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Abstract We study basic geometric properties of Kottwitz—Viehmann varieties, which are certain
generalizations of affine Springer fibers that encode orbital integrals of spherical Hecke functions. Based
on the previous work of A. Bouthier and the author, we show that these varieties are equidimensional
and give a precise formula for their dimension. Also we give a conjectural description of their number
of irreducible components in terms of certain weight multiplicities of the Langlands dual group and we
prove the conjecture in the case of unramified conjugacy class.
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1. Introduction

1.1. Background and motivation
In this article, we study certain analogue of affine Springer fibers that we call
Kottwitz—Viehmann varieties whose underlying set is defined as
X, ={g € G(F)/G(O)|g"'vg € GO)m"G(0)}
where

e G is a connected reductive algebraic group over a field k (no assumption on k at the
moment);

o ' = k((w)) is the field of Laurent series with coefficients in &k and O = k[[@w]] is the
ring of power series;

e y € G(F) is a regular semisimple element;

o A :G,, = T is a cocharacter of a maximal torus T of G and
o = AMw) € G(F).

Also we will consider a closely related set ka defined by Replacing the double coset
G(O)w?G(O) in the definition of X;; by the union

G(O)m*G(0) = | | G(0O)w"G(0).
U<
These sets were first studied by Kottwitz and Viehmann in [20]. More general versions of
them (replacing G (Q) by parahoric subgroups of G(F)) have also been studied by Lusztig
n [21]. When & is a finite field, they arise naturally in the study of orbital integrals of
functions in the spherical Hecke algebra H(G(F), G(O)) consisting of G(O)-biinvariant
locally constant functions with compact support on G(F).
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It turns out that X J); can be realized as the set of k-rational points of some algebraic
variety over k. We view them as group analogue of affine Springer fibers for Lie algebras
studied by Kazhdan and Lusztig in [19]:

X, ={g € G(F)/G(O)|ad(g) "'y € g(O)}.

Here g is the Lie algebra of G, y € g(F) is a regular semisimple element and ‘ad’ denotes
the adjoint action of G on g.

Basic geometric properties of these affine Springer fibers X, have been well understood
through the works of Kazhdan and Lusztig [19], Bezrukavnikov [2], Ngo [23]. A key
ingredient in their approach is the symmetry on X, arising from the centralizer G, (F).
More precisely, the group G, (F) has a dense open orbit X ;eg (the ‘regular locus’) so that
geometric properties of X)); such as dimensions and number of irreducible components
can be studied via the commutative algebraic group G, (F) (more precisely certain
finite-dimensional quotient P, of the infinite-dimensional loop group G, (F)).

We would like to generalize these methods to study the Kottwitz—Viehmann varieties

X;} Similar to Lie algebra case, the (connected) centralizer G?,(F ) acts naturally on

X]); and we consider the open orbits X)A,’reg (the ‘regular locus’). However, there are the

following notable differences from the Lie algebra situation:

reg

e In general, the action of Gg (F) on X;}’ is not transitive.

. . . Areg . .
o A more serious problem is that in general the ‘regular locus’ Xy’reg is not dense in X,,

and there might be irreducible components disjoint from X )})’reg .

Thus X}); may have more irreducible components than X}))’reg. This makes it more
difficult to reduce geometric properties of X )); to the commutative group Gg(F ).

1.2. Main results

Our first goal is to prove a dimension formula of X )};

Theorem 1.2.1. Assume that k is algebraically closed and its characteristic does not divide
the order of Weyl group of G. Then X}); and X,,@" defined set-theoretically as above are
k-schemes locally of finite type, equidimensional with dimension

dim X}, = dim X3 = (p, ) + 3 (d(y) — c(y))

where

e p is half sum of the positive roots for G;

e d(y) is the discriminant valuation of y (cf. Definition 3.1.2);

o c(y) =rank(G) —rankr(G,), the difference between the dimension of the mazimal torus

of G and the dimension of the maximal F-split subtorus of the centralizer G, .

In [3] and [6], this theorem is proved when G is semisimple and simply connected. In
this article, we prove it for any split connected reductive group.
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As in the Lie algebra case, there are two major steps. First we prove the dimension
formula for the regular open subset, this step generalizes the method of Kazhdan—Lusztig
in [19]. The second step is to show that

. A .
dim X],’reg = dim X})j

For this the argument of Kazhdan—Lusztig in [19] does not generalize, since otherwise
it would imply that the complement of the regular open subset has strictly smaller
dimension (see [23, Proposition 3.7.1]), which in our situation may not be true due to
the possible existence of irregular components. In general, actually most components of
XJA/ will be irregular, see Remark 3.9.14. Instead, we bypass this difficulty by studying
the global analogue of Kottwitz—Viehmann varieties, the Hitchin—Frenkel-Ngo fibration.
Similar ideas occurred previously in [6].

This major difference from Lie algebra case leads us naturally to the question of
determining the number of irreducible components of X)}j, which is our second goal.
We will formulate a conjecture on the number of irreducible components of X; and
prove the conjecture in the case where y is an unramified (or split) conjugacy class.
One formulation of the conjecture involves the Newton point v, € (X«(T) @ Q)T of y,
which is an element in the dominant rational coweight cone. By the discussion in § 3.9, if
X}); is nonempty, there exists a unique smallest dominant integral coweight p such that
v, <o u and p < A

Conjecture (Conjecture 3.9.8). Let u be as above. The number of Gg(F)—orbitS on the
set of irreducible components of X}); equals to my,, which is the dimension of u-weight

space in the irreducible representation V) of the Langlands dual group G with highest
weight A.

We remark that the isomorphism class of X)A, only depends on the stable conjugacy
class of y (which is the characteristic polynomial in type A). For this reason we will give
an equivalent formulation of our Conjecture using the extended Steinberg base of the
Vinberg monoid. See Conjecture 3.9.8 for more details.

Also we remark that there is a similar conjecture made by Miaofen Chen and Xinwen
Zhu on the irreducible components of affine Deligne-Lusztig varieties, see [13] and [34]
for statements.

Theorem 1.2.2. The Conjecture is true if y € G(F)™ is split.

This is proved in Corollary 3.5.3.

Remark 1.2.3. Although we restrict to equal characteristic local field, we expect that most
results involving only local arguments in this paper could also be generalized to mixed
characteristic Kottwitz—Viehmann varieties, which could be defined based on the work of
Zhu [38]. For example, Proposition 3.1.6 on nonemptiness criterion, Corollary 3.5.3 on the
dimension formula and irreducible components in the unramified case and Theorem 3.7.1
on the dimension of regular locus.
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However, the dimension formula in full generality involves global argument and
currently it is not clear how to generalize this to mixed characteristic case. It would
be interesting to see if there is a purely local argument to prove the dimension formula.

1.3. Organization of the article

In §2, we review certain facts needed from the theory of reductive monoids. In § 3, we
prove dimension formula and the conjecture on irreducible components in the unramified
case. In §4, we review basic facts of Hitchin—Frenkel-Ngo6 fibration. The main result we
establish in this chapter is properness of the fibration over an anisotropic open subset.
In §5, we relate Kottwitz—Viehmann varieties and Hitchin—Frenkel-Ng6 fibrations and
finish the proof of dimension formula for X J);

1.4. Notations and conventions

1.4.1. Group theoretic notations. = We assume throughout the article that k is an
algebraically closed field. F = k((w)) and O = k[[ew]]. We let G be a (split) connected
reductive group over k. Assume that either char(k) = 0 or char(k) > 0 does not divide the
order of Weyl group of G.

Denote by Gger the derived group of G, a semisimple group of rank r. Let G*¢ be the
simply connected cover of Gger and G,q the adjoint group of G.

Fix a maximal torus T of G and a Borel subgroup B containing T. Let A = {«ay, ..., @}
be the set of simple roots determined by T C B. Let A = X*(T) (respectively A :=
X.(T)) be the weight (respectively coweight) lattice. Let At (respectively AT) be the
set of dominant weights (respectively dominant coweights). Let W be the Weyl group of
G and § C W the set of simple reflections associated to the simple roots A. There is a
unique longest element wg of W under the Bruhat order determined by S. Then wy is a
reflection and —wyq defines a bijection on the sets A, A* and At.

Let G be the Langlands dual group of G, viewed as a complex reductive group. For each
A e AT, viewed as a dominant weight for G, let V(X)) be the irreducible representation
of G with highest weight A. For any 1 € At with u < 4, let my, be the dimension of u
weight space in V(}).

1.4.2. Notations concerning algebraic geometry. For a scheme X over Spec F,
let LX be the loop space of X. More precisely, LX is the k-space that associates to any
k-algebra R the set LX(R) = X (R((1))).

For a scheme X over Spec O, let LFX be its nth jet space. In other words, L} X is
the k-space whose set of R points is L X(R) = X(R[t]/t") for any k algebra R. Let
L*X :=1im L,/ X be the arc space of X.

If X is a k-scheme, then we denote LX := L(X ®; F), L} X := L} (X ®; O) and LTX :=
LT (X ®; O).

For any scheme X, we denote by Irr(X) the set of its irreducible components.

For a scheme S and a group scheme G over S, G-torsors on S are understood in the
étale topology. If E is a G-torsor on S and Y is an S-scheme on which G acts, we form
the twisted product E A Y, which is the quotient of E xg Y by the anti-diagonal action
of G.

https://doi.org/10.1017/51474748019000604 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748019000604

6 J. Chi

2. Review on reductive monoids

In this section we summarize some results on reductive monoids needed later. We loosely
follow the exposition in [3], with several modifications and improvements. We refer the
reader to [33], [27], [28] for more backgrounds on this subject.

2.1. Construction of Vinberg monoid

In this section, we assume that G is semisimple simply connected.

The Vinberg monoid for G is an algebraic monoid Ving such that the derived group
of its unit group is isomorphic to G, and it is characterized by certain nice universal
properties. For our purpose, we construct it in an explicit manner as follows.

Let wi,...,0r € Xu(T)+ be the fundamental weights. For each 1<i <r, let
Pw; : G — GL(V,,;) be the irreducible representation with highest weight w;.

We introduce the extended group G4 := (T x G)/Z where Z, the center of G, embeds
anti-diagonally in 7 x G. Then G is a reductive group with center Zy = (T x Z)/Z =T
and derived group G. Let Ty = (T x T)/Z be a maximal torus of G*. We extend the
representations p,, to representations of G:

pi 1 Gy ——— GL(Vy),

For each 1 <i < r, we also extend the simple roots «; to ot;r :GT — G, by ozi+(t, g) =
a;(t). Altogether, we get the following homomorphism
r
@, p™): GT = G}, x [ [GL(Va)).
i=1
Definition 2.1.1. The Vinberg monoid of G, denoted by Ving, is the normalization of the
closure of G4 in the product
p
A" x [ [End(Vyy).

i=1

Then Ving is an algebraic monoid with unit group G4. It has a smooth dense open
subvariety Vin% defined as the inverse image of the following product in Ving

A" x [ [End(V,) = {0D).

i=1

Definition 2.1.2. The abelianization of the monoid Ving is the invariant quotient
Ag := Ving//(G x G).

Let o : Ving — Ag be the quotient map.

Using the maps o™ we get a canonical isomorphism Ag = A”. The adjoint torus Tuq
embeds via the simple roots as the open subset where all the r-coordinates are nonzero.
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Note that the fibers of o over points in T,q are isomorphic to G. One can construct a
canonical section of the abelianization map o as follows.

Let Tgiag be the image of the diagonal embedding T — T. Then there is a canonical
isomorphism Tgjae = Tag which extends to an isomorphism E = A between the closure
of Tgiag in Ving and Ag. The inverse of this isomorphism defines a section of the
abelianization map «, which we denote by

s:Ag — Ving. (2.1)

The group G4 x G4 acts by left and right multiplication on Ving. More precisely,
for all (x,y) € G4 x G4 and y € Ving, the action is given by (x,y)-y =xyy~!. The
G+ x G-orbits on Ving correspond bijectively to pairs (I, J) of subsets of A such that
no connected component (in the sense of Dynkin diagram) of the complement of J is
entirely contained in /. Each orbit O; ; contains an idempotent e; ;j € Ving, defined up
to conjugation. We can choose e; ; € T4, the closure of T in Ving. Then it is well defined
up to W-conjugation.

Fix such a pair (1, J). Let us describe the stabilizer of e; ; in G4+ x G4+. Let J¢ be
the complement of J in A and JO be the interior of J, i.e., the elements in J that is
not connected to any element of J¢ in the Dynkin diagram. Let M := (INJ% L J¢. Let
P4 (M) be the corresponding standard parabolic subgroup of G 4, P1. (M)~ be the opposite
of P (M) and L4 (M) their common Levi subgroup. Denote by 8 : P+(M) — L+ (M) and
8_ : Pr(M)~ — L, (M) the canonical projections. Also let Gjs be the derived group of
L (M). The following lemma is [26, Theorem 21]:

Lemma 2.1.3. With notations as above, the stabilizer of e; j under G4 x G4 is the
subgroup of P+(M) x P-(M)~ consisting of pairs (g, g—) such that

3(g) =6-(g-) mod GyeTy g,

where Ty y is a subtorus of Ty defined as follows. Consider the subset Frj C X*(T4)q
consisting of (x, ¥) € X*(T})q such that x —¢ € D; and n € C;, where Dy is the convex
cone spanned by the simple roots «; for alli € I and Cj is the convexr cone spanned by
the fundamental weights w; for all j € J. With these notations

T1,g = {ty € T4|A(ty) = 1,VA € Fr jNX*(Ty)).

2.1.4. The adjoint action of G on the Vinberg monoid Ving is the restriction of left
and right multiplication by G x G along the diagonal. In other words, for any g € G and
y € Ving, the adjoint action is given by Ad(g)(y) := gyg~"'. Note that this action factors
through the adjoint group Gag-

For any y € Ving, we let G, be the centralizer of y in G, i.e., the stabilizer of y
under the adjoint action of G. If y € G4 belongs to the unit group of Ving, we know
that dim G, > dim T = r. By upper semicontinuity of stabilizer dimension (cf. [1, VI B.4,
Proposition 4.1]), we see that dim G, > r for all y € Ving.

Definition 2.1.5. An element y € Ving is regular if dimG, =r (i.e., smallest possible).
Let Vianeg C Ving be the open subset consisting of regular elements.
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Definition 2.1.6. The extended Steinberg base is defined to be the invariant quotient
¢, := Ving//Ad(G). We denote the canonical quotient map by x4 : Ving — €.

The functions ai‘" define a canonical map B:¢&; — Ag so that @« = Bo xy. The
following result is [3, Proposition 1.7]:

Theorem 2.1.7. The closed embedding T, C Ving induces an isomorphism of the
mwvariant quotient Ty/W = €,. Moreover, the functions oy and Tr(pl."') define
isomorphism
€L Ag x AT =AY,
The canonical projection g : T, — €, a finite flat, generically Galois étale with Galois
group W.

2.2. Adjoint orbits

We keep the assumption that G is semisimple simply connected.

Let § = {s1,..., s} be the set of simple reflections in W corresponding to our choice of
simple roots A. Let [ : W — N be the length function determined by S. For any subsets
J C S, let W, be the subgroup of W generated by elements in J. Let W (respectively / W)
be the set of minimal length representatives of the cosets W/W; (respectively W;\W).
For any two subsets Ji, Jo of S, denote hwh .= hwnw,

For each w € W, let Supp(w) C S be the subset consisting of those simple reflections
which occurs in one (and hence every) reduced word expression of w.

Definition 2.2.1. An element w € W is called an S-Cozeter element if it can be written as
products of simple reflections in §, each occurring precisely once. In particular, I(w) = r
and Supp(w) = S. Denote by Cox(W, S) the set of S-Coxeter elements in W.

In general, an element w € W is called a Cozxeter element if it is conjugate to an
S-Coxeter element in W.

Let N := Xf(O) be the mnilpotent cone in the Vinberg monoid Ving. Let
NO =N ﬂVin% and N := V"N Ving® be the corresponding open subsets.

2.2.2.  Our approach in this part follows a suggestion of Xinwen Zhu. For any subset
J C A, we apply Lemma 2.1.3 to determine the stabilizer of e ;j in G x G. In the notation
of loc. cit., we have
T) =T yNT={teT |wj(t)=1, VjeJ}.
In particular, we have T; C Gjc and hence the stabilizer of ey ; in G x G consists
of elements of the form (zgiu,zgou—), where g1,82 € Gye, u € Uje, u_ € Uj. and
7z € Z(Ljc), the center of the Levi subgroup L jc of G. Consequently we have
Og"] = (G/GJrch X G/Ger;)/Z(LJr),

where Z(Ljc), the center of the Levi Ljc acts diagonally on the product. There is a
canonical map
Tz j:0g.j— G/PjexG/P..
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The diagonal G-orbits on the product G/Pjec x G/P;. correspond bijectively to T wie,
The element w € /“W’° corresponds to the G-orbit of (), 1) for any representative w
of w in G. We denote this G-orbit by Yy j, and let Xy 5, be its inverse image under
Tz, j. Then we have

Xg,]’w = Ad(G)(Z(LJz:)u')ng). (2.2)

The G-orbit Yg ;.4 has codimension /(w) in G/Pjec x G/P;.. Hence we have

dim X gy = 2dim(G/ Pye) — [(w) + dim Z(L ye)
= dimG —dim Ljc —I(w) + |J|. (2.3)

Lemma 2.2.3. Xz ;. C N if and only if J C Supp(w).

Proof. First suppose Xg s CAN. Then in particular wegy ;j € N. Recall that the
idempotent ey ; acts as projector to highest weight space in the representation V,, if
i € J and acts by 0if i ¢ J. If there exists j € J but j ¢ Supp(w), then p,; () preserves
the highest weight space in Vo, and hence Tr(po, (weg,j)) # 0, which contradicts the
assumption that weg ;j € N.

Conversely suppose that J C Supp(w). Let x = tweg j, where t € Z(Ljc) C T. Then
P (x)=0ifi ¢ J. Ifi € J, soi € Supp(w), then by a standard result in the root system
we have w(w;) # w; (see, for example [18, Lemma 3.5]). Thus we have Tr(py, (x)) =0 as
t € T preserve the weight spaces and w maps the highest weight space into the weight
space with weight w(w;). Thus x € N. O

Corollary 2.2.4. (a) There is a stratification of N into Ad(G)-stable pieces

N=|] |l Xesw

JCA el Wi
Supp(w)DJ

(b) NO = |_| weW XQ,A,w-
Supp(w)=A

(¢c) For each w € Cox(W, S)(cf. Definition 2.2.1), Xz A w S a single Ad(G)-orbit and

NeE= | ] Xzaw

weCox(W,S)

In particular, N™¢ c N.

(d) dim N = dim N™8 = dim G —r and the dimension of the complement N\ N™¢ is
strictly less than dim N .

Proof. Parts (a) and (b) are immediate from Lemma 2.2.3. For each strata Xg s C N
as in Lemma 2.2.3, we have I[(w) > |J| since J C Supp(w). From (2.3) we see that

dmXg jw <dimG —dimL;c <dimG —r

and equality is reached precisely when J = A and /(w) = r. This condition means that
w € Cox(W, S). Hence part (d) follows from part (c).
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It remains to show that for each w € Cox(W, S), Xz a.w is a single Ad(G)-orbit. By
(2.2), we have

Xg.aw =AdG)(Tweg a).

So it suffices to show that for each r € T, the elements twez Ao and weg A are conjugate.
Since w is a Coxeter element, by [31, Lemma 7.6] there exists s € T such that
t = s~ sw !, This implies that silu')eg,As = twegy a since s,t € T and hence commute
with ez A. O

Remark 2.2.5. Another way to show that Xz a . consists of a single Ad(G)-orbit is to
show that the centralizer of weg A in G has dimension r, i.e., weg o € N™. Since then
the Ad(G)-orbit of weg A is contained in the irreducible set X A, and has the same
dimension, thus equals to Xz A .

Corollary 2.2.6. The morphism x+ : Ving — €4 is flat.

Proof. There exists a nonempty open subset U C €4 such that the fibers of x4 over
U have dimension dimVing —dim€; =dimG —r. Since x4 is Z; equivariant, U is
Z-stable. By Corollary 2.2.4(d) we know that 0 € U and hence we have U = €. By [7,
6.2.9], Ving is Cohen-Macaulay. Moreover, €, = A" is regular and hence x, is flat. [

Corollary 2.2.7. Vianeg C Vin%,

Proof. Let U := Vinr(e;gﬁVin% and we need to show that U =Vianeg. Clearly U is
Z,-stable and Ad(G)-stable. By Corollary 2.2.4(c), we have N™ c AN* and hence
UNN = N™. Now our results follow from the following Lemma. O
Lemma 2.2.8. Let U be a Zi-stable and Ad(G)-stable open subset of Vinrgg. If
UNN =N, then U = Ving®.

Proof. The following argument is extracted from [3], proof of Proposition 2.12. Let
F := Ving \ U be the complement of U in Ving, which is a Z,-stable and Ad(G)-stable
closed subset of Ving. Let xr : F — €4 be the restriction of x4 to F. Consider the
following set

V = {x € Fldim, x;;' (xr(x)) < dimG —r —1}.

By the upper-semicontinuity theorem [30, Tag 02FZ] we have that V is an open subset of
F. Tt is clear that V is Z-stable. Moreover, we have 0 € V by Corollary 2.2.4(d). Hence
we must have V = F since any Z-orbit in Ving contains 0 in its closure. This implies that
for each closed point a € €, FN le(a) has codimension at least 1 in Xil(a). But since
X+ is flat by Corollary 2.2.6, the fiber Xil(a) is equidimensional and hence U ﬂx;l(a)
is dense in x_:l(a).

Now suppose there exists x € Vinrgg \ U. Then the Ad(G)-orbit of x has dimension equal
to dim Xll(XJr(x)) since x is regular. Hence the Ad(G)-orbit of x lies in an irreducible
component of X_Il (x4 (x)) that is disjoint from U. This contradicts with the density of U
in the fiber. Thus the lemma follows. O
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Proposition 2.2.9. The nilpotent cone N is connected and equidimensional. Moreover,
there exist bijections

Cox(W, §) = Trr(N™8) = Ir(W®) S Irr(N)

which send w € Cox(W, S) to the irreducible component containing wegz A .

Proof. Since xy is flat and Vg is irreducible, the fiber A = XII(O) is equidimensional.
Since x4 is the invariant quotient under a reductive group, there is a unique closed orbit
in A/, namely 0 € V. In particular, A/ is connected.

From Corollary 2.2.4, we see that ™2 is dense in N° and N and Irr(AV™8) is in bijection
with Cox(W, S). Hence Irr(N°) and Irr(N) are also in bijection with Cox(W, S). O

Remark 2.2.10. It is worthwhile to compare with the Lie algebra case. The fibers of the
Chevalley map g — ¢ are irreducible and g™® is the union of the unique open G-orbit in
each fiber.

2.2.11. Relation with the wonderful compactification. Here we point out some relations
between our results and the work of Xuhua He in [16], see also [29].

The scheme Vin% is smooth and Z, acts freely on Vin(();. The quotient Vin% /Zy is
isomorphic to the wonderful compactification G,q of the adjoint group Gag (c.f. [3,
Proposition 2.2]). In [16], He studies certain closed subvariety Ny C Gaq consisting of
elements that are represented by nilpotent matrices in all fundamental representations.
Note that this is denoted by ‘N’ in loc. cit., we add a subscript ‘ad’ to avoid confusion
with the nilpotent cone in Ving. It is proved in loc. cit. that Nyq is a disjoint union of
Ad(G) stable pieces Z; ,, labeled by pairs (J, w) where J is a proper subset of A and
w € W satisfies Supp(w) = A. In terms of our notation, Zg v = Xg a.w/Z+. We caution
the reader that N0/Z, is NOT Nyq but only a closed subvariety of Naq. More precisely,
N?/Z, is the union of the stratas Zg ,, for Supp(w) = A. On the other hand, the G-orbits
in the complement A" — A? are not visible in the wonderful compactification.

2.2.12. Discriminant divisor. Recall that on T we have the discriminant function

Disc(t) := H(l —a(t))

aed

which is W-equivariant and descends to a regular function on the Steinberg base
¢ :=T/W. We extend the function Disc to a function Discy on Ty = (T x T)/Zg by

Discy (11, 1) := 2p(t1)Disc(zy).

Then Discy extends to a regular function on Ty, which further descends to a regular
function on €. The vanishing locus of Disc; is a principal divisor on €4 which we call
extended discriminant divisor and denote by ®.

From the definition, we see that Disc is an eigenfunction for the Z-action on Ty and
¢4, with eigenvalue 2p. Hence the subschemes ® are Z -invariant.
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Fort, =@, t™ Y e Tgiag C T4, we have

Di(ty) = 20() [] A —a@)—aG™")

acd

=D T a=am)®. (2.4)

aed

For each € &, Dy := (1 —a(t))? extends to a polynomial function on Taiag = A",

2.2.13. Adjoint orbits in extended Steinberg fiber. An element y € Ving is called

semisimple if it is G-conjugate to an element in T,. Let Ving be the subset of Ving
consisting of elements that are both reqular and semisimple.

Lemma 2.2.14. The centralizer of any semisimple element y € Ving in G is a Levi
subgroup of G.

Proof. We may assume that y € T} so that y =te; ; for some t € T, and idempotent
61,].

For any g € G, we have gyg~!

= y if and only if
t~'gter 87 =ery.

By the description of the stabilizer of e; ; under the action of G4 x G4, we see that
g € (G4)y if and only if the following two conditions are satisfied:

o (17141, 8) € Py x Py;

o 5(t7"g0)8-(9)~" € (Ly)aerTrs-

Here M :=INJOUJC. Since t € Ly, the first condition implies that g € L. Since the
roots in 7 NJ? and J¢ are orthogonal to each other, the second condition implies that
(G4)y is the subgroup of Ly generated by Ty, L e and the centralizer of ¢ in L ;0. This
shows that (G ), is a Levi subgroup of G and hence G, is a Levi subgroup of G. [

Lemma 2.2.15. For any closed point c € €, the fiber XJ:l(c) is connected and
equidimensional of dimension dimG —r. The open Ad(G)-orbits in X_Il(c) are precisely
the regular conjugacy classes in XII(C). On the other hand, there is a unique closed
Ad(G)-orbit in XII(C) which is also the unique semisimple conjugacy class in X_;l(c).

Proof. By Corollary 2.2.6, x4 is flat. Hence X_Il(c) is equidimensional of dimension
dim G —r. Since x4 is the invariant quotient by the reductive group G, there is a unique
closed orbit in XJ:] (¢). This closed orbit is connected since G is connected. Consequently
Xll(c) is also connected.

The regular conjugacy classes in X;l (c) are locally closed subsets of the same dimension
as le(c). Hence they are precisely the open Ad(G)-orbits in XII(C).

Finally by [25], closed Ad(G)-orbits are precisely the semisimple conjugacy classes. [

Unlike the group case, there might be more than one regular conjugacy class in
an extended Steinberg fiber XJ:l(c), as we see in Proposition 2.2.9 for the nilpotent
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cone N = X;l (0). On the other hand, regular semisimple conjugacy classes are the only
Ad(G) orbit in the extended Steinberg fiber they live in. We give another characterization
of regular semisimple conjugacy classes using the discriminant function Disci. The
following is a generalization of [3, 2.19].

Proposition 2.2.16. Denote T_+reg ::T_+ﬂVianeg, For any y € Ty, the following are
equivalent:

(1) y e T4

(2) Discy(y) #0;

(3) The map q : Ty — € is étale at y;
(4) G, =T.

Proof. (1) = (2): Suppose y € T_+reg. By Corollary 2.2.7, we have y € Vin% NT,. After
conjugation and multiplying by the center Z,, we may assume that y € Tiag- If
Disc4(y) = 0, then there exists o € & such that Dy(y) = 0. This implies that y lies
in the closure of the diagonal embedding of ker(«). Since the centralizers of elements in
ker(a) have dimension at least r 41, the same is true for G, by upper semicontinuity
of centralizer dimension. This contradicts the assumption that y is regular and we must
have Disc4(y) # 0.

(1)&(3)<(4): Since €, = T, //W, the finite cover ¢ : Ty — €, is étale at y if and
only if the stabilizer of y in W is trivial, which is equivalent to the fact G, = T since G,
is a standard Levi subgroup of G by the proof of Lemma 2.2.14.

(2) = (1): Let V C Ty be the open subset where Disc. is nonzero and we need to show
that V =T, -. In the implication ‘(1) = (2)’ we proved that T, - C V.

Consider the stratification of T, induced by the Tyg-orbits on Ag = A”. The open
strata is T, the unit group of 7. The codimension 1 stratas are described as follows:
for each 1 <i <r, let O; be the codimension 1 strata consisting of x € Ty such that
the ith coordinate of a(x) vanishes and the other coordinates are nonzero. Consider
the complement F :=V \T_+reg, which is a closed subset of V. It is a classical fact that
FNTy =@. Also, we have eg a € T_+reg by direct calculation of its centralizer. Hence
ew. A lies in the closure O; for all 1 <i < r. This shows that the generic point of ©; lies
in ﬂmg for all i, which implies that F has codimension at least 2 in Ty. But by the
equivalence ‘(1)< (3)” we just proved and purity of branch locus (see, for example [30,
Tag 0BMB]), the complement T\ T+ is pure of codimension 1 in T . This forces F,
an open subset of T, \ T+ £ to be empty and hence V = T+reg O

Corollary 2.2.17. Ving = X;1(¢+\©+). Moreover, G acts transitively on each fiber of
X+ over €L\ D,.

Proof. By Proposition 2.2.16, we have Vin§ C x (Qf+ \Dy).

Let c € €4 \D4. By Lemma 2.2.15 and Prop051t10n 2.2.16, the unique closed orbit in
X_Il(c) is also open. Hence x ~!(c) is a single Ad(G)-orbit consisting of elements that are
both regular and semisimple. This proves the inverse inclusion. O
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For this reason, we denote €7 := €, \ ©, and call it the reqular semisimple open subset
of Q:+ .

2.2.18. Extended Steinberg section. For each S-Coxeter element w € Cox(W, S) (cf.
Definition 2.2.1), each choice of representatives §; € Ng(T) of the simple roots s;,
Steinberg defines a section €* : €z — G of the adjoint quotient map xg : G — €g.
Moreover, it is shown that the equivalence class of €* depends neither on w nor the
choices §;, see [31, 7.5 and 7.8]. Here we say that two sections €, €’ are equivalent if for
all a € €, €(a) and €'(a) are conjugate under G.

Following [3], we extend the Steinberg sections € to the Vinberg monoid Ving as
follows. For each (b, a) € €, = A* where b € Ag = A", define a map

el : ¢, — Ving

by €¥ (b, a) := €”(a)s(b) where 5 : Ag — Ving is the section of the abelianization map o
defined in §2.1.

Proposition 2.2.19. The map €Y is a section of the adjoint quotient x4 : Ving — €.
Moreover, the image of €} is contained in Vinrgg.

Proof. The first statement is [3, Proposition 1.10]. The second statement is Proposition
1.16 in loc. cit. O

Remark 2.2.20. For each w € Cox(W, S), the equivalence class of the extended section
€Y is independent of the choice of representatives s; of the simple reflections. However,
for two different w, w" € Cox(W, S), the sections €} and ef are not equivalent since, as
we will see, €Y (0) and e}_’/ (0) are not conjugate.

Next we examine the interaction of the extended Steinberg section €} with the action
of the central torus Z.

To this end, we drop the semisimple simply connected assumption and allow G to
be any connected reductive group. Then the adjoint action of G,q on Vingse induces an
action of G on Vingse which we also denote by ‘Ad’. Moreover, in the following, we will
only consider the extended Steinberg base for the group G*¢ and to ease notation, we
denote it simply by €. In other words,

¢, := Vingse//Ad(G*®) = Vings//Ad(G).

The central torus Z¥ = T* acts naturally on Vingse and € such that the morphism
X+ : Vingse — €, is T5¢-equivariant. Hence x4 induces a morphism between stacks

[x+1 2 [Vings/(Ad(G) x T)] — [€1/T*]. (2.5)

We would like to see if €} induces a section [x4]. It turns out that this is not true
in general. To remedy it we consider the homomorphism v : T5 — G,q defined as the
following composition

We

VT 2 Gl S GF — G, (2.6)
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where the first arrow is we := (@1, ..., ®,), the second arrow is induced by the canonical
section of the abelianization o (cf. Equation 2.1) and the third arrow is the canonical
quotient morphism.

Consider the action of T x T*¢ on Vingse where the first copy of T acts by composing
¥ with the adjoint action of G,q and the second copy of T5¢ acts as central torus.
In [3, Proposition 1.11], by examining the action on weight vectors of fundamental
representations, it is shown that for all a; € €4 and z € T we have

¥z ay) =z 5(we(2))ef (ap)s(wa(2) 7.

This shows that € is equivariant with respect to the diagonal embedding 7°¢ — T x T*¢
and hence induces a morphism

[€4/T™] — [Vingse /9 (T*) x T*].

If G = Gyq, then this leads to a section [€}'] of [x4]. In general, let ¢ = |Z(Gyer)| be the
order of the center of the derived group Gger. Then by extracting cth roots, we would
get a lifting Y] : T% — Gger C G of . More precisely, (] is defined by the following
commutative diagram

Tsc Vi) s G

L]
Ts¢ L Gad

where the left vertical map is raising to cth power.
The cth power map T — T3¢ induces a morphism between classifying stacks
BTS¢ — BT*°. Base changing [x+] along this map, we obtain a Cartesian diagram

[Vings/(Ad(G) x T%)]c] — [Vingse/(Ad(G) x T5)]

[X+][(7]J J/[XJr]

(€4 /T [€4/T%]

where on the left, the T5¢ action is the composition of the cth power map and the usual
action.

Proposition 2.2.21. The map € induces a section
€V 1e + [€4/T* 1) — [Vingse /(AA(G) x T*)]¢)
of [x+lic1 whose image lies in the open substack
[Vings /(Ad(G) x T%)]e.
Proof. By what we have discussed, €} induces a morphism

(€4 /T*1 = [Vingse /Y (T™) x T™]
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where on the right, the second copy of T3¢ acts by composing the cth power map and
the usual action. Since ¥(T*¢) C G, there is a canonical morphism

[Vingse /Y1e(T*) x T*] — [Vingse/(Ad(G) x )]

Composing the two morphisms above we obtain the morphism €Y (] with the desired

property. O

2.3. Regular centralizer for the group

In this section, we let (G, G’) be a pair of connected reductive groups equipped with
an isomorphism of their derived groups Gag = G);. Assume moreover that the derived
group of G is simply connected. Then there is a natural adjoint action of G’ on G and
the action factors through G = Gag. Let € := G//Ad(G’) be the invariant quotient.
Then there is a canonical isomorphism € = T/W. The natural map T — € is finite
flat and its restriction to € is a Galois étale cover with Galois group W.

Consider the centralizer group scheme I over G defined by

Ig :={(g,x) € G' x G|Ad(g)x = x}.

In other words, the fiber of I’ over x € G is the centralizer G’, of x in G’. Since the derived
group of G’ is simply connected, G’ is connected for semisimple x € G. If moreover
x € G™ is regular semisimple, then G, is a maximal torus in G’. More generally, the
restriction Ig/|gree to the regular open subscheme G™¢ is a smooth commutative group
scheme of relative dimension dim(7'). The following lemma is the group version of [23,
Lemme 2.1.1].

Lemma 2.3.1. There exists a unique smooth commutative group scheme Jg' over €g such
that we have a G’-equivariant isomorphism

(X*Jg)gre = Igr|Gree.
Moreover, this isomorphism extends uniquely to a homomorphism x*Jg — Ig .

Proof. The proof of [23, Lemme 2.1.1] generalizes verbatim to our situation. For the last
statement, we use the fact that the complement of G™ in G has codimension at least 2,

c.f. [31]. O
Fix a maximal torus 7/ C G’. Consider the Weil restriction of the torus 7/’ x T on T
to Cg:

g :=T7/eq (T’ x T).
In other words, for any €-scheme §, we have
Mg (S) =Homz (S xc T, T' x T).

The diagonal action of W on T’ x T induces an action of W on Ilg. The fixed point
subscheme of I'IX;V is a closed smooth subscheme of Il since the characteristic of the
base field does not divide the order of W.

Proposition 2.3.2. There exists a canonical open embedding Jg — Hg,
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Proof. We follow the argument for the Lie algebra case in [23, §2.4]. First we define a
morphism J — I'IVGV. By adjunction, this is the same as giving a morphism ¢*J — T x T
where ¢ : T — € and we view T x T as a constant group scheme over T. We construct
this morphism by descent along the smooth morphism 38 : G™¢ — T which sits in the
Cartesian diagram

éreg 9 Greg

T—q>Q:G

Hence it suffices to construct a G-equivariant morphism (}3™®)*¢*Jg — T X G™e. The
upshot is that for all x € G and Borel subgroup x € B C G, we have I, C B by the
argument of [23, Lemme 2.4.3]. Hence when composed with the quotient B — T, we
obtain a map I, — T depending on the choice of Borel B containing x. Thus we
get the desired morphism (3™8)*q*Jg = ¢*Igreg — T X G™¢ which is G-equivariant by
construction.

To show that the morphism Jg — HVGV constructed above is an isomorphism, it suffices
to show the isomorphism over an open subset of € whose complement has codimension
at least 2.

For each simple root o € ®T, let T, be the kernel of «, which is a subscheme of
codimension 1 in T. Then the discriminant divisor ® C € is the union of ¢(7y) for all
simple root «. Let T, C T, be the open subscheme consisting of points that does not lie
in Tg for any B # . Then

esul | e
aedt

is an open subset of € whose complement has codimension 2. It follows from the
construction that it is an isomorphism over €. Hence it remains to show that Jg — HX;V
is an isomorphism when restricted to g(7}) for each positive root «.

Let t € T; and we will show that J — HZ;V is an isomorphism in an étale neighborhood
of t. Let Gy be the centralizer of T, in G and &g, its adjoint quotient. Then the natural
morphism 7y : €g, — € is étale in a neighborhood of g, (¢) where g, : T — &g, is the
natural map. This implies that in an étale neighborhood of ¢4(#) the group schemes
Hg x¢ €g, and l'[sc‘;‘a are isomorphic.

There is a natural open embedding G™8 NG, C Gg°. Consider the open subset

€™ = %(G™ENGo).
As t € T;, one can choose a unipotent element u € G, such that tu € G**NG,. In
particular, g, (t) € @3 8 Tt is clear that

IG,|GeenG, = 161GrenaG, -
This implies that (n;‘JG)|€c_reg = (JGa)|¢c—reg.

In summary, the base changes of Jg and Hg to an étale neighborhood of ¢(f)
are isomorphic to the corresponding groups defined for the group G,. Note that by
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assumption, G4 is of rank 1 and has semisimple derived group, thus isomorphic to the
product of a torus with either GL, or SL;. So we are finally reduced to the case of GL,
and SLj, on which the isomorphism follows by direct calculation. O

2.4. Regular centralizer for Vinberg monoid

In this section we let G be an arbitrary connected reductive group over k. Let G*¢ be the
simply connected cover of its derived group. Then there is a natural adjoint action of G
on Vingse and the action factors through G,q.

Consider the centralizer group scheme Z over Vingse defined by

7 ={(g,v) € G x Vings|Ad(g)y = v}.
Then I|Ving§0 is smooth of relative dimension r. By [25], the fibers of T over Ving
are maximal tori in G. In particular, I|Vinr(s;sc is commutative. Hence I|Vin;§§c is also
commutative.
2.4.1. Open cover of regular locus. For each w € Cox(W, §), define 7% := (€})*Z. Then
JY is a smooth commutative group scheme on €. The morphism

cw: G x €4 —— Vings

(g.a) —— ge¥(a)g™!

factors through (G x €4)/J¥ and induces a quasi-finite morphism

- . TI€
Cw:  (GXx€L/TY — Vmci.
. R . . sc,reg ., . . . . . reg . - .
Since ¢y, is an isomorphism over G, ™, it is birational. Since Vings is normal, ¢, is an

open embedding by Zariski Main Theorem.
Denote by Vings the image of ¢,,, which is an open subscheme of Viane§c. The union
U .= UweCox(W,S) Ving is a Z3-stable and Ad(G)-stable open subset of Vinréi. By

reg

Proposition 2.2.9, we have U NN = N™¢. Applying Lemma 2.2.8 we see that U = Vin .
In other words, the sets Vings. form an open cover of Vinr(e;;gcz

Vinge = | J  Vinf. (2.7)
weCox(W,S)
We generalize Lemma 2.3.1 to Vingse:

Lemma 2.4.2. There is a unique smooth commutative group scheme J over €4 such that

. . . . e ~ . .
we have a G-equivariant isomorphism (X+g)*j = Tlyipee. . Moreover, this isomorphism
GSC

extends uniquely to a homomorphism x1J — I.

Proof. By the same argument as Lemma 2.3.1, for each w € Cox(W, §), J% is the unique
commutative smooth group scheme over €4 such that

T ) Ninv, = Tlvinw

Gs¢ Gse*

Next we show that for any w,w’ € Cox(W, S), the group schemes J* and T are
canonically isomorphic. It suffices to show that they are canonically isomorphic over
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certain open subset whose complement has codimension at least 2. From Lemma 2.3.1,
we have the isomorphism over the open subset Case. Over €%, each fiber of x4 consists of
a single Ad(G) orbit by Lemma 2.2.15. In other words, G acts transitively on each fiber
of x4 over €%. Hence Ving C Vings for all w € Cox(W, S). Thus by uniqueness of J"
we see that 7% and J¥ are isomorphic over (U

The complement of Cgse s the union of the closure of codimension 1 stratas in €.
Since the idempotent ey is regular semisimple and belongs each of the strata closure
we see that on each strata, the regular semisimple locus is nonempty open. Hence the
complement of Q:ij UCE C €, has codimension at least 2.

Consequently there is a unique commutative smooth group scheme J over €, which
comes with a unique isomorphism (ng)*j = Tlyspee. . We know from Lemma 2.3.1 that
GS¢

this isomorphism extends uniquely to a homomorphism between x7J and T over the
open subset G U Viane%C whose complement has codimension at least 2. Hence it extends
further to the whole space Vingse. O

Proposition 2.4.3. The classifying stack BJ acts naturally on [Vingse /Ad(G)]. The action
preserves the open substacks [Vin%sc/Ad(G)], [Vinrcefc /Ad(G)] and [Ving /Ad(G)] for each
w € Cox(W, S). Moreover, the morphism
[x{1: [Vings /Ad(G)] — &4
induced by x4 is a BJ gerbe, neutralized by the extended Steinberg section €Y.
The proof is the same as [23, Proposition 2.2.1].

Proposition 2.4.4. The number of irreducible components of the fibers of the map
ng : VinrgfC —- 4
is bounded above by |Cox(W, S)| and equality is achieved at N™& = (ng)_l(O).

Proof. The first statement follows from (2.7). The second statement is in
Proposition 2.2.9. O

Remark 2.4.5. Consequently, unless all simple factors of G*¢ are SL,, the action of BJ
on [Vinrg;gC /Ad(G)] is not transitive. In other words, [Vinrg%C /G] is not a BJ-gerbe, but
rather a finite union of BJ gerbes as in Proposition 2.4.3. This is different from Lie
algebra situation, cf [23, Proposition 2.2.1].

2.4.6. Galois description of universal centralizer. Let HTTC /¢+(T X T_j_c) be the
restriction of scalar which associates to any €, -scheme S the set
[ @=xTHs) = Homy—(S x¢, Ty, T x Ty).
T, /¢
Then W acts diagonally on ]_[ﬁ /¢+(T/ x Ty) and we consider its fixed point subscheme
w

Jh = HTxﬂ

T /€4
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The following is proved in [5, Proposition 11].

Proposition 2.4.7. 7! is a smooth commutative group scheme over €. Moreover, there
exists an open embedding J — J' whose restriction to €8 is an isomorphism.

2.5. Arc space of Vinberg monoid

In this section, we assume that G is semisimple and simply connected.
For each A € X,(Tyq)+, define the affine scheme Vin)(“; over Spec O by the following
Cartesian diagram

VinkG —— Ving x Ty

| ol

w

Spec O ——— Ag

where the right vertical arrow is the product of the abelianization map «ag and the
natural embedding T,y = Ag, the lower horizontal arrow corresponds to the point
@ "M e AG(0). Replacing Ving by its open subscheme Vin% in the above diagram,
we define an open subscheme Vin)é’0 C Vin)(‘;.

There is a stratification of the space of nondegenerate arcs of Ag D Taq by Taa(O)
orbits:

AcO)NTu(F)= || Tu@o .
reXy(Tad)+

The inverse image of Tq(Q) ~o* under the abelianization map is precisely L+VinAG (k).
In other words we get a stratification of the space of nondegenerate arcs of Ving D G4+
into G4 (O)-stable pieces:

Ving(O) N G4(F) = |_| LTVing (k).
)LGX*(Tad)+
Also we note that

LHvin% (k) = LT Vink (k) N Vind (0).

Lemma 2.5.1. For any g4+ € Gy(F), we have g4 € L+VinAG if and only if
a(gy) € @ WM T4(O) and the image of g4 in Gaa(F) belongs to

Gu(0)w*Gua(0) = | ) Gua(0)w"Ga(0).

neX(Taa)™
U<

Moreover, g4 € LJrVin)(”;’0 if and only if a(gy) € @YW T(O) and the image of g, in
Gaa(F) belongs to the double coset Gaq(O)w? Gaa(O).

Proof. The coweight lattice for T} can be expressed as
Xp(T1) = {(h1, 22) € X (Tag) X X (Taa) |21 + 22 € Xu(T)}-

For (A1, A2) € X«(T4), we have w*1*2) € L*Vin, if and only if
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o a(wP12)y ¢ WM T 1 (O) and
e The matrix p;rl_ (P22 ¢ End(V,,) has entries in O for all 1 <i <r.

Since a(w *1*2)) = w1, the first condition means that A; = —wq(%). Then the second
condition means that

((mwo(M), A2), x4) =0

for all 1 <i <r and all weights x4 in the G -representation p;ri. Since the weights of
the representation pcji lie in the convex hull of the W-orbit of the highest weight (w;, w;)
where W acts on the second factor, the above inequality is equivalent to

(—wo(A), @;) + (A2, w(w;)) = ((—wo(A), A2), (wi, w(w;))) = 0
for all w € W and 1 < i < r. This can be further reformulated as
A—w2), w;) 20

forallwe Wand 1 <i <r.
By the discussion so far, we have

L*Ving()NT(F)= | ) aC"®nr0)
HEXx(Taq)
Hdom <A
where ftgom denotes the unique dominant coweight in the W-orbit of u. As L*Ving is
stable under the action of G4+ (O) x G4+(0), it is a union of G4+(O) double cosets in
G (F). Thus by Cartan decomposition we get

L*Ving(k)= | | GOz PG (0).

ﬂeX*(Tad)Jr
H<A

Similarly we can get a description of L)‘Vin%. The difference is that we require furthermore
that p;ri (z Cwo):42)) have nonzero reduction mod @ for all 1 < i < r. Hence besides the
inequality (A —w(A2), w;) = 0 for all w € W and 1 < i < r, we require furthermore that
for each i, there exists w € W such that (A — w(Xy), w;) = 0. This condition means that
Ao is in the W-orbit of A and hence

LHVink (k) = GOy DN G (0).

From these descriptions the lemma follows. O

Lemma 2.5.2. Suppose

nz=b():= 113%()" w; — wo(w;)).

Then for all y,y’ € L+Vin)(‘;(k) having the same image in Ving(O/w"O), there exists
g € G1(O) such that y' = yg.
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Proof. The following argument is due to Zhiwei Yun. Let i — i* be the involution on
the set {1, ..., r} such that w;jx = —wg(w;). For each 1 <i < r, there is a natural pairing
between V; and V;+ such that for all x € G4, v € V; and v* € V;x, we have

(pi" (v, P (X)) = (0 + @) (@ (X)) (v, v*).

Thus for each x € G (F), under the natural pairing above, the lattice ,ol-+ x)V;(O) in
Vi (F) is dual to the lattice

(@i + @) (@)™ (9 Vir(O) C Vix(F).

Fory e L+Vin}(‘; C Ving (O), we have pi‘"(y)V,-(O) C Vi(O) forall 1 <i < r. Taking duals,
we get
Vi (0) C @~ *@it o) o (1) Vi (0).

In other words, we have shown that for all 1 <i <r,
@ M@ty (0) C pft()Vi(0) C Vi(O).

Thus if y and y’ have the same image in Ving(QO/@"O) for n > b(1), the lattices
,ol.+(y)V,-((9) and p;(y)V;(O) are the same and hence y’ = yg for some g € G (0). [

2.6. Local lifting property of extended Steinberg map

We review certain infinitesimal lifting property of the extended Steinberg morphism
x+ needed later in §4.4. This is based on some result of Gabber-Ramero in [11]. Our
exposition below follows the treatment in [5] and [36].

2.6.1. We start by recalling certain results in [11, §5.4]. Let A be a ring and B an
A-algebra of finite presentation. Let f : Spec B — Spec A be the natural morphism.
Choose a presentation B = P/J where P := A[X1,...,Xy] and J C P is a finitely
generated ideal. Then the map f is factored as the composition of a closed embedding
i:Spec B — AX and the natural projection p : AX — Spec A. Define the ideal

Ha(P, J) := AnnpExth(Lg/a, J/J?) C P

where LLg/4 is the cotangent complex of the morphism x. Notice that J C Ha(P, J).

Consider the ideal in B defined by Hp/a:= Ha(P,J)B = Hx(P,J)/J. Let
Xy :=Spec B/Hp/a be the closed subscheme of Spec B defined by Hp/a. We remark
that Hp s depends on the choice of presentation B = P/J. The following is [11, Lemma
5.4.2]:

Lemma 2.6.2. (1) For all B-module N, Hp,a annihilates Ext}g (Lpsa, N).

(2) The complement of Xy = Spec B/Hpsa in Spec B is the smooth locus of the
morphism x : Spec B — Spec A.

(3) For any A-algebra A’, let B = B4 A’ and f’: Spec B — Spec A’ be the induced
morphism. Define the ideal Hp /o C B' in the same way as above, using the
presentation of B" induced from B = P/J. Then we have HgjaB' C Hp a, or in
other words Xy C Xy xz7 Z'.
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2.6.3. When A = k[[w]], we define the conductor of f to be the smallest integer & such
that o’ € Hp/a. Note that the conductor depends on the presentation of B.

The next lemma is the key step in establishing the local lifting result. To state it
we let R be an artin local k-algebra with maximal ideal m and I C R an ideal with
I-m=0. Suppose A = R[[w]]. Let B= P/J be a finitely presented A-algebra and
f : Spec B — Spec A the induced morphism as above. Let fy be the reduction of f mod
m and /& > 0 the conductor of fp.

Lemma 2.6.4. Suppose n > h and o : Spec A/w" I — Spec B is a morphism such that the
composition f oo is the natural embedding Spec A/w™1 — Spec A. Then there exists a
section & : Spec A — Spec B of f such that the restriction of & to Spec A/w" I coincides
with o .

Proof. The obstruction of extending o to Spec A is an element w € Ext}g (Lp/a, ")
where we view @I as a B-module via the map ¢* : B — A/w"I. By the definition of
conductor h, we have wh € Hp/a+mB. By Lemma 2.6.2(1) and the assumption that
m-I =0 we see that @"w = 0. This implies that the image of w in Ext}g (Lp/a, "I
vanishes by noticing that the multiplication map @w” : @I — w”I can be factored as
the composition of the natural embedding @w”I < @" I and an isomorphism w”" "] =
@ I. Hence we get the desired lifting of the restriction of o to Spec A/@"~"1I. O

2.6.5. We apply the general discussion above to the situation where Spec A = €,
Spec B = Ving and f = x4+. Choose a presentation B = P/J where P = A[Xy, ..., Xn]
and J C P is a finitely generated ideal as above. Recall that we have the
discriminant divisor ®4 C €4 defined by the extended discriminant function Discy.
By Corollary 2.2.17, x4 is smooth over €, —®,. Hence x4 (Xy,) is contained in ©,
set-theoretically by Lemma 2.6.2(2).

Since D4 is a principal divisor, there exists a positive integer mo (depending on the
presentation B = P/J) such that x4 (X,,) C mp®4 scheme-theoretically. To state the
main result in this section, we consider an artin local k-algebra R with maximal ideal m
and let I C R be an ideal such that 7 -m = 0.

Proposition 2.6.6. Let § € Ving(R[[ww]]) and ag € €4 (k[[@]]) be the reduction mod m of
x+(8). Let d := val(a5®D4) be the discriminant valuation of ag (suppose that d is a finite
number). Then for any integer N > mod and any a € €L (R[[w]]) such that a = x4+(8)
mod w1, there exists y € Ving (R[[@]]) such that x4+ (y) =a andy =§ mod wN-mdy,

Proof. Consider the following diagram in which the right square is Cartesian
V¢ — Ving
Xa X+
Spec(R[[@ 1]/ N I) —— Spec R[[w]] —— €

Also, let x4 : Vay — Speck[[w]] be the reduction mod m of x,. Let & be the conductor
of x4,- By Lemma 2.6.2(3), we have Zsao C Vag N Ty, Since x4 (Zy,) C moD4, we have
h < mod. By Lemma 2.6.4, there exists a section y of x, such that the restriction of y
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to Spec R[[w 1]/ N "¢ coincides with 8. Thus the element in Ving(R[[z]]) determined
by y is the lifting we want. O

3. Kottwitz—Viehmann varieties

We fix a connected reductive group G. Let T C G be a maximal torus and A € X, (T)+
a dominant coweight. Let y € G™(F) be a regular semisimple element.

We study the following sets associated to the pair (y, A), which we both refer to as
Kottwitz—Viehmann varieties:

X} ={g € G(F)/G(O)|Ad(g)"(¥) € G(O)ym*G(0)}
X5+ ={g € G(F)/G(O)|Ad(®)"'(y) € G(O)ym*G(0)}

3.1. Nonemptiness

The first immediate question is when the sets X%, X Vgx are nonempty. To answer this we
need to recall the notion of Newton points and Kottwitz map.

3.1.1. Newton Points. Following [20, § 4], for each y € G(F)™, one associates a rational
dominant coweight v, € X *(T)a, called the Newton point of y. Let us recall its definition.
There is an integer e > 1 such that y is G(F,) conjugate to an element in T (F,). Consider
the W-orbit of its image in T'(F,)/ T (O,) = %X*(T). The unique dominant element in this
W-orbit is the Newton point v,. Here F, is the totally ramified extension of F of degree
e and O, C F, is its ring of integers.

Definition 3.1.2. The discriminant valuation for y € G(F)"™ is defined by
d(y) := valdet(Id — ad,, : g(F)/gy (F) — g(F)/g,(F))

where g is the Lie algebra of G and g, is the centralizer of y, i.e., the fixed locus of the
adjoint action ad,,.

Lemma 3.1.3. Let y € G(F)® and v, € Aé its Newton point. Let y € T(F)* be a
G (F)-conjugate of y such that val(a(y)) = 0 for all positive roots a. Then we have

diy)=2 ) val(a(y)—1) = (2p,vy)
aedt
where we have extended the valuation on F to its separable closure F.

Proof. From the definition we see that
d(y) =Y val(a(y)—1).
aed

Separate the sum over ® according to whether («, v,) = 0 or not, then we get

dyy= ) vall@) =D+ Y (v (3.1)
aed aed
(o, vy )=0 (or,vy) <0
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By our assumption that val(x(y)) > 0 for & € ®*, the first term in (3.1) equals to

2 ) valla(y)—1D)=2 ) val(a(y)— 1)

aedt aedt
(o, vy)=0

while the second term of (3.1) equals to

D davy) == D ovy) =—(2p.vy).

aed— acdt

Hence the lemma follows. O

3.1.4. Kottwitz map. Let 71(G) := X4«(T)/X+(T*°) be the quotient of the coweight
lattice by the coroot lattice and pg : X4«(T) — 71(G) be the canonical projection.
Following [20], one defines a group homomorphism

kg : G(F) = m1(G)

which we refer to as Kottwitz homomorphism. Note that in loc. cit., this map is denoted
by wg. As pointed out by the referee, the map « can be understood more explicitly as
follows: let G(F); be the subgroup of G(F) generated by all parahoric subgroups, then
kG induces an isomorphism G(F)/G(F); = m1(G).

Lemma 3.1.5. Suppose that kG(y) = pc(A). Then there exists an element y, € G (F)
such that

e the image of yy in Gaa(F) coincides with the image of y in Gaa(F);
e a(yy) = w W) e T\ (F)NAgse(O)  where rag € Xo(Tag)T is  the image of
re X (DT,

Moreover, yy, is uniquely determined up to multiplication by an element in Zgsc(F).
Proof. Let yuq € Gaa(F) be the image of y. Choose any y € G¥(F) that maps to yaq.
Suppose a(y) € wHT(O) for u € X«(Taa)T. By the assumption kg (y) = pg(A), we have
dad — i € X(T). Let yy := w*d ™1 where we view w8~ € T(F) = Z,(F) as a central
element in G% (F). Then we have a(y,) = @ ~%0(ad) and the image of y; in Gaq(F) equals

to Vad-
Suppose yi, ¥, € G¥(F) both satisfy the requirement of the Lemma. Then
y){yA_l € G*°(F) and its image in G,q(F) is the identity. Hence y/{y)\_l € Zgse(F). O

Now we can state the nonemptiness criteria.

Proposition 3.1.6. The following are equivalent:
A .
(1) X, is nonempty;
(2) Xf)” is nonempty;

(3) k6 (y) = pc(A) and v, <qg A, i.e., A — v, is a Q-linear combination of simple coroots
with non-negative coefficients;

(4) k6 (y) = pc(A) and x4 (v») € €L (O), where y, € G (F) is defined in Lemma 3.1.5.
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Proof. The implication ‘(1) = (2)’ is tautological. The implication ‘(1) = (3)’ is done
in [20, Corollary 3.6].

(3) = (4): Let F’/F be a finite extension of degree e so that y (and hence y;) is split in
G(F).Let w’ = @ ¢ be a uniformizer of F' and O’ = k[[w']] C F’ be the ring of integers.
Then e- v, € X«(T)4 and y is G(F')-conjugate to an element in (z)**» T(O’). From (3)
we deduce that y, is G (F')-conjugate to an element in Ving (O'). Therefore

X+ () € €L (ONNCL(F) = €4 (0).

(2) = (4): Let g € X,,@‘. Then Ad(g)~!(y) € G(O)w"G(O) for some pu € X,(T), with
< A. Then we have kg(y) = pg() = pg(A). In particular, we can define the element
¥). € GX(F) as in Lemma 3.1.5. Then by Lemma 2.5.1 we have

Ad(g)~' (1) € L*Vings C Vings(O).

Thus x+(yx) € €4(0).

(4) = (1): Let a4 := x+(0)- So a € €.(O) by condition (4). Then for any Coxeter
element w € Cox(W, S) (cf. Definition 2.2.1), we have €} (a) € Vin%sC (O). It remains to
show that there exists & € G(F) such that Ad(h)~'(y,) = €;’(a) (because then /1 defines
a point in € X)A/) To see this, notice that the transporter from y to €{(a) in G is a torsor
under the torus G,, over F. Any such torsor is trivial since H L(F, G,) by a theorem of
Steinberg (using the fact that the residue field k is algebraic closed). Thus the transporter
has an F-point h € G(F). O

3.2. Ind-scheme structure

3.2.1. First approach. We will equip the sets X )); and X fk with an ind-scheme structure.
We present two approaches, one based on the original definition, the other using Vinberg
monoid.

Let Grg := LG/LTG be the affine Grassmannian for G, which are known to be
ind-projective ind-scheme over k. The positive loop group L*G acts by left multiplication
on Grg. Let (LG); := LYGw”*L*G (respectively (LG)<y) be the k-scheme whose set of

k-points is G(O)w*G(O) (respectively G(O)w*G(O)).
Definition 3.2.2. Let X)f be the k-functor which associates to any k-algebra R the set

X}(R) = (g € Grg(R)g"'yg € (LG)A(R)}.

Also, we define the k-functor Xy@‘ by replacing (LG); with (LG)«; in the above definition

By definition, Xy@” is a closed sub-ind-scheme of Grg and X]f is an open sub-ind-scheme
of X5, Let X, (respectively X5*) be the reduced structure of X (respectively X5h.

3.2.3. Second approach. Now we use Vinberg monoids to define certain analogue of
affine Springer fibers, which turns out to be isomorphic to Kottwitz—Viehmann varieties.
Recall that € denotes the extended Steinberg base for Vingse. Let a € €. (O) NCL(F)™
and suppose that
Ba) € " *IT4(0) C Ags(0) N Taa(F)
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where Ayq € X4(Taa) is the image of A € X, (T). Moreover, let yy € G¥(F) be an element
such that x4 (y4) = a.

Definition 3.2.4. The generalized affine Springer fiber Spg,,, associates to any k-algebra
R the set of isomorphism classes of pairs (h,t) where h is the horizontal arrow in the
following commutative diagram

Spec Rl[@]] — [Vings /Ad(G)]

~—_|

U
and ¢ is an isomorphism between the restriction of & to Spec R((zw)) and the composition
Spec R((w)) RAN Vingse — [Vingsc/Ad(G)].

Also, we define k—functorres S pOG’ e (respectively S prGGfger, S pg’ y+) by replacing Vingse with
Vind. (respectively Vings, Vi, c.f. §2.4.1).
e . . reg 0
By definition Spg,,, is a closed sub-ind-scheme of Grg and Spg’wr C SpG’y+ C SpG’y+

are its open sub-ind-schemes. We let Spg . (respectivelr};gSp%H, SprGe%y+, Spg,w) be
0 reg G 1
k-points of SPG., (respectively SpG’y+7 Spgﬂ) consist of g € Spg; ,,, such that g7 yxg €

Vin(();Sc (O) (respectively Vianef?TC (0), Ving« (0)).
The isomorphism classes of Spg ., (respectively Sp%’wr, Sp

the reduced structures of Spg,,, (respectively Sp% e Sp Spé H). Concretely, the

¢,
Gag}’+’
on a = x4(y4), so we will also denote them by Sps , (respectively Sp(();’a, SprGe’ga7 SPG.a)-
If the group G is clear from the context, we will drop it in the notation.

Next we relate the two definitions given above. Let (y, A) be as in the beginning of this
chapter. Suppose that the ind-scheme X )); is nonempty. Then by Proposition 3.1.6 we have
kG(y) = pc(A) and a := x4 (yx) € €4 (O) where y, € GY(F) is defined in Lemma 3.1.5.
It is not hard to see that

Spg’ﬂ) only depend

X, =Sp) and X3 =Sp,.
Conversely, let a € €. (O)NE&L(F)™ and suppose that
Ba) € @ P T(0) C Ags(0) N Toa(F)

for some A € X.(Taa)+. Let ¥ € Gaa(F) be the image of €¥(a) € G4(F)NVin(0)
under the natural quotient G4 (F) — Gaq(F). Then we have

~ <O ~ v
Spa = Xyl;n and Sp(l = Xyaw.

Note that the isomorphism class of Xfwk and X)X/w does not depend on the choice of
w € Cox(W, S).
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3.3. Symmetries

Assume X)); is nonempty. Then by Proposition 3.1.6 we have kg (y) = pg(A) and
a = x+(12) € g (F)NCL(O).

Let J; be the commutative group scheme over Spec O obtained by pulling back J along a :
Spec O — €. Since a is generically regular semisimple, there is a canonical isomorphism
LJ, = LGg which allows us to identify the positive loop group L*J, as a subgroup of

LGg. Consider the quotient group
Py :=LJ,/LYJ, = LGY /LY,

In other words, P, is the affine Grassmannian of J, classifying isomorphism classes of
J,-torsors on Spec O with a trivialization of its restriction to Spec F.
The loop group LG?, acts naturally on X)); and this action factors through P,. Using

the isomorphism XJA/ = Spg, the P, action is induced by the B.J action on [VGOSC /Ad(G)]
in Proposition 2.4.3. Moreover, P, preserve the open subspaces Sp,t and SpY¥ for each
w € Cox(W, S).

Proposition 3.3.1. For each w € Cox(W, S), Spy is a torsor under P,.

Proof. This is a consequence of 2.4.3. [

Remark 3.3.2. Unlike the Lie algebra case, Spy° may not be a P,-torsor in general. See
the discussion in §3.9.10.

Let R, be the finite free O-algebra defined by the Cartesian diagram

X, :=Spec R, —— T (3.2)

| ]

SpecO —4—— ¢

Let Rz be the normalization of R, and )?Z := Spec RZ. Then W acts naturally on the
b
(O-algebras R, and R,.
Let J[rf be the finite type Neron model of J,. Hence Jab is a smooth commutative group
scheme over O such that Jg (F)=J,(F) = G?,(F ) and Jab (0) is the maximal bounded

subgroup of Gg (F).

Lemma 3.3.3. There is a canonical isomorphism

w
nlJ]rxx;
RY/O
Proof. The proof is the same as [23, Proposition 3.8.2]. O
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Corollary 3.3.4. Lie(P,) = (t®x (R)/R))".

Proof. The quotient L"’Jab /L1 J, is an open subgroup of P,. Hence we have isomorphism
of O modules
LieP, = Lie(L*J))/Lie(L™ J,).

On the other hand, by 2.4.7, we have
LieL*J, = (t® R)"

and by 3.3.3,
LieL™J? = (t@x RV,

Hence the Corollary follows. O

3.4. Admissible subsets of loop spaces

In this section, we closely follow [12, §5].

Let M be a standard Levi subgroup of G and P = M N the standard parabolic subgroup
where N is the unipotent radical of P. Let Z(M)° be the neutral component of the center
of M. Then Z(M)" is a subtorus of T. Let ®y be the set of roots of Z(M)? acting on N
and @y, the corresponding set of coroots. For each o € @y, let Ny be the corresponding
root subgroup. Then each N, is isomorphic to a product of several copies of G, and is
preserved by the adjoint action of M. Denote by 8y the half sum of elements in AY,.

For each o € Ay, denote hty(«) := (8n, o). Let [ = maxyeo, hty(e). Foreach 1 <i </,
let N[i] be the subgroup of N generated by root groups N, with hty(«) > i. Also
we denote N[/+ 1] = 1. Then N[1] =N and for each 1 <i <s+1, N[i] is a normal
subgroup of N and the successive quotients N(i) := N[i]/N[i + 1] are commutative
groups isomorphic to products of some copies of G,. Let LN and LTN be the loop
space and arc space of N. For each integer n > 0, let N, := ker(L™ N — L} N). Then
{Nn}n>0 form a decreasing sequence of compact open subgroups of LN.

For each y € M(F)NG(F)™, consider the map

fy LN ——— LN (3.3)

u|—>u_1yuy_l.

Then f, preserves the root subgroups N, and hence each normal subgroup N[i]. In
particular, f), induces morphism f,[i]: LN[i] — LNJ[i] and f, (i) : LN{i) — LN{i).

For each 1< i </, denote r; := valdet(f) (i)). Note that there is a M-equivariant
isomorphism N (i) = LieN (i) from which we see that

r; = valdet(ad, : LieN(i)(F) — LieN(i)(F)).
Consider the following invariant of y:
ry(y) := valdet(ad, : LieN(F) — LieN(F)). (3.4)

Then we also have ry(y) = Zle ri.
Now assume that y € M(F)4, we have f,(U,) C U, for all n > 0.
Let fo,, : LN — Lt N be the restriction of f, to the arc space LT N.
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I+1 .
-rj we

Lemma 3.4.1. For any 1 <i <I+1 and any positive integer n such that n > Zj:l

have N[il, C f, (LY N[i]).

Proof. We prove by descending induction on i. The case i =1+ 1 is trivial since
N[l + 1] =1. Assume the statement is true for i+ 1. Let x € N[i],. To show that
X € fy(L+N[i]) it suffices to find u € N[i](O) with x *u = 1, for then f,,(u’l) =x.

Let x; € N(i), be the image of x. Since val det(f, (i)) = r;, we have

@' N(i)(O) C fy (i)(N(i)(O)).

Hence there exists wu; € N[i]l,—, such that x;*u; =1 in N(i)(O) and hence
x*u; € N[i +1],—,. By induction hypothesis, there exists v € N[i +1](O) such that
(x*u;)*v=1. Then u = u;v satisfies x xu = 1. O

A subset of LT N is admissible if it is the pre-image of a locally closed subset of L;f N
for some n. A subset Z of LN is admissible if it is conjugate under G(F) to an admissible
subset of LTN.

Lemma 3.4.2. Let V be an admissible subset of LYN. Let n > ry(y) be a positive integer
such that V is right invariant under N,. Suppose moreover that V C fo,(LTN). Then
the set fo_)}(V) is admissible and right invariant under N,. Moreover, fo, induces a

smooth surjective map
foy(V)/Ny — V/N,

whose fibers are isomorphic to AT

Proof. Let fo, : LfN — L;7N be the map induced by fp,. Since V is right invariant
under N,, a straightforward calculation shows that fof;(V) is also right invariant under
N,. Denote V := V/U,. Then we have fof}}(V)/U,, = fo_;} (V), a locally closed subset
of LY N. In particular, fOT;(V) is admissible. Since V C fo,, (LT N), the induced map
fo_;} (V) — V is surjective and it remains to show that it is smooth with fibers isomorphic
to A7),

Denote H:=L}N, H[i]:=L}Y(N[i]) and H(i):=L;(N(i)). Then for each
1<i<!l+1, H[i] is a normal subgroup of H and H[i]/H[i+ 1] = H(i). For each
1 < j<n, we define a normal subgroup H; :=ker(H — L;.FN) of H; and similarly
we define normal subgroups H[i]; (respectively H(i); = @/ H(i)) of H[i] (respectively
H{i)).

Consider the right action of H on itself defined by v+ u := u~'vyuy ~! foru,v € H(k) =
N(O/@"O). Then fo,y(u) = 1%u and hence fp is the orbit map at 1 of the H-action. In
particular, all fibers of fo,y are isomorphic to the stabilizer S := fof;(l).

Now we take a closer look at the structure of the stabilizer S. First note that the
action * induces actions of H[i] and H (i) on themselves. Let S[i] (respectively S(i)) be
the stabilizer of 1 under the H[i] (respectively H (i)) action.

We claim that for all i, the canonical homomorphism S[i] — S(i) is surjective. Let
s € S(i) and choose a representative h € H[i] of s. Since

S(i) = ker(fo, (i) C @" " H{i)
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we have h e Hlil,—,, and 1%xh e H[il,—, NH[i+1] = H[i+1],—,. By assumption
n—ri = ZIJJ;I,H rj, then we can apply Lemma 3.4.1 to obtain an element A’ € H[i +1]
such that 1% (k') = 1. Thus hh’ € S[i] maps to s € §{i) and the claim follows.
The kernel of the surjective homomorphism S[i] — S(i) is SEINH[i +1] = S[i +1].
Moreover, we have
S(i) = (foli) (@ "N (i) /w"Nii) = A"

From this we see that S = A’V%) ag a scheme. O

The proof of the following lemma is inspired by [20, Lemma 3.8].

Lemma 3.4.3. For any n > ry(y), we have f;l(N,,) C Nu—ry@y)-
Proof. Let u € N(F) with f), (u) € N,. We will show by induction that
u e N[i|(F)- N"—Zj<; re
The case i = 1 says u € N[1](F) = N(F) which is clear and the case i = s+ 1 gives the
lemma since Y ;_;ri = rn(y) and N[s+1] = 1.
It remains to finish the induction step. By induction hypothesis we have u = u;v with
u; € N[i](F) and v € N,,,ZM, r;- By assumption,
Sy = fy@iv) =v"uyuiy ™ yoy T e N,
from which it follows that
u yuiy™ € NINF)No-No- v~y ™) CNlilyoy, e
Let u; € N (i) be the image of u;. Then we have
FAD@) € Ny, 1,
Since valdet(f) (i)) = r;, we get that i; € N<i)n—Z_;<i+1 v and hence
u=u;ve N[i+ 1](F)'Nn—zj<i+1rj'
This finishes the induction step. O

Proposition 3.4.4. Let Z be an admissible subset of the loop space LN. Then fy’l(Z) 18

admissible and there exists a positive integer m such that for all n > m, fy_l(Z) and Z
are right invariant under the group N, and the map

I Z) /Ny — Z/N,

induced by f), is smooth surjective whose geometric fibers are irreducible of dimension
rn(y).

Proof. Let ng > r(y) be a positive integer. Choose a coweight o € X(Z(M)?) such that

ZH0 = Ad(@ ") (Z) C Nyy.
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Then by Lemma 3.4.3 we have
£,71(2) € ;7N (Nug) © Nug—r(yy C LTN.
Hence in particular
Ad@@")(f, 1 (2) = £ (2" = fy7 (2.

Moreover, since Z*0 is an admissible subset of LT N, fo_l(Zl‘O) is an admissible subset of
LTN by Lemma 3.4.2. This shows that fy’1 (Z) is admissible.

Let n1 > ng be a positive integer such that Z*0 and fy_1 (Z"0) are invariant under right
multiplication by Nj,. For all n > ny, since the map f, commutes with conjugation by
who, Z and fy_l(Z) are right invariant under the group N, "’ := @ 0N, @ "0, Then we
get the following commutative diagram

Y2 /N —— Z/N,

Lok

£, (2" /N, —— ZM /N,

where the horizontal arrows are induced by f, and the vertical arrows are isomorphisms
induced by Ad(w#?).

By Lemma 3.4.1, Z*0 C Ny, C f,(LTN). Therefore we can apply Lemma 3.4.2 to
conclude that the lower horizontal map is surjective smooth whose fibers are isomorphic
to A’ Hence the same is true for the upper horizontal map.

Let m be a positive integer such that for all n > m, N, D NJ/MO for some n’ > ny.
Consider the following diagram

fy—l(z)/Nl;Mo - Z/Nr;#o

J |

[ (2)/Ny ——— Z/N,

The two vertical maps are smooth surjective with fibers isomorphic to the irreducible
scheme U,/ Un_,“ % and the upper horizontal map is smooth surjective with fibers
isomorphic to A’¥¥) as we have just seen. Hence the lower horizontal map is smooth
surjective with irreducible fibers of dimension ry(y). O

3.5. The case of unramified conjugacy class

In this section, we assume that y € G(F)™ is an unramified regular semisimple element.
Since the residue field k is algebraically closed, after conjugation we may assume that
y e T (O)NG™(F), where p = v, € X,(T)4 is the Newton points of y. In this case,
we have G)(Z = T. By Lemma 3.1.3 the discriminant valuation for y is

d(y) =2 ) valla(y) = 1)~ 2p. p).

acdt
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We will apply the results in the previous section to the case N = U is a maximal unipotent
subgroup. In this case, the corresponding invariant for y is

ry)=ru(y) = Y valle(y)—1) = %d(y)ﬂp,m (3.5)
aedt
Fix a dominant coweight A € A such that u < A. By Proposition 3.1.6, this implies that
X; is nonempty.

3.5.1. Relation with MV cycles. Let Y;‘ be the locally closed sub-ind-scheme of X;
whose set of k-points is
Y (k) = {u € U(F)/U(O)|Adw) "y € GO)m*G(0)).

To understand the structure of Y;‘, we use the map f, : LU — LU (cf. (3.3)). In the
following, we denote K := LTG. Then we have

Y, =(f, ' (Ko" Ko *NLU)/L*U.
Recall the Mirkovic—Vilonen cycles in the affine Grassmannian:

S,NGry = (LUz"KNKo"K)/K.
From this description we get an isomorphism

(LUNKo*Ko ) /o LT U * —— S, NGr;, (3.6)

Ut uwh.

In summary, we have the following diagram

7N (Ko Ko =N LU) Y KerKorALU

l l

Y) S, NGry

where the left vertical arrow is an L+ U-torsor and the right vertical arrow is a torsor
under the group wH*LTUwm ~H.

Theorem 3.5.2. Y;‘ is an equidimensional quasi-projective wvariety of dimension

(p, A) + %d(y), where d(y) is the discriminant valuation, cf. Definition 3.1.2. Moreover,
the number of irreducible components of Y)f‘ equals to my,, the dimension of p-weight

space in the irreducible representation V, of G with highest weight .

Proof. Apply Proposition 3.4.4 to the admissible subset Z = Koo* Ko "* N LU of LU,
we see that there exists a large enough positive integer n such that in the following
diagram

[ (Ka* Ko~ N LU)/ U, LI (Ko*Ko *NLU)/U,

| |

YyA S, NGr;
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(1) All schemes are of finite type;

(2) the map fy induced by f, is smooth surjective whose geometric fibers are
irreducible of dimension r(y), where we recall that r(y) is defined in (3.5);

(3) U, is contained in @w*LTUwm ~*, hence also L*U;
(4) the left vertical map is smooth surjective with fibers isomorphic to the irreducible
scheme LTU/Uy;
(5) the right vertical map is smooth with fibers isomorphic to the irreducible scheme
ot L U */U,.
Since Y;‘ is of finite type, it is a locally closed subscheme of a closed Schubert variety. In

particular, Y;‘ is quasi-projective since closed Schubert varieties are projective.
Recall that the MV cycle S, NGr, is equidimensional of dimension (p, A 4+ u). Hence
by (2)—(5) we see that Y;‘ is equidimensional of dimension

dimY) = dim(S, NGr,) +dim @ U(O)w /U, ™ +r(y) —dim U(0)/ U,
= (0. A+u) — 2o, 1) +r(y) = (p. 1)+ 3d(¥). (3.7)

Moreover, by [30, Tag 037A] the three maps in the diagram above induce a canonical
bijection between the set of irreducible components

Irr(Y})) = Trr(S, N Gry).

Hence the number of irreducible components of Y}ﬁ‘ equals the number of irreducible
components of the MV cycle S, NGr;, which is known to be my,,. O

Corollary 3.5.3. Supposey € G(F)™ is unramified (i.e., split) andv, = u € X4(T)4, then
X; is a scheme locally of finite type, equidimensional of dimension

dim X = (p, &) + 3d(»).
Moreover, the number of G)(Z(F)—orbits on its set of irreducible component Irr(X));) equals
to my,y,.

Proof. There is a natural morphism

Y} x X, (T) —— X},

(u,v) ———— uw?’

which induces bijection on k-points and a stratification of X ]); such that each strata is
isomorphic to Y;‘. Thus X)); is a scheme locally of finite type and the assertions about
equidimensionality and dimension formula follow from the corresponding statements
for Y;‘.

The LGg action on the set Irr(X)ﬁ) factors through JT()(LGg) = X,(T) and hence
LG ,-orbits on Irr(X)’}) correspond bijectively to the set Irr(Y;‘). Thus the number of
orbits equals to the weight multiplicity my,,. O
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3.6. Finiteness of Kottwitz—Viehmann varieties

In this section, we let y € G(F)™ be any regular semisimple element and A € A™. Assume
without loss of generality that X)A/ is nonempty and det(y) = det(zw?). Then we get an
element y, € Vin%;(F ) as in Lemma 3.1.5. Moreover, the Newton point of y satisfies
v, <@ A and x(y) € €, by Proposition 3.1.6.

We show in this section that X’\, a priori an ind-scheme, is actually a scheme
locally of finite type. This has already been proved for unramified conjugacy classes
in Corollary 3.5.3. It remains to reduce the general case to the unramified case.
This reduction step is completely analogous to the Lie algebra case. For the reader’s
convenience, we include the details, following the exposition in [35, § 2.5]. See also [3].

Let F'/F be a finite extension of degree e so that y splits over F'. Let w’ = w!/¢ € F’
be a uniformizer and O" = k[[@']] the ring of integers in F’. Let o be a generator of the
cyclic group Gal(F'/F).

Choose h € G(F') such that Ad(h)GY = T. Then ho (h)~" € Ng(T)(F') and we let w €
W be its image.

Consider the embedding

ty t A =X (T) —— G, (F')
p——— Ad(h) o
Let Ay := L;l (Gy (F)). It follows immediately that A, C A" where A" is the fixed point
set of w on A. Moreover, A, can be identified with the coweight lattice of the maximal

F-split subtorus of G, . In particular, (A,)g = (A¥)g so that A, C A" is a subgroup of
finite index.

Proposition 3.6.1. There exists a closed subscheme Z C X)’ﬁ which is projective over k
such that XJ); = UeeAy £-Z. Here £ € Ay, acts on X))) via the embedding t, .

Proof. We rephrase the argument in [35, §2.5.7]. Let )?e)‘ be the generalized affine
Springer fiber of coweight eA for y in Grg,,, the affine Grassmanman of Ggr. Then
o acts naturally on Xe)‘ and the fixed points sub-ind-scheme (Xe)‘)‘7 contains XA (but

they are not equal in general). Let ¥’ =hyh~! € T(F’) and X;)‘ be the correspondmg
generalized affine Springer fiber in Grg,,. Then

ver el
Xyr=nh- X"
By Theorem 3.5.2, there is a locally closed subscheme 17;’% of )N(;),‘ such that
ver e
X =Je v
teA
Let Z be the closure of h_lzf/)‘ in )’Z;)‘ Then Z is projective over k and }N()‘;" = Upen ¢- Z.

Recall that w e W is repzesented by ho (h)~'. One can check that 0(2) = Z and more
generally 0 (£-Z) = w(¢) - Z for all £ € A. Consequently,

xXhr=\Jt-z=J (-2,

e AW Leh,
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where C C A" is a finite set of representatives of the quotient A*¥/A,. Hence, C - Zisa
finite type scheme.
Finally let Z := (C-Z)NX}. Then Z is a finite type subscheme of X}. Hence Z is

projective over k and Xl’} = UzeAy L-Z. O

As a consequence, we immediately get the following.

Theorem 3.6.2. The ind-scheme X; s a finite-dimensional k-scheme, locally of finite
type. Moreover, the lattice A, acts freely on X}); and the quotient X}}j/AV is representable
by a proper algebraic space over k.

3.7. Dimension of the regular locus

Recall that the regular locus X)};’reg is an open subscheme of XJA, on which the action of
P, = LG?, /LT J, is free (but not necessarily transitive).

Theorem 3.7.1.

Areg d(y)—c(y)

dim P, =dim X}, ™ = (p, A) + 7

where

e d(y) = val(det(Id —ad(y) : g(F)/gy (F) — g(F)/gy (F))).
o c(y) :=rank(G) —rankr G, , where rankrpG, is the dimension of the mazimal F-split
subtorus of G, .

A,reg . L. .
Moreover, X}, & is equidimensional.

Proof. The first equality follows from the fact that the P,-orbits in X)))’reg are open and
the action is free.

When y is unramified (hence split as k is algebraically closed), the second equality
follows from Corollary 3.5.3. It remains to reduce to this case. The argument is similar
to that of Bezrukavnikov’s in Lie algebra case, cf. [2], which we reformulate using the
Galois description of universal centralizer.

Let A be the finite free O-algebra defined by the Cartesian diagram (3.2) and A® the
normalization of A. Then W acts naturally on the O-algebras A and A” and by 3.3.4, we
get

dim P, = dimg (t ®; (A°/A)Y.

Let F/F be a ramified extension of degree e, with ring of integers 0= k[[w%]], such
that y is spht over F. Let o be a generator of the cyclic group I' := Gal(F'/F). Let
A:=A®pO and A” its normalization. We remark that A® is not the same as A” ®p O
in general. Let P = LGy,F//L+Ja7Fr. Then by the dimension formula in split case, we
have

dimg (t®k A”/A)Y = dim P, = (p, er) + Le-d(y).

As y split over O, we have

AP = O[W] := O k[W]
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as W-module. Here W acts on O[W] via right regular representation. Moreover, there
exists an element w, € W of order e such that under the above isomorphism, the natural
action of o € ' on A” becomes o ® 1y, where [, denotes the left regular action of w,,
on k[W]. In particular, the action of W and I' commutes with each other. With these
considerations, we obtain an isomorphism

(tr AV = t®, 0

which intertwines the action of o € I on the left hand side with the action of w ® o on
the right hand side.
Moreover, we have an equality

t@r A = t@; A

which remains true after taking W-invariants since the I' action commutes with W action.
In particular, we have

M= (@O = (t®, AHY.

Moreover, it is clear from the definition of W action that

o AV = ter )Y @0 O.

Thus we get
1 N 1 M )
dimP, = dimg(t® A°/A)Y = = dimp (t R (A°/A) @0 O)W = = dimy M
e 4 (t@ AW
1 1. ter O
= (0, M)+ =d(y) — —dimy | ——— | . 3.8
o 5d(y) — — dimy <M®@O> (3-8)

Since the element w, € W has order e, its eigenvalues are eth roots of unit. Let { be a
primitive eth root of unit and t(i) the subspace of t on which w, acts via the scalar ¢'.
In particular, t(0) = t*» is the w, invariant subspace. Then we have

e—1 )
M=t O = Prirerow .
i=0

The existence of a W-invariant nondegenerate symmetric bilinear form on t guarantees
that dimy t(i) = dimg t(e — i), from this we obtain that

tRr O
dimg [ 22 ) — o(dimy t— dimyg £7) = e c(p).
MR0 O
Combined with (3.8), we obtain
dimP, = (p, 1) + 5(d(y) —c(¥)).

reg

Finally, X}, is equidimensional since it is a finite union of P,-torsors. O
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3.7.2. Some zero-dimensional generalized affine Springer fibers. Suppose X)); is
nonempty. Then there exists y, € G satisfying the conclusion of Lemma 3.1.5. Let
a:=x+(y) € €4(0) ﬂQﬁersc(F ). Recall the extended discriminant divisor ®4 C €t
+
defined in §2.2.12. We define the extended discriminant valuation to be
dy(a) :=val(@a™®,) € Z.

From equation (3.1) we get

dy(a) = 2-val(p(a(yr))) +d(y)
(2o, M) +d(y)

> vala(y) =D+ (2p. A—vy). (3.9)

aed
(or,vy)=0

Proposition 3.7.3. Suppose dy(a) = 0. Then y is split and dimX; = 0. Moreover, X; =

A,re .
Xy € and it is a torsor under P,.

Proof. The assumption d; (a) = 0 implies that a € € (0). Let )F(\; = Spec R, be defined
by the Cartesian diagram
Xo—— Ty

| ]

SpecO —— ¢

By Proposition 2.2.16, )?; is an étale cover Spec O which must be trivial since the residue
field k is algebraically closed. Then we see that y, € T, (F) is split and hence y € T(F)
is split.

Since X )); is nonempty, we have v, <g A and hence the terms on the right hand side of
(3.9) are non-negative. In particular, d; (a) = 0 implies that v, = A. Thus the proposition
follows from Corollary 3.5.3. O

3.8. The case of central coweight

In this section, we deal with the case where A € X,(T)+ is a central coweight, i.e.,
(A, a) = 0 for all roots a. Then A € X4(Z") where Z° is the maximal torus in the center
of G. Consequently, we have X)); = Xow,xy. Hence the essential case is when A = 0 and
the corresponding Kottwitz—Viehmann variety becomes

X, :={g € G(F)/G(O)|Ad(g)"'y € G(O)}.

We first do some routine reductions. Let P = M N be a standard parabolic subgroup with
standard Levi M and unipotent radical N. For y € M(O)NG™(F) C M(O) N M"™(F), we
consider the Kottwitz—Viehmann variety X, (respectively X }1}’1 ) defined for the groups G
(respectively M). We have the discriminant valuation d(y) (respectively dy(y)) defined
for G (respectively M). The two discriminant valuations are related by

d(y) =du(y)+2rn(y) (3.10)
where ry(y) is defined in (3.4).
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Proposition 3.8.1. With notation as above, we have

dg(y)—dpu(y)
—

Proof. Let P = MN be the standard parabolic subgroup with Levi factor is M and
unipotent radical N. The connected components of Gry and Grp both correspond
bijectively to (M), the quotient of X,.(T) by the coroot lattice of M. The canonical
map Grp — Grg induces bijection on k-points by generalized Iwasawa decomposition.
For each A € m (M), let X, be the intersection of X, and the connected component of
Grp corresponding to A. Similarly, let X ]’/W ,, be the intersection of X )Zf/[ with the connected
component of Grys corresponding to A. Then there is a canonical morphism

dim X,, = dim X}/ +

M . M
p)/ . Xy,)» — Xy,)w

It suffices to show that the fibers of this map have dimension ry (y).
Let h € X;%u Then y;, :=h~'yh € M(O) and we consider the fiber ¥}, := (p;y)_l(h).
Its set of k points is

Yy (k) = {u € N(F)/NO)|u"'ypu € G(O))}.

In other words, we have

Yy = £, (N(O))/N(O)

where fy, : N(F) — N(F) is defined by f, (u) = u_lyhuyh_l. Apply Proposition 3.4.4 to
the admissible set Z = N(QO) we see that Y}, is an irreducible affine space of dimension

dim Yy, = ry(yn) =rn(y)
and hence we conclude by (3.10). O

Corollary 3.8.2. Let A € X.(T) be a central coweight and y € G(F)™. Then

dim X}, = 3(dy —c,).
Moreover, X)))’reg is a torsor under P, and the dimension of the complement of P, = X;}’reg
mn X)); is strictly smaller than the dimension of X});

Proof. We first assume that y € G(O) is topologically unipotent mod center. In other
words, the reduction mod @ of y is unipotent mod center. After multiplying by an
element in Z(0), we may assume that y € G*¢(0O) is topologically unipotent. Then when
G = G*¢ the argument of [19, §4] and [23, Proposition 3.7.1] generalizes verbatim to our
situation and proves dim X ;,eg =dim X, and the complement of X ;,eg has strictly smaller
dimension. In particular, the dimension formula follows in this situation. More generally,
we argue as in [32, Lemma 4.1] to reduce to the case G = G*.

It remains to reduce to the case where y is topologically unipotent mod center. After
multiplying y € G(O) by an element in Z(0) we may assume that y € G*(0). Then G,
is a maximal torus in G and y € G, (F)NG(O). Let S be the maximal split subtorus
in the centralizer G,. After conjugation we may assume that S C T'. Let M = Cg(S)
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be the centralizer of S in G. Then M is a standard Levi subgroup of G and y € M(O).
Let apr := xpm(y) € €y (O). Then the pullback of T along ays : Spec O — €y is a totally
ramified cover of Spec O and we deduce that y is topologically unipotent mod center in
M (QO). Thus the result follows from the case already proved and Proposition 3.8.1. [J

We highlight the following special case.

Corollary 3.8.3. Let L € X.(T) be a central coweight and y € G(F)®. If d, <1, then
X; = X;’reg = P, and they are zero-dimensional.

Proof. By Corollary 3.8.2, if d, <1, we must have dimX)é:O. Moreover, the

complement of X;’reg in X}); has strictly smaller dimension, hence must be empty. O

3.9. Irreducible components

3.9.1. Stratification on dominant coweight cone. Let A := X, (T) and Ag := A®zQ.
Let D C Ag be the positive coroot cone. In other words, D consists of Q-linear
combinations of simple coroots with non-negative coefficients.

For A € AT, we define the dominant coweight polytope to be:

P, = A@ NConv(W - 1) = A@ N —D),
where Conv(W - 1) denotes the convex hull of the W-orbit of A.

Lemma 3.9.2. For each A1, A» € AT with kg(A1) = kg(A2), there exists a unique u € AT
such that u < A, u < A2 and

A —-D)Nn(xp—D) =u-D.
In particular, we have Py, NP, = P,,.

Proof. Since k(A1) = kG (12), the difference A; — A5 lies in the coroot lattice. There exists
a partition of the set of simple coroots AY = AY L'AJ such that

Al — A2 = B1— B2,

where B; is a non-negative integral linear combinations of simple coroots in A} for
i €{l,2}. Let A= AjUA, be the corresponding partition of the set of simple roots.
Consider the coweight u := A; — 81 = A2 — B2. Then clearly u < A1 and u < As.

We claim that u € AT. Take any simple root o € A;. Since B, is a positive linear
combination of coroots in A,, we have (a, 82) < 0 and hence (u,a) = (A — B2, ) > 0.
Similarly, using u = A; — 81, we see that for all & € Aj, (i, @) > 0. Thus we conclude
that J7S A+.

It is clear that u —D c (A —D)N (A, — D). Now we prove the reverse inclusion. Let
ve(A—D)N(Ay;—D). Then for i e{1,2}, A;—veD is a non-negative Q-linear
combination of simple coroots and we need to show that u —v € D. For any fundamental
weight w, there exists i € {1, 2} so that  is orthogonal to all coroots in AY. Without loss
of generality assume i = 1, then we have

(M=—v,0) = (A1 —B1—v,0) = (A1 —v,w) = 0.
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This means that v <g u, or v € (u — D). Therefore, we have shown that

u—D=x;—D)yn(,—-D).

Finally, taking intersection with A@, we get Py, NPy, =P,. O
For each A € AT, define
P; :=Pi— (J Pu (3.11)
neAT,
n<i

Corollary 3.9.3. For any A1, Ay € Ay with A; # A2, we have Pil N Piz = &. In particular,
we get a well-defined stratification

{v € AYIpG,a(v) € Xu(Ga) Cmi(G)g) = || P5-
reAT

Proof. If det(m’!) # det(zw’?), it is clear that Py, and P,, are disjoint. Suppose
det(w ) # det(w’?).
Then by Lemma, 3.9.2, there exists u € AT such that u < Ay, u < A2 and
P, NP, CPy NPy, =Py,

But by (3.11), we have
P.NP; =9
since u < A; for i € {1, 2}. Therefore Pil N Piz =0o. O

3.9.4. Stratification on extended Steinberg base. To give an alternative formulation
of the conjecture on irreducible components, we introduce a stratification on

€L (O)NEgse(F).
Recall that €, = Agse x A”. Consider the strata

¢t 1= I T(0) x O C €4(0)

where Ayq € X4 (Taq)+ is the image of A.
For each u € AT such that pu < A, we have an embedding

i € > &
defined by the formula

iﬂ)t(alv'-'sarvbla"'vbr) =
—WO(k—M),al)al’ L w(_w(’()”_”)’“’)ar, ZH(_wO()“_“)’w'))bl, L w<_w°()‘_“)’w’>br).

(3.12)

(o'

Note that we need to choose a uniformiser to define the embedding i,; but its image
does not depend on this choice.
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Proposition 3.9.5. For any A, 1, no € AY with 1 < A and uy < A, there exists a unique
w3 € AT such that u3 < pi, p3 < po and

{3 (€ Ny (€2) = i (€1F).
Proof. By Lemma 3.9.2, there exists a unique u3 € AT such that
(u1 —=D)N(u2 —D) = uz —D. (3.13)
To prove the proposition, it suffices to show that
T (C1) Mg (€12 Ty (€17).

Let ¢ be the involution on the set {1, ..., r} such that w,;) = —wo(w;) for all 1 <i <r.
For each ¢ = (cy, ..., ¢,) € O, let a; 1= val(c,;)).
Suppose that & (7w0*a)) e, 5 (@) Ny, (€4?), then we get

ai 2 (A—pp, i) and a; = (A —pg, w;) forall 1 <i<<r (3.14)

and we need to show that a; > (A — u3, w;) forall 1 <i <r.
Let p} :=Y"i_; (1, wi)ey” and define pf, ufy. Then we have ), uj, uf € Ag. Consider
the coweight v := )" (A, w;) —a;)a;” € Ag. By (3.13) and (3.14) we have
ve (uy—Dynus—D)=u;—-D.

This implies that
(A, @) —a; = (v, wi) < (U5, wi) = (U3, ;)

which is what we want. O
For any A, u € AT with u < A, define
=@ — | i@, (3.15)
vEA
v<p

Corollary 3.9.6. For any A, u1, u2 € At with wy; # A and py < A, we have
Nl = .
In particular, we get well-defined stratifications
A A
= || emne, 0= ||
neA A UEA L
HEA HEA

Proof. The argument is similar to the proof of Corollary 3.9.3, using Proposition 3.9.5
instead of Lemma 3.9.2. O

The following lemma relates the stratas (3.15) to the stratas (3.11).
Lemma 3.9.7. For any A € AT and y € G(F)™ with v, <g A, there ezxists a unique

dominant integral coweight u € Ay with p < A that satisfies any (hence all) of the
following equivalent conditions:
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(1) n € Ay is a minimal dominant integral coweight such that v, <q w;
(2) v, €PS, ¢f (5.11);

w
(3) x+(y) € &, cf. (3.15).
Proof. The equivalence between (1) and (2) follows from the definition of P,. The
equivalence of (1) and (3) follows from Proposition 3.1.6.
Finally, the uniqueness of u follows from Lemma 3.9.2 or Proposition 3.9.5. O

Now we state our conjecture on irreducible components of X ;;

Conjecture 3.9.8. Let A € AT and y € G(F)™ with v, <g A. Let u € A4 be the ‘best
integral approximation’ of v,, i.e., the unique dominant coweight that satisfies the
equivalent conditions in Lemma 3.9.7. Then the number of G?, (F)-orbits on Irr(X ));) equals
to the weight multiplicity my,,.

By Corollary 3.5.3, this conjecture is true when y is an unramified conjugacy class.

Remark 3.9.9. For irreducible components of affine Deligne-Lusztig varieties, there is a
similar conjecture made by Miaofen Chen and Xinwen Zhu, see the discussion in [13] and
[34]. Their conjecture has been proved independently by Nie [24] and Zhou-Zhu [37]. A
remark is in order for readers who are interested in comparing the two conjectures. In the
setting of affine Deligne—Lusztig varieties, one also approximates Newton points of twisted
conjugacy classes by integral coweight. However, the ‘best integral approximation’ as
defined in [13] is the largest integral coweight dominated by the Newton point, whereas in
the formulation of our Conjecture 3.9.8, we use the smallest integral coweight dominating
the Newton point. Simple examples suggest that these two integral approximations are
very likely in the same Weyl group orbit, so we expect the two weight multiplicities to
be equal.

3.9.10. Components of the regular locus. Now we examine the number of G?, (F) orbits

on Trr(X}"°%).

Theorem 3.9.11. Let A € AT and y € G(F)™ with v, <g A. Let n € AT be the ‘best
integral approzimation’ of the Newton point v, as in Lemma 3.9.7. Then we have an
inequality
{GY(F) orbits on X;"8}| < |Cox(W, S),

where Cox(W, S) is the set of S-Coxeter elements defined in Definition 2.2.1. Moreover,
when A lies in the interior of the Weyl chamber and A — pu lies in the interior of the
positive coroot cone, the equality is achieved.
Proof. The G?/(F)—orbits on Irr(X]A,’reg) correspond bijectively to G?, (F) orbits on X}A,’reg,
which are precisely the P,-orbits of maximal dimension on Sp, = X)};. We know from
Proposition 3.3.1 that these are the varieties X});’w = Spy’ for w € Cox(W, S).

However, for two different w, w’ € Cox(W, S), X;}w and X]);’w, might coincide. For

example, in the case A =0 and y € G(0O), all X});’w coincide (hence equal to X))}’reg).
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So in this particular case, X, "€ is the unique P,-orbit of maximal dimension. In general,

we know from (2.7) that the number of Gg(F ) orbits in X;’reg is bounded above by the
Cardinality of Cox(W, S).

It remains to show the last statement. Suppose A lies in the interior of the Weyl
chamber and A — p lies in the interior of the dominant coroot cone. Consider the following
Cartesian diagram

X_Il (a) —— Vingse

SpecO ———— ¢,

For g € G(F) such that gG(O) € X))}’reg, let Ad(g)~!y be the reduction mod @ of
Ad(g)" 'y € Vinls(0). The condition that A lies in the interior of the Weyl chamber

means that (A, ;) > 0 for all simple roots «;. Hence the special fiber of x;] (a) lies in the
reg

asymptotic semigroup As(G*) := «~1(0) and in particular Ad(g)~'y € As(G*®) N Vings.
Furthermore, the assumption that A — u lies in the interior of the positive coroot cone
implies that (A — u, w;) > 0 for all fundamental weight w;. Therefore, the reduction mod
@ of a equals to 0 and the special fiber of X_;l(a) is the nilpotent cone N. In particular,
we get Ad(g)~ly e N'eg,
Consequently, there is a bijection between G?, (F) orbits on X )A/reg and G orbits on N8,
the latter of which corresponds bijectively to Cox(W, S) by Proposition 2.2.9. O

As an immediate consequence, we mention the following purely combinatorial result,
which might be of independent interest.

Corollary 3.9.12. Let A > u be dominant weights of a complex reductive group G. Suppose
that A lies in the interior of the Weyl chamber and A — u lies in the interior of the
positive root cone (the ‘wide cone’). Then we have the following lower bound for the
weight multiplicity

myy 2 |Cox(W, S)I,

where the set Cox(W, S) is defined in §2.2.1.

Proof. We consider the dual group GV of G over k. Then A > u are dominant coweights
for GV. Let TV C G¥ be a maximal torus and y € wH*TY(O)NGY(F)®. Then the
generalized affine Springer fiber X]A/ is nonempty and by Corollary 3.5.3, the number

of G;'O(F)—orbits on Irr(X)A,) equals to mj,. On the other hand, by Theorem 3.9.11, the
number of GJY’O(F)—orbits on Irr(X});’reg) equals to |Cox(W, S)|, hence the inequality. [

Remark 3.9.13. If G,q is simple of rank r, then |Cox(W, §)| = 2"~!. Indeed, an S-Coxeter
element is uniquely determined by requiring for any pair of noncommuting simple
reflections, which one occurs first in the reduced expression. This means that each edge
of the Dynkin diagram gives two possibilities. There are r — 1 edges since the Dynkin
diagram is a connected tree with r nodes. Hence there are 2"~! possibilities. In general,
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if the simple factors of G,q have rank rq, ..., r,, then
m
[Cox(W, $)| =] ]2
i=1

We expect that there should be a more straightforward proof of Corollary 3.9.12.

Remark 3.9.14. In general, the weight multiplicity m;, will increase with A, while the
right hand side in Corollary 3.9.12 is a fixed constant independent of A, i. Thus in general
there will be much more irreducible components in X Jk/ than the regular open subvariety

A,reg
X, 8.

Remark 3.9.15. The idea of using Vinberg monoid to explore the geometry of
Kottwitz—Viehmann varieties is similar in spirit to the work of He [17], where he relates
the geometry of certain affine Deligne—Lusztig varieties in the affine flag variety to the
wonderful compactification.

4. The Hitchin—Frenkel-Ngo6 fibration

In this section, we study the Hitchin—Frenkel-Ng6 fibrations, viewed on the one hand as
the global analogue of Kottwitz—Viehmann varieties. These are certain group analogues
of Hitchin fibrations, first introduced in [10] and later studied in more detail in [5] and
[4].

Throughout this section, we let X be a projective smooth curve of genus g over k and
G a connected reductive group over k.

4.1. First definitions

Let £ be a Z5 = T*° torsor on X. Then we can twist the schemes Vingse (respectively
¢4, Agse) by L to form corresponding affine spaces VinéSC (respectively fo, Aésc) over
X.

Definition 4.1.1. The Hitchin—Frenkel-Ng6 moduli stack associated to the T*°-torsor L
is the mapping stack
M = Hom(X, [Vin«/Ad(G))).

In other words, M classifies pairs (£, ¢) where £ is a G-torsor on X and ¢ is a section
of the twisted product & AC VinéSC where G acts on VinéSC by adjoint action, and the
action factors through G,q (cf. §1.4.2 for the notation). We refer to such pairs (€, ¢) as
Higgs—Vinberg pairs.

Replacing Vingse by Vin%SC (respectively Vinrgi) in the definition of M, we define
open substacks M% (respectively ./\/lr[e:g C My). Also, we define

Ap = Homy (X, Qlf), B, := Homy (X, Aésc)

as the space of sections of the affine space €£ (respectively Aésc) over X. More concretely,
we can describe Ay and B, as follows.
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For each w € X*(T), let w(L) be the invertible sheaf on X defined by pushing £ along
the morphism w : T — G,,. Then we have

Br = H'(X, AGe) = P HO(X. ai (L))

i=1
and

Ar =B @ H(X, 0 (L))

i=1
Definition 4.1.2. The Hitchin—Frenkel-Ngé fibration is the morphism
hp: Mg — Af

induced by x4 : Vings — €.

Let Bg: Ag — By be the natural projection and oy :=Brohys: My — Be be
the map induced by «:Vingse — Agsc. We call the fibers of «apy restricted
Hitchin—Frenkel-Ngé moduli stack.

4.1.3. Each point b € B can be written as b = (b1, ..., b,), where b; € HO(X, o; (L)).
Let B} C B be the open subset consisting of those b such that b; is nonzero for all i.
To each point b € 82, we can associate an X, (T,q)+-valued divisor A, on X defined by

,
hy =Y & D),
i=1
where D(b;) is the effective divisor on X associated to b; and ; is the ith fundamental
coweight. For any a € A with Bc(at) € By, we denote Aq := Ag,(a)-

Definition 4.1.4. The generically regular semisimple locus .Ag is the open subset of A,
consisting of sections a : X — Q:f such that Br(a) € By and a(X) generically lies in the
open subset Qﬁfﬁ’ﬁ = Qﬁ - @f.

4.1.5. Global Steinberg section. Let ¢ = |Z(Gger)| be the order of the center of the
derived group of G. Suppose there exists a TC-torsor £ such that £ = (£)®¢. By
definition, there is a canonical map [ev]ly : Az x X — [€4/T5°] making the following
diagram commutative:

A x X 292 1@, ey

Lo,

Xx— L L prs

Here, the left arrow is the projection to X and the bottom arrow corresponds to the
T5¢-torsor L.
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The choice of cth root £ of £ defines a morphism [ev]y : A x X — [€/T5] lifting
[evlz. Then for each w € Cox(W, S) (cf. Definition 2.2.1), the composition of [ev], and
the section €Y 4 of [x+](c] (cf. Proposition 2.2.21) induces a section of h:

cAp > M C M.

We refer to €, as the global Steinberg section.

4.2. Symmetries of Hitchin—Frenkel-Ng6 fibration

Definition 4.2.1. Let P, be the Picard stack over A, that associates to any S-point
a € Ap(S) the Picard groupoid P, of 7, torsors on X x S. Here, J, is the pullback of
the universal centralizer J, on Cf along the mapa: X xS — Qﬁ.

Proposition 4.2.2. P, is a smooth Picard stack over Ag.

Proof. The argument of [23, Proposition 4.3.5] generalizes verbatim to our situation. The
point is that J, is a smooth group scheme and the obstruction to deforming a 7,-torsor
lives in H2(X, Lie(7,)), which vanishes since X is a curve. O

The action of BJ on [Vings/Ad(G)] (respectively [Vings/Ad(G)]) induces action of
P on My (respectively /\/lrzg).
To understand the connected components of the fibers of P, we utilize cameral covers.

Definition 4.2.3. The cameral cover associated to each a € Ay (k) is the finite flat cover
a : Xqg = X defined by the following Cartesian diagram

S —
Xy ——TF

|

X — ek

TTa

%

For any closed point a € .AQZ, we define the discriminant divisor for a to be the effective
divisor
Ag: 71(@ )

Over the nonempty open subset U, := X — A, the cameral cover r, is Galois étale with
Galois group W. Choosing a point u € X, with u := 7, (&1) € U,, we get a homomorphism

Pa 1 (Ug,u) > W

whose image is a subgroup W, C W. Note that the conjugacy class of W, in W is
independent of the choice of base point u.

Let J, 0« J. be the fiberwise neutral component and consider the Picard stack
P/ := Bun ) of j -torsors on X. Then there is a natural homomorphism of Picard stacks
P/ — P, The following Lemma is parallel to [23, Lemme 4.10.2] with exactly the same
proof.
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Lemma 4.2.4. The homomorphism P, — P, is surjective with finite kernel. Same is true
for the induced homomorphism mwo(P),) — mo(Py).

Corollary 4.2.5. 70(P,) is finite if and only if TV is finite.
Proof. By previous lemma, 7o(P,) is finite if and only if 7o (P)) is finite. By [22, Corollaire

6.7, mo(P) = TWa_ Since the finiteness of 7Wa is equivalent to the finiteness of f"W“, the
result follows. O

Definition 4.2.6. The anisotropic locus is the subset Aaﬁni C .AQZ consisting of a € Ag such
that the component group mo(P,) is finite.

. . . . sV
For each subset I C A, we consider the invariant quotient 73° ' Then the natural
—<cW
morphism T3¢ " - ¢, is finite and Z% = T*° equivariant. Denote

L —=Wr sc
=TF X% L

Wi
T
—scWi.L . —cWi.L
Let .AZV’ = HY%(X, T ") be the space of sections of the affine scheme T3¢ over
X. Consider the map
vy .AVEV’ — A,

—W;, L _
induced by the finite morphism T3¢ (RN @f. Let AVEV’ Ci=y 7 l(.Acg).

Proposition 4.2.7. Suppose G is semisimple. Then the complement of A?i n ACZ s a
finite union
i w
AZN AR = v (AR,

lgA

Proof. Let a € A(Z —A?i. Then by Corollary 4.2.5, TW« contains a nontrivial torus S.
Since G is semisimple, the centralizer of S is a proper Levi subgroup of G whose simple
roots form a proper subset 1 ; W. Then we have W, C Wj.

Consider the following diagram in which both squares are Cartesian:

17

—=L —Wuy, L L
SC Ne
T+ T+ Qt—|—

Let ¥, C X, be the union of all irreducible components that contain a point in the
Wi-orbit of u. Then the image of Y, in Y, is isomorphic to X and hence gives a section

—Wu.L
of the morphism 7/. In other words, there is a section a; : X — T¥¢ M such that
vr(ay) = a. This proves that

AZNAR | v (ARt

C
IzA
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Conversely, for any I G A and a; € Ag,,@ with v(as) = a, the morphism 7/ in the
diagram above has a section given by a;. This implies that W, C W; so that 7%« is not
finite. By Corollary 4.2.5 again we see that a € A7". O

Corollary 4.2.8. Suppose G is semisimple. Then A%ﬁ is an open subset of A?. Moreover,
for any b € By and any integer N with N > max{2g —2,rg}, if degwi(L) > N for all

1 <i <r, then the complement of aﬁ“ib mn Ag , has codimension at least N —rg.

Proof. By valuative criterion and [22, Lemme 7.3] we see that vy is proper. So the images
VI(AZ:VI ’O) are closed subsets of ACZ and their complement A7" is open. It remains to

calculate the dimension of AE” .

Let 1 ; A and Lj be a corresponding Levi subgroup of G*¢. We label the fundamental
weights w1, ..., w, of G5 so that wi,...,ws; are fundamental weights for L; where
s = |I] < r. There is a natural morphism

—<cW.
ql : T‘;c ! d AGsc x A*

given by the W;-invariant functions (;, 0) for 1 <i < r and (w;, Xal),-) for 1 <i <'s, where
Xal)l- is the character of the irreducible representation of L; with highest weight w;. The
map ¢! induces a map

ax : AP — Bz o @ HOX, wi(L)).
i=1

The fibers of g over the open subset Tpq X A* C Ags x A* are isomorphic to Gy, *. This
implies that the nonempty fibers of q)l( are (k) 5. Hence

dim A7 < dim Bz + ) (deg(@; (£)) +1—g) +7 —s.

i=1

Therefore, the codimension of Ag b Aacnib is bounded below by

D (deg(w; (L) +1—g) — [Z(deg(w,- (L) +1—g) +r— s] >N —rg. O

i=1 i=1

Denote by M%‘i = th (.A%‘i) the anisotropic open substack. This is nonempty when G
is semisimple. Also, let Pz“i be the restriction of P, to .A?i.

Proposition 4.2.9. %’i and Pzni are Deligne—Mumford stacks.

Proof. Let (&, ¢) € M?i (k) and a =hg(E, 9). Then the k-group Aut(&, ¢) classifies
sections of the group scheme Autg(£), over X, which is the closed subscheme of the
centralizer of ¢ in the group scheme Autg(£).

Choose a geometric point 7 over the generic point n of X. Restricting the cameral cover
to n along a, we obtain a homomorphism p, : Gal(ij/n) — W. Let W, be the image of p,.
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Furthermore, choose a trivialization of £ over the generic point n under which ¢ maps to
a regular semisimple element in T4 (k(X)). With these choices, we get closed embeddings
Aut(€, ¢) € TV and HY(X, 7,) c TV,

Since a € am , TWa is finite. Since char(k) is coprime to the order of W, TWe is finite
unramified k- group This shows that Mam and sz are Deligne—Mumford stacks. O

Theorem 4.2.10. Assume that the T*°-torsor L admits a cth root L'. Then for any
ae am there is a homeomorphism of quotient stacks

Mo/Pal = [ [Spa,/Pa,l. (4.1)

xeX-U,

In particular, we have

dim M, —dimP, = Y (dimSp,, — Pa,).
x€Supp(Aq)

Proof. Choose a Coxeter element w € Cox(W, S). The cth root £’ of £ induces a global
Steinberg section €, in particular, a base point €, (a) € M. Using Corollary 2.2.17,
we argue as in the proof of [22, Théoréme 4.6] to show that there is a morphism as (4.1)
inducing equivalence of groupoids on k-points. Then the argument of [23] shows that the
map (4.1) is a homeomorphism. O

4.3. Properness over the anisotropic locus

am

Throughout this section, we assume G is semisimple so that is nonempty. Our goal

is to show that the morphism ham : ./\/lanl — .Aam is proper.

4.3.1. Finiteness properties. We first show that the Hitchin—Frenkel-Ng6 fibration is
of finite type over the anisotropic locus. Our proof follows the argument of [8, Proposition
6.1.5].

We start with a more general situation. Let p : G — GL(V) be a finite-dimensional
representation such that ker(p) is contained in the center of G. Fix a torus T and a

Borel subgroup B containing T. Let VD, ... V™ be the irreducible constituents of V
(counted with multiplicity) and A (1, . k(m) be the corresponding highest weight.
For each V), we choose a basis {e(] ), 1 <i <d;} (where dj = dim V;) as follows. Each

l.(J) is a weight vector with weight A(J) € X*(T) Then we can express 1Y) —A(j) as a

linear combination of positive simple roots Wlth non-negative integer coefficients and we

call the sum of coeflicients the height of e . The basis elements e( /) are indexed so that

() ;

the height is nondecreasing with respect to i. In particular, e;*” is a highest weight vector

and e(j ) is a lowest weight vector in V;.

Then under the basis {em 1<i<dj,1<j<m}, p(B) consists of upper triangular
matrices in []; ; End(V)), which are the stabilizers of the standard flags

O:L(()j)Cng) CL(j) v,
Ll(]) = Span(e(]) efj)) for 1 <i <dj.

where
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Let I C A be a subset of simple roots and P; C G the standard parabolic subgroup
whose Levi factor has simple roots in /. Then there exist standard parabolic subalgebras
p(/) C End(VY) such that

p(P) =pG)N | Py
j=1
)

More precisely, p;’” is the stabilizer of the partial flag in V) obtained from the standard

)

flag by replacing Lﬁj ) with the span of ¢;”" and all basis vectors whose corresponding

weight differs from the weight of el(j ) by a linear combination of simple roots in 1.
Fix a divisor D on a smooth projective curve X. Consider the following stack

My :=Hom | X, HEnd(V(j))(D) /G ,

j=1

where the action of G on ]_[;f’:lEnd(V(j)) is induced by p. More concretely, the
moduli stack My classifies tuples (E,¢;, 1< j<m), where E is a G-torsor and
¢;j:p;E — p;E(D) is a meromorphic endomorphism of the vector bundle p;E :=
E NG v,

From the definition, we have

My =M, XBung Mo XBung ** * XBung M,
where for each 1 < j < m, we define
M = Hom(X, [(End(V")(D))/G)).

By [14, Satz 2.1.1] and [15, p. 253], we know that there exists a constant C > 0 such that
for any G-torsor E on X there exists a Borel reduction Ep of E so that deg(Ep) belongs

to
C:={H € Ag,a(H) > —c Vo € A}. (4.2)
Let N be a positive integer which is larger than the sum of coefficients of A/) — )ng ) under
the basis A for all i, j. Let d be an integer such that
d > deg(D)+2Nc. (4.3)

For each subset I C A, consider the following cone

Cr={HeAg,a(H)<dVa el and a(H) >d Vo € A—1}.

Lemma 4.3.2. Let (E, ;) € My and Ep a B-reduction of E. Suppose that deg Ep €
CnNnCGCy, then we have

¢ € p(D) A Ep,

where p = ', pgj).

https://doi.org/10.1017/51474748019000604 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748019000604

52 J. Chi

Proof. We can treat each factor M; separately and assume that V is irreducible. It
suffices to prove that under the adjoint action of ¢, Eg AB b is sent into Ep A8 p(D).
Consider a filtration of End(V(/)):

0)=byCb C---Cb=bCp=p; Cps_1 C - C po=End(VY)

stable under adjoint action of B, with one-dimensional successive quotients.

Suppose the image of Eg A b under ad(¢) is not contained in Eg AP p(D). Then there
exist 0 <i <r and 0 < j < s such that ad(p) induces a nonzero homomorphism of line
bundles

Ep AB (b;/6;-1) = Eg AB (p;/pj+1)(D).

In particular, the degree of the source is not larger than the degree of the target. More
precisely, let y be the weight of B on b;/b; | and § the weight of B on p;/p;41. Then we
have the inequality

(deg Ep,y —8) < deg D.

Note that y is the difference between the highest weight A/) and certain weight of the
G-representation V) hence a non-negative linear combination of simple roots with the
sum of coefficients bounded by N. Since deg Ep € C, we then have

(deg Ep,y) > —Nc.

On the other hand, by definition of p = p(,j ), we see that —§ is a non-negative linear
combination of simple roots such that the sum of coefficients is bounded by N and the
coefficient of some root in A — I is positive. Hence because deg Ep € CNCy, we have

(deg Ep, —8) > d — Nc.

Combining the above two inequalities, we get d —2Nc¢ < deg D which contradicts (4.3)
and thus the lemma follows. O

Proposition 4.3.3. The stack M%‘i is of finite type.

Proof. The natural morphism M?i — Bung is of finite type. For each v € X*(T), the
moduli stack Bun} of B-bundles on X with degree v is of finite type. It suffices to show
that there is a finite subset S C X*(T') such that the image of aé‘i in Bung is contained
in the image of (J, g Bun} in Bung.

By construction, M%ﬁ is the mapping stack of Vinésc, which by definition is the
normalization of a closed subscheme of a product of matrix algebras (twisted by certain
line bundles). In other words, there is a finite morphism M?i — My (mostly likely a
closed embedding, but we do not need this fact) where My is the mapping stack of a
product of matrix algebras considered above.

Let m = (€, ¢) € M%’i(k). We also view it as a k point of My. Let £ a B-reduction
of £ such that deg(€p) € C (see (4.2)). Let a = hp(m) € A?i. Suppose that deg(Ep) € C;
for some proper subset I C A. Then by Lemma 4.3.2, ¢ maps the generic point of the
curve into the proper parabolic subgroup P; 1 of G¥. This implies that W, is contained
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in the Weyl group of the Levi L; and hence TW« is not finite, contradicting the fact that
ace A%‘i (k). Thus we conclude that det £ lies in the intersection of C and the complement
of C; for any proper subgroup I C A. This intersection is a bounded subset of X*(T)r
and hence the set of weights S € X*(T) lying in the intersection is a finite set and we are
done. O

4.3.4. Valuative criterion. First we have the existence part of the valuative criterion,

which is true over the larger open subset Ag.

Proposition 4.3.5. Let R be a complete discrete valuation ring with algebraically closed
residue field containing k. Let K be the fraction field of R. Then for all a € Ag(R)
and mg € Mg(K) such that hg(mg) = a, there exists a finite extension K' of K and
m € Mg(R'), where R’ is the integral closure of R in K’, such that

(1) The image of m in Mg(l(’) is isomorphic to that of mg ;
(2) hg(m) =a.

Proof. The argument is the same as [8, § 8.4]. The key points are: 1. Any G-torsor extends
uniquely over a codimension 2 subset; 2. the universal twisted monoid Vg over Ag x X
is affine, so that Higgs fields extend over any codimension 2 subset. O

Proposition 4.3.6. Suppose G is semisimple. Let R be a complete discrete valuation ring
with algebraically closed residue field k containing k. Let m,m’ € M*™(R) be two elements
and mg,my € M*™(K) their base change. Suppose that the following two conditions are
satisfied:

(1) h(m) = h(m');
(2) there exists an isomorphism tg : mg — m’ .
Then there erists a unique isomorphism ¢ : m — m’ extending g .

Proof. We follow the argument in [8, §9]. Let m = (£, ¢) and m’ = (&', ¢’). Consider the
local ring B of the generic point of the special fiber of Xg. Then B is a discrete valuation
ring whose residue field is the function field «(X) of X, and whose fraction field is the
function field F of Xg.

By §9.2 of loc. cit., it suffices to extend tx to an isomorphism of G-torsors ¢ : & — &’
over Spec B. As in §9.3 of loc. cit., it suffices to show that for some finite extension K’,
the base change (g of 1x extends to an isomorphism between &£, £ over Spec B’. Here,
B’ is the integral closure of B in the function field F’ of Xg/, where R’ is the integral
closure of R in K'.

To achieve this, after taking a finite extension K’/K one can assume that &, £’ are trivial
over Spec B (since by [9, Theorem 2], they will be trivial in a Zariski open neighborhood
of the generic point of the special fiber of Xg after a finite extension of K). Moreover, as
in [8, Lemme 9.3.1], one can choose trivialization of £ and £ over Spec B such that they
map the ‘Higgs fields’ ¢ and ¢’ to some element y € Ving (B). Under these trivializations,
the isomorphism (g is identified with an element g € G(F) such that g~ lyg =y.
In other words, g € G, (F). Since m,m’ lies in the anisotropic open substack and

https://doi.org/10.1017/51474748019000604 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748019000604

o4 J. Chi

y € Vin;(B), G, is an anisotropic torus over Spec B and hence G, (B) = G, (F). Thus in
particular, g € G(B) and the isomorphism (g extends. O

Theorem 4.3.7. The morphism hal:”i : ./\/lal:ni — .A?i is proper.

Proof. This follows from what have been proved in this section and the valuative criterion
of properness for algebraic stacks. O

4.4. Singularities of restricted Hitchin—Frenkel-Ng6 moduli stack

Later when proving equidimensionality of Kottwitz—Viehmann varieties, we will need
the transversality theorem of Bouthier in [5], where it was shown that the singularities
of certain open substack of restricted Hitchin—Frenkel-Ng6 moduli stack are the same
as some closed Schubert varieties in the affine Grassmannian. The method of Bouthier
was later simplified by Yun in [36]. In [5] and [36] it is assumed that the group is simply
connected but the argument works without this assumption. For the reader’s convenience
we review this result following [36].

4.4.1. Fix a X, (Tyq)+-valued divisor A = Z;"zl Aix; on the curve X. Then A defines a
Tad-torsor L. We assume that £, can be lifted to a T5-torsor £. Then A can be identified
with a closed point of By = HO(X,AéSC). Let Mgy = azl(k) be the corresponding
restricted Hitchin-Frenkel-Ngo moduli stack. Let A, := ,BZI (M) and hgy : Mg — A
be the restricted Hitchin—Frenkel-Ng6 fibration. Let My 1= M, OM% be the open
substack where the Higgs—Vinberg field lands in [Vin%SC /T3¢ x Ad(G)].

Assume moreover that £ admits a cth root £ where ¢ = |Z(Gger)|. Then by the
discussion in §4.1.5, there exists global Steinberg section ey, : A — Mzgk for each
choice of Coxeter element w € Cox(W, S).

4.4.2. For each a € AZA, we write the associated discriminant divisor as
Aa) = A(a)sing + A(@uiv,

where A(a)yiv is multiplicity free and the multiplicity of A(a)sing at each point is at
least 2.

Definition 4.4.3. Let S C Supp(r) be a nonempty subset. The transversal subset
Ab< , C A, consists of a € AZA satisfying the following two conditions

e Supp(A(a)) NSupp(r) C S

e For each 1 <i <r,

2g —2+mo(deg A@)sing + 1S + Y b(ks) < deg; (L)
seS

where myg is the positive integer defined in the paragraph before Proposition 2.6.6 and
b(Ay) is the non-negative integer in Lemma 2.5.2.

We call /\/lb<A = hzk(AbO») the transversal open substack and denote

M = M, N M;.
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4.4.4. Local evaluation map. For each s € S, the arc space LTG acts by left
multiplication on Grg; := Grg‘fs and the action factors through L*Ga. We let N be
a positive integer such that for all s € S, the action of LTG on Grg,;, factors through
the Nth jet space L]“\L,G. Then the product group L}\’}SG =T] LX}G acts naturally on
[es Gr<a, and we define the local evaluation map

evys : Mg, — |:L7\',SG \ HGrgASi|

seS

seS

by choosing trivializations of G-torsors on the Nth infinitesimal neighborhood of points
s € S. Let CV?VS be the restriction of evyg to ./\/lb<x. From the first condition in

Definition 4.4.3, we see that for any (£, ¢) € Mb<A the restriction of the Higgs—Vinberg
field ¢ to points in Supp(r)\ S lands in the open substack [Vings/T* x Ad(G)], which
is contained in [Vin(();SC /T%¢ x Ad(G)] by Corollary 2.2.7. Hence the inverse image of the

open strata [L?\',SG\ [L;es Gri, 1 under ev?\,s is precisely Mi = Mg NM,;.

Theorem 4.4.5 ([5],[36]). The morphism

ev?vs : /\/lb<A — |:L*A',SG \ HGr<A5:|

seS

is smooth.
The proof proceeds in several steps which occupy the rest of this section.

4.4.6. Let Mbg/\,NS be the stack classifying triples (£, ¢, tys) where (&, ¢) is a point in
./\/li and tyg is a trivialization of £ on the Nth infinitesimal neighborhoods of s for all

s € S. Then Mg, ns is a L;SG—torsor over Mg, and to prove the smoothness of ev?vs,
it suffices to prove the smoothness of its base change

~b b

eVys i Mgins = HGK/\S-

seS

Notice that the source and target of CNV?V ¢ are locally of finite type. Hence it suffices to
show that &/?\, g is formally smooth. In other words, we need to check the infinitesimal
lifting property.
4.4.7. Let R be an artin local k-algebra with maximal ideal m and let I C R be an
ideal with 7-m = 0. Denote R := R/I. Consider a triple (&, @, Tns) € M;NS(R) whose
. ~b .- 5
image under the map év, ¢ is ([¥s]ses € [ses Grg, (R). Let ([ysDses € [Lies Gr<a, (R)
be a lifting of ([¥s])ses. We need to find a lifting of (£, ¢, Tys) to a point in M) ys(R)

whose image under 6\7?\,5 coincides with ([ys])ses-

Extend Tyg to a trivialization Teos of € on [[;.g Ds ® R where D, denotes the formal
neighborhood of s in X. It suffices to construct a Higgs—Vinberg pair (£, ¢) € MLA(R)

lifting (€, @) € Mbg,\ (R) and a trivialization Tos of € on [] g Ds ® R lifting Toos.

sesS
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4.48. Let a:= hgk(g, Q) € A;A(Ié) and ag € Abgk(k) its reduction mod m. We have
the discriminant divisor A(ag) associated to ag. For each v € X, let d, be the multiplicity
of A(ap) at v. Let §" := SUSupp(A(ao)sing) and T := §"\ § so that & = SUT. Note that
the first condition in Definition 4.4.3 implies that T N Supp(r) = .

For each s € §, under the trivialization tss, the Taylor expansion of ¢ at s corresponds
to an element 7, € LTVin*(R) whose image in Grgy, (R) is [js]. Since the morphism
L*Vin* — Grg;,, is formally smooth, there exists a lifting y; € L*Vin*(R) of y; whose
image in Grg;, equals to the [y;] given above. Let a, := x4(ys) € Q:Jr(@x ®R). Then
a,=aecC (O;®R).

For each r € T = §'\ S, choose a trivialization Too; of £ on D; ® R, under which the
Taylor expansion of ¢ at ¢ corresponds to an element y; € L+fo(lé). We lift y; arbitrarily
to an element y; € Gic(@[ ®R) and let a, := x4 () € €+((§, ® R). Then in particular
G=acC(O,®R).

4.4.9. Consider the local evaluation map of the base space

Ag)\ s @ Q:)_;_A (Os/w;?wdx*i’b()u)) X @ Q:(Ot/wtm()dl)~

seS teT

By the inequality in Definition 4.4.3, this is a surjective linear map between k-vector
spaces; hence it is smooth when viewed as morphisms between affine k-schemes. So there
exists a € A<y (R) lifting a € Agk(ﬁ) such that a = a, mod @," for all v e §'.

Then for each s € S, we have a = x4 (y;) mod w;"(’ds+b0“). By Proposition 2.6.6 there
exists 0y € Ving (R[[@;]]) such that x4 (6y) = a and 6; = y; mod wsb()“). By Lemma 2.5.2,
this implies that the image of 65 in Gr,, (R) coincides with [y;].

For each t € T, by Proposition 2.6.6 again, there exists 0; € GSC(@, ® R) such that

xX+(6) =a.

4.4.10. For each v € Supp(A)\ S, the restriction of the Higgs—Vinberg field ¢ to v
lands in [Ving/T x Ad(G)] by the first condition in Definition 4.4.3. For each point
v in the complement of Supp(A)U S’ = Supp(A)u T, the restriction of ¢ to v lands in
[G"¥ /T x Ad(G)] by Corollary 3.8.3.

Therefore the restriction of (€, @) to (X — ') @ R lands in the stack

[(Vin UGY™)/T x Ad(G)]

which is a BJ gerbe neutralized by a global Steinberg section €. By the same reasoning
as in Proposition 4.2.2, there exists a Higgs—Vinberg pair (&', ¢) over (X —S') ®Q« R
together with trivializations v, of £ over the formal punctured disc at each v € S that
lifts (€, P (x—sHeR and the restrictions of the trivializations teo, to the punctured disc

and moreover x4 (&', ¢') = a € Hom(X — &, (’Zﬁ).

4.4.11. Finally we construct the desired lifting (€, ¢, Toos) by Beauville-Laszlo gluing
lemma. For each v € §', restricting ¢’ to the formal punctured disc DS & R and using
the trivialization 3, we obtain an element 0, € G5 (R((w,))) with x4(0,) = a. Recall

that we have constructed elements 6, € LTVin* (R) C G¥(R((my))) with x4.(6y) = a.
Since a € €F(R((wy))), the transporter Isom(d,, ;) from 6, to 6, is a torsor under the
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smooth centralizer 7| DI&R After reduction mod I, we know that 6, and 6’_]’} come
from a globally defined Higgs—Vinberg pair (€', ¢'). In other words, Isom(8,, 0,) has a
R-point. By smoothness, this R-point lifts to an R-point of Isom(8,, 0,). Consequently
by Beauville-Laszlo lemma, the Higgs—Vinberg pairs (&', ¢) over (X —S') ®¢ R with

the trivializations t%,, over the formal punctured disc DS & R can be glued with the

Higgs—Vinberg pairs (£, 6,) (where & is the trivial G-torsor) on the formal discs D, ® R
to get a Higgs—Vinberg pair (£, ¢) € ./\/lb< , (R). By construction it comes with tautological
trivializations Teos on UsesDs @ R lifting (&, @, Toos) and its image under the evaluation
map eNV?VS is the R-point ([05] = [ysDses of [[;es Grea, -

Corollary 4.4.12. The stack Mng is Cohen—-MaCaulay and its open substack ./\/l; 15
smooth.

Proof. This follows from Theorem 4.4.5 and the fact that Grg,, is Cohen-MaCaulay and
Gr;, is smooth for all s € §. O

5. From global to local

In this section, we finish the proof of Theorem 1.2.1.
Let A € X4(T)+ and y € G(F)™. Suppose that kg(y) = pg(}) and v, <g X so that the

generalized affine Springer fibers X)A/ and Xf)\ are nonempty. Let

a:=x+() € €(O) NG (F)

where y, € fo’rS(F ) is defined in Lemma 3.1.5. Then we have isomorphisms

Xs*=Sp,, X} =Sp).
Moreover, the local Picard P, acts on Sp, and Sps ¢ is the union of open orbits.

5.1. Local constancy of Kottwitz—Viehmann varieties

This subsection is devoted to the proof of the following:

Theorem 5.1.1. There exists an integer N such that for all a’ € € (Ox)N €g+(Fx) with
a’' =a mod w?, there are an isomorphism Sp, = Sp, and an isomorphism P, = P,
compatible with the action of P, (respectively P, ) on Sp, (respectively Sp, ).

First we make some standard reductions. Notice that for any a’ € €, (Oy) N er(§+ (Fy),
Spg, is a union of certain connected components of Spg ., the latter of which is
isomorphic to the quotient of SPGif,a’ by the coweight lattice X, (T5¢) of the central torus
of G¥. Hence we may assume that G = G¥ and for simplicity omit G in the notation.

Fix a Coxeter element w € Cox(W, S), cf. 2.2.1. Let yp := €Y (a) (respectively y; :=
€l (a")) be the extended Steinberg sections for a (respectively a’). Then we have a
canonical isomorphism between group schemes over Spec O:

Jo =Ly, Jo = Iy(g'
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Lemma 5.1.2. For any g € G(F), we have Ad(g)~ ' (yo) € Vings(O) if and only if
Ad(®) ™ (1 (0)) C Vings(O).

Proof. Since yp € y1,,(O), the condition is sufficient. Now assume that
y = Ad(®)™ (%) € Ving=(O).

Then the centralizer I, is a group scheme over Spec O. By Lemma 2.4.2, the isomorphism
of F groups
AdQ) ™t Jur =Ly r — Iy F

extends to Spec O. Thus we have
Ad(g)™" (I, (0)) C I,(0) C G(O)
from which we obtain

Ad(2) ' (Y11, (0)) = yAd(g) ™' (1,,(0)) C Vingse(O). O

Lemma 5.1.3. Let a,a’ € €1 (0)NCix(F) with a=a" mod w™N. Suppose that there
+ ~ ~
ezxists a W-equivariant isomorphism between the cameral covers X, and X, lifting the
identity modulo w™ . Let yy := €¥(a) and )/6 = €Y (a’). Then there exists g € G(O) such
that
Ad(®) ™ (01, (0)) = ¥4I, (O).
Proof. We follow the argument of [23, Lemme 3.5.4]. Let
fa = Spec R, and )?a/ = Spec R/

where R, Ry are finite flat O-algebras. Let F, := R, ® F (respectively F := Fy ®o F)
and R} (respectively RZ,) be the normalization of R, (respectively R,/) in F, (respectively
Fu).
By assumption, we have
Ry =Ry /N
and there exists a W-equivariant O-isomorphism ¢ : R, — R, that lifts the identity

modulo @™

By Proposition 2.4.7, the isomorphism
t: R, =Ry
induces an isomorphism ¢y : I, — IV(; between group schemes over SpecO. Since

¥0 € Iy (F), we have t;(y0) € L, (F). We can choose h € G(Rq) and i € G(R,,) such that
on F-points, the map ¢; is given by the following composition

Ly(F) S T(F)V 5 T(F)Y S L (F), (5.1)

where the first map is Ad(h) and the third map is Ad(h’)~'. In other words, (; =
Ad(h'~Yi(h)) on F-points. In particular, we have

X+ (o) = x+(vo) = a.
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The assumption that ¢ is identity modulo @® implies that Ad(h’~!i(h)) =1d mod & .
Thus we get
LIy, (F) N Vings (0)) C I, (F) N Vings(O).

In particular, we have t(yp) € Iy(g N Vingse (O) and moreover

() = Yo = ¥4 in Vinke (O/a™).
Since the map
G x Ving — Ving x ¢, Ving
is smooth and surjective, there exists g€ G(O) with g=1 mod @" such that
Ad(g)" (o) = t7(y0). Therefore

Ad(®) Uy) = Ly = Ly

Finally by Lemma 2.5.2, we have (yé)’]tl(yo) e G(O)N IV(;(F) = 1,,(O) which implies
that t; () € yélyé (O) and hence we are done. O

5.2. Dimension of Kottwitz—Viehmann varieties

By Theorem 3.7.1, the dimension formula for X)}; = Sp, is reduced to the following
statement which we prove in this subsection:

Theorem 5.2.1. dimSp, = dim P,.

If C C G is the maximal torus in the center of G, then Spg,c , = Spg ./ X«(C) and
similar isomorphism holds for the local Picard P,. Thus we may assume that G is
semisimple.

Let X be a projective smooth curve over k and x € X a closed point. Let Oy be the
completed local ring at x and F; its fraction field. Choose a uniformiser @, at x so that
we have O, = k[[w,]] and Fy = k((wwy)). Also we let X’ = X — {x} be the open curve.

We view a € €(Oy) as a power series in @, with coefficients in €. Form the Cartesian
diagram

X, — T,

Spec O +—— ¢,

where X, = Spec R, for a finite flat O algebra R,. Moreover, F, = R, ®» F is a product

of finite tamely ramified extension of F of degree e by our assumption that char(k) is

coprime to the order of Weyl group. Then a(wy) € € (Oy) ﬂ@rGSsc(Fx) will be a split
+

conjugacy class.
For each s € k we define

as = a(swy + (1 —s)wy) € €(O)NCq, (F)™. (5.2)

Then a; =a and ap = a(wy). For each s # 0, Sp, is isomorphic to Sp, since a; is
obtained from a = a; by changing uniformizer.
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5.2.2. Let N > 0 be a positive integer such that both Sp, and Sp,, only depend on a
(respectively ap) modulo @ . Then for all s € k, Sp,, only depends on a; modulo alN.
Now we choose a T*-torsor £ on X trivialized on the formal neighborhood of x such
that
(1) There exist a T*-torsor £ and an isomorphism (£)®¢ = £;

(2) For all y € X’ = X —x, choosing a trivialization of £ on a formal neighborhood of
v, the local evaluation map

Ar = H'(X, €) — €40y /m) x €1 (0, /m) (5.3)
is surjective.

By Riemann—Roch, condition 2 is satisfied if for all 1 <i < r we have
deg(ai (L)) > 2¢g+ N and deg(w;(L)) >2g+ N.

Recall that for each ay € A% we associate an X (Tad)4-valued divisor A,, on X as in
§4.1.3.

Lemma 5.2.3. Let X C X be a finite subset. The subset Af C AQZ consisting of ay. € Ag
such that

Supp(Aa, ) NSupp(Ag,) C X

is constructible.

Proof. For each 1 <i < r, consider the closed subscheme D; C AQZ x X whose fiber over
as € A(Z is the effective divisor D(b;) where b; is the ith coordinate of B, (a4) as

above. Similarly, we have the closed subscheme A C Az x X whose fiber over ay is the
discriminant divisor A, . Let

DF =DiNUZx (X~ X)) and A¥ = AN(AS x (X — X)).

Then Diz N A% is a locally closed subset of .AQZ x X. By construction Af is the image of
Ulgigr (Dl.Z NAZ%) in AQZ, hence constructible. O

5.2.4. The one-parameter family (5.2) defines a curve C in Q:+(Ox/w)f’). Let Lc C Ag
be the closed subset defined as the inverse image of C under the map (5.3). For all s € k,
let Ly, C Az be the inverse image of ag under the map (5.3). Since a; € € (F) for all
s € k, we have L¢c C ACZ.

Definition 5.2.5. Let Z¢ C L¢ be the subset consisting of a; € L¢ with b = B, (ay) such
that

ea, € %li;

o Supp(rq,) NSupp(Ay,) C {x};

e a (X’) intersects the discriminant divisor ’Df transversally, where X’ = X — {x}.
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Lemma 5.2.6. Z¢ is a constructible subset of Lc that is fiberwise dense with respect to
the projection Lc — C. In particular, there ezists a fiberwise dense open subset Uc of
L¢ such that Uc C Zc.

Proof. First we show that Z¢ is constructible. The first condition in Definition 5.2.5
defines an open subset of L¢. By Lemma 5.2.3, the set Ly := Lc N .A) determined by
the second condition in Definition 5.2.5 is a constructible subset of L¢.

Let U C X’ x L¢ be the open subset whose fiber over ay € L¢ is the open curve
X" —Supp(Aa, ). The local evaluation maps define a morphism

U — TeE,

where ']I‘Cf is the relative tangent bundle of Cf over X. Let U; be the inverse image of
L,sm L L,sing
TD " UTEY x ¢t DU

Then the image of U; in L¢ is a constructible subset that satisfies the third condition in
Definition 5.2.5. Hence Z¢ is a constructible subset of L¢.

Next we show that Z¢ is fiberwise dense with respect to the map Lc — C. We fix a
point ag € C.

For any closed point y € X', the map

Lo, — Te¢s | =S ®0, O)/m]

is surjective by our choice of L.

Let X” := X"\ Supp(Xp). By the same argument as in [23, Lemme 4.7.2], we know that
the subset Z C Ly, consisting of at € L,, such that a;(X") intersects D% transversally
is dense in L.

For each y € Supp(Ap) — {x}, since the map evy : L, — Cf,y is surjective, the subset
Xy = evy_l(’Df) C L,4, has codimension 1.

Finally, since L,, has codimension 2rN in .A% and the complement of %ﬁ in .A(Z has
codimension strictly larger than 2r N, we see that

Zo=|z- |J =z |nAP
y€ESupp(ip)

is dense in L. O

5.2.7. Thus we can choose a section o of the surjective linear map (5.3) such that
C’ := o (C)NUc is nonempty and contains the point o (ag).
By Theorem 4.2.10, we have

dim Mg (ag) — Po(ag) = Z (dim Spy, (49, — dim Py (ag), ),
veSupp(Ay)U{x}

where o (ag), denotes the image of o (ag) in €4 (O,).
For summands with v # x, since o(ap) € Z¢ we have in particular As),0 =0 and
hence by Corollary 3.8.2 dim Sp,, (), = dim Py (49),- On the other hand, for the term v = x,
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we know that o (ag)y = ag is split and hence by Corollary 3.5.3 dim Spg, = dim Py, Thus
the above equality simplifies to

dim M (p) — dim Py (45) = 0.
Since €’ C A¥ the restriction of the Hitchin-Frenkel-Ngé fibration to C’ is proper.

L
Hence by upper semicontinuity of fiber dimension we have for

dim Mg (4,) < dim Mg qp) = dim Py (4y)
for all o(as) € C’ with s # 0. Since P is smooth over A,z by Proposition 4.2.2, we have
dim Py (4;) = Po (ag), Which forces
dim Mg (4,) = dim Py (4y).
Applying product formula Theorem 4.2.10 again, we get
0 = dim My (4,) — dim Py () = > (dim Spy (4, )., — dim Po(ay).0)-
veSupp(Agg )U{x}

By similar reasoning as above, all terms on the right hand side where v # x are zero; at
v = x notice that o(as), = a; and then we get

dim Sp, —dim P, = 0.
Since s # 0, we have Sp, = Sp, and hence
dim Sp, = dim P,.

This finishes the proof of Theorem 5.2.1 and hence the dimension formula in
Theorem 1.2.1.

5.3. Equidimensionality

To finish the proof of Theorem 1.2.1 it remains to show the equidimensionality statement.
Again our argument is of global nature, this time using a restricted Hitchin—Frenkel-Ngo
moduli stack instead of the whole moduli stack. As in the previous subsection, we may
assume that G is semisimple.

5.3.1. Recall that by Theorem 5.1.1 there exists a positive integer N > 0 such that the
isomorphism class of Sp, equipped with the action of P, only depends on a@ modulo @ .
Let X be the projective smooth curve as in the previous section. Fix two distinct closed
points x, xo € X. We consider an X, (Tyq)+-valued divisor on X of the form A[x]+ Ao[xo],
where Ay € X (Tag)+ is chosen such that the following properties are satisfied:

e The T,4-torsor associated to the divisor A[x]+ Ag[xg] lifts to a T5-torsor £ and there
exists a T*-torsor £’ together with an isomorphism (£)®¢ = L.

e For each 1 < i < r, the following three inequalities are satisfied:
(Wi, A+ Xo) > 28 —2+ (N +3)r
(@i, A+4o) > 28 =24+ mo(da + 1) +b(2)
(wi, A+ o) > max{Nr,2¢g —2,rg}+1+rg,

where d, =d, +(p,A) is the valuation of the extended discriminant divisor of
a = x») € €4(0) and the numbers mg, b(1) are as in Definition 4.4.3.
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5.3.2. Let hg) : Mg — Agi be the restricted Hitchin—Frenkel-Ngé moduli stack
associated to the divisor A[x]+ Ag[xg]. For simplicity we have omitted A9 from the
notation.

We apply the result of §4.4 to the our current situation. The set S in Definition 4.4.3 is
taken to be {x} in the current situation. Then we get open subset .Ab< , and open substack

./\/lb<’ini. For some positive integer n > 0 large enough, there is a local evaluation map
b
Vor - Mo, = [LFG\Grg,]

which is smooth by Theorem 4.4.5. Moreover, the inverse image of [L;f G\Gr;] under ev,bm
. b
is the open substack M, .

Corollary 5.3.3. The Testmctwn of the Hitchin—Frenkel-Ngé fibration to the transversal
ani b,ani b, am
anisotropic open substack h<)\ M<)L .A is flat.

Proof. By product formula (Theorem 4.2.10) and Theorem 52 1 we have

dim M, = dim P, for each a € .Ab<im In particular, the fiber dimension of h”: An is constant

since P is a smooth Deligne-Mumford stack over AL' By Corollary 4.4.12, the source
/\/lb anl g Cohen—MaCaulay and hence we conclude that the morphism is flat. O

Lemma 5.3.4. There exists a point ay € Ab<jm such that

o xo ¢ Supp(A(ay)),

o Supp(A(ay)sing) C {x}, in other words, ai (X —x) is transversal to the discriminant
divisor.

ea, =a mod wl

Proof. The proof is similar to Lemma 5.2.6. Let L C Ag, be the linear subspace
consisting of a4 € Ag; such that ay =a mod w)gv . Sincea € Qﬁi (O) is generically regular
semisimple, we have L C Az -

The first inequality in §\5.3.1 implies that for any point y € X — {x, xo}, the local
evaluation map

A = (O /m) x €0y /wd) x €2 (O /)

is surjective. By similar argument as in the proof of Lemma 5.2.6, this implies that there
is dense subset Z C L consisting of points ay € AZA such that a4 (X — x) intersects the
discriminant divisor transversally and a4 (xg) does not intersect with the discriminant
divisor.

Then for each ay € Z, we have A(a)sing = du[x] and hence the second inequality in
§5.3.1 ensures that Z C A<)L

Finally since Z C Ag, is a subset of codimension Nr, the third inequality in §5.3.1
ensures that Z has nonempty intersection with Aam by Corollary 4.2.8. Then any point

ar €ZnN ‘““ satisfies the condition we want. O
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Choose a4 eAbg'ini as in the Lemma above. Then by Theorem 4.2.10 and
Corollary 3.8.3, there is a homeomorphism of stacks

[ng,a+/Pa+] = [Spa/Pa]~

Corollary 5.3.3 implies that M, 4, is equidimensional. Therefore Sp, and its open subset
Spg are also equidimensional. This finishes the proof of Theorem 1.2.1.
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