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The paper employs an extended Yaari-Blanchard model of overlapping generations to
study how the macroeconomy is affected over time by various demographic changes. It is
shown that a proportional decline in fertility and death rates has qualitatively similar
effects to capital income subsidies; both per capita savings and per capita consumption
increase in the new steady state. A drop in the birth rate, although keeping the death rate
constant, reduces per capita savings, but increases per capita consumption if the
generational turnover effect is dominated by the intertemporal labor supply effect. If the
generational turnover effect is sufficiently strong, however, a decline in the birth rate may,
contrary to standard results, give rise to an increase in per capita savings. Finally, a
fertility rate reduction that leaves unaffected the rate of generational turnover is shown to
have effects qualitatively similar to those of a fall in public consumption. Both per capita
savings and per capita output decline, but per capita private consumption rises.
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1. INTRODUCTION

Population aging and its macroeconomic effects have emerged over the last decade
as a key issue on the policy agendas of most industrialized countries. During the
postwar period, the population share of elderly people has increased dramatically.
Following the postwar “baby boom”—during which population growth rates tem-
porarily accelerated—fertility rates have declined substantially, commonly known
as the “baby bust.” At the same time, mortality rates have decreased in most indus-
trialized nations, owing to healthier lifestyles and medical advances.1 Both trends
give rise to population aging.

The effects of the postwar demographic transition on old-age dependency ratios
(that is, the ratio of the population aged 65 years and older to the population

The authors would like to thank Leon Bettendorf, Peter Broer, Seppo Kari, and Hans-Werner Sinn for helpful
comments. Ligthart gratefully acknowledges financial support from the Dutch Ministry of Finance. The paper was
partly written when Heijdra was associated with OCFEB. Address correspondence to: Ben J. Heijdra, Department
of Economics and Netspar, University of Groningen, P.O. Box 800, 9700 AV Groningen, The Netherlands; e-mail:
b.j.heijdra@rug.nl.

c© 2006 Cambridge University Press 1365-1005/06 $12.00 349

https://doi.org/10.1017/S1365100506050188 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100506050188


350 BEN J. HEIJDRA AND JENNY E. LIGTHART

TABLE 1. Dependency ratios for selected OECD countries 1970–2050 (in percent)

Youth dependency ratios(1) Old-age dependency ratios(2)

Country 1970 2000 2025(3) 2050(3) 1970 2000 2025(3) 2050(3)

Belgium 37 27 25 26 21 26 37 47
Canada 49 28 23 26 13 18 33 44
Denmark 36 27 25 26 19 22 35 42
France 40 29 27 28 21 24 36 46
Germany 37 23 22 27 22 24 38 49
Italy 38 21 18 25 17 27 40 65
Japan 35 21 20 26 10 25 50 72
Netherlands 44 27 25 26 16 20 33 42
New Zealand 53 35 29 27 14 18 29 38
Spain 45 21 18 26 16 24 35 68
Switzerland 37 25 22 24 17 24 45 55
United Kingdom 39 29 25 26 21 24 31 38
United States 46 33 32 29 16 19 28 32

Source: United Nations (2003), World Population Prospects Database.
(1) The ratio of the population aged 0–14 to the population aged 15–64.
(2) The ratio of the population aged 65 years or over to the population aged 15–64.
(3) Medium variant projections.

aged 15–64 years) for selected OECD countries are presented in Table 1. The
evolution of the old-age dependency ratio shows pronounced population aging for
all countries, where it is apparent that populations in European countries and Japan
are older than elsewhere. Japan stands out as having an old-age dependency ratio
of only 10 percent in 1970, and a projected ratio of more than 70 percent in 2050, a
large increase unparalleled across OECD countries. The youth dependency ratio2

is projected to fall by about one third between 1970 and 2050, reflecting a steady
decline in fertility rates, although there are significant differences among OECD
countries. Canada and New Zealand experience a decline in the youth dependency
ratio of about 26 percentage points, against a fall of only 9 percentage points in
Japan.

Demographic changes have profound economic effects, which may span many
generations. Particularly, the impending retirement of the baby boom generation
is raising a great deal of concern. If a large fraction of the population retires (or
passes away), society is expected to save less, leading to a lower rate of capital
accumulation and lower living standards.3 The aim of this paper is to analyze the
macroeconomic effects of various demographic changes in a model of a closed
economy. Various questions arise. How do changes in the population growth rate
affect aggregate savings, consumption, employment, and output in the new steady
state? Does a drop in fertility, reducing potential labor supply, drive up wages?
How are the relevant macroeconomic variables affected along the transition path?
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The informal literature on population aging, for example, Group of Ten (1998)
and McMorrow and Röger (2003), is voluminous. Although not as large yet, the
theoretical literature is developing. Many formal contributions employ calibrated
life-cycle models—in the tradition of Samuelson (1958), Diamond (1965),4 and
Auerbach and Kotlikoff (1987)—to study numerically the effects of population
aging.5 All of these studies assume exogenous population dynamics. Some authors
employing the life-cycle approach—for example, Elmendorf and Sheiner (2000)—
have examined the steady-state effects of demographic changes analytically but
have not studied the entire transition path.6 Our analysis follows a different take.
It draws on the overlapping generations framework of Yaari (1965) and Blanchard
(1985), which assumes that all agents face a constant probability of death in a
world of zero population growth, as well as Buiter (1988), who introduces (exoge-
nous) population growth in the Yaari-Blanchard model.7 In particular, we extend
Buiter’s model to include endogenous (intertemporal) labor supply, which allows
us to study the labor market effects of various demographic shocks. By explicitly
modeling the labor market, we can disentangle labor supply responses—and thus
the participation decision—from labor demand conditions, thus allowing for a
meaningful analysis of intertemporal wage profiles. Moreover, we can allow for
voluntary retirement of households by incorporating a wealth effect in labor supply
that makes old agents—having accumulated much wealth—work less hours. Our
framework is partly related to the model of Heijdra and Ligthart (2000, 2002),
which has introduced endogenous labor supply in the Yaari-Blanchard framework
with a view to study taxation issues.8

A simple graphical apparatus is developed to provide an intuitive account of
the long-run and dynamic effects of various demographic changes. The model
is versatile because it encompasses results of various seminal works—that of
Blanchard (1985), Buiter (1988), and Weil (1989)—by varying the assumptions
made on demography and the intertemporal substitution elasticity in labor supply.
Moreover, it can be employed to get insight into and extend the results from
the population aging literature. Our approach differs from previous theoretical
analyses on population dynamics by being able to trace out impulse-responses
at business cycle frequencies.9 In the Samuelson-Diamond framework a typical
period lasts 35 years, implying that transitional dynamics can only be studied at
low frequencies. Knowledge of the entire transition path is of importance to policy
analysis, however, because the short-run effects of demographic shocks may differ
markedly from their long-run effects.

Three demographic scenarios are analyzed analytically. The first shock concerns
an unexpected and permanent decrease in the (exogenous) fertility rate (that is,
a pure “baby bust”). It is shown that the optimal savings response to declining
fertility entails either a decrease or an increase in per capita savings depending
on the assumptions made on the elasticity of labor supply and the generational
turnover effect, thereby generalizing the results of Elmendorf and Sheiner (2000).
Second, a proportionate fall in the fertility and death rates so as to yield a stationary
population growth rate is studied. Under this scenario, the qualitative results are
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identical to those of a subsidy on capital; both the per capita capital stock and
per capita consumption rise in the new steady state. The final scenario—studying
a drop in the fertility rate and a compensating increase in the death rate so as to
maintain the rate of generational turnover constant—gives rise to a rise in long-run
per capita consumption, although the per capita capital stock falls.

The remainder of the paper is organized as follows. Section 2 sets out the Yaari-
Blanchard overlapping generations model extended for endogenous labor supply
and exogenous population dynamics. Section 3 solves the model graphically and
analyzes the dynamics around the long-run equilibrium. Section 4 employes the
graphical framework of Section 3 to qualitatively study various demographic
shocks. Section 5 concludes.

2. A MODEL OF OVERLAPPING GENERATIONS

2.1. Individual Households and Demographics

As in Blanchard (1985), individual households face an age-invariant probability of
death (β ≥ 0). Each household has a time endowment of unity, which is allocated
optimally over labor supply and leisure. The utility functional at time t of the
representative agent born at time v is denoted by �(v, t):

�(v, t) ≡
∫ ∞

t

[εC log c̄(v, τ ) + (1 − εC)log[1 − l̄(v, τ )]]e(α+β)(t−τ) dτ, (1)

where c̄(v, t) and l̄(v, t) are, respectively, private consumption and labor supply in
period t by an agent born in period v, α is the pure rate of time preference (α > 0)
that applies across generations and εC is the share of consumption in utility.10 The
logarithmic felicity function implies that the intertemporal substitution elasticity
for goods consumption is unity and for labor supply is [1 − l̄ (v, t)]/l̄ (v, t). The
representative agent’s dynamic budget identity can be expressed as:

˙̄a(v, t) = [r(t) + β] ā(v, t) + w(t)l̄ (t) − z̄(t) − c̄(v, t), (2)

where ˙̄a(v, t) ≡ dā(v, t)/dt , ā(v, t) are real financial assets, r(t) is the real rate of
interest, w(t) is the real wage rate (assumed age-independent for convenience), and
z̄(t) are real net lump-sum taxes. The return on financial assets exceeds the rate of
interest because, with lifetime uncertainty and in the absence of bequest motives,
agents conclude actuarially fair contracts with life insurance companies.11

The individual household chooses time profiles for c̄(v, t) and l̄(v, t) in order
to maximize �(v, t) subject to the budget identity (2) and a No-Ponzi-Game
solvency condition, limτ→∞ ā(v, τ ) exp[− ∫ τ

t
[r(s) + β] ds] = 0. The optimal

solutions for private consumption and labor supply on the interval t ∈ [0,∞) are
fully characterized by:12

c̄ (v, t) = εC(α + β)[ā(v, t) + h̄(t)], (3)
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1 − l̄(v, t) = (1 − εC)c̄(v, t)

εCw(t)
, (4)

˙̄c(v, t)

c̄(v, t)
= r(t) − α, (5)

where h̄ (t) is expected lifetime human wealth:

h̄(t) ≡
∫ ∞

t

[w(τ) − z̄(τ )] exp

[
−

∫ τ

t

[r(s) + β] ds

]
dτ, (6)

which is age-independent. According to (3), goods consumption in the planning
period t is proportional to total wealth, comprising the sum of financial and human
wealth. Equation (4) shows that in each period, the marginal rate of substitution
between leisure and private consumption is equated to the real wage rate. Note that
labor supply is a negative function of individual consumption. This wealth effect
causes wealthier agents to consume more leisure and thus allows for the proportion
of agents opting for “voluntary retirement” to increase with age.13 As the Euler
equation (5) shows, the time profile of individual consumption is governed by
the difference between the real interest rate and the rate of pure time preference.
Finally, equation (6) implies that human wealth is the after-tax value of the time
endowment discounted at the risk-of-death adjusted rate of interest r + β.

To allow for net population growth or decline, we draw on Buiter (1988) and
distinguish between the probability of death β (≥ 0) and the birth rate η (≥ 0). An
attractive feature of modeling demographics this way is that it nests two seminal
overlapping generations models as special cases. By setting η = β Blanchard’s
(1985) model14 is obtained and by setting β = 0 Weil’s (1989) model is derived.15

Without international migration, the (net) population growth rate, nN , equals the
difference between the birth and death rate:16

nN ≡ Ṅ(t)

N(t)
= η − β � 0, if η � β, (7)

where the population size at time t is denoted by N(t). The size of a newborn
generation is proportional to the current population N(v, v) = ηN(v), where
N(v, t) is the size at time t of the cohort born at some time v(t ≥ v). Because the
death rate is constant and cohorts are assumed to be large, the size of each existing
generation falls exponentially according to:

N(v, t) = e−β(t−v)N(v, v), t ≥ v. (8)

2.2. Aggregate Household Sector

Given the simple demographic structure, aggregate variables can be calculated
as the weighted integral of the values for the different generations. Aggregate
financial wealth is, for example, defined as A(t) ≡ ∫ t

−∞ N(v, t)ā(v, t)dv, where
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N(v, t) = ηeηve−βt (and aggregate values for C(t) and L(t) are derived in a
similar fashion). The main equations describing optimal behavior of the aggregate
household sector can be written as:

C(t) = εC(α + β)[A(t) + N(t)h̄(t)], (9)

N(t) − L(t) = (1 − εC)C(t)

εCw(t)
, (10)

Ċ(t)

C(t)
= r(t) − α −

[
βC(t) − ηN(t)c̄ (t, t)

C(t)

]
. (11)

Equations (9) and (10) are aggregate versions of (3) and (4), respectively. Equa-
tion (11) is the Keynes-Ramsey rule modified for the existence of overlapping gen-
erations of finitely lived agents. It says that aggregate consumption growth differs
from individual consumption growth [equation (5)], because of the distributional
effects caused by the turnover of generations. This so-called generational turnover
effect (see Heijdra and Ligthart, 2000)—represented by the second term between
brackets of (11)—is comprised of two opposing forces. On the one hand, aggregate
growth exceeds individual growth because of the birth of new generations, who
start consuming out of human wealth immediately (represented by ηN(t)c̄(t, t)).
On the other hand, aggregate consumption growth falls short of individual growth,
reflecting that at each instant of time a cross section of the population dies and
consequently ceases to consume (represented by βC(t)). For future reference,
equation (11) can be rewritten in terms of aggregate variables:17

Ċ(t)

C(t)
= r(t) − α + nN − ηεC(α + β)

[
A(t)

C(t)

]
. (12)

2.3. Firms

Firms in the final goods sector18 rent capital, K(t), and labor, L(t), from house-
holds to produce a homogeneous good, Y (t), which is either consumed by house-
holds or the government or invested by households to augment the physical capital
stock. The final goods sector is characterized by perfect competition. Technology
is described by a Cobb-Douglas production function:

Y (t) = �Y K(t)εK L(t)1−εK , 0 < εK < 1, �Y > 0, (13)

where �Y is a general technology index, which is assumed to be constant. Real
profits of the representative firm are defined in the usual way:

�(t) ≡ (1 − τK(t))[Y (t) − w(t)L(t)] − [r(t) + δ]K(t), (14)

where r(t) + δ is the effective rental rate of capital, δ is the rate of capital
depreciation, and τK(t) is a capital income tax (or capital subsidy if τK(t) < 0).
The representative producer chooses K(t) and L(t) in order to maximize �(t),
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taking factor prices as given. The first-order conditions for this static optimization
problem are:

(1 − τK(t))
∂Y (t)

∂K(t)
= r(t) + δ,

∂Y (t)

∂L(t)
= w(t). (15)

Because technology features constant returns to scale and markets are perfectly
competitive, excess profits are zero (that is, �(t) = 0). Furthermore, because
there are no adjustment costs associated with investment, the value of household
share holdings equals the capital stock, that is, V (t) = K(t).

2.4. Government and Market Equilibrium

The government consumes a fixed share of the final good. Abstracting from public
debt and labor taxes, the periodic budget restriction of the government can be
written as:

G(t) = N(t)z̄(t) + τK(t)[Y (t) − w(t)L(t)], (16)

where G(t) denotes public consumption and N(t)z̄(t) are total net lump-sum
taxes.

Because of the assumption of perfect foresight, agents’ behavior depends on
current and future prices. Flexible factor prices cause factor markets to clear
instantaneously. Financial market equilibrium implies that households’ claims on
capital equal the physical capital stock (that is, A(t) = K(t)). Equilibrium on the
goods market implies that:

Y (t) = C(t) + G(t) + I (t), (17)

where I (t) denotes gross investment:

K̇(t) = I (t) − δK(t), (18)

where K̇(t) ≡ dK(t)/dt is net capital accumulation.

2.5. Model Summary

In the presence of population growth, the model will give rise to ongoing economic
growth also in the steady state.19 In order to study the steady-state dynamics, we
rewrite the model in a stationary format by expressing all growing variables relative
to the population size, N(t). The key equations of the model are presented in
Table 2. Consider first the dynamic equations. Equation (T1.1) describes the
evolution of the per capita stock of capital, which is obtained by combining (17)
and (18) and dividing by the population size. The second equation, given by
(T1.2), shows the optimum time path of per capita consumption. With a positive
birth rate (η > 0), the steady-state rate of interest must exceed the pure rate of time
preference, that is, r > α.20 The rising individual consumption profile [see (5)]
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TABLE 2. The model(1)

(a) Dynamic equations:
k̇(t) = y(t) − c(t) − g (t) − (δ + nN) k(t) (T1.1)

ċ(t) = [r (t) − α] c(t) − ηεC (α + β) k(t) (T1.2)

(b) Static equations:

y(t) = �Y k (t)εK l (t)1−εK (T1.3)

w (t) = (1 − εK)

(
y (t)

l (t)

)
(T1.4)

r (t) + δ

1 − τK(t)
= εK

(
y (t)

k (t)

)
(T1.5)

w (t) [1 − l(t)] =
(

1 − εC

εC

)
c(t) (T1.6)

z̄(t) = g(t) − τK(t) [y(t) − w(t)l(t)] (T1.7)

(1) Variables: y(t) ≡ Y (t)/N(t): per capita output; c(t) ≡ C(t)/N(t): per capita private
consumption; g(t) ≡ G(t)/N(t): per capita government consumption; k(t) ≡ K(t)/N(t):
per capita capital stock; l(t) ≡ L(t)/N(t): per capita labor supply (that is, the macroeconomic
participation rate); z̄(t): per capita lump-sum tax; w(t): real wage rate; r(t): real interest rate;
and τK(t): capital income tax. Parameters: δ: rate of capital depreciation; α: pure rate of time
preference; nN ≡ η − β: net population growth rate; η: birth rate; β: death rate; εK : capital
share in output; and εC : share of consumption in utility.

ensures that in steady state financial wealth is transferred—via the life-insurance
companies—from old to young generations (see Blanchard, 1985).

Equations (T1.3)–(T1.7) are essentially static equations. Equation (T1.3) is the
intensive-form production function, obtained from (13). The factor demand equa-
tions (T1.4)–(T1.5) are derived by rewriting the expressions in (15) in intensive
form. Equation (T1.4) represents a downward-sloping labor demand curve in the
(w, l) space. The per capita labor supply expression (T1.6) results on rewrit-
ing (10), and is referred to as the macroeconomic participation rate. Population
growth affects the participation rate both through its effect on the population
size and through its effect on aggregate labor supply. Note that the participation
rate is a negative function of per capita consumption. The short-run per capita
capital supply curve is a vertical schedule—representing a given capital stock—
whereas the short-run demand for capital (T1.5) is a standard downward-sloping
demand curve, because of diminishing returns to capital accumulation. Finally,
the government budget restriction (T1.7) is a reworked version of (16).

3. GRAPHICAL SOLUTION

As was shown in the previous section, the dynamic part of the model can be
analytically reduced to two variables: the per capita capital stock (a predeter-
mined variable) and per capita consumption (a forward-looking or jump vari-
able). The model can be graphically summarized by a phase diagram as shown in
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E0

k(t)

c(t)

SP0

P2

P1

P3

P4

k(t) = 0
.

.
c(t) = 0

FIGURE 1. Phase diagram.

Figure 1.21 The figure is drawn while holding constant the g/y share. The k̇ = 0
line represents all combinations of c and k for which the per capita stock of capital
is constant over time. It passes though the origin and is upward-sloping provided
k falls short of its golden-rule level. For points above (below) the k̇ = 0 line,
employment22 is too low (high) and consumption is too high (low) so that the
capital stock falls (rises), which is indicated by the horizontal arrows in Figure 1.

The ċ = 0 line denotes all (c, k)-combinations for which per capita consumption
is constant over time. The dashed line connecting points P3 and P4 in Figure 1
is the ċ = 0 line for the special case of a zero birth and mortality rate (that
is, η = β = 0), known in the literature as the infinite-horizon Ramsey (1928)
model.23 In this case, the steady-state rate of interest is pinned down by the pure
rate of time preference (that is, r = α), which implies that w, y/k, and k/l are
all constant in the steady state. Consequently, in view of (T1.6), the ċ = 0 line is
linear and negatively sloped.

For a positive birth rate, the ċ = 0 curve is given by the solid line connecting
points P1, P2, and P3. The position and slope of the ċ = 0 line is determined by
two effects working in opposite directions: (i) the generational turnover effect; and
(ii) the aggregate labor supply effect. The ċ = 0 line is almost horizontal near the
origin, where labor supply is close to unity and thus approaches full exogeneity
[corresponding to the Blanchard (1985), Buiter (1988), and Weil (1989) models].24

The ċ = 0 line is upward-sloping on the line segment P1P2, reflecting the dominant
generational turnover effect. In contrast, on the line segment P2P3, labor supply
is fairly elastic, yielding a downward-sloping ċ = 0 curve that is steeper than the
Ramsey ċ = 0 line (which is given by the dashed line going through points P3 and
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P4). If the elasticity of intertemporal labor supply approaches infinity (near P3),
the two curves coincide.

The consumption dynamics—illustrated by the vertical arrows in Figure 1—are
as follows. For points to the left (right) of the ċ = 0 line, consumption rises (falls)
over time. To see why, note the following that the interest rate depends on both c

and k according to r(c, k), where ∂r/∂k < 0 and ∂r/∂c < 0. The ċ = 0 line can
thus be written in shorthand notation as r(c, k) − α = η(α + β)εC(k/c). Given c,
a fall (rise) in k leads to an increase (decrease) in the rate of interest and a decrease
(increase) in the k/c ratio—representing the generational turnover term—yielding
an increase (decrease) in consumption growth.

There is a unique equilibrium at point E0 and the configuration of arrows in
Figure 1 confirms that this equilibrium is a saddle point. (See the Appendix for
a formal proof.) The saddle path associated with E0 is denoted by SP0. Although
Figure 1 has been drawn under the assumption that the equilibrium occurs along
the downward-sloping segment P2P3 of the ċ = 0 line, it cannot be ruled out a
priori that the intersection occurs somewhere along the upward-sloping segment
P1P2. In Section 5, however, we shall argue that the case illustrated in Figure 1 is
empirically the most relevant one.

4. QUALITATIVE ANALYSIS OF SMALL DEMOGRAPHIC SHOCKS

This section studies the effect of demographic shocks on the optimal savings-labor
supply response of the household sector and on the investment decisions of firms.
Specifically, we analyze the short-run, transition, and long-run macroeconomic
effects of stylized demographic scenarios, employing the graphical apparatus
developed in the previous section. To keep matters simple, attention is paid to
unanticipated and permanent changes in demographics. The formal proofs under-
lying the qualitative analysis—obtained by log-linearizing the model around an
initial steady state and subsequently perturbing the system—can be found in the
Appendix.

Three demographic shocks are considered. The first shock concerns an exoge-
nous drop in fertility, taking as given the mortality rate, which we shall refer to
as the pure baby-bust scenario. Here, the focus is on a drop in the fertility rate
rather than a drop in the death rate, because the former is in many industrialized
countries the more important factor quantitatively. The next two shocks pertain to
composite changes as both the fertility and death rates are changed simultaneously.
It is of interest to analyze these cases because it is not a priori evident whether the
macroeconomy would be affected at all. One scenario is an exogenous decrease
in fertility exactly matched by an increase in longevity (that is, a fall in the death
rate), so as to maintain a constant population growth rate. Although it is a stylized
case, some industrialized countries may at times be experiencing this type of de-
mographic change. Another scenario concerns an exogenous decrease in the birth
rate while adjusting the death rate endogenously so as to offset the generational
turnover effect of a lower birth rate. This scenario could be of practical relevance
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E0
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c(t)
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[k(t) = 0]0
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[k(t) = 0]1
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[c(t) = 0]0

.

[c(t) = 0]1

.

A

k(0)

FIGURE 2. Baby bust.

to developing countries at war or to postconflict economies, where drops in birth
rates and rises in death rates often occur simultaneously. It will be shown that the
latter two scenarios have qualitatively different macroeconomic results, because
of the generational turnover effect.

4.1. Pure Baby Bust

A permanent and unexpected decrease in the fertility rate (that is, dη < 0),
given a constant mortality rate, decreases the population growth rate (that is,
dnN = dη < 0). As a result, generational turnover decreases, reflecting that de-
ceased generations are replaced by newly born agents at a slower pace.25 Figure 2
shows the qualitative effects of this so-called pure baby-bust scenario. The sudden
drop in fertility shifts the k̇ = 0 line up and moves the ċ = 0 line to the right,
shifting the long-run equilibrium from point E0 to E1, where per capita consump-
tion has increased. The lines labeled [·]0 represent the equilibrium loci before the
demographic shock, whereas the ones labeled [·]1 indicate the loci after the shock.
Figure 2 depicts the situation in which the shift in the k̇ = 0 line is sufficiently
large to generate a new equilibrium to the left of the old equilibrium (see the
discussion later).

On impact, consumption jumps up to point A on the new saddle path, reflecting
the drop in the short-run interest rate, making present consumption more attractive
than future consumption. As a result, per capita labor supply (that is, the macroe-
conomic participation rate) falls, pushing up short-run wages, and thus benefiting
young generations—who mainly consume out of wage income—while depress-
ing interest income of the elderly. During transition, consumption gradually falls,
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TABLE 3. Summary of the qualitative effects of various demographic shocks(1)

Demographic shock Period y k l c w r

Pure Baby Bust impact − 0 − + + −
long run − − − + + −

Stationary Population Growth impact + 0 + − − +
long run + + + + + −

Constant Generational Turnover impact − 0 − + + −
long run − − − + + −

(1) It is assumed that the generational turnover effect is dominated by the labor supply effect.

mirroring the smooth rise in the interest rate, which, however, remains below its
old steady state value.

Per capita consumption is higher26 and per capita labor supply is lower in the
new long-run equilibrium. The long-run effect on the per capita capital stock (that
is, the capital intensity) is ambiguous; it depends on whether the generational
turnover effect is dominated by the labor supply effect. If individual consumption
growth profiles are fairly flat—and thus the generational turnover effect is weak—
and intertemporal labor supply is sufficiently elastic, the optimal per capita capital
stock falls.27 In view of the smaller population increment, aggregate savings must
have fallen by more than per capita savings. In the long run, the participation rate
is below its old steady-state level, reflecting reduced labor supply (as consumption
is higher) and lower labor demand associated with lower per capita assets in
the production sector. On a net basis, long-run wages have risen and—from the
factor price frontier—interest rates have fallen compared to the old steady state.
Accordingly, young existing agents consuming out of human capital benefit, while
the elderly lose out. Table 3 compares the impact and long-run effects on the per
capita macroeconomic variables.

If individual consumption growth profiles are relatively steep, the per capita
capital stock may even increase. Intuitively, the positive savings effect associated
with the reduction in generational turnover attenuates the fall in aggregate savings
induced by the lower rate of interest. Overlapping generations may thus give rise
to diametrically different results than those derived in the infinite-horizon Ramsey
model. The assumptions made on the elasticity of labor supply are crucial in this
respect.28 If labor supply is exogenous, the per capita capital stock unambiguously
rises as is also shown in the life-cycle model by Elmendorf and Sheiner (2000).29

Appendix A.2.1 shows that the results of Cutler et al. (1990), who assume
infinitely lived agents, exogenous population growth, and exogenous labor supply,
are a special case of our model. In their framework, a fertility drop yields a
reduction in aggregate steady-state savings, whereas the optimal capital intensity
remains—in contrast to our results—unaffected.30 Allowing for endogenous labor
supply reinforces this negative savings effect, yielding a reduction in the optimal
capital intensity.
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FIGURE 3. Stationary population growth.

4.2. Stationary Population Growth

Consider a demographic change that involves simultaneously decreasing the birth
rate and mortality rate (that is, dη = dβ < 0 and thus dnN = 0) so as to yield a
stationary population growth rate. Generational turnover falls, but by less than in
the pure baby-bust scenario. Figure 3 shows that this type of demographic shock
leaves the k̇ = 0 line unaffected but shifts the ċ = 0 line to the right, yielding
a higher capital intensity. Equiproportionate changes in the birth and death rates
thus have a nonneutral effect on the economy.

On impact, the rate of interest rises, making current consumption less attractive
compared to future consumption. The latter is represented by a downward jump
in consumption from point E0 to point A on the new saddle path SP1. The fall in
consumption per capita shifts the short-run labor supply curve to the right, so that
for a given level of labor demand, per capita employment and per capita output
rise and wages fall. The simultaneous decrease in per capita consumption and
increase in per capita output crowds in investment during transition.

Consumption gradually increases along the transition path to the new steady
state, where per capita capital accumulation and per capita consumption are higher
than in the old steady state. Given the stationarity of the population growth rate, the
aggregate stock of capital and aggregate consumption have increased as well (that
is, they are both on a higher path exhibiting the same rate of exponential growth).
The rise in the capital stock increases labor demand, but the rise in consumption
induces households to supply less labor. On a net basis, equilibrium employment
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FIGURE 4. Constant generational turnover.

rises. The steady-state interest rate falls and the wage rate rises, reflecting an
increase in the long-run capital-labor ratio.

The qualitative effects of a decline in population turnover are identical to those of
a capital income subsidy (Appendix A.2).31 Both per capita output and per capita
savings increase. Because of the decline in generational turnover, newly born
generations—not owning any financial capital yet—are added to the population at
a slower pace, which raises the average asset holdings of the population. A capital
income subsidy increases average asset holdings as well but by raising the return
to savings.

4.3. Constant Generational Turnover

Rather than keeping the population growth rate constant, one also could consider
a demographic change that leaves unaffected the rate of generational turnover
[that is, the second term in (T1.2)]. This requires that the death rate has to rise at
impact by dβ = −(α + β)(dη/η) > 0 to compensate for the fall in population
turnover induced by the reduced rate at which new generations are born (that is,
dη < 0). Accordingly, dnN = (α + β + η)(dη/η) < 0, implying a reduction in
net population growth, which is larger than under a pure baby-bust scenario.

The effects of the shock can be analyzed with the aid of Figure 4. The ċ = 0 line
remains unaffected, but the k̇ = 0 shifts up. The short-run and long-run qualitative
effects are equivalent to those of a pure baby bust, although generational turnover
is left unaffected. In the new steady state, per capita consumption has increased
while the per capita capital stock has fallen. Quantitatively, the two demographic
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shocks do differ, however, which is not surprising given that the generational
turnover effect is a drag on aggregate consumption growth.32

As is shown in Appendix A.2, the demographic scenario of constant generational
turnover yields macroeconomic results qualitatively similar to that of a fall in per
capita public spending. Intuitively, both decrease labor market participation via
the wealth effect in aggregate labor supply, thereby raising wages and reducing
the long-run rate of interest. The latter discourages household savings.

5. CONCLUDING REMARKS

The paper studies the dynamic macroeconomic effects of demographic shocks
employing a Yaari-Blanchard overlapping generations framework extended for
endogenous labor supply while allowing for a richer demography. Our theory
model provides for a flexible framework, enabling us to reproduce key results
from seminal articles and to provide new insights on the role of demographics in
macroeconomics.

The main results are summarized as follows. With overlapping generations, a
drop in fertility does not necessarily lead to a reduction in per capita savings and
output as is derived in the standard infinitely lived household model. Per capita sav-
ings may increase if the effect of generational turnover is sufficiently strong to dom-
inate the aggregate labor supply effect, but this is not the empirically relevant case.

Endogenizing labor supply in a model with exogenous population growth and
infinitely-lived households reinforces the negative aggregate savings effect found
by Cutler et al. (1990). With endogenous labor supply, aggregate savings fall by
more than under exogenous labor supply, giving rise to a fall in per capita savings
and per capita output. With exogenous labor supply, however, the capital intensity
is left unaffected by the shock.

Depending on the nature of the demographic change, the steady state effects
on the macroeconomy differ. A pure baby bust gives rise to a fall in steady-state
output but a rise in per capita consumption. A drop in fertility while keeping
generational turnover constant by adjusting the death rate yields results qualita-
tively similar to those of a pure baby bust. The qualitative effects of a decline in
generational turnover at constant population growth are diametrically different.
Output per capita increases, but steady-state consumption per capita declines.
Policy makers should therefore carefully analyze what changes in demography
give rise to observed population dynamics before prescribing a suitable long-run
fiscal policy response.

The short-run effects of demographic changes can differ markedly from the
long-run effects, not only quantitatively but also qualitatively. For example, an
equiproportionate decline in death and fertility rates yields a decline in per capita
consumption on impact but increases per capita consumption in the new steady
state. A pure baby-bust scenario, however, gives rise to overshooting in per capita
consumption while yielding a higher per capita consumption in the new steady
state. Notice that long-run wages are pushed up in all three scenarios, and generally
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rise in the short run, too, except in a demographic scenario that keeps the population
growth rate constant.

The analysis has abstracted from a pension sector. Furthermore, we have not
looked at the welfare effects of demographic changes. This would be particularly
relevant in the study of the design of optimal policies to address population aging.
These extensions are left for further research.

NOTES

1. Birth rates (per 100 of the population) in the United States came down from 2.43 in 1950 to 1.45
in 2000. The drop in death rates (per 100 of the population) was less spectacular, declining from 0.95
in 1950 to 0.83 in 2000 (United Nations, 2003).

2. The youth dependency ratio is defined as the ratio of the population aged 0–14 years to the
population aged 15–64 years.

3. Bloom et al. (2003) provide econometric evidence on the positive relationship between life
expectancy and the savings rate.

4. Diamond (1965) assumes that individuals live for two discrete time periods, in which they work
and save in the first period and consume out of savings in the second period.

5. Auerbach et al. (1989), Auerbach et al. (1991), Rı́os-Rull (2001), and Brooks (2002) employ
a Diamond-Samuelson overlapping generations model, which is generalized to many periods. Cutler
et al. (1990) use a representative-agent model.

6. Momota and Futagami (2000), however, study demographic transition in a small open economy
using endogenous fertility theory (see Becker and Barro, 1988).

7. Weil (1989) also allows for population growth, but he assumes infinitely lived overlapping
generations and thus differs from the uncertain lifetimes approach of Yaari-Blanchard.

8. Bovenberg (1993) has employed the Yaari-Blanchard-Buiter framework to study the effects of a
permanent rise in the capital tax in an open economy. Bovenberg and Heijdra (1998) consider a closed
economy, but they do not allow for net population growth or endogenous labour supply.

9. The Laplace transform technique of Judd (1982) is used to solve for the entire transition path of
the demographic change.

10. We use the notation introduced by Buiter (1988) by letting lowercase barred variables denote
values at the individual household level.

11. In particular, agents receive an annuity payment from the insurance company proportional
to their financial wealth (βā(v, t)) in exchange for transferring their entire estate to the insurance
company upon death. Because the contracts are actuarially fair, the annuity rate equals the death
rate β.

12. Details of the solution methods and all mathematical derivations can be found in a technical
appendix (Heijdra and Ligthart, 2004), which can be downloaded from the authors’ Web site.

13. Because there is no upper limit on an agent’s age, there exist some old (and wealthy) agents who
consume more leisure than their unit time endowment allows for (that is, l(v, t) < 0 for v → −∞).
Such agents no longer work themselves but, rather, are net demanders of labor.

14. Furthermore, the intertemporal labor supply elasticity should equal unity because labor supply
is exogenous in Blanchard’s model. See Appendix A.1 for further details.

15. Bovenberg (1993) interprets the special case of η = 0 and β < 0 as a Ramsey model with
intra-dynasty population growth, implying that the Ricardian equivalence proposition still holds. If
η > 0 and β = 0, there is extra-dynasty growth. Because of the birth of disconnected generations (or
dynasties) Ricardian equivalence would not hold.

16. By solving (7) subject to the initial condition N(0) = 1, the path for the aggregate population
is obtained: N(t) = enN t .

17. Using equations (3), (7), and (9), and noting that, in the absence of bequests, newborns possess
no financial wealth (so that ā (t, t) = 0).

18. There are many identical firms and, for convenience, their number is normalized to unity.
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19. Growth is exogenous in the steady state, but endogenous during transition. See Sections 3
and 4.

20. This follows from noting that the steady-state aggregate stock of financial assets (or capital
stock per capita) is positive (k(t) > 0). If the birth rate is zero (that is, η = 0), then (T1.2) implies the
familiar Ramsey result of r = α in the steady state.

21. Details of the derivation of the phase diagram are found in Heijdra and Ligthart (2004).
22. In deriving the equilibrium loci, we take into account that equilibrium employment depends

on both c and k. Indeed, by combining labor demand (T1.4), labor supply (T1.6), and the production
function (T1.3) we find that the labor market equilibrium condition can be written as:

(f (l) ≡)
1 − l

lεK
= ω0c

kεK
,

where ω0 is a positive constant, f ′ (·) < 0, and f ′′ (·) > 0 (for l ∈ [0, 1]). Given k, an increase in c

reduces labor supply and thus lowers equilibrium employment.
23. Strictly speaking, β = 0 is not needed to generate r = α in steady state. See (T.1.2) in Table 2

and the discussion in footnote 15.
24. The ċ = 0 line can only be described parametrically, that is, by varying l in the feasible interval

[0, 1]. In moving from point P1 to P3, l falls from 1 to 0; it follows that in P1, l = 1 and the labor-leisure
ratio (ωLL) equals zero, while in P3, l → 0 and ωLL → ∞.

25. The model features a constant probability of death, implying that a young person has the same
expected remaining lifetime—that is, the inverse of the probability of death—as a very old person.

26. This partly reflects what Cutler et al. (1990) have labeled the “Solow effect.” Because of the
reduction in the population growth rate a lower amount of savings is required to maintain a given per
capita capital stock.

27. This requires that the initial birth and death rates are small so that the rightward shift in
the ċ = 0 line is sufficiently small. With initial birth and death rates close zero—that is, r ≈ α,
thereby approximating the case of infinitely lived households—the per capita capital stock would
unambiguously fall.

28. In the following, it is assumed that the labor supply effect is sufficiently strong to generate a
stable equilibrium on the downward-sloping section of the consumption equilibrium locus (Figure 1).
It can easily be shown by a plausible calibration of the model that this is indeed the case. The labor
supply effect dominates even for quite high values of the birth rate. The derivations in the Appendix
cover the general case.

29. Elmendorf and Sheiner (2000) employ a Diamond model with exogenous population growth,
but they do not work out the comparative statics analytically.

30. Cutler et al. (1990) thus effectively set β < 0 and η = 0 (see footnote 15), so that r(k) = α,
explaining why the optimal capital intensity remains unaffected in the steady state.

31. See Heijdra and Ligthart (2000) for an overview of the macroeconomic effects of capital income
taxes.

32. Using numerical simulations, it can be easily shown that the fall in the per capita capital stock
is larger under constant generational turnover for reasonable values of the parameters.

33. The Laplace transform of x(t) is denoted by L{x, s} ≡ ∫ ∞
0 x(t)e−st dt . Intuitively, L{x, s}

represents the present value of x(t) using s as the discount rate.
34. Note that r = α for η = 0 because there is no extra-dynasty growth.
35. See Heijdra and Ligthart (2004) for a formal derivation.
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APPENDIX: MODEL SOLUTION

In this appendix, we show how the main results mentioned in the text were derived. First,
the model is solved. Second, the comparative statics are derived.
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A.1. GENERAL SOLUTION APPROACH

We log-linearize the model of Table 1 around an initial steady state, using the notational
conventions mentioned at the beginning of Section 2. After some simplifications, the
following quasi-reduced form equations can be derived:

ỹ(t) = φεKk̃(t) − (φ − 1)c̃(t), (A.1)

ωI ı̃(t) = ỹ(t) − ωCc̃(t) − ωGg̃(t), (A.2)

(1 − εK)l̃(t) = ỹ(t) − εK k̃(t), (A.3)

−εK [ỹ(t) − k̃(t)] = (1 − εK)w̃(t) = −εK

[(
r

r + δ

)
r̃(t) + τ̃K(t)

]
, (A.4)

where a tilde (˜) denotes a relative change (for example, ỹ(t) ≡ dy/y, except for τ̃K ≡
dτK/(1−τK)), ωC ≡ c/y denotes the share of private consumption in real output, ωI ≡ i/y

is the share of investment in real output, and ωG ≡ g/y denotes the share of government
consumption in real output.

The parameter φ represents the intertemporal labor supply effect, which is defined as:

φ ≡ 1 + ωLL

1 + ωLLεK

≥ 1, (A.5)

where ωLL (≡ (1 − l)/ l = (N − L)/L ≥ 0) is the ratio of leisure to labor, which also
represents the aggregate intertemporal substitution elasticity of labor supply. Notice that
φ = 1 if labor supply is exogenous (because l = 1 or N = L implies that ωLL = 0). Since
ωLL ≥ 0 the sign restriction on φ is automatically satisfied if εK ≥ 0. If εK > 0, φ is a
concave function of ωLL with a positive asymptote of 1/εK as ωLL → ∞, and if εK = 0,
we arrive at φ = 1 + ωLL ≥ 1.

The dynamics of the per capita capital stock and per capita consumption are given by:

˙̃k(t) = ωI

(
y

k

)
[ı̃(t) − k̃(t)] − ηη̃ + ββ̃, (A.6)

˙̃c(t) = (r − α)

[
c̃(t) − k̃(t) − η̃ −

(
β

α + β

)
β̃

]
+ rr̃(t), (A.7)

where a variable with a tilde and a dot is the time rate of change (relative to the initial steady
state) and y/k = (r + δ)/(εK(1 − τK)). Using equations (A.1)–(A.4) and (A.6)–(A.7) the
model can be reduced to a two-dimensional system of first-order differential equations
in the per capita capital stock, k̃(t), and per capita private consumption, c̃(t). In its most
general form, the dynamic system can be written as:[ ˙̃k(t)

˙̃c(t)

]
= 

[
k̃(t)

c̃(t)

]
−

[
γK(t)

γC(t)

]
, (A.8)

where  denotes the Jacobian matrix (with typical element δij evaluated at steady state:

 ≡
[

y

k
(φεK − ωI ) − y

k
(ωC + φ − 1)

−[(r − α) + (r + δ)(1 − φεK)] (r − α) − (r + δ)(φ − 1)

]
, (A.9)
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and γK(t) and γC(t) are shock terms:

[
γK(t)

γC(t)

]
=




(
y

k

)
ωGg̃ + dη − dβ

(r − α)
(

dη

η
+ dβ

α+β

)
+ (r + δ)τ̃K


 . (A.10)

It can be shown that the determinant of the Jacobian matrix is negative, that is,

|| = −λ1λ2 = −(r + δ)

(
y

k

)[(
r − α

r + δ

)
(φ(1 − εK) − ωG)

+ (φ − 1)ωG + ωC(1 − φεK)] < 0, (A.11)

where φ(1 − εK) − ωG > 0, −λ1 < 0 is the stable characteristic root, and λ2 > 0 is the
unstable root. The latter satisfies the inequality λ2 > r − α + ωC(r + δ), which we employ
to sign the short run consumption change. Thus, there exists a unique steady state.

The Laplace transform33 method, as employed in Judd (1982), is used here to solve the
model (Heijdra and Ligthart, 2004). This yields the following long-run effects:

[
k̃(∞)

c̃(∞)

]
= adj()

||
[

γK

γC

]
, (A.12)

where t = ∞ identifies the new steady state that materializes after the demographic shock
and adj() is the adjoint matrix of .

A.2. COMPARATIVE STATICS

A.2.1. Pure Baby Bust

Let us first consider the pure baby-bust scenario. Using (A.10) and (A.12) we can derive
the long-run effects of an exogenous decrease in the fertility rate (that is, dη < 0) while
keeping the death rate constant (that is, dβ = 0). The effect on the steady-state per capita
capital stock is ambiguous:

k̃(∞) =
[
(r − α)

(
1 + ωC

η

(
y

k

))
+

(
r − α

η

)(
y

k

)
(φ − 1) − (r + δ)(φ − 1)

]
dη

|| ≶ 0,

(A.13)

where r > α because of the overlapping generations structure of the model and ||−1 dη >

0. If the initial death rate is small—and thus individual consumption growth profiles are
fairly flat—and intertemporal labor supply is sufficiently elastic, a drop in fertility depresses
the per capita capital stock.

In the infinite horizon Ramsey model, featuring r = α in steady state, the first and second
term of (A.13) drop out,34 giving rise to an unambiguous decline in per capita savings and
thus a smaller per capita capital stock. If, in addition, labor supply is exogenous (that is, φ =
1), the third term drops out as well, yielding the familiar Ramsey result of a constant capital
intensity. Accordingly, aggregate savings decline as is also shown by Cutler et al. (1990).

With overlapping generations (that is, r > α) and exogenous labor supply (that is,
φ = 1, so that the second and third term of (A.13) drop out), the per capita capital stock
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unambiguously rises:

k̃(∞) = (r − α)

[
1 +

(
1

η

) (
y

k

)
ωC

]
dη

|| > 0. (A.14)

Making use of (A.10) and (A.12) again, we can derive the long-run effect of a pure baby
bust on per capita consumption:

c̃(∞) =
[
(r − α)

(
1 +

(
1

η

) (
y

k

)
(φεK − ωI )

)
+ (r + δ)(1 − φεK)

]
dη

|| > 0,

(A.15)

which is unambiguously positive. Initial per capita consumption changes according to:

c̃(0) =
[

λ2 − δ22

δ12
+ r − α

η

]
dη

λ2
≶ 0, (A.16)

where λ2 − δ22 > 0 and t = 0 identifies the time of the shock. The first term of (A.16) is
negative and the second term positive, giving rise to an ambiguous effect. The initial effect
on consumption is positive if the labor supply effect dominates the generational turnover
effect. Using equations (A.1)–(A.4) together with (A.12) and (A.15), the steady-state and
impact effects on l, i, r, and w can be derived as well.35

A.2.2. Stationary Population Growth Rate

The stationary population growth rate scenario implies an equiproportionate fall in the birth
and death rate (that is, dη = dβ < 0, so that dnN = 0). The per capita capital stock rises
in the new steady state:

k̃(∞) = (r − α) (α + β + η) (ωC + φ − 1)(y/k)

η(α + β)

dη

|| > 0, (A.17)

and the change in steady-state per capita consumption is given by:

c̃(∞) = (r − α)(α + β + η)(φεK − ωI )(y/k)

η(α + β)

dη

|| > 0. (A.18)

The impact effect on private consumption is unambiguously negative:

c̃(0) = L {γC, λ2} = (r − α)(α + β + η)

η(α + β)λ2
dη < 0, (A.19)

where use is made of γC ≡ (r − α)(α + β + η)

η(α + β)
dη < 0.

A.2.3. Constant Generational Turnover

If generational turnover is kept constant, the birth rate falls by less than the death rate, that
is, dη = −ηdβ/(α + β) < 0, where dβ > 0, so that dnN = (α + β + η)(dη/η) < 0.
The long-run effect on the per capita capital stock is negative if the labor supply effect
dominates the generational turnover effect:

k̃(∞) = (α + β + η) [r − α − (r + δ)(φ − 1)]
η̃

|| < 0. (A.20)
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The long-run change in per capita consumption is given by:

c̃(∞) = (α + β + η) [r − α + (r + δ)(1 − φεK)]
η̃

|| > 0, (A.21)

and private consumption jumps up on impact:

c̃(0) = (λ2 − δ22)(α + β + η)dη

ηδ12λ2
> 0, (A.22)

as δ12 < 0 and dη < 0.

A.2.4. A Fall in Public Spending

A fall in public spending (that is, g̃ < 0) has qualitatively similar effects to a fall in the
birth rate while keeping the rate of generational turnover constant. The steady state effect
on the per capita capital stock is negative and is given by:

k̃(∞) = ωG

(
y

k

)
[r − α − (r + δ)(φ − 1)]

g̃

|| < 0, (A.23)

if the labor supply effect is sufficiently strong. The steady-state effect on private consump-
tion is given by

c̃(∞) = ωG

(
y

k

)
[r − α + (r + δ)(1 − φεK)]

g̃

|| > 0, (A.24)

and per capita private consumption rises initially:

c̃(0) = (λ2 − δ22)ωG

(
y

k

)
g̃

δ12λ2
> 0. (A.25)

A.2.5. A Rise in Capital Income Subsidies

A rise in the capital income subsidy (which is represented by τ̃K < 0 and τK < 0) yields
an increase in the per capita capital stock:

k̃(∞) = (r + δ)(ωC + φ − 1)(y/k)
τ̃K

|| > 0, (A.26)

and a rise in per capita consumption in the new steady state:

c̃(∞) = (r + δ)(φεK − ωI )(y/k)
τ̃K

|| > 0. (A.27)

while per capita private consumption falls initially:

c̃ (0) = (r + δ)τ̃K

λ2
< 0. (A.28)
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