x, uλ)uλ + ψ(x, uλ)uλ)

=
1
q

∫
Ω

(qAR(|∇uλ|2) − λψ(x, uλ)uλ) − λ

q

∫
Ω

(qΨ(x, uλ) − ψ(x, uλ)uλ)

=
(q − 1)
q

∫
Ω

aR(|∇uλ|2)|∇uλ|2 − 1
q

∫
Ω

(∫ |∇uλ|2

0

ta′R(t)dt

)

− λ

q

∫
Ω∩{|uλ|�s0}

(qF (x, uλ) − uλf(x, uλ))

− λ

q

∫
Ω∩{|uλ|�s0}

(qF (x, sgn(uλ)s0) − sgn(uλ)s0f(x, sgn(uλ)s0))

� (q − 1)
q

∫
Ω

aR(|∇uλ|2)|∇uλ|2 +
1
q

∫
Ω

(∫ |∇uλ|2

0

t|a′R(t)|dt
)

� (q − 1)
q

∫
Ω

aR(|∇uλ|2)|∇uλ|2.

The last expression implies

‖uλ‖2 = O(cλ), as λ→ ∞.

Now, using lemma 2.4 we have

‖u‖∞ = O(λ
1

2∗−q ρ
2∗−2
2∗−q

λ ) = O(λ
1

2∗−q

(
λ

−1
q−2

) 2∗−2
2∗−q

) = O(λ
−1

q−2 ).

Finally, since |ψ(x, u)| � |u|q−1, it follows that ‖λψ‖∞ = O(λ−1/(q−2)) and, by
lemma 2.2, ‖uλ‖1,α = O(λ−1/(q−2)). This means that there is λ0 > 0 such that
for λ > λ0 the MP solution verifies ‖uλ‖ � s0 and ‖∇uλ‖ � R0, which prove our
main theorem.
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