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MORE ON FRÉCHET–URYSOHN IDEALS

SALVADOR GARCÍA FERREIRA AND OSVALDO GUZMÁN

Abstract. We study the Rudin–Keisler pre-order on Fréchet–Urysohn ideals on�. We solve three open
questions posed by S. Garcı́a-Ferreira and J. E. Rivera-Gómez in the articles [5] and [6] by establishing the
following results:

• For every AD family A, there is an AD family B such that A⊥ <RK B⊥.

• If A is a nowhere MAD family of size c then there is a nowhere MAD family B such that I (A) and
I (B) are Rudin–Keisler incomparable.

• There is a family {Bα | α ∈ c} of nowhereMAD families such that ifα �= � , thenI (Bα) andI
(
B�

)
are Rudin–Keisler incomparable.

Here I(A) denotes the ideal generated by an AD family A.
In the context of hyperspaces with the Vietoris topology, for a Fréchet–Urysohn-filter F we let

Sc (� (F)) be the hyperspace of nontrivial convergent sequences of the space consisting of � as discrete
subset and only one accumulation point F whose neighborhoods are the elements of F together with the
singleton {F}. For a FU-filter F we show that the following are equivalent:

• F is a FUF-filter.
• Sc (� (F)) is Baire.

§1. Introduction. Filters1 on countable sets play a fundamental role in set theory,
topology, model theory, and many other branches of mathematics. Given a filter
F on �, we may define the topological space �(F) as follows: its underlying set is
� ∪ {F}, the elements of � are isolated points and the open neighborhoods of F
are of the form {F} ∪ F where F ∈ F . This is a very interesting space since the
combinatorial properties of F nicely translate into topological properties of �(F).
For example, it is easy to see that given A ⊆ �, the following holds:

A ∪ {F} is an open set of �(F) if and only if A ∈ F ,
F ∈ A if and only if A ∈ F+,

A converges to F if and only if A is a pseudointersection
of F .

In this paper, we will be mainly interested the filters F whose �(F) is Fréchet–
Urysohn. Recall that a topological space X is Fréchet–Urysohn if for every x ∈ X
andY ⊆ X, if x ∈ Y, then there is a sequence (xn)n<� in Y that converges to x.
It is easy to see that metric spaces are Fréchet–Urysohn, but there are many
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examples of Fréchet–Urysohn spaces that are not metric. We say that a filter F is
Fréchet–Urysohn (of F is a FU-filter) if the space �(F) is Fréchet–Urysohn. Using
the translation above, it is easy to see that F is a FU-filter if and only if for every
A ⊆ � such that F ∩ A �= ∅, for all F ∈ F , there is B ∈ [A]� such that B ⊆∗ F
for all F ∈ F . An example of a FU-filter is the Fréchet filter Fr which consists of
all the coinfinite subsets of �. In [9] it was proved that there are 2c-many pairwise
non-equivalent FU-filters (where c denotes the size of the continuum). In this paper,
we continue studying the Fréchet–Urysohn filters by solving three problems posed
in the papers [5] and [6].

For us, it will be more convenient to work with ideals instead of filters. Thus, an
ideal I is called a FU-ideal (or nowhere tall) if the filter I∗ is a FU-filter. In other
words, I is a FU-ideal, if for every A ∈ I+ there is B ∈ [A]� such that B ∩ I is finite
for every I ∈ I.

Since filters and ideals are very important in infinite combinatorics and topology,
it is desirable to develop tools in order to classify them so that we can achieve a
better understanding of their nature. A way to classify filters and ideals that has
proven to be very useful is the Rudin–Keisler pre-order:

Definition 1.1 (Rudin–Keisler pre-order). Let I be an ideal on X and J an ideal
on Y.

1. We say f : X −→ Y is a Rudin–Keisler morphism (or Rudin–Keisler function)
if for every A ⊆ Y the following holds:

A ∈ J if and only if f–1 (A) ∈ I.

In this case, we say f is a Rudin–Keisler morphism from (X, I) to (Y,J ) .
2. We say J ≤RK I if there is a Rudin–Keisler morphism from (X, I) to (Y,J ) .
3. We say that I and J are RK-equivalent if J ≤RK I and I ≤RK J .
4. By J <RK I we mean that J ≤RK I but J and I are not RK-equivalent.

In the articles [5] and [6] the Rudin–Keisler pre-order was successfully applied in
the study and classification of the FU-filters (hence, the FU-ideals). We continue this
line of research and solve three problems posed in those papers, providing a clearer
picture of the structure of the class of FU-filters with the Rudin–Keisler pre-order.
After that, we study the hyperspace of nontrivial convergent sequences of the space
�(F) (for F a FU-filter). Before stating our results on this topic, we will first explain
the context of the problem:

The systematic study of the hyperspace of nontrivial convergent sequences Sc(X )
of a Fréchet–Urysohn nondiscrete space X was initiated in [4], where Sc(X ) is
equipped with the Vietoris topology. The categorical properties on Sc(X ), together
with other topological properties, were considered in [7]. Indeed, in that paper, it
was proved that Sc(X ) is never a Baire space when the space X is crowded, and this
result was improved in [7] by showing that Sc(X ) is meager whenever X is crowded
(this assertion was also proved independently in [18]). Hence, if Sc(X ) is Baire, then
X has a dense subset of isolated points. Nontrivial examples of spaces X for which
Sc(X ) is Baire were given in [7]. The authors of [7, Proposition 2.8] proposed the
following problem:
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Problem 1.2. Determine the FU-filters F on � for which the space Sc (� (F)) is
Baire.

In this paper we will prove that if F is a FU-filter, then the space Sc (� (F)) is
Baire if and only if F is a FUF-filter, providing a complete solution to Problem 1.2
(the notion of FUF-filter will be reviewed in Section 4).

The paper is organized as follows: In Section 2 we introduce some definitions and
notation that will be used throughout the paper. In Section 3 we study the Rudin–
Keisler pre-order restricted to FU-filters, providing answers to problems from [5]
and [6]. The three questions mentioned in the abstract and their respective solutions
will be explicitly stated in that section. In Section 4 we study the hyperspace of
nontrivial convergent sequences of spaces of the form �(F).We answer Problem 1.2
and obtain more results.

§2. Preliminaries and notation. Most of our definitions and notation are
standard, but for the convenience of the reader, in this section we will review some
notions that will be used throughout the paper.

Let A,B be two sets. We write A ⊆∗ B (A is an almost subset of B) if A \ B is
finite. Let X ⊆ ℘ (�) (If X is any set, by ℘ (X ) we denote the power set of X) and
A ∈ [�]� , we say that A is a pseudointersection ofX if A is almost included in every
element of X .

Let X be a non-empty set. Informally, we can think of filters on X as being a
collection of “big” subsets of X while ideals are collections of “small” subsets of X.
The formal definitions are the following (for us, all ideals contain all finite sets).

Definition 2.1. Let X be a set.

1. We say that F ⊆ ℘ (X ) is a filter on X if the following conditions hold:
(a) X ∈ F and ∅ /∈ F .
(b) If A ∈ F and A ⊆∗ B then B ∈ F .
(c) If A,B ∈ F then A ∩ B ∈ F .

2. We say that I ⊆ ℘ (X ) is an ideal on X if the following conditions hold:
(a) X /∈ I and ∅ ∈ I.
(b) If A ∈ I and B ⊆∗ A then B ∈ I.
(c) If A,B ∈ I then A ∪ B ∈ I.

Given an ideal I on �, we define I+ = ℘ (�) \ I. If X is a collection of subsets
of �, we define X ∗ = {� \ A | A ∈ X}. The dual filter of an ideal I is the filter I∗.
If F is a filter, define F+ = (F∗)+. Note that F ∈ F+ if and only if � \ F /∈ F .

We say that two sets A,B ⊆ � are almost disjoint if A ∩ B is finite. A family
A ⊆ [�]� is an AD family if it is infinite and any two of its elements are almost
disjoint. We say that A is a MAD family if it is a maximal AD family. For an AD
family A, the orthogonal of A (denoted by A⊥) is defined as the set of all X ⊆ �
such that X ∩ A is finite for every A ∈ A. It is easy to see that A⊥ is an ideal and
that A is a MAD family if and only if A⊥ is the collection of all finite subsets of �.

Given an AD family A, we denote by I(A) the ideal generated by A. In this
way, if X ⊆ �, then X ∈ I (A) if and only if there are A0, ..., An ∈ A such that
X ⊆∗ A0 ∪ ... ∪ An. We will say that A is nowhere MAD if for every X ∈ I (A)+

,
we have that [X ]� ∩ A⊥ �= ∅. For convenience, the expression “A is nowhere MAD”
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will actually mean “A is an AD family and it is nowhere MAD.” It is not hard to
prove that an AD family A is nowhere MAD if and only if I (A) is a FU-ideal.

§3. The Rudin–Keisler pre-order on Fréchet ideals. We are interested in studying
the Rudin–Keisler pre-order on Fréchet filters and on nowhere MAD families. As
mentioned in the abstract, this project was initiated in the articles [5] and [6]. We will
answer some questions that were left open. The first question that we will address
and solve was formulated in [5, Question 5.7]:

Problem 3.1. Given an AD family A, is there an AD family B such that A⊥ <RK

B⊥?

We will require several concepts, facts, and lemmas before answering the problem.

Definition 3.2. Let A be an AD family on �.
1. We define I (A)++ as the set of all X ∈ [�]� for which there is B ∈ [A]� such

that |X ∩ A| = � for every A ∈ B.
2. A is completely separable if for every X ∈ I (A)++ there is A ∈ A such that
A ⊆ X.

Given an AD familyA, it is always the case that I(A)++ ⊆ I(A)+
, while equality

holds if and only ifA isMAD. The existence of a completely separable MAD family is
an old question of P. Erdös and S. Shelah (see [2]); nevertheless, significant progress
has been made on this problem (see [14, 16, 20]). On the other hand, the following
is an impressive result of P. Simon:

Proposition 3.3 (Simon [3]). There is a nowhere MAD completely separable AD
family.

The following lemma is well-known, but we provide a proof of it for the sake of
completeness.

Lemma 3.4. Let A be a completely separable AD family. If X ∈ I (A)++, then the
set {A ∈ A | A ⊆ X} has size c.

Proof. Since X ∈ I (A)++
, we know there is a family {An | n ∈ �} ⊆ A such

that An �= Am whenever n �= m and An ∩ X is infinite for every n ∈ �.We can now
find an almost disjoint family B ⊆ [X ]� of size c such that B ∩ An is infinite for
every n ∈ � and B ∈ B. Since A is completely separable, for every B ∈ B, there is
AB ∈ A such thatAB ⊆ B. Finally, note that ifB,C ∈ B andB �= C, thenAB �= AC
since B and C are almost disjoint. 


In particular, it follows that every completely separable AD family has size c.We
are ready to answer positively Question 3.1:

Theorem 3.5. If D is an AD family, then there is an AD family A such that
D⊥ <RK A⊥.

Proof. LetD be andAD family in�.LetCn = {n} × � and define� : � × � −→
� where � (n,m) = n. Fix two disjoint setsW0,W1 such that c \ � =W0 ∪W1 and
|Wi | = c for each i < 2.We also fix an enumeration I (D) ∩ [�]� = {Xα | α ∈W0} .
By Proposition 3.3, there is B ⊆ ℘ (� × �) a completely separable AD family such
that {Cn | n ∈ �} ⊆ B. It is easy to see that B has the following properties:
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1. If B ∈ B and B /∈ {Cn | n ∈ �} then B ∩ Cn is finite for every n ∈ �.
2. If X ∈ [�]� then �–1 (X ) ∈ I (B)++ (this holds since {Cn | n ∈ �} ⊆ B).

Now, we recursively construct an AD family P = {pα | α < c} with the following
properties:

1. pn = Cn for every n ∈ �.
2. For every α < c there is B (pα) ∈ B such that pα ⊆ B (pα) .
3. If α �= � then B (pα) �= B

(
p�

)
.

4. If α ≥ � then pα ⊆ � × � is a partial infinite function such that dom (pα) =
� (pα) ∈ I (D) .

5. If α ∈W0 then pα ⊆ �–1 (Xα) .

The construction is straightforward (but note that we need that C is com-
pletely separable in order to satisfy points 2 and 5 above). Fix an enumera-
tion (� × �)� = {fα | α ∈W1} we now define the family A = {pα | α ∈W0} ∪{
pα | α ∈W1 ∧

(
f–1
α (pα) ∈ D⊥)}

. Clearly A is an AD family. We will now prove
that � is a Rudin–Keisler morphism from

(
� × �,A⊥)

to
(
�,D⊥)

. Let X ⊆ �.
If X ∈ D⊥, then �–1 (X ) ∈ A⊥ because each pα ∈ A is a partial function whose
domain is in I (D) . In case X /∈ D⊥, we find D ∈ D such that X ∩D is infinite.
Let α ∈W0 such that Xα = X ∩D. By definition, pα ∈ A and pα ⊆ �–1 (Xα) ⊆
�–1 (X ) , so �–1 (X ) /∈ A⊥.We conclude that D⊥ ≤RK A⊥.

We will now show that there is no Rudin–Keisler morphism from
(
�,D⊥)

to(
� × �,A⊥)

.Obviously, it is enough to see thatfα is not a Rudin–Keisler morphism
for every α ∈W1. There are two cases to consider: First assume that pα ∈ A, this
means thatf–1

α (pα) ∈ D⊥ but obviouslypα /∈ A⊥. In casepα /∈ A, we may conclude
that f–1

α (pα) /∈ D⊥. Furthermore, since pα ∈ P it follows that pα ∈ A⊥ (recall that
P is anAD family). Hencepα ∈ A⊥ butf–1

α (pα) /∈ D⊥, sofα is not a Rudin–Keisler
morphism.

We will now show that fα(A⊥) �= B⊥ for every α ∈W1. There are two cases
to be considered for a fixed α ∈W1: First assume that Dα ∈ B, this means that
f–1
α (Dα) ∈ A⊥ but obviously Dα /∈ B⊥. In the second case, assume that Dα /∈ B.

So, by definition, we obtain that f–1
α (Dα) /∈ A⊥. Furthermore, since Dα ∈ D, then

Dα ∈ B⊥ (recall that D is an AD family). Hence, Dα ∈ B⊥ but f–1
α (Dα) /∈ A⊥.

Therefore, fα(A⊥) �= B⊥ for every α ∈W1. 


We will now consider FU-ideals of the form I (A) where A is a nowhere MAD
family. The following is another open question from [5, Question 4.6]:

Problem 3.6. Given a nowhere MAD family A of size c, is there a FU-ideal that is
RK-incomparable with I (A)?

To provide a positive answer to the previous question, we shall need the following
concepts and four lemmas:

Definition 3.7. Let A be an AD family of size c.

1. We say an AD family B ⊆ [�]� is a shrinking ofA if the following holds:
(a) For every B ∈ B there is A ∈ A such that B ⊆ A.
(b) Every element of A contains at most one element of B.

2. Define S (A) as the set of all infinite shrinkings B of A such that |B| < c.
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3. For B ∈ S (A), we define

IA (B)+++ = {X ⊆ � | ∀C ∈ S (A) (B ⊆ C −→X ∈ I (C)+)}.

We will now prove the first lemma.

Lemma 3.8. Let A be an AD family of size c and B ∈ S (A) .

1. If A ∈ A is such that A does not contain an element of B and X ∈ [A]� , then
there is D ∈ S (A) such that B ⊆ D, |B| = |D|, and X ∈ IA (D)+++

.
2. If X ∈ I (B)+, then there is D ∈ S (A) such that B ⊆ D, |B| = |D|, and X ∈

IA (D)+++
.

Proof. For the first assertion, let D ∈ [A]� be such that X�D is infinite, then
define D = B ∪ {D} . To prove (2) we consider two cases: First, assume that there
is A ∈ A such that A ∩ X is infinite and A does not contain any element of B and
apply (1) toA ∩ X. IfA ∩ X is finite for allA ∈ A which do not contain any element
of B, then we have that X ∈ IA (B)+++. 


Our second lemma is the following.

Lemma 3.9. Let A be an AD family of size c and B ∈ S (A) . If C is an AD family,
f : � −→ � is a function, and A ∈ A does not contain any element of B, then there is
D ∈ S (A) such that B ⊆ D, |B| = |D|, and one of the following conditions holds:

1. f–1 (A) ∈ I (C) and A ∈ IA (D)+++, or
2. f–1 (A) ∈ I (C)+ and A ∈ I (D).

Proof. For point 1, suppose that f–1 (A) ∈ I (C). According to Lemma 3.8(1),
there is D ∈ S (A) such that B ⊆ D, |B| = |D|, and A ∈ IA (D)+++

. For point 2, if
f–1 (A) ∈ I (C)+, then define D = B ∪ {A}. 


The third lemma is the following:

Lemma 3.10. Let A be an AD family of size c and B ∈ S (A). For every AD family
C of size c and for every function f : � −→ � there is D ∈ S (A) such that B ⊆ D,
|B| = |D|, and one of the following conditions holds:

1. either there is X ∈ I (C) such that f–1 (X ) ∈ IA (D)+++, or
2. there is X ∈ I (C)+ such that f–1 (X ) ∈ I (D) .

Proof. We start with point 1. In case that there is X ∈ C such that f–1 (X ) ∈
I (B)+, by Lemma 3.8 we find D ∈ S (A) such that B ⊆ D, |B| = |D|, andf–1 (X ) ∈
IA (D)+++

.
For point 2, assumef–1 (C ) ∈ I (B) for everyC ∈ C. We claim that we can define

D = B. For everyC ∈ C letFC ∈ [B]<� and sC ∈ [�]<� such thatf–1 (C ) ⊆
⋃
FC ∪

sC . Since |B | < c and |C| = c there are F ∈ [B]<� , s ∈ [�]<� , and {Cn | n < �} ⊆ C
such that F = FCn , s = sCn for every n < �, and Cn �= Cm whenever n �= m. Note
that if X =

⋃
Cn then X ∈ I (C)+ while f–1 (X ) ∈ I (B) . 


The next lemma will be used in the proof of the two upcoming theorems.

Lemma 3.11. Let A be a nowhere MAD family and {Bα : α < c} a collection of
AD families such that:
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1. Bα ∈ S(A) for each α < c, and
2. Bα ⊆ B� provided that α < � < c.

Then,
⋃
α<c Bα is a nowhere MAD family.

Proof. Put B :=
⋃
α<c Bα . It is evident that B is an AD family. Now, fix X ∈

I(B)+. If X ∈ I(A)+, then there is Y ∈ [X ]� ∩ A⊥ and it is evident from (1) that
Y ∈ B⊥. Suppose that X ∈ I(A). Then there is {A0. ... , Al} ⊆ A and F ∈ [�]<�

such thatX ⊆ F ∪
(⋃

i≤l Ai
)
. Since the set E = {B ∈ B : ∃i ≤ l

(
B ⊆ Ai

)
} has size

at most l, there exists α < c such that E ⊆ Bα and since Bα ∈ S(A) and Y := X \(⋃
B∈E B) is infinite, we must have that Y ∈ [X ]� ∩ B⊥. 


We can now answer Question 3.6:

Theorem 3.12. If A is a nowhere MAD family of size c, then there is a nowhere
MAD family B such that I (A) and I (B) are RK-incomparable.

Proof. Let A be a nowhere MAD family of size c. Enumerate the set of all
functions from� to� as {fα : α < c}. By using alternatively Lemmas 3.9 and 3.10,
we inductively define a set {Diα : i < 2 and α < c} of AD families such that:

1. Diα ∈ S (A) for every i < 2 and α < c.
2. D0

α ⊆ D1
α for every α < c.

3. Di� ⊆ D0
α provided that i < 2 and � < α < c.

4. |D0
α | < c for every α < c.

5. For every α < c one of the following conditions holds:
5.i) either there is X ∈ I (A) such that f–1

α (X ) ∈ IA
(
D0
α

)+++
, or

5.ii) there is X ∈ I (A)+ such that f–1
α (X ) ∈ I

(
D0
α

)
.

6. For every α < c one of the following conditions is satisfied:
6.i) either there is X ∈ IA

(
D1
α

)+++
such that f–1

α (X ) ∈ I(A), or
6.ii) there is X ∈ I

(
D1
α

)
such that f–1

α (X ) ∈ I(A)+
.

Finally, define B =
⋃
α<c D1

α . It follows from Lemma 3.11 that B is a nowhere
MAD family. By clauses 5.i) and 5.ii) we deduce that I (A) �≤RK I (B). Clauses 6.i)
and 6.ii) guarantee that I (B) �≤RK I (A). It follows that I (A) and I (B) are RK
incomparable. 


The following is another problem from [6, Question 6.10]:

Problem 3.13. Is there an RK-antichain of size c consisting of FU-ideals?

This problem is answered as follows:

Theorem 3.14. There is a family {Bα | α ∈ c} of nowhere MAD families such that
if α, � < c and α �= � , then I (Bα) and I

(
B�

)
are RK-incomparable.

Proof. Let {Aα | α ∈ c} be a family2 of nowhere MAD families, each one of
size c. Let Aα = {Aα (�) | � ∈ c}.We now define P as the set of all p such that there
is �p < c with the following properties:

2We really do not need that Aα �= A� whenever α �= �. In fact, we could assume that Aα = A�
for every α, � ∈ c. However, we believe that keeping different subindices makes the proof easier to
understand.
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1. p is a function with domain contained in �p.
2. If α ∈ dom (p) , then p (α) ∈ S(Aα) and |p (α)| ≤ �p + �.

Given p, q ∈ P, define p ≤ q if the following conditions hold:

1. dom (q) ⊆ dom (p) .
2. If α ∈ dom (q) , then q (α) ⊆ p (α) .

We need the following notions:

1. Let α, � ∈ c. Define Dα (�) as the set of all p ∈ P such that:
(a) α ∈ dom (p) .
(b) There is B ∈ p (α) such that B ⊆ Aα (�) .

2. Let α, � ∈ c with α �= � and f ∈ ��. Define E (α, �, f) as the set of all p ∈ P
such that α, � ∈ dom (p) and there isA ∈ Aα that satisfies one of the following
conditions:
(a) f–1 (A) ∈ I(p(�)) and A ∈ IAα (p (α))+++, or
(b) f–1 (A) ∈ IA� (p (�))+++ and A ∈ I(p (α) ).

We now have the following:

Claim 3.15. Let q ∈ P and W such that eitherW = Dα (�) (for some α, � < c) or
W = E (α, �, f) (for some α, � < c and f ∈ ��). There is p ∈ P with the following
properties:

1. p ≤ q.
2. p ∈W.
3. |dom (p)| ≤ |dom (q)| + �.
4. If 	 ∈ dom (q) , then |p (	)| ≤ |q (	)| + �.

The claim is trivial in case W = Dα (�) , so we will focus on the case that W =
E (α, �, f) .

Let q ∈ P, we want to extend q to an element of E (α, �, f) . Without loss of
generality, we may assume that α, � ∈ dom (q) . Let A ∈ Aα such that A does not
contain an element of q (α) (such A exists since |Aα | = c, while |q (α)| < c). We
now apply Lemma 3.9 (with A = Aα , B = q (α), C = q (�), f = f, and A = A) in
order to findD ∈ S(Aα) such that q (α) ⊆ D, |D| = |q (α)|, and one of the following
conditions holds:

1. f–1 (A) ∈ I(q (�) ) and A ∈ IAα (D)+++, or
2. f–1 (A) ∈ I(q (�) )+ and A ∈ I(D).

Define p1 as follows:

1. dom (p1) = dom (q) .
2. p1 (α) = D.
3. If � ∈ dom (p1) and � �= α, then p1 (�) = q (�) .

It is clear that p1 ∈ P and p1 ≤ p.We have the following:

1. f–1 (A) ∈ I(p1 (�) ) and A ∈ IAα (p1 (α))+++, or
2. f–1 (A) ∈ I(p1 (�) )+ and A ∈ I(p1 (α) ).

If case 1 above holds, then p1 ∈ E (α, �, f) and we are done, so we will now
assume that case 2 is the one that is true. We now apply the second point of Lemma
3.8 (with A = A� , B = p1 (�), and X = f–1 (A)) and find D1 ∈ S(A�) such that
p1 (�) ⊆ D1, |D| = |p1 (�)|, and f–1 (A) ∈ IA� (D1)+++. Define p2 as follows:
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1. dom (p2) = dom (p1) .
2. p2 (�) = D1.
3. If � ∈ dom (p2) and � �= �, then p2 (�) = p1 (�) .
It follows thatf–1 (A) ∈ IA� (p2 (�))+++ andA ∈ I(p2 (α) ), so p2 ∈ E (α, �, f) .

This finishes the proof of the claim.
Now, with a careful bookkeeping, we can recursively buildG = {pα | α < c} ⊆ P

with the following properties:
1. pα ≤ p� whenever � < α.
2. G ∩Dα (�) �= ∅ for every α, � < c.
3. G ∩ E (α, �, f) �= ∅ for every α, � < c with α �= � and f ∈ ��.
For everyα < c, defineBα =

⋃
{p (α) | p ∈ G}.Using Lemma 3.11, one sees that

{Bα | α < c} is a family of nowhere MAD families. Moreover, I (Bα) and I
(
B�

)
are

RK-incomparable whenever α �= �. 

Now that we know that there is an RK-antichain of size c, it is natural to ask the

following questions:

Problem 3.16. Is there an RK-antichain of size c+ consisting of FU ideals?

Problem 3.17. Is there a strictly increasing RK-chain of size c consisting of FU
ideals?

The last question is related to Theorem 3.5:

Problem 3.18. Given two AD families A and B, is there an AD family C such that
A⊥ <RK C⊥ and B⊥ <RK C⊥?

§4. The hyperspace of convergent sequences. If X is a Fréchet–Urysohn space, the
nontrivial convergent3 sequences in X carry a lot of information on the topological
properties of X. Obviously a nontrivial convergent sequence is a closed subspace of
X, so we can view the set of nontrivial convergent sequences of X as a subspace of
its hyperspace of compact sets (equipped with the Vietoris topology).

For the convenience of the reader, we will review the basics of hyperspaces and
the Vietoris topology. Let X be a topological space; by K (X ) we denote the set of all
non-empty compact subspaces of X. Let U ⊆ X be a non-empty open set. Define:

U+ = {K ∈ K(X ) | K ⊆ U},
U – = {K ∈ K(X ) | K ∩U �= ∅}.

The Vietoris topology is the topology onK(X ) generated by the sets of the formU+

and U – (where U is a non-empty open set). We now introduce the most important
notion of the section:

Definition 4.1. Let X be a topological space. By Sc (X ) we denote the set of all
nontrivial sequences of X.

Since Sc (X ) is a subset of K(X ), we endow Sc (X ) with the subspace topology
inherited byK (X ) .The reader wishing to know more about subspaces of convergent

3By a nontrivial convergent sequence we mean a homeomorphic copy of � + 1 (with the order
topology).
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sequences may consult [4], [7], and [18]. In this section, we will characterize the
Fréchet filters for which the subspace of nontrivial convergent sequences is Baire,
answering a question asked in [7].

Let X be a Fréchet–Urysohn space that has a dense set D of isolated points. The
topological game GS(X, �, α) introduced in [7] is defined as follows:

Players α and � will take turns choosing a pair (E,W ) consisting of a non-empty
finite subset E of D and a nondiscrete open subset W disjoint from E as follows:
Player � goes first by choosing a pair (F0, U0) consisting of a non-empty finite
subset F0 of D and a nondiscrete open subset U0 disjoint from F0. Then player α
chooses a pair (G0, V0) such thatG0 is a non-empty finite subsetG0 ⊆ U0 ∩D and a
nondiscrete open subset V0 contained inU0 and missingG0 and so on as it is shown
in the diagram

� (F0, U0) ... (Fn,Un) ...

α (G0, V0) ... (Gn,Vn) ...

where the following holds for every n ∈ �:
1. Fn,Gn ∈ [D]<� and Fn �= ∅ �= Gn.
2. Un,Vn ⊆ X are nondiscrete open sets.
3. Fn ∩Un = ∅ = Gn ∩ Vn.
4. Gn ∪ Vn ⊆ Un.
5. Fn+1 ∪Un+1 ⊆ Vn.
We declare that player α wins the match if the countable set

⋃
n<�(Fn ∪Gn)

converges to some point of X. Otherwise, we say that player � wins. We will use the
following Theorem:

Theorem 4.2 (Garcı́a-Ferreira and Rojas-Hernández [8]). If X is a Fréchet–
Urysohn nondiscrete space, then the hyperspace Sc(X ) is Baire if and only if X has a
dense set of isolated points D and the space X does not admit a winning strategy for
player � in the game GS(X, �, α).

Let F be a filter on �. To simplify our combinatorial arguments, we redefine the
game GS(�(F), �, α) as follows:

� (s0, F0) ... (sn, Fn) ...

α (t0, G0) ... (tn, Gn) ...

where the following holds for every n ∈ �:
1. sn, tn ∈ [�]<� and sn �= ∅ �= tn.
2. Fn,Gn ∈ F .
3. sn ∩ Fn = ∅ = tn ∩Gn.
4. tn ∪Gn ⊆ Fn.
5. sn+1 ∪ Fn+1 ⊆ Gn.
We will say that player α wins the match if

⋃
n<� (sn ∪ tn) is a pseudointersection

of F . For convenience, the game GS(�(F), �, α) will be simply denoted by
GS (F , �, α). We get the following corollary from Theorem 4.2.
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Corollary 4.3. Let F be a Fréchet filter on �. The following are equivalent:

1. Sc (� (F)) is Baire.
2. Player � does not have a winning strategy in the game GS (F , �, α) .

In order to study the categorical properties of the space � (F), we will need the
following notion:

Definition 4.4. GivenA ∈ ℘ (�) , define [A]<�+ = [A]<� \ {∅} . For a filter F on
�, we define the filter F<� on [�]<�+ as the filter generated by

{
[A]<�+ : A ∈ F

}
.

It is easy to see that X ∈ (F<�)+ if and only if for every A ∈ F , there is s ∈ X
such that s ⊆ A. In the same way as with F ,we define the topological space �(F<�)
(whose underlying set is [�]<�+ ∪ {F<�}). We also have the following simple remark:

Lemma 4.5. Let F be a filter on � and Y = {sn | n ∈ �} ⊆ [�]<�+ a family of
pairwise disjoint sets. The following are equivalent:

1. Y is a pseudointersection of F<�.
2.

⋃
Y is a pseudointersection of F .

Proof. (1) ⇒ (2). Assume that Y is a pseudointersection of F<� and fixA ∈ F .
Since [A]<�+ ∈ F<�, we know that Y ⊆∗ [A]<� . Let n < � such that sm ⊆ A for
every m > n. It follows that

⋃
n<m<�

sm ⊆ A, so
⋃
Y is almost contained in A.

(2) ⇒ (1). Suppose that
⋃
Y is a pseudointersection of F and fix A ∈ F . Since⋃

Y is a pseudointersection of F , we know that
⋃
Y ⊆∗ A and since Y consists

of pairwise disjoint sets, it follows that there is n < � such that sm ⊆ B for every
m > n, which implies that Y ⊆∗ [A]<� . 


It turns out, that in the case for filters, the previously defined game can be greatly
simplified. Let F be a filter on �; the game GS (F , �, α) is defined as follows:

� s0 s1 ... sn ...

α G0 G1 ... Gn ...

where the following conditions hold for every n < �:

1. s0 is a finite subset of �.
2. ∅ �= sn+1 ∈ [Gn]

<� .
3. Gn ∈ F .
4. Gn+1 ⊆ Gn.
5. sn ∩Gn = ∅.
We will say that player α wins the match if

⋃
n∈�
sn is a pseudointersection of F .

Note that GS (F , �, α) is a simplified version of the game GS (F , �, α) ; player �
does not need to play filter sets and player α no longer needs to play finite sets.

We will need another game, which was introduced by G. Gruenhage in his
dissertation (see [10, 11]). Let X be a topological space and a ∈ X. The Gruenhage
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gameH (X, a) is played between the players Open and Point as follows:

Open U0 U1 ... Un ...

Point b0 b1 ... bn ...

where Un ⊆ X is an open neighborhood of a and bn ∈ Un for every n ∈ �. We will
say that the Open player wins the game if the sequence 〈bn〉n<� converges to a.We
shall prove that, in a natural sense, the games GS (F , �, α, ), GS (F , �, α, ), and
H(�(F<�),F<�) are equivalent.

Theorem 4.6. Let F be a FU-filter on �.

1. The following are equivalent:
(a) Player � has a winning strategy in GS (F , �, α, ) .
(b) Player � has a winning strategy in GS (F , �, α) .
(c) The Point player has a winning strategy in H(�(F<�),F<�).

2. The following are equivalent:
(a) Player α has a winning strategy in GS (F , �, α) .
(b) Player α has a winning strategy in GS (F , �, α) .
(c) The Open player has a winning strategy in H(�(F<�),F<�).

Proof. (1) (a) ⇒ (b). First, assume that 
 is a winning strategy for player � in
the game GS (F , �, α). We shall define a winning strategy � in GS (F , �, α). Since
F is a FU-filter, we may fix a pseudointersection A of F and for every F ∈ F we let
aF be the first element of F ∩ A.

Let us define the strategy � for player � in the game GS (F , �, α) .While playing
a match inGS (F , �, α) , player � will be secretly imagining a match ofGS (F , �, α)
in which he is using his strategy 
. The match inGS (F , �, α) is played as follows:

• Let 
 (∅) = (s0, F0) be the first move of player � in GS (F , �, α) (according to

). Player � will play s0 in GS (F , �, α) .

• Assume that player α plays G0 in GS (F , �, α) . Let H0 = G0 ∩ F0 and player
� pretends that player α played

(
aH0 ,H0

)
; let (s1, F1) be his response in

GS (F , �, α) (following 
). Now, player � plays s1 in GS (F , �, α) .
• Suppose that player α plays G1 in GS (F , �, α) . LetH1 = G1 ∩ F1 and player
� pretends that player α played

(
aH1 ,H1

)
; let (s2, F2) be his response in

GS (F , �, α). Now, player � plays s2 in GS (F , �, α) .
...
...

GS (F , �, α) :

� (s0, F0) (s1, F1) (s2, F2) ...

α
(
aH0 ,H0

) (
aH1 ,H1

)
...

GS (F , �, α) :
� s0 s1 s2 ...

α G0 G1 ...
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We claim that player � won the match in GS (F , �, α) . In other words, we
need to show that Y =

⋃
sn is not a pseudointersection of F . Indeed, set Z =

Y ∪
{
aHn | n < �

}
and note that Z is the outcome of the match in GS (F , �, α)

simulated by player � . Since 
 is a winning strategy, it follows that Z is not a
pseudointersection ofF .SinceZ ⊆ Y ∪ A and the union of two pseudointersections
is a pseudointersection, it follows that Y is not a pseudointersection of F , so player
� won the match.

(1) (b) ⇒ (c). Assume that player � has a winning strategy in GS (F , �, α). We
shall show that the Point player has a winning strategy in H(�(F<�),F<�). In
fact, the proof is very simple, the idea is that the points in �(F<�) \ {F<�} are
precisely the non-empty finite subsets of �. Let 
 be a winning strategy for player
� in GS (F , �, α) . We shall define a strategy � for the Point player in the game
H(�(F<�),F<�).While playing a match in H(�(F<�),F<�), the Point player will
be secretly simulating a match of GS (F , �, α) in which he is playing as player �
using the strategy 
. The match in H(�(F<�),F<�) is played as follows:

• Assume the Open player plays [G0]<�+ as its first move in H(�(F<�),F<�).
Let s0 be the first move of player � in GS (F , �, α) (according to 
). The Point
player imagines player α played G0 \ s0 in GS (F , �, α) ; let s1 be the response
of player � . The Point player plays s1 in H(�(F<�),F<�).

• Assume the Open player now plays [G1]<�+ as its response. The Point player
imagines player α played G1 \ s1 in GS (F , �, α) ; let s2 be the response of
player � . The Point player plays s2 in H(�(F<�),F<�).
...
...

H(�(F<�),F<�) :

Open [G0]<�+ [G1]<�+ ...

Point s1 s2 ...

GS (F , �, α) :

� s0 s1 s2 ...

α G0 \ s0 G1 \ s1 ...

We claim that thePoint player won the match inH(�(F<�),F<�). In other words,
we need to show thatY = {sn | n < �} is not a pseudointersection of [F ]<� . Indeed,
since 
 is a winning strategy, it follows that player � won the simulated game of
GS (F , �, α) , which means that

⋃
n<�
sn is not a pseudointersection of F . By Lemma

4.5, it follows that Y is not a pseudointersection of [F ]<� .
(1) (c) ⇒ (a). Now, assume that 
 is a winning strategy for the Point player in

the game H(�(F<�),F<�). We have to prove that player � has a winning strategy
in GS (F , �, α) .We will define a strategy � for player � in the game GS (F , �, α) .
While playing a match in GS (F , �, α) , player � will be secretly simulating a match
of H(�(F<�),F<�) in which it is playing as the Point player using the strategy 
.
The match in GS (F , �, α) is played as follows:
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• Player � starts by imagining that the Open player plays [�]<�+ as its first
move in H(�(F<�),F<�). Let s0 be the first move of the Point player
in H(�(F<�),F<�) (according to 
). Now, player � plays (s0, � \ s0) in
GS (F , �, α) .

• Assume playerα plays (t0, G0) as its response inGS (F , �, α). Player� imagines
that the Open player played [G0]<�+ in H(�(F<�),F<�).Let s1 be the response
of the Point player in H(�(F<�),F<�). Then player � plays (s1, G0 \ s1) in
GS (F , �, α) .

• Assume player α plays (t1, G1) as its response in GS (F , �, α) . Player �
imagines that the Open player played [G1]<�+ in H(�(F<�),F<�). Let s2 be
the response of the Point player in H(�(F<�),F<�). Then player � plays
(s2, G1 \ s2) in GS (F , �, α) .

...
...

H(�(F<�),F<�) :

Open [�]<�+ [G0]<� [G1]<� ...

Point s0 s1 s2 ...

GS (F , �, α) :

� (s0, � \ s0) (s1, G0 \ s1) (s2, G1 \ s2) ...

α (t0, G0) (t1, G1) ...

We claim that player � won the match inGS (F , �, α). In other words, we need to
show that

⋃
n<�

(sn ∪ tn) is not a pseudointersection ofF . Since 
 is a winning strategy,

it follows that the Point player won the simulated game of H(�(F<�),F<�), which
means that Y = {sn | n < �} is not a converging sequence to F<�. This means that
Y is not a pseudointersection of F<�. By Lemma 4.5, it follows that

⋃
Y is not

a pseudointersection of F ; in particular,
⋃
n<�

(sn ∪ tn) is not a pseudointersection

of F . This finishes the proof of the first part of the proposition.
(2) (a) ⇒ (b). Now, suppose that 
 is a winning strategy for player α in

GS (F , �, α). We need to define a strategy � for player α in the game GS (F , �, α) .
While playing a match in GS (F , �, α) , player α will secretly imagine a match of
GS (F , �, α) in which it is using its strategy 
. The match in GS (F , �, α) is played
as follows:

• Let s0 be the first move of player � in GS (F , �, α). Player α imagines that
player � played (s0, � \ s0) in GS (F , �, α) . Let (t0, G0) be its response in
GS (F , �, α) (according to 
). Now, player α plays G0 in GS (F , �, α) .

• Let s1 be the next move of player � in GS (F , �, α). Player α imagines that
player � played (s1, G0 \ s1) in GS (F , �, α) . Let (t1, G1) be its response in
GS (F , �, α). Now, player α plays G1 in GS(F , �, α).
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...
...

GS (F , �, α) :

� (s0, � \ s0) (s1, G0 \ s1) ...

α (t0, G0) (t1, G1) ...

GS (F , �, α) :

� s0 s1 ...

α G0 G1 ...

We claim that player α won the match in GS(F , �, α). We need to show that
Y =

⋃
sn is a pseudointersection of F . Since 
 is a winning strategy, it follows that⋃

n<�
(sn ∪ tn) is a pseudointersection of F , so clearly Y is also a pseudointersection.

2. (b) ⇒ (c). Assume that 
 is a winning strategy for player α inGS (F , �, α) .We
shall show that the Open player has a winning strategy in H(�(F<�),F<�).We will
define a strategy � for the Open player in the game H(�(F<�),F<�).While playing
a match in H(�(F<�),F<�), the Open player will be secretly playing a match of
GS (F , �, α) in which it is playing as player α using the strategy 
. The match in
H(�(F<�),F<�) is played as follows:

• The Open player imagines that player � played s0 = {0} as its first move in
GS(F , �, α). Let s0 be the first move of player � in GS (F , �, α). Let G0 be
the response of player α in GS(F , �, α) (following 
). The Open player plays
[G0]<�+ in H(�(F<�),F<�).

• Assume thePoint player plays s1 as its response.Then theOpen player imagines
that player � played s1 in GS (F , �, α) . Let G1 be the response of player α.
The Open player plays [G1]<� in H(�(F<�),F<�).
...
...

H(�(F<�),F<�) :

Open [G0]<�+ [G1]<�+ ...

Point s1 ...

GS (F , �, α) :

� s0 s1 ...

α G0 G1 ...

We claim that the Open player won the match in H(�(F<�),F<�).We will show
thatY = {sn | n < �} is a pseudointersection of F<�. Since 
 is a winning strategy,
we know that player α won the simulated game of GS (F , �, α) , which means
that

⋃
n<�
sn is a pseudointersection of F . By Lemma 4.5, it follows that Y is a

pseudointersection of [F ]<� .
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2. (c) ⇒ (a). Finally, assume that 
 is a winning strategy for the Open player in
the game H(�(F<�),F<�). We shall define a winning strategy � for player α in the
gameGS (F , �, α) .While playing a match inGS (F , �, α) , player α will be secretly
simulating a match of H(�(F<�),F<�) in which it is playing as the Open player
using the strategy 
. Since F is a FU-filter, we can find A a pseudointersection of
F . Given F ∈ F , let tF = {min (F ∩ A)} . The match in GS (F , �, α) is played as
follows:

• Assume player � plays (s0, F0) in GS (F , �, α) . Let [K0]<�+ be the first move
of the Open player in H(�(F<�),F<�). Let b0 = {min (K0)} ; now, player α
imagines that the Point player plays b0 as its first move in H(�(F<�),F<�).
Let [K1]<�+ be the next move of the Open player in H(�(F<�),F<�). Let
G0 = (F0 ∩K1) \ s0. Player α plays

(
tG0 , G0

)
as its first move in GS (F , �, α) .

• Assume player � plays (s1, F1) as his response in GS (F , �, α) . Player α
imagines that the Point player played s1 in H(�(F<�),F<�). Let [K2]<�+ be
the response of the Open player in H(�(F<�),F<�). Let G1 = (F1 ∩K2) \ s1.
Player α plays

(
tG1 , G1

)
in GS (F , �, α) .

• Assume player� plays (s2, F2) as its response inGS (F , �, α). Playerα imagines
that the Point player played s2 in H(�(F<�),F<�).Let [K3]<�+ be the response
of theOpenplayer inH(�(F<�),F<�).LetG2 = (F2 ∩K3) \ s2.Playerα plays(
tG2 , G2

)
in GS (F , �, α) .

...
...

H(�(F<�),F<�) :

Open [K0]<�+ [K1]<�+ [K2]<�+ [K3]<�+ ...

Point b0 s1 s2 ...

GS (F , �, α) :

� (s0, F0) (s1, F1) (s2, F2) ...

α
(
tG0 , G0

) (
tG1 , G1

) (
tG2 , G2

)
...

We claim that player α won the match in GS (F , �, α) . We need to show that⋃
n<�

(
sn ∪ tGn

)
is a pseudointersection of F . By definition, we know that

⋃
n<�
tGn

is a pseudointersection of F , so we only need to show that
⋃
n<�
sn is also a

pseudointersection. Since 
 is a winning strategy, it follows that the Open player
won the simulated game of H(�(F<�),F<�), which means that Y = {sn | n < �}
is a converging sequence to F<�. Hence, we have that Y is a pseudointersection of
[F ]<� . By Lemma 4.5, it follows that

⋃
Y =

⋃
n<�
sn is a pseudointersection of F

and we are done. 

The following definition is due to G. Gruenhage [10]:

Definition 4.7. Let X be a topological space. We say that X is a W-space if for
every a ∈ X, the Open player has a winning strategy in the game H (X, a) .
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Regarding this important class of spaces, the following facts are known:

Proposition 4.8 (Gruenhage [10]; see also [11]). Let X be a topological space.
1. If X is first countable, then X is a W-space.
2. If X is a separable W-space, then X is first countable. Therefore, the notions of

first countable and W-space coincide in the realm of separable spaces.

The reader may consult [10] and [11] to learn more about W -spaces and other
topological games.

Definition 4.9. Let F be a filter on �. We say that F is countably generated if
it has a countable base. That is, there is a countable family B = {Bn | n ∈ �} ⊆ F
such that for every F ∈ F , there is n < � such that Bn ⊆ F.

Notice thatF is countably generated if and only if the space � (F) is first countable.

Lemma 4.10. Let F be a filter on �. The following are equivalent:
1. F is countably generated.
2. F<� is countably generated.

Proof. Let B be a subfamily of F . It is easy to see that B is a base of F if and
only if

{
[B]<�+ | B ∈ B

}
is a base of F<�. It follows that if F is countably generated,

then F<� is countably generated.
For the other implication, assume that F<� is countably generated. Let

{Xn | n ∈ �} be a base for F<�. Since F<� is generated by
{
[A]<�+ : A ∈ F

}
, for

every n ∈ � we can find An ∈ F such that [An]
<�
+ ⊆ Xn. In this way, {[An]

<�
+ | n ∈

�} is a base of F<�, which implies that {An | n ∈ �} is a base of F . 

We can now prove the following:

Theorem 4.11. For a FU-filter F on � the following are equivalent:
1. Sc (� (F)) is homeomorphic to ��.
2. F is countably generated.
3. � (F<�) is a W-space.
4. Player α has a winning strategy for the game GS (F , �, α) .

Proof. The equivalence between (1) and (2) was proved in Theorem 2.2 of [7].
Note that � (F<�) is a W -space if and only if the Open player has a winning strategy
in H(�(F<�),F<�) (this is because any other point in �(F<�) is isolated). From
this remark and Theorem 4.6(2) it follows that clauses (3) and (4) are equivalent.
In order to prove that (2) is equivalent to (3), by Lemma 4.10, we know that F is
countably generated if and only if is F<� countably generated and by Proposition
4.8, this holds if and only if � (F<�) is a W -space. 


The previous results provide more characterizations of the filters in which player
α has a winning strategy in the game GS (F , �, α). In the sequel, we will provide a
characterization of the filters for which the hyperspace Sc (� (F)) is Baire (Problem
1.2). We shall need the following kinds of filters:

Definition 4.12. A filterF on� is said to be aFUF-filterif for everyX ∈ (F<�)+
,

there is {sn | n ∈ �} ⊆ X such that whenever F ∈ F , there is n < � such that
sm ⊆ F for every m ≥ n.
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It is easy to see that every countably generated filter is a FUF-filter and every
FUF-filter is a FU-filter. We deduce from the definition that a filter F is a FUF-filter
if and only if F<� is a FU-filter. For convenience, we will denote by P (F) the set of
all Y = {sn | n ∈ �} ⊆ [�]<�+ such that whenever F ∈ F , there is n < � such that
sm ⊆ F for every m ≥ n. The elements of P(F) are the pseudointersections of F<�
or equivalently the sequences in [�]<�+ that converge to F<� in the space �(F<�).
When Y = 〈sn〉n∈� is a sequence of elements of [�]<�+ , we will often abuse notation
and write Y ∈ P(F) to mean {sn | n ∈ �} ∈ P(F).

We need the following result, which is a particular of a theorem of G. Gruenhage
and P. J. Szeptycki [12, Theorem 17].

Theorem 4.13 (Gruenhage and Szeptycki [12]). Let F be a FU-filter4 on �. The
following are equivalent:

1. F is a FUF-filter.
2. For every family {Xn | n < �} ⊆ (F<�)+

, there is sn ∈ Xn such that
{sn | n ∈ �} ∈ P (F) .

The reader may note that the statements of [12, Theorem 17] and of Theorem
4.13 look quite different. For the convenience of the reader, we will explain how to
derive the latter from the former. We need the following notions:

Definition 4.14. Let X be a topological space, A ⊆ [X ]<� , and a ∈ X.
1. We say that A converges toa (denoted by A −→ a) if for every U ⊆ X open

neighborhood of a, the set {s ∈ A | s � U} is finite.
2. We say that A is a �-network ata (or �-net ata) if for every U ⊆ X open

neighborhood of a, there is s ∈ A such that s ⊆ U.
3. X is Fréchet–Urysohn for finite sets ata (or X is FUfin at a for short) if for

every B ⊆ [X ]<� , if B is a �-network at a, then there is C ∈ [B]≤� such that
C −→ a.

4. X is Fréchet–Urysohn for finite sets(or X is FUfin for short) if X is FU fin at all
of its points.

It is straightforward to check the following:

Lemma 4.15. Let F be a filter on � and X ⊆ [�]<�+ . In the space �(F), the
following holds:

1. X is a �-network at F if and only if X ∈ (F<�)+.
2. X converges to F if and only if X ∈ P(F).
3. �(F) is FUfin if and only if �(F) is FUfin at F .
4. �(F) is FUfin if and only if F is a FUF-filter.

The following is the theorem of G. Gruenhage and P. J. Szeptycki mentioned
before [12, Theorem 17]:

Theorem 4.16 (Gruenhage and Szeptycki). Let X be a topological space and
x ∈ X. The following are equivalent:

4Strictly speaking, the hypothesis that F is a FU-filter is not needed, but since both statements in the
theorem already imply being Fréchet, we might restrict to the realm of FU-filters from the beginning.
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MORE ON FRÉCHET–URYSOHN IDEALS 847

1. X is FUfin at x.
2. For every sequence 〈Pn〉n∈� of �-networks at x consisting of finite sets, for

infinitely many n ∈ � there are Fn ∈ Pn such that {Fn | n ∈ �} −→ x.
3. For every sequence 〈Pn〉n∈� of �-networks at x consisting of finite sets, for every
n ∈ � there are Fn ∈ Pn such that {Fn | n ∈ �} −→ x.

4. P has no winning strategy in the game GfinO,P(X, x).5

In particular using the equivalence of (1) and (3) in the above theorem and Lemma
4.15, we obtain Theorem 4.13.

We require the introduction of some additional terminology:
Let T be a tree inside of

(
[�]<�

)<�
and let F be a filter on�. For p ∈ T,we define

sucT (p) =
{
s ∈ [�]<� : p� 〈s〉 ∈ T

}
(where p� 〈s〉 denotes the concatenation of

p and the sequence 〈s〉). By [T ] we denote the set of all branches (maximal paths)
through T. Given n < �, define Tn as the set of sequences of T of length n.We will
say that T is (F<�)+-branchingif sucT (p) ∈ (F<�)+ for every p ∈ T.

Lemma 4.17. Let F be a filter on �. The following are equivalent:
1. F is a FUF-filter.
2. For every (F<�)+-branching tree T, there is Y ∈ [T ] such that Y ∈ P (F) .

Proof. (1) ⇒ (2). Assume that T is a (F<�)+-branching tree. Since the set
{sucT (p) | p ∈ T} is included in (F<�)+

, by Theorem 4.13, for every p ∈ T, there
is sp ∈ sucT (p) such that S = {sp | p ∈ T} ∈ P (F) .We can now recursively find
a branch Y (whose image) is contained in S. Since S ∈ P (F) , it follows that
Y ∈ P (F) .

(2) ⇒ (1). Fix X ∈ (F<�)+ and consider the tree T = {∅} ∪ {t�0 ... �tn : n <
� and ∀i ≤ n(ti ∈ X )}. It is clear that T is (F<�)+-branching and, by assumption,
there is Y ∈ [T ] so that Y ∈ P (F) . If {sn : n < �} ⊆ [�]<� satisfies that Y =
〈sn〉n∈� , then for every F ∈ F , there is n < � such that sm ⊆ F for every m ≥ n. 


We are ready to provide a solution to Problem 1.2.

Theorem 4.18. For a FU-filter F the following are equivalent:
1. F is a FUF-filter.
2. Sc (� (F)) is Baire.

Proof. Recall that Sc (� (F)) is Baire if and only if player � does not have a
winning strategy in GS (F , �, α) . We will first prove that if F is not a FUF-filter,
then player � has a winning strategy in GS (F , �, α) , or equivalently (by Theorem
4.6(1)), that the Point player has a winning strategy in H(�(F<�),F<�). Since F
is not a FUF-filter, there is X ∈ (F<�)+ such that X does not contain sequences
converging to F<�. The strategy for the Point player is as follows: At step n, if the
Open player plays [Kn]

<�
+ , then the Point player picks wn ∈ X ∩ [Kn]

<�
+ (with the

requirement that wn �= wm whenever n �= m). The outcome of the game will be an
infinite subset ofX,which we already know cannot be a convergent sequence, so the
Point player wins the match.

Now, assume that F is a FUF-filter; it suffices to prove that player � does not have
a winning strategy inGS (F , �, α) (see Theorem 4.6(1)). Assume that � is a winning

5The definition of this game will not be needed in this paper.
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strategy for player � . Based on the strategy � we inductively build a suitable tree T
inside of

(
[�]<�

)<�
and a family {Gp | p ∈ T} , with the following properties:

1. ∅ ∈ T .
2. Gp ∈ F for every p ∈ T .
3. If p = 〈s0, s1, ..., sn〉 ∈ T then J (p) =

〈

 (∅) , G〈s0〉, s0, G〈s0,s1〉, ..., Gp

〉
is a legal

partial play of GS(F , �, α) in which player � is using his strategy �.6

4. T1 is the set of all 〈s〉 such that s ∈ [�]<� and there is G ∈ F such that
〈
 (∅) , G, s〉 is a legal partial play ofGS(F , �, α) in which player � is using his
strategy �.

5. For every s such that 〈s〉 ∈ T1, we choose and fix G〈s〉 as above.
6. Given a node p = 〈s0, s1, ..., sn〉 ∈ T , let sucT (p) be the set of all z ∈ [�]<� for

which there is G ∈ F such that J (p)� 〈G, z〉 is a legal partial play (in which
player � is using his strategy �). We choose and fix Gz with this properties.

We claim that T is (F<�)+-branching. Indeed, fix p = 〈s0, s1, ..., sn〉 ∈ T and
an arbitrary G ∈ F . Since � is a winning strategy for � , when α chooses G then
J (p)� 〈G〉 is a legal play, and so there must be s ∈ sucT (p) such that s ⊆ G . Since
F is a FUF-filter, by Lemma 4.17, there is Y = 〈sn〉n∈� ∈ [T ] such that Y ∈ P (F) .
Note that T induces a run of the gameGS (F , �, α) . Since Y is a pseudointersection
of F<�, it follows from Lemma 4.5 that

⋃
n∈�
sn is a pseudointersection of F , so player

α won the match. 

After having obtained Theorems 4.11 and 4.18, it is then natural to ask the

following question:

Is there a FU-filter F on � such that Sc (F) is Baire, but not
homeomorphic to �� ( i.e., GS (F , �, α) is not determined)?

This is the same as asking if there is an uncountably generated FUF-filter. Many
(consistent) examples of such filters have been constructed by using some set-
theoretical assumptions:

Proposition 4.19. There is an uncountably generated FUF-filter under the
following hypotheses:

1. ([17]) p > �1.
2. ([17]) b = p.
3. ([15]) � (2,=) .

In what follows, we will describe a connection between the uncountably generated
FUF-filters and some Fréchet–Urysohn groups.

Consider the Boolean group
(
[�]<� ,�

)
, where � is the symmetric difference. We

know that every filter F on � induces a topological group topology on [�]<� by
declaring that F<� is an open local base for ∅. Denote this topology by �F and the
topological group by GF . Clauses (1) and (2) of the following theorem were proved
equivalent by E. A. Reznichenko and O. V. Sipacheva in their article [19] and the
equivalence with (3) follows from Theorem 4.18:

6By 
 (∅) we denote the first move of player I according to 
.
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Theorem 4.20. Let F be a filter on �. The following are equivalent:

1. F is an uncountably generated FUF-filter.
2. GF is a non-first countable Fréchet–Urysohn group.
3. F is uncountably generated and Sc (� (F)) is Baire.

In connection with this last result, we mention that a famous problem of V. I.
Malykhin asked if there is a Fréchet–Urysohn group that is not first countable.7

Based on a previous theorem of J. Brendle and M. Hrušák (see [1]), this important
problem was finally solved by M. Hrušák and U. A. Ramos-Garcia:

Theorem 4.21 (Hrušák and Ramos-Garcia [15]). It is consistent that every
Fréchet–Urysohn group is first countable.

It follows from the previous theorem that it is consistent that every FUF-filter is
countably generated. Hence, we have the next corollary:

Corollary 4.22. It is consistent that for every filter F on �, the space Sc (F)
is Baire if and only if Sc (F) is homeomorphic to �� (i.e., the game GS (F , �, α) is
always determined).

In this way, in the model defined in [15], we have that the game H(�(F<�),F<�)
is determined for every filter F on �. On the other hand, there are ZFC examples
of filters G on � for which the game H(�(G),G) is undetermined (see [11, 17]). By
virtue of Corollary 4.22, we know that those examples cannot be of the form F<�
(this remark was pointed out to us by M. Hrušák).

S. Todorcevic and C. E. Uzcategui initiated the study of analytic topologies over
the natural numbers. Since we can identify every subset of � with its characteristic
function, we can define a topology on ℘ (�) that is homeomorphic to 2� . Since
every topology over � is a subset of ℘ (�), we can say when a topology is Borel or
analytic. Regarding Malykhin’s Problem in the definable setting, S. Todorcevic and
C. E. Uzcategui established the next result (see Theorem 7.3 of [22]):

Theorem 4.23 (Todorcevic and Uzcategui [22]). Every Fréchet–Urysohn analytic
group is first countable.8

In particular, it follows that there are no uncountably generated analytic FUF-
filters. We will conclude this article by providing an alternative proof of this
particular case of Theorem 4.23. We will use a separation theorem due to S.
Todorcevic. In order to do this, we need the following definitions:

Definition 4.24. Let A,B ⊆ [�]� .

1. A is called countably generated inB if there is a family {Bn | n < �} ⊆ B such
that for every A ∈ A, there is n < � such that A ⊆ Bn.

2. We say thatA andB are orthogonalifA ∩ B is finite for everyA ∈ A andB ∈ B.
For a tree T ⊆ [�]<� and an ideal I on �, we will say that T is I-branching

if sucT (p) = {n | p� 〈n〉 ∈ T} is an infinite element of I for every p ∈ T (in the

7Recall the classical result of G. Birkhoff and S. Kakutani [13, Theorem 8.3] which states that a
topological group is metrizable if and only if it is first countable.

8Note that by definition, every analytic group is countable.
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terminology of [21] this would be called an I-tree). In the paper [21], S. Todorcevic
proved the following interesting dichotomy:

Theorem 4.25 (Todorcevic [21]). Let I and J be two orthogonal ideals on � such
that I is analytic. One of the following holds:

1. I is countably generated in J⊥.
2. There is a J -branching tree T ⊆ [�]<� such that [T ] ⊆ I.

The following corollary is a direct consequence of the previous dichotomy:

Corollary 4.26. Let I be an analytic FU-ideal on �. Then one of the following
statement holds:

1. I is countably generated.
2. There is an I⊥-branching tree T ⊆ [�]<� such that [T ] ⊆ I.

Proof. Since I is a FU-ideal, it follows that I = I⊥⊥. The result follows by
applying Theorem 4.25 to I and I⊥. 


We are ready to prove the following particular case of Theorem 4.23:

Proposition 4.27. There are no uncountably generated analytic FUF-filters.

Proof. Let F be an uncountably generated analytic FU-filter. By Corollary 4.26,
we get that there is an (F∗)⊥-branching tree T ⊆ [�]<� such that [T ] ⊆ F∗. For
every p = 〈m0, ..., mn〉 ∈ T, define p̂ = 〈{m0} , ..., {mn}〉 . Let S = {p̂ | p ∈ T} and
note that S ⊆

(
[�]<�

)<�
is a tree. Furthermore, S is an (F<�)+ -branching tree

because T is an (F∗)⊥-branching tree. Since [T ] ⊆ F∗,we get that [S] ∩ P (F) = ∅.
By Proposition 4.17, we conclude that F is not a FUF-filter. 
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[6] ———, Comparing Fréchet–Urysohn filters with two pre-orders. Topology and its Applications,
vol. 225 (2017), pp. 90–102.

https://doi.org/10.1017/jsl.2021.43 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2021.43
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MICHOACÁN, CP 58089, MEXICO

E-mail: sgarcia@matmor.unam.mx
E-mail: oguzman@matmor.unam.mx

https://doi.org/10.1017/jsl.2021.43 Published online by Cambridge University Press

https://arxiv.org/abs/1801.05633v1
mail to: sgarcia@matmor.unam.mx
mail to: oguzman@matmor.unam.mx
https://doi.org/10.1017/jsl.2021.43

	1 Introduction
	2 Preliminaries and notation
	3 The Rudin–Keisler pre-order on Fréchet ideals
	4 The hyperspace of convergent sequences

