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The relationship between numerical finite-amplitude equilibrium solutions of the
full Navier–Stokes equations and nonlinear solutions arising from a high-Reynolds-
number asymptotic analysis is discussed for a Tollmien–Schlichting wave-type two-
dimensional vortical flow structure. The specific flow chosen for this purpose is
that which arises from the mutual axial sliding of co-axial cylinders for which
nonlinear axisymmetric travelling-wave solutions have been discovered recently by
Deguchi & Nagata (J. Fluid Mech., vol. 678, 2011, pp. 156–178). We continue this
solution branch to a Reynolds number R = 108 and confirm that the behaviour of
its so-called lower branch solutions, which typically produce a smaller modification
to the laminar state than the other solution branches, quantitatively agrees with the
axisymmetric asymptotic theory developed in this paper. We further find that this
asymptotic structure breaks down when the disturbance wavelength is comparable with
R. The new structure which replaces it is investigated and the governing equations are
derived and solved. The flow visualization of the resultant solutions reveals that they
possess a streamwise localized structure, with the trend agreeing qualitatively with full
Navier–Stokes solutions for relatively long-wavelength disturbances.

Key words: Nonlinear instability, Bifurcation, Transition to turbulence

1. Introduction
It is known that laminar–turbulent transition in shear flows involves two types of

distinct vortical structure. The first of these structures arises by consideration of the
linear stability of basic solutions to the Navier–Stokes equations. As Tollmien (1929)
and Schlichting (1933) found for boundary-layer flow, an infinitesimally small growing
mode typically has a two-dimensional orthogonally aligned roll pattern. In contrast,
experimental results and direct Navier–Stokes simulations (e.g. Davies & White 1928;
Nishioka, Iida & Ichikawa 1975; Lemoult, Aider & Wesfreid 2012 for experiments;
Orszag & Kells 1980; Henningson, Spalart & Kim 1987; Tsukahara et al. 2005 for
simulations) indicate that shear flows can lose stability to nonlinear three-dimensional
streamwise roll structures at much lower Reynolds numbers than those associated

† Email addresses for correspondence: k.deguchi418@gmail.com, a.walton@ic.ac.uk

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

51
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

mailto:k.deguchi418@gmail.com
mailto:a.walton@ic.ac.uk
https://doi.org/10.1017/jfm.2013.51


Axisymmetric travelling waves in annular sliding Couette flow 583

with the two-dimensional linear disturbances mentioned above. In addition, there exists
anomalistic flows which do not exhibit any linear instability: for example, plane
Couette flow, pipe flow and square duct flow.

This apparent conflict between theory and experiment has been resolved by the
computation of three-dimensional finite-amplitude solutions of the Navier–Stokes
equations (e.g. Nagata 1990; Clever & Busse 1997 for plane Couette flow; Faisst
& Eckhardt 2003; Wedin & Kerswell 2004 for pipe flow; Waleffe 1998 for plane
Poiseuille flow). These nonlinear states possess a roll-streak coherent structure and
are disconnected from any linear instability, appearing abruptly by means of a saddle-
node bifurcation at the value of Reynolds number, R, at which the corresponding
flow dynamics first begin to show instability according to experiments or unsteady
Navier–Stokes computations. Controlled Navier–Stokes simulations (e.g. Itano & Toh
2001; Skufca, Yorke & Eckhardt 2006) show that these solutions are situated at the
edge of the laminar–turbulent boundary and play a ‘gatekeeper’ role in the transition
dynamics. However, it should be noted that these investigations are undertaken far
away from the linearly unstable parameter region. Therefore, such a three-dimensional
instability could ‘pass the torch’ to a Tollmien–Schlichting-type disturbance as
the critical Reynolds number for linear stability is approached. Consequently, two-
dimensional finite-amplitude solutions bifurcating from the linear neutral point could
play a crucial role when we consider laminar–turbulent transition control at high
Reynolds number.

One of the primary aims of this paper is to attempt to describe the structure
of the nonlinear travelling-wave solutions using high-Reynolds-number asymptotic
theory. The theory that we outline here in § 5 involves the presence of a strongly
nonlinear equilibrium critical layer in which viscosity only plays a higher-order role.
The dominant physical balances are similar to those proposed in studies by Benney
& Bergeron (1969) and Davis (1969), and the properties of such critical layers
were investigated further by Haberman (1972), Brown & Stewartson (1978), Smith
& Bodonyi (1982a,b) and Bodonyi, Smith & Gajjar (1983). One of the key features
which sustains the asymptotic structure is the jump in vorticity across the layer,
which acts as a forcing of the mean-flow distortion in the bulk of the flow outside
the critical layer. Although the properties of these critical layers and the associated
surrounding flow have been known for some time, the delicate structure of the overall
solution, with its asymptotically thin internal and boundary layers, has proved difficult
to detect in full Navier–Stokes computations thus far. In this paper, by explicitly
seeking nonlinear travelling-wave solutions of the Navier–Stokes equations, and using
recent advances in computing power to allow us to compute solutions at Reynolds
numbers in excess of 108, we are able, for the first time, to quantitatively compare
the flow structures present in full Navier–Stokes computations with those resulting
from an asymptotic analysis. This comparison of full finite-amplitude solutions and
asymptotic analysis is motivated in part by the work of Hall & Sherwin (2010),
who recently successfully linked the asymptotic behaviour of the three-dimensional
solutions described above to the high-Reynolds-number vortex–wave interaction theory
developed by Hall & Smith (1991). In contrast to vortex–wave interaction theory,
where the flow must be necessarily three-dimensional, the asymptotic theory described
in this paper is derived under the assumption of two-dimensionality, so that the
disturbances resemble Tollmien–Schlichting waves, i.e. they are invariant under any
translation in one specific direction.

If we consider a one-parameter family of flows which exhibit linear instability
below a critical value of that parameter, it is often found that, as the critical value
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584 K. Deguchi and A. G. Walton

is approached, the linearly unstable region recedes to R =∞ with the wavenumber
scaling as O(R−1) (e.g. see Cowley & Smith 1985 for plane Couette–Poiseuille flow
and Gittler (1993) for the corresponding generalization to a cylindrical geometry). One
of our interests in this paper concerns the fully nonlinear version of this long-wave cut-
off. We find that the two-dimensional asymptotic structure is broken at the long-wave
limit and a new structure emerges. In the new regime all streamwise Fourier modes
become leading order and we will see that the solution develops a strongly streamwise-
localized structure. Corresponding work carried out for vortex–wave interaction theory
has been described recently by Deguchi, Hall & Walton (2013).

In this study, the specific flow we consider is that where the fluid motion is
produced by the mutual axial sliding motion of co-axial cylinders of circular cross-
section, and the fluid occupies the annular region between the cylinders. We refer to
this flow as annular sliding Couette flow and the basic velocity profile is given in (2.2)
below. There are three reasons for the selection of annular sliding Couette flow: (i)
there exists an axisymmetric linear instability if the radius ratio is less than 0.1415
(Gittler 1993); (ii) axisymmetric finite-amplitude travelling-wave solutions bifurcating
from this linear instability have been found at very high Reynolds number by Deguchi
& Nagata (2011, hereinafter referred to as DN11); (iii) asymptotic theory has already
been developed for annular Couette–Poiseuille flow, which is the non-zero axial
pressure gradient case of annular sliding Couette flow, by Walton (2003, 2004, 2005).
In addition, comparisons can be made with plane Couette flow in the limit as the
radius ratio tends to unity. The flow has many industrial and medical applications
especially when extended to annular Couette–Poiseuille flow (for details see the
introduction of DN11) while the zero-pressure-gradient state has some relevance to
the boundary layer flow along a cylinder (e.g. Cipolla & Keith 2003; Tutty 2008): see
§6 of Gittler (1993). Despite these important applications, experimental investigations
of annular flow with a sliding inner core can only found in Shands, Alfredsson &
Lindgren (1980) and Frei, Lüscher & Wintermantel (2000).

Although our study concentrates on annular sliding Couette flow, the story
presented in the rest of the paper would proceed along similar lines for any
Tollmien–Schlichting wave-type two-dimensional instability, e.g. the two-dimensional
finite-amplitude solutions for plane Couette–Poiseuille flow (Cherhabili & Ehrenstein
1995) and annular Couette–Poiseuille flow (Wong & Walton 2012).

In the next section we begin by formulating annular sliding Couette flow
mathematically. Section 3 is devoted to an energy analysis of the flow which proves
useful when checking the reliability of our numerically generated solution branches.
The numerical method used to obtain axisymmetric travelling waves at finite Reynolds
number is presented in § 4 and the corresponding high-Reynolds-number asymptotic
theory is given in § 5. The results obtained using these two approaches are compared
quantitatively in § 6, while the small wavenumber limit of our solutions is investigated
in § 7. Finally, in § 8, we summarize our findings and draw some conclusions.

2. Formulation of the problem
We consider an incompressible viscous fluid flow in the annular region between

infinitely long co-axial cylinders. Annular sliding Couette flow is assumed throughout
this paper, i.e. the flow is driven by the mutual motion of the cylinders with no axial
pressure gradient applied. We will assume that the motion is axisymmetric and axially
periodic. The length, velocity and density scales are chosen so that the half-gap, inner
cylinder velocity and density are normalized to unity. There are then three parameters
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in the problem: the radius ratio η < 1, Reynolds number R and axial wavenumber α.
Keeping the outer cylinder at rest, the Reynolds number can be defined as the half-gap
multiplied by the inner cylinder velocity and divided by the kinematic viscosity of the
fluid. As a consequence, the flow is governed by the non-dimensional Navier–Stokes
equations in a periodic annular domain spanned by the axial and radial coordinates

x ∈ [0, 2π/α], r ∈ [ra, rb] ≡ [2η/(1− η), 2/(1− η)]. (2.1)

We define the unit vectors in the axial and radial directions as ex and er, respectively.
The total velocities are written as (UB(r) + u(t, x, r))ex + v(t, x, r)er where the basic
flow UB(r) is the exact Navier–Stokes solution

UB(r)= ln(r/rb)

ln η
. (2.2)

The equations for the velocity disturbance u= uex + ver and pressure disturbance p to
the basic flow are

ux + vr + r−1v = 0, (2.3)

ut + UB ux + vU′B + u ·∇u=−px + R−1∇2u, (2.4)

vt + UBvx + u ·∇v =−pr + R−1(∇2v − r−2v), (2.5)

together with the no-slip boundary conditions

u= v = 0 at r = ra and r = rb. (2.6)

Here we use the notation

∇ = er∂r + ex∂x, ∇2 = ∂2
rr + r−1∂r + ∂2

xx (2.7)

and a prime denotes a derivative with respect to r.

3. Energy analysis
In this section we employ standard techniques of energy analysis (see, e.g., Joseph

& Carmi 1969) to compute an energy Reynolds number RE for annular sliding Couette
flow. This is a value of Reynolds number below which it is guaranteed that all
disturbances to the basic flow decay monotonically in time, and it therefore represents
a lower bound on R, below which finite-amplitude travelling waves cannot exist. Often,
of course, this bound proves to be extremely pessimistic in practice; however, it
still provides a useful partial check on the validity of the travelling-wave solutions
discussed in this paper and reduces the parameter space that needs to be investigated.

We begin by defining the kinetic energy of the disturbance flow as

E ≡ 1
2 〈u2 + v2〉, (3.1)

where the volumetric integrating operator takes the form

〈∗〉 ≡
∫ 2π/α

0

∫ rb

ra

∗ r dr dx. (3.2)

The development of the energy can be found by considering 〈u(2.4) + v(2.5)〉. This
leads to the exact result

dE

dt
= ID

R
(m− 1), (3.3)
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where

ID ≡ 〈|∇u|2+ |∇v|2+r−2v2〉> 0, m≡ R
IA

ID
, IA ≡−〈uvU′B〉. (3.4)

It follows that we need m̀ = maxu m > 1 in order for the system to experience
some energy growth. Suppose that the solution which realizes m̀ is [ù, v̀]. We then
consider all solutions in the form [u, v] = [ù, v̀] + δ[ú, v́]. By definition, m̀= m|δ=0 and
∂m/∂δ|δ=0 = 0. Using these relations and the definition of m, we obtain

m̀
∂ID

∂δ

∣∣∣∣
δ=0

− R
∂IA

∂δ

∣∣∣∣
δ=0

= 〈ú ·Φ〉 = 0 (3.5)

where

Φ = (−2m̀∇2ù+ Rv̀U′B)ex + (−2m̀(∇2v̀ − r−2v̀)+ RùU′B)er. (3.6)

Because (3.5) is satisfied for arbitrary solenoidal ú, Φ must have a scalar potential
ϕ. By introducing a stream function ψ such that [ù, v̀] = [ψr + r−1ψ,−ψx] and
eliminating the potential ϕ by combining the axial and radial equations of ∇ϕ = Φ,
we find that ψ satisfies

ψxxxx + 2ψxxrr + 2r−1ψxxr − 2r−2ψxx + ψrrrr + 2r−1ψrrr − 3r−2ψrr + 3r−3ψr − 3r−4ψ

= R

2m̀
∂x(−2ψrU

′
B − r−1ψU′B − ψU′′B), (3.7)

together with ψ = ψr = 0 at r = ra and r = rb. Note that the solution can be taken to
be proportional to eiαx because (3.7) is now linear. As a consequence, we can solve
this equation numerically by expanding ψ in terms of Chebyshev polynomials of the
first kind Tl(y) as

ψ(x, y)=
L∑

l=0

Xl (1− y2)
2

Tl(y)eiαx (3.8)

and evaluating (3.7) at the collocation points

yl = cos
(

l+ 1
L+ 2

π

)
, l= 0, . . . ,L. (3.9)

Here,

y= r − rm ∈ [−1, 1] (3.10)

is the mapped radial coordinate, with rm = (1 + η)/(1 − η) representing the mid-gap.
The resultant algebraic eigenvalue problem

AljXj = σBljXj (3.11)

leads to L + 1 eigenvalues σ ≡ αR/m̀. The minimum value of positive purely real σ
gives αRE where RE is the energy Reynolds number. There are no finite-amplitude
solutions if R< RE, because all disturbances monotonically decay.

The results of numerical computations are shown in figure 1. We investigated the
range 0.01 6 η 6 1 and found that αRE increases with decreasing η. Owing to the
transformation (3.10) and the specific potential form chosen here, (3.7) reduces to its
planar counterpart in the narrow-gap limit η→ 1. Because σ(α, η) = σ(−α, η), αRE

must have a local extremal value at α = 0. From the figure, we can see that this point
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FIGURE 1. The energy Reynolds number RE. The solid, dashed and dotted lines are
calculated for η = 1, 0.1 and 0.01, respectively.

is a global minimum for the current range of η. However, we note that the minimum
of RE is at a non-zero value of α, e.g. for η = 0.1, the minimum RE = 122 occurs at
α = 1.96.

The axisymmetric finite-amplitude solutions found by DN11 have α = O(1) and
exist over a range of R = O(104), comfortably in excess of the energy Reynolds
numbers calculated here. For example, the branch of the axisymmetric solution for
α = 0.6546 discovered by DN11 has a turning point at R = 4.0 × 104, which is
considerably larger than the corresponding RE = 224. We revisit the energy analysis in
§ 7 when considering finite-amplitude solutions in the limit α→ 0, where we find that
the bound obtained here turns out to be surprisingly sharp in this case.

4. Computation of finite-amplitude solutions
In this section we compute solutions of (2.3)–(2.5) that take the form of travelling

waves, propagating downstream with phase speed c. The velocities and pressure
therefore become functions of the radial variable r and the travelling-wave coordinate

ξ = α(x− ct) ∈ [0, 2π]. (4.1)

We decompose the disturbance velocity field [u, v](ξ, r) into a spatial mean [ū, v̄](r)
and fluctuation [ũ, ṽ](ξ, r) where the average operator is defined by

∗̄ ≡ 1
2π

∫ 2π

0
∗ dξ. (4.2)

Consideration of the continuity equation shows that v = 0 for the mean-flow distortion
and that there exists a stream function ψ for the fluctuation ũ. From substitution into
(2.3), (2.4), (2.5), the governing equations for the variables ψ and ū are

0=−(UB + ū− c)(α2ψξξξ + ψξrr + r−1ψξr − r−2ψξ )

− (U′B + ū′)r−1ψξ + (U′′B + ū′′)ψξ
+ (αR)−1{α4ψξξξξ + α2(2ψξξrr + 2r−1ψξξr − 2r−2ψξξ )

+ψrrrr + 2r−1ψrrr − 3r−2ψrr + 3r−3ψr − 3r−4ψ}
+ψξ {4r−3ψ − 2r−2ψr + ψrrr + α2(ψξξr − r−1ψξξ )}
− (ψr + r−1ψ)(α2ψξξξ + ψξrr + r−1ψξr), (4.3)
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and

0= r−1∂r{rψξ (ψr + r−1ψ)+ (αR)−1 rū′}, (4.4)

together with the boundary condition

ψ = ψr = ū= 0 at r = ra and r = rb. (4.5)

For numerical purposes, ψ and ū are expanded by using the gap coordinate y
defined in (3.10). They take the form

ψ(ξ, y)=
N∑

n=1

L∑
l=0

Xj(l,n) (1− y2)
2

Tl(y)einξ + c.c., (4.6)

ū(y)=
L∑

l=0

Xj(l,0)(1− y2)Tl(y), (4.7)

where j(l, n)≡ (l+1)× (n+1) and c.c. denotes complex conjugate. The jth equation is
found by evaluating the values of e−inξ (4.3) for n= 1, . . . ,N and (4.4) for n= 0 at the
same collocation points yl (l= 0, . . .L) used in (3.9). The unknown phase velocity c is
added as the top entry in the solution vector, and the corresponding additional equation
is the spatial phase lock condition which we impose here as

F(0)− c.c.= 0, (4.8)

where the first Fourier coefficient of the axial velocity is defined as

F(y)≡ 2ue−iξ . (4.9)

This ensures that the sin ξ component of u vanishes at the midpoint of the gap. The
problem has now been reduced to a system of quadratic algebraic equations of the
form

DkjXj + Hkjj′XjXj′ = 0. (4.10)

Noting that the first L + 2 unknowns/equations are purely real whereas the remainder
are complex, we use a Newton iterative method of dimension (2N + 1) × (L + 1) + 1
to obtain the solution. Any signal-to-noise-floor ratio of the converged solutions,
i.e. ‖DkjXj + Hkjj′XjXj′‖2 / ‖DkjXj‖2, is less than 10−10 throughout the paper. In our
computational approach, all Jacobian elements are explicitly given by straightforward
algebra and are used to update the Newton guess together with an LAPACK direct
linear solver routine. The linear problems, which consume most of the computational
time, are quite massive, but recent advances in computer power allows us to solve
them. Further detail of the method of computation can be found in DN11.

4.1. Results
If η . 0.1415, where the long-wave cut-off of linear instability occurs (Gittler
1993), the basic flow can be destabilized by axisymmetric infinitesimal disturbances.
Because the linear approximation of the growing mode is accurate sufficiently close
to the neutral stability point, it can be used as an initial guess for a nonlinear
calculation involving Newton’s method. As a consequence, the solution branch of the
finite-amplitude axisymmetric travelling wave that bifurcates from this point can be
computed. Here we introduce the normalized momentum transport on the wall M
to measure how much a finite-amplitude solution differs from the basic state. Note
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FIGURE 2. The axisymmetric travelling-wave bifurcation diagram for (η, α) = (0.1, 0.6546).
The upper and lower figures represent the variation of the critical layer location yc and the
momentum transport M respectively. Open circles in the figures represent linear critical points.
The range of truncation level L ∈ [120, 200] and N ∈ [30, 60] is used to compute the solution
curves.

that raU′B|r=ra = rbU′B|r=rb and rau′|r=ra = rbu′|r=rb , by (2.2) and (4.4). This enables us
to define M as

M ≡ ū′ + U′B
U′B

∣∣∣∣
r=ra

= ū′ + U′B
U′B

∣∣∣∣
r=rb

. (4.11)

Figure 2 shows the bifurcation diagram for η = 0.1. For this radius ratio, it is known
that the linear instability has a critical Reynolds number R= 3.6× 106, and this occurs
for α = 0.6546. It is also known that the axisymmetric solution subcritically bifurcates
from this neutral point (DN11). We discover that at R= 1.6× 107, the base flow again
becomes stable at this value of wavenumber. From this second neutral point, another
bifurcation of the axisymmetric solution is detected. This bifurcation scenario is also
pictured in figure 2, and it can be seen in the figure that the resultant branch heads
in the direction of increasing R where the basic flow again becomes linearly stable,
i.e. the new bifurcation is also subcritical. We adopt the terminology ‘lower branch’
to represent the branch that passes through the neutral points, and the points P3–P6
while the phrase ‘upper branch’ is used to denote solutions at higher M that lie on
the solution curve that passes through P1 and P2. One of the striking features of the
lower branch is the kink at R ' 3.5 × 107, and a similar kink can also be found on
the upper branch in between the points P2 and P1, at R ' 6.7 × 105. The branches
behave differently before and after the kinks, although no bifurcations take place
here, and the curves appear smooth when examined closely. Henceforth we denote
the branches before and after the kinks as the LR (low-Reynolds-number) and HR
(high-Reynolds-number) modes, respectively.
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FIGURE 3. The axial fluctuation velocity field ũ for (η, α) = (0.1, 0.6546). The dashed lines
in the close-up figures, which are placed just below the full domain representation in each
case, represent the critical layer locations yc. P1, P2 and P3 correspond to the points in
figure 2: (a) P1, R = 2 × 106 upper branch; (b) P2, R = 2 × 105 upper branch; (c) P3,
R= 2× 105 lower branch.

Along the branches, the streamwise fluctuation flow field, ũ, is visualized in
figures 3 and 4. The plots labelled P1–P6 represent solutions at the corresponding
points in figure 2. For the upper branch solution at sufficiently high Reynolds number
(P1, P2), we can see a relatively slowly varying, evenly placed strong positive/negative
pattern in the vicinity of the critical layer yc, where the basic flow speed, UB, coincides
with the phase velocity c of the travelling-wave solution. In these cases, the critical
layer is situated near the inner wall: the distance between the critical layer and inner
wall is only 5 % of the gap (see figure 2a). As we move towards the point P3, which
lies on the lower branch, the positive part of the flow pattern begins to be squeezed in
the axial direction. Then as R is increased along the lower branch (P4, P5), the critical
layer moves even closer to the inner wall (typically it is now at 1 % of the gap from
the inner wall) and the strong positive/negative flow pattern is again evenly placed,
although it is now much more concentrated than it was on the upper branch. The
magnitude of the solution decreases as the branch approaches the linear instability, but
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FIGURE 4. Same parameter values as figure 3 but for the solutions at the points P4, P5, P6:
(a) P4, R = 2 × 106 lower branch; (b) P5, R = 2 × 107 lower branch; (c) P6, R = 108 lower
branch.

it begins to grow again after the linear neutral point is passed (P6). The computation
of the solution beyond P6, where R is in excess of 108, is very difficult because of
the Gibbs phenomena of the Chebyshev basis due to the very sharp structure near to
yc. This feature can also be found in the mean-flow distortion plot for P1–P6, which
is presented in figure 5. When we examine the high-Reynolds-number structure of
this mode in the next section we will see that a thin critical layer, centred at y = yc,
regularizes this apparent singularity.

To examine the geometry dependence of the travelling-wave solutions, the solution
branches are calculated for various η and R, fixing α = 0.6546. The results are shown
in figure 6, where the solution branches, shown as solid lines, bifurcate from the
thick dashed curve traced in the M = 1 plane, which represents the linear neutral
curve for α = 0.6546. When η is increased to 0.14, The HR mode and the LR
mode are separated into an open branch and a closed branch respectively. Owing
to this separation, the branch has three turning points when η is varied at fixed
sufficiently high R. Since we originally defined the HR and LR modes in terms of
their positions with respect to the kink, it seems reasonable to consider the first turning
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FIGURE 5. The mean-flow distortion ū. Left and right figures correspond to upper and lower
branch solutions. The crosses on the curves represent the critical layer locations yc.
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FIGURE 6. The bifurcating branches of the axisymmetric travelling-wave solutions (solid
lines) from the linear neutral curve (thick dashed line) with α = 0.6546. The base level is
placed at M = 1. The range of truncation level L ∈ [120, 200] and N ∈ [30, 60] is used to
compute the solution curves.

point encountered as M is increased from unity to represent the existence boundary for
the LR mode. This boundary defines a critical value of η, beyond which the LR mode
ceases to exist, and its variation with R is plotted in figure 7 for α = 0.6546, 0.2, 0.1
and 0.05. The linear neutral curves and the branches of the solution in figure 6 are
also projected on this figure. We can see clearly that the solution can exist well
beyond the long-wave cut-off of linear instability, where the thick solid line heads
sharply towards R = ∞ at η = 0.1415, and the branch extends to larger η as α is
decreased. The maximum η of the LR mode is at relatively low R for all α, and then it
monotonically decreases for higher R. In contrast, the present calculations suggest that
the existence region of the HR mode expands as R is increased. We cannot be certain
about this however, because there are resolution issues associated with continuing the
branches marked ‘A’ and ‘B’ beyond that indicated in figure 6.
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FIGURE 7. First turning points from the lower branch, which represent the edge of the
existence of the LR mode. The points shown with ×,�,4 and � are calculated with
α = 0.6546, 0.2, 0.1 and 0.05, respectively. The lines in the figure are the projection of
the solution curves in figure 6. The thick solid line represents the linear neutral curve taken
over all wavenumbers.

5. Asymptotic solution at large Reynolds number

In this section we propose a nonlinear equilibrium travelling-wave structure for
annular sliding Couette flow, valid for asymptotically large values of the Reynolds
number. The structure consists of a core region of O(1) radial extent in which the flow
dynamics are linear and inviscid to leading order, with viscous wall layers adjacent
to the inner and outer cylinders. We assume that the wavenumber α is O(1), with
the unknown real wavespeed c ∼ O(1) and 1 − c ∼ O(1) also. As a consequence, a
singularity is encountered within the core region at the location rc where UB(rc) = c.
This singularity is regularized within a thin nonlinear critical layer. The phase shifts
induced across the two wall layers must be balanced by the corresponding phase shift
induced across the critical layer, and this requirement leads to the determination of the
amplitude of the disturbance in terms of its axial wavenumber and the properties of
the basic flow. A sketch of the flow structure is shown in figure 8. The structure is
similar to that found by Smith & Bodonyi (1982a) for fully developed flow through
a single pipe, and Walton (2002, 2003) for impulsively started pipe flow and pressure-
driven annular Couette–Poiseuille flow. A key difference to the previous studies is the
assumption of axisymmetry. We find that unlike for the single-pipe case, axisymmetric
solutions are indeed possible here. One of the reasons for this is that, for the fully
developed flow through a circular pipe, the combination U′′B − U′B/r is zero, in contrast
to the flow under consideration here, where this quantity remains positive throughout
the annulus. It is the non-zero nature of this term that gives rise to the logarithmic
singularity referred to above, and evident in (5.9) below. The same arguments mean
that this structure is also absent in plane Couette flow, implying that the asymptotic
structure presented here does not exist in the narrow gap limit.

The flow behaviour in the various regions is set out in the following subsections.
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Nonlinear critical layer

Inviscid core

Inviscid core

FIGURE 8. Sketch of the high-Reynolds-number asymptotic travelling-wave structure for
annular sliding Couette flow.

5.1. The inviscid core flow
In the core, the flow dynamics are inviscid to leading order, with the flow expansions
assuming the form

u= εu1(r)+ ε2 {A0F2(r) cos ξ + u2(r)} + · · · + ε2R−1/2u5(ξ, r)+ · · · , (5.1a)

v =−ε2A0G2(r) sin ξ + · · · + ε2R−1/2v5(ξ, r)+ · · · , (5.1b)

p= ε2A0P2(r) cos ξ + · · · + ε2R−1/2p5(ξ, r)+ · · · . (5.1c)

Here u1(r) is the leading-order mean-flow distortion term and ε is a small parameter
that will be determined in terms of the Reynolds number subsequently. The real
constant A0 is also to be determined, and the variable ξ is the same travelling-wave
coordinate defined in (4.1). The terms with subscript 5 are the highest-order terms that
break the (even, odd, even) symmetry of [u, v, p] about ξ = π, i.e.

[u5, v5, p5] contain terms A0 [F5(r) sin ξ,G5(r) cos ξ,P5(r) sin ξ ] . (5.2)

In order to fix the phase of the solution we impose the phase normalization
condition

P2(rc)= 1, (5.3)

where r = rc is the location of the critical layer, i.e. the radial location where
UB(rc) = c, with UB the basic flow defined in (2.2). The choice of (5.3) is mainly
for algebraic simplicity. If we do not impose this condition, then the quantity P2(rc)

will appear in expressions throughout the critical-layer analysis below.

5.1.1. The core-flow fluctuation
Substitution of (5.1) into the Navier–Stokes equations (2.3)–(2.5) leads to the

following inviscid balances:

(UB(r)− c)αFi + GiU
′
B =−αPi, (UB(r)− c)αGi = P′i, (5.4)

for i ∈ {2, 5}, together with the continuity equation. Further manipulation and
elimination of the velocity components leads to Rayleigh equations for the pressure
components

(UB(r)− c)
(
P′′i + r−1P′i − α2Pi

)= 2U′BP′i, i ∈ {2, 5}. (5.5)
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For the P2 component, the appropriate boundary conditions are

P′2(ra)= P′2(rb)= 0, (5.6)

which arise from imposition of the condition of zero radial velocity at the wall. For
the P5 component, the wall-layer analysis (§ 5.2) predicts the existence of a non-zero
radial velocity component of O(ε2R−1/2) as each wall is approached, implying that the
appropriate conditions on the radial fluctuation in the core are

G5(ra)= ga, G5(rb)= gb, (5.7)

with the precise values of ga and gb to be fixed in (5.30), (5.37). In terms of the
pressure, the boundary conditions are therefore

P′5(ra)= (1− c)αga, P′5(rb)=−αcgb, (5.8)

from the radial momentum balance in (5.4).
For the purposes of the critical-layer analysis to be presented in § 5.3, we need to

know the limiting behaviour of the flow as the critical layer is approached. This can be
calculated by the Frobenius method, and the relevant asymptotes, as r→ rc±, are

Pi ∼ Pi(rc)

[
1− α

2r2
c

2

(
rc − r

rc

)2

− 2α2r2
c

3

(
rc − r

rc

)3(
ln

∣∣∣∣rc − r

rc

∣∣∣∣+ j(i)±

)
+ · · ·

]
,

(5.9a)

Fi ∼ 2τ−1
0 Pi(rc)

[
ln

∣∣∣∣rc − r

rc

∣∣∣∣+ j(i)± +
1
6

(
1+ 5τ1

τ0

)
+ · · ·

]
, (5.9b)

(with a similar expansion for Gi) for i ∈ {2, 5}, with the ± denoting the limits
r→ rc ± . Here we have defined

τ0 =−rcU
′
B(rc)=− (ln η)−1, τ1 = (r2

c/2)U
′′
B(rc)=− (2 ln η)−1, (5.10)

to represent the shear and curvature of the basic flow at the critical location, and
we have made use of the property 2τ1/τ0 = 1 to simplify the expressions slightly.
The constants j(i)± are determined by solving the Rayleigh equation for Pi numerically.
This is described for P2 in more detail in § 5.1.2 below. A feature of the nonlinear
critical layer is the smallness of the jump in velocity and pressure induced across it,
in contrast with a classical linear critical layer in which the phase shift is O(1). This
feature can be anticipated here by taking j(2)+ = j(2)− . However, it will be necessary for
j(5)+ − j(5)− to be non-zero in order to accommodate the velocity jump across the critical
layer. We shall see that the critical layer analysis shows that there is a jump

ε2R−1/2φ sin ξ (5.11)

in the streamwise velocity as we cross the critical layer from r = rc− to r = rc+, with
φ determined specifically in (5.57). In terms of the core properties, we therefore have

φ = 2A0P5(rc)τ
−1
0 (j(5)+ − j(5)− ), (5.12)

in view of the asymptotic expansion for F5 in (5.9). The quantity (j(5)+ − j(5)− ) can be
related to the wall velocities ga, gb, by considering the Wronskian of the solutions to
(5.5), which has the form

r (UB(r)− c)−2(P5P′2 − P2P′5)= ω±. (5.13)
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Applying the boundary conditions (5.6), (5.8), we can determine the constants ω± as

ω+ = αgbrbP2(rb)/c, ω− =−αgaraP2(ra)/(1− c). (5.14)

Then, letting r→ rc± in (5.13), using the series expansions in (5.9) for P2 and P5, and
the phase normalization (5.3) we find that (5.12) can be rewritten as

φ =−(ω+ − ω−)α−2r−2
c A0τ0, (5.15)

so that the velocity jump across the critical layer is now related to the wall-layer
properties by (5.14) and (5.15).

5.1.2. The numerical solution of the Rayleigh equation
Aside from a number of numerical integrations, the only part of the asymptotic

analysis where a non-trivial numerical approach is required is in the solution of the
Rayleigh equation (5.5) for P2(r). This solution is important as it yields, for a given
wavenumber α, the corresponding wavespeed c, and hence the location rc of the
critical layer. We briefly describe the method we used here for α of O(1) and also the
corresponding approach for the limiting case α→ 0.

(i) Solution for α of O(1)
First we introduce a new radial variable s such that r = rcs and define sa =

ra/rc, sb = rb/rc, α̂ = αrc. The Rayleigh equation (5.5) for P2(r) = Q(s) say, can then
be rewritten as

Q′′(s)+ 1
s Q′(s)− α̂2Q(s)= 2

s (ln s)−1 Q′(s), Q′(sa)= Q′(sb)= 0, Q(1)= 1. (5.16)

For fixed values of sa and α̂, (5.16) is marched forward from s = sa with a guess for
Q(sa) (equal to Qg, say). The values of Q and Q′ are found at s = s1 = (1 + sa)/2.
Equation (5.16) is then marched backwards from s = s2 = 1 − ε1 (with ε1 suitably
small) using the series expansion (5.9) to provide values for Q(s2),Q′(s2). A guess
is made for the constant j(2)− . As a result of this procedure we can calculate a
second set of values for Q(s1),Q′(s1). We then iterate on the guesses Qg and j(2)−
until the two estimates for Q and Q′ at s1 are in agreement. Next we set j(2)+ = j(2)−
(as discussed just below (5.10)) and march (5.16) forward from s = 1 + ε1, again
using the series expansion for P2 in (5.9) to provide suitable starting values. The
marching process is stopped when the location sb is reached at which Q′(sb) = 0.
The required value for the critical layer location is then given by rc = rbs−1

b . The
wavespeed follows from c = UB(rc) and the corresponding wavenumber and radius
ratio from α = r−1

c α̂, η = sa/sb. The pressure at both walls is also required later and
so these values are also stored. Clearly this procedure can be repeated for a range of
wavenumbers and radius ratios.

(ii) Solution in the limit α→ 0
In addition to providing a partial check on the accuracy of the numerical procedure

outlined in part (i), the form of the solution of the Rayleigh equation (5.5) as α→ 0
is significant as it provides an important clue as to the form of the new long-wave
solution structure that emerges in place of the present structure when α ∼ O(R−1). This
structure is discussed in some detail in § 5.4 and draws on the asymptotic forms set
out here.

If we consider the inviscid disturbance equations (5.4) in the core, together with the
continuity balance, we find that as α→ 0:

F2 ∼ F20(r)+ O(α2), G2 ∼ αG20(r)+ O(α3), P2 ∼ P20 + O(α2), (5.17)
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where P20 is a constant. The leading-order terms (F20,G20,P20) satisfy the balances

F20 + G′20 + G20/r = 0, (UB(r)− c)F20 + G20U′B =−P20, (5.18)

and elimination of F20 leads to the result

rG20

(UB − c)
=


P20

∫ r

ra

s (UB(s)− c)−2 ds, (r < rc),

P20

∫ r

rb

s (UB(s)− c)−2 ds, (r > rc).

(5.19)

Across the critical layer we have a zero jump in the component G20 and this implies
that the following integral condition must hold:

−
∫ rb

ra

r dr

(UB(r)− c)2
= 0, (5.20)

where the bar denotes the finite part of the integral. Equation (5.20) can be viewed as
the α→ 0 limit of the Rayleigh equation (5.5) and determines the solutions for the
leading-order wavespeed c for a given value of radius ratio η. To evaluate the integral
numerically we make the substitution s = r/rc as in part (i) and use the specific form
for UB given in (2.2). The integral condition (5.20) can then be rewritten as

−
∫ sc

ηsc

s ds

(ln s)2
= 0, (5.21)

which determines the values of the quantity sc = rb/rc. The finite-part integral in (5.21)
can then be easily evaluated by using integration by parts as, for example, in appendix
B of Walton (2011).

5.1.3. The mean-flow distortion in the core
Again, from substitution of the expansions (5.1) into the Navier–Stokes equations

(2.3)–(2.5), we find that the leading-order contribution to the mean-flow distortion
satisfies

u′′1 + r−1u′1 = A2
0

(
G5F′2 − G2F′5

)
/2= 0, (5.22)

using (5.4) and (5.13), so that the distortion is unforced in the core at this order. The
solution satisfying no-slip at the walls therefore has the simple form

u1 =
{

Ma ln(r/ra), (ra < r < rc),

Mb ln(r/rb), (rc < r < rb).
(5.23)

The solution in the critical layer requires that u1 be continuous across r = rc, but that
there is a jump in u′1. We therefore have

Ma ln(rc/ra)=Mb ln(rc/rb), (5.24)

with Mb − Ma non-zero and to be determined later, in terms of the disturbance
amplitude, by the critical-layer analysis. Although the mean flow distortion is unforced
in the core, it is forced in the wall layers, and the specific forms that it takes will be
determined in the next subsection where we consider those layers in some detail.
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5.2. The viscous wall layers
Since the dynamics in the core are inviscid to leading order, the leading-order axial
fluctuation F2(r) does not tend to zero as r→ ra, rb. Viscous wall layers are therefore
required in order that the no-slip condition can be satisfied.

5.2.1. The boundary layer on the inner cylinder
The boundary layer has the classical O(R−1/2) thickness and the relevant flow

expansions are

UB + u= 1+ ε2ua(ξ,Za)+ R−1/2U′B(ra)Za + ε4U a(Za)+ · · · , (5.25a)

v = ε2R−1/2va(ξ,Za)+ · · · , p= ε2A0P2(ra) cos ξ + · · · , (5.25b)

with r = ra + R−1/2Za, where we have anticipated the independence of the pressure on
the normal coordinate. The continuity and axial momentum balances for the fluctuation
terms are

α
∂ua

∂ξ
+ ∂va

∂Za
= 0, α(1− c)

∂ua

∂ξ
= αA0P2(ra) sin ξ + ∂

2ua

∂Z2
a

, (5.26)

with ua = va = 0 on Za = 0 and the condition of no exponential growth as Za→∞.
The appropriate solutions are

ua = 1
2Fa(Za)eiξ + c.c., va = 1

2Ga(Za)eiξ + c.c., (5.27)

with

Fa(Za)=−A0P2(ra)(1− e−µaZa)

(1− c)
, (5.28)

Ga(Za)= iαA0P2(ra)(Za + µ−1
a (e

−µaZa − 1))
(1− c)

, (5.29)

and µa = (iα(1− c))1/2 . Taking the limit of (5.29) as Za→∞ and matching to the
core, we conclude that

ga =−α1/22−1/2 (1− c)−3/2 P2(ra). (5.30)

The mean-flow distortion is forced by the fluctuation and satisfies

U
′′
a = 1

4G
∗

a (Za)F
′
a(Za)+ c.c., (5.31)

with U a ∼ MaZa/ra as Za→∞ to match to the core flow (5.23) and U a(0) = 0 to
satisfy the no-slip condition. Use of (5.28), (5.29) for Fa,Ga and integration leads to
the explicit expression

U a = (A0P2(ra))
2

4 (1− c)3
(2(maZa + 2) cos (maZa) e−maZa

+ 2(maZa − 1) sin(maZa)e−maZa − e−2maZa − 3)+ MaZa

ra
, (5.32)

with ma = Re(µa)= (α(1− c)/2)1/2.

5.2.2. The boundary layer on the outer cylinder
Since the basic flow is zero on the outer cylinder, the appropriate expansion in the

upper layer is

UB + u= ε2ub(ξ,Zb)− R−1/2U′B(rb)Zb + ε4U b(Zb)+ · · · , (5.33a)
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v =−ε2R−1/2vb(ξ,Zb)+ · · · , p= ε2A0P2(rb) cos ξ + · · · , (5.33b)

with r = rb − R−1/2Zb. The governing equations for the fluctuations and the mean-flow
distortion are very similar to those in the inner boundary layer and the method of
solution proceeds in an identical fashion to yield

ub = 1
2Fb(Zb)eiξ + c.c., vb = 1

2Gb(Zb)eiξ + c.c., (5.34)

with

Fb(Zb)= A0P2(rb)(1− e−µbZb)

c
, (5.35)

Gb(Zb)=− iαA0P2(rb)
(
Zb + µ−1

b (e
−µbZb − 1)

)
c

, (5.36)

and µb = (−iαc)1/2 . From the expression for Gb we can calculate that

gb = α1/22−1/2c−3/2P2(rb). (5.37)

The corresponding solution for the mean-flow distortion is found to be

U b =−(A0P2(rb))
2

4c3
(2(mbZb + 2) cos (mbZb) e−mbZb

+ 2(mbZb − 1) sin(mbZb)e−mbZb − e−2mbZb − 3)− MbZb

rb
, (5.38)

with mb = Re(µb) = (αc/2)1/2 . Here we have applied no slip on Zb = 0 and the
core-matching condition U b ∼−MbZb/rb as Zb→∞.

Now that we have determined the radial velocities ga and gb, we can rewrite the
jump condition (5.15) as

φ = A0τ0

(2α)1/2r2
c

{
ra[P2(ra)]

2

(1− c)5/2
− rb[P2(rb)]

2

c5/2

}
. (5.39)

The aim now is to investigate the dynamics of the critical layer with a view to
obtaining an alternative, amplitude-dependent expression for φ and, hence, determining
the amplitude dependence of the neutral modes.

5.3. The critical-layer analysis
The aims of the critical-layer analysis are three-fold. The first is to determine the
small parameter ε in terms of the Reynolds number R. Next, the jump in the mean-
flow distortion across the critical-layer is calculated, and allows us to determine the
constants Ma,Mb introduced in (5.23), thus fixing the core mean-flow distortion.
Finally, we find the velocity jump across the layer in terms of the disturbance
amplitude A0, which can then be determined explicitly as a result. The velocity and
pressure expansions are as follows

UB + u= c+ εÛ1 + (ε2 ln ε)Û2L + ε2Û2 + · · · + ε5Û5 + · · · , (5.40a)
v = ε2V̂1 + (ε3 ln ε)V̂2L + ε3V̂2 + · · · + ε6V̂5 + · · · , (5.40b)

p= ε2P̂1 + ε3P̂2 + · · · + ε6P̂5 + · · · , (5.40c)

with r = rc + εY. The solutions at the first two orders, which match appropriately to
the core via (5.1) and (5.9), are relatively simple and can be shown to be

Û1 =−τ0Y/rc + u1(rc), V̂1 =−µ sin ξ, P̂1 = A0 cos ξ, (5.41)
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Û2L = 2A0τ
−1
0 cos ξ, V̂2L = 2αA0τ

−1
0 Y sin ξ, (5.42)

where the amplitude parameter µ is defined by

µ= αrcA0τ
−1
0 . (5.43)

The terms with subscript 2 in (5.40) are the first to possess a non-trivial dependence
on the radial coordinate. The governing equations for these terms are

αÛ2ξ + V̂2Y + V̂1/rc = 0, P̂2Y = 0, (5.44a)

α
{

Û1Û2ξ + Û2Û1ξ

}
+ V̂2Û1Y + V̂1Û2Y =−αP̂2ξ , (5.44b)

and the match to the core requires

Û2 ∼ τ1Y2/r2
c + u′1(rc±)Y + 2A0τ

−1
0 ln

∣∣r−1
c Y
∣∣ cos ξ

+A0τ
−1
0

(
2j(2) + (1/3)(1+ 5τ1/τ0)

)
cos ξ, (5.45)

as Y→±∞, in view of (5.9). Differentiating (5.44b) with respect to Y, using (5.41)
for Û1, V̂1, and switching to a characteristic variable

ζ = ατ0

2rc

(
Y − rcu1(rc)τ

−1
0

)2 + µ cos ξ, (5.46)

we eventually obtain the following expression for the shear term Û2Y :

Û2Y =∓ (2τ0/αr3
c)

1/2
(ζ − µ cos ξ)1/2+κ(ζ ). (5.47)

An asymptotic condition on the unknown function κ can be found by applying the
matching condition (5.45) and this yields

κ(ζ )∼±23/2τ
1/2
0 (αr3

c)
−1/2

ζ 1/2 +Λ± as ζ →∞, (5.48)

where the constants Λ± are undetermined at this order. Here, the ± signs refer to the
upper/lower parts of the critical layer wherein Y − rcu1(rc)τ

−1
0 > (2rcµ(1 − cos ξ)/

ατ0)
1/2, and Y − rcu1(rc)τ

−1
0 < − (2rcµ(1− cos ξ)/ατ0)

1/2, respectively. Later in the
analysis it will become clear that Λ+ 6= Λ−, and this jump fixes the leading-order
mean-flow distortion in the core, via the matching condition (5.45).

The (even, odd, even) symmetry about ξ = π of the solution [Ûm, V̂m, P̂m] is not
broken until viscous effects enter the critical layer equations. Since (from (5.41)) we
have Û1YY = 0, the first non-zero term of this type is Û2YY, which makes a contribution
at O(R−1) in the axial momentum equation that determines the quantity Û5. Balancing
inertia and viscosity at this order requires ε3R−1/2 ∼ R−1, and hence fixes the small
parameter

ε = R−1/6. (5.49)

If we then carry on to consider the equations at the m= 5 level and impose periodicity
in ξ (which is now a non-trivial condition due to the presence of viscosity and inertia)
we can determine fully the unknown function κ introduced in (5.47), and we find that

κ(ζ )− κ0 =
±23/2πτ

1/2
0 (αr3

c)
−1/2

∫ ζ

µ

(I(ζ1))
−1 dζ1, (ζ > µ),

0, (ζ < µ).

(5.50)
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with

I(ζ )=
∫ 2π

0
(ζ − µ cos ξ)1/2 dξ. (5.51)

The specific form given for κ in (5.50) can be deduced from (A 3) in appendix A,
together with the asymptotic condition (5.48). A routine numerical calculation then
shows that

Λ+ −Λ− =− (2µτ0/αr3
c)

1/2
C0, C0 ' 3.90, (5.52)

and this expression is equal to the distortion shear jump u′1(rc+)− u′1(rc−), in view of
(5.45). This enables us to fix the constants in the core mean flow distortion as

Ma = C1 ln(rc/rb)A0
1/2/ ln η, C1 = 21/2C0 ' 5.52, (5.53)

with Mb following from (5.24). The same matching condition also allows us to
determine the constant of integration κ0 in (5.50) as

κ0 = (2rc)
−1(Ma +Mb)+ 2rc

−1Ma ln(rc/ra). (5.54)

Since κ is now fully determined, it is possible to go back and integrate (5.47) to
obtain the explicit expression

Û2 =− ζ

αrc
+
(

Y − rcu1(rc)

τ0

)
κ(ζ )

∓
(

2rc

ατ0

)1/2 ∫ ζ

µ

(ζ − µ cos ξ)1/2 κ ′(ζ ) dζ + q(ξ), (5.55)

where

q(ξ)= µ cos ξ
αrc

{
1+ 1

3

(
1+ 5τ1

τ0

)
− 2 ln

(
ατ0/2r3

cµ
)1/2 + 2j(2)

}
+ q0

+ 2 (αrc)
−1

∫ ∞
µ

{
2π (ζ − µ cos ξ)1/2 (I(ζ ))−1+(µ cos ξ) (2ζ )−1−1

}
dζ, (5.56)

and q0 is a constant, the determination of which would require higher-order analysis.
Finally, in order to determine the amplitude A0 we need to calculate the phase shift
across the critical layer (i.e. the jump in the sin ξ component of axial velocity across
the layer). The calculation is very similar to that performed by Walton (2003), but for
the axisymmetric case. The details are given in an appendix, and lead to the expression

φ = 2τ0C1

αr2
c A1/2

0

. (5.57)

Equating this to the expression (5.39) for φ found from the core and wall-layer
analyses, enables us to derive an explicit expression for the amplitude dependence of
the neutral modes:

A0 = 2α−1/3C2/3
1(

ra[P2(ra)]
2 (1− c)−5/2−rb[P2(rb)]

2c−5/2
)2/3 . (5.58)

The high-Reynolds-number analysis is now complete. An independent check on
the analysis can be performed by recalling from § 4 that the momentum transport
M defined in (4.11) is the same on both walls. In terms of our asymptotic solution
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this implies that raU
′
a(0) = −rbU

′
b(0) with the wall-layer solutions U a,U b given in

(5.32), (5.38). By explicit calculation it can be shown that this is indeed the case
if and only if A0 satisfies (5.58). This gives us a high degree of confidence in the
correctness of the analysis presented in this section. The corresponding expression for
M is

M = 1+ R−1/6

{
A1/2

0 C1 ln(rc/ra)+
(αc

2

)1/2
rb ln(1/η)

(A0P2(rb))
2

2c3

}
, (5.59)

neglecting terms of O(R−1/3), from which it can be seen that the perturbation to M is
always positive.

For a given wavenumber α and radius ratio η we can compute all of the necessary
flow quantities to make a direct comparison with the full Navier–Stokes solutions
presented in § 4. In order to determine quantities in the core we first solve the
eigenvalue problem (5.5) to determine the pressure component P2(r), the wavespeed
c and the critical layer location rc. The amplitude of the neutral modes follows from
(5.58) with C1 given in (5.53), and ra, rb given in terms of η by (2.1). The core
fluctuations A0F2(r) cos ξ,A0G2(r) sin ξ can then be calculated from the solution for
P2 using (5.4). The mean-flow distortion u1(r) in the core follows from (5.23), (5.24)
and (5.53). The fluctuations in the wall layers are given by (5.25)–(5.29) for the inner
layer, and (5.33)–(5.36) for the layer on the outer cylinder. The mean-flow distortions
in the two wall layers can be calculated from (5.25), (5.32) and (5.33), (5.38). Finally,
in the critical layer, we have found expressions for the first three terms Û1, Û2L, Û2 in
the streamwise velocity expansion in (5.40) and these are given in (5.41), (5.42) and
(5.55).

5.4. The breakdown of the asymptotic solution at small wavenumber and the emergence
of the long-wave structure

Eventually, if the wavenumber α is sufficiently small, the asymptotic structure set out
in this section for O(1) wavenumbers will become invalid and a new structure will
take its place.

To see why the present structure fails, consider first the thickness of the critical
layer. From (5.58) we observe that A0 ∼ O(α−1/3) as α→ 0, which in turn means
that from (5.43), the parameter µ ∼ O(α2/3). It follows that the critical-layer variable
Y ∼ O (µ/α)1/2 ∼ O(α−1/6), from (5.46). Thus, in the long-wave limit, the critical-layer
thickness ∼O(εY) ∼ O (αR)−1/6, in view of (5.49). Turning now to the viscous wall
layers, the thickness of the layer on the inner cylinder is O(R−1/2µ−1

a ) ∼ O (αR)−1/2,
using (5.25), (5.28). A similar argument leads to the same order-of-magnitude estimate
for the thickness of the boundary layer on the outer cylinder. Eventually, when α

is sufficiently small, the thicknesses of the critical layer and wall layers become
comparable. This occurs when αR ∼ O(1), and implies the existence of a new larger
amplitude regime in which

α ∼ O(R−1), A0 ∼ O(R1/3). (5.60)

In this new structure the wall layer and critical layer have grown and merged to fill
the whole of the annulus, so that viscous effects are now important at leading order
everywhere in the flow field.

To determine the new scalings for the velocity and pressure we again consider
the critical-layer expansions of the previous regime. From (5.40), (5.41) we see that
the streamwise perturbation εÛ1 ∼ εY and this becomes O(1) upon using the new
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scalings (5.60). The corresponding radial perturbation is ε2V̂1 ∼ ε2µ ∼ O(R−1) in the
new regime. In addition, the pressure scales as ε2P̂1 ∼ ε2A0 and so also becomes
O(1). The same velocity and pressure scalings can also be deduced by considering the
flow in the core or in the viscous wall layers as α→ 0. An important extra feature
in this new regime is that the leading-order pressure is independent of the radial
coordinate. This can be seen most easily by appealing to the asymptotic form for P2

in (5.17), which shows that the r-dependent part of the pressure ∼O(ε2A0α
2)∼ O(R−2)

in the long-wave structure. It is also worth noting that in the limit α→ 0, the jump
condition (5.39) yields φ ∼ O(A0α

−1/2)∼ O(α−5/6), and so from (5.11) the jump in the
streamwise velocity component across the critical layer ∼ε2R−1/2α−5/6 and therefore
approaches an O(1) size as α→ O(R−1). This emphasizes the fact that, in the new
regime, nonlinearity is important at leading order throughout the flow field and that
all of the harmonics of the fluctuation are of equal significance. In view of the new
scaling for the wavenumber, the disturbance will now operate over a long streamwise
length scale of O(R) and evolve over an O(R) time scale.

The preceding order-of-magnitude analysis now allows us to deduce the governing
equations for the long-wave regime. We write

[u, v, p] = [u†(t†, x†, r),R−1v†(t†, x†, r), p†(t†, x†)](1+ O(R−2)), (5.61)

with x = Rx†,t = Rt†. Substitution into the Navier–Stokes equations (2.3)–(2.5) yields,
at leading order, the following nonlinear, viscous balances:

u†
x† + v†

r + r−1v† = 0, (5.62)

u†
t†
+ UBu†

x† + v†U′B + u†u†
x† + v†u†

r =−p†
x†(t

†, x†)+ u†
rr + r−1u†

r . (5.63)

We note that the leading-order contribution from the radial momentum equation (2.5)
only serves as an equation to determine the higher-order correction to the pressure and
so need not be considered further. Thus, in the long-wave regime we need to solve
(5.62), (5.63) subject to the no-slip conditions

u† = v† = 0 at r = ra and r = rb. (5.64)

The main features of these equations are the absence of streamwise diffusion,
rendering them parabolic in the axial direction, and also the fact that due to the
Reynolds number scaling in (5.61), the effective Reynolds number in (5.63) is unity.

The numerical solution of this long-wave problem will be discussed in § 7.

6. Comparison of asymptotic and numerical results
In the previous section we proposed an asymptotic form for the nonlinear instability

of annular sliding Couette flow. Now we wish to compare this solution with our
Navier–Stokes computations from § 4. In particular, we are interested in: (i) how
large the Reynolds number needs to be to obtain reasonable agreement between the
solutions; (ii) which of the modes discovered in § 3 does the asymptotic solution best
approximate; and (iii) is it possible to see the delicate asymptotic flow structure in the
finite Reynolds number computations?

First, from numerical computation of the Rayleigh equation (5.5) we find that there
is a unique value yc = −0.9866 at (η, α) = (0.1, 0.6546) for which A0 in (5.58) is
finite. It is therefore clear immediately from figure 2(a) that the asymptotic theory
is a better approximation to the lower branch than the upper branch. A close-up
version of figure 2(a) for the lower branch at high R is shown in figure 9(a),
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FIGURE 9. The solid lines represent the lower branch solution for (η, α) = (0.1, 0.6546).
The truncation level (L,N) = (240, 100) is used. The dashed lines are the asymptotic results
yc = −0.9866 and M = 1 + 0.0613R−1/6. Open circles in the figures represent linear critical
points.
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FIGURE 10. The flow structure in the vicinity of the critical layer for (η, α)= (0.1, 0.6546)

calculated from the asymptotic solution. The greyscale represents contours of ˜̂U2Y .

together with the corresponding asymptotic result. In the figure, we can see that
the agreement between the numerical and asymptotic solutions is good once the kink
at R= 3.5× 107 has been passed. In figure 9(b) we compare the corresponding values
of the momentum transport M. Again, it can be seen that after the kink, the solution
branch is approximated reasonably well by the asymptotic result.

Encouraged by the agreement obtained thus far, we now seek to compare the
numerically and asymptotically determined flow structures. For this purpose, we make
the comparisons for each layer using only the leading order asymptotic solutions as
follows.

First we consider the nonlinear critical layer structure in terms of the stretched radial
coordinate Y = ε−1(y − yc). The asymptotic critical layer solution for the streamwise
velocity has the expansion

u= εÛ1(Y)+ ε2 ln εÛ2L(ξ)+ ε2{ ˜̂U2(ξ,Y)+ Û2(Y)} + · · · , (6.1)

where Û2(ξ,Y) is numerically decomposed into the fluctuation ˜̂U2(ξ,Y) and the mean

Û2(Y). For the sake of clarity, the fluctuation is differentiated with respect to Y , and
the result is shown in figure 10. We compare this with the corresponding numerical
result ε−2ũY(ξ,Y) (figure 11). One of the characteristic structures associated with

the asymptotic solution ˜̂U2Y is the cats-eye shape which possesses, at this order, a
discontinuity in the first derivative at Y − rcu1(rc)τ

−1
0 =± (2rcµ(1− cos ξ)/ατ0)

1/2. We
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FIGURE 11. The flow structure in the vicinity of the critical layer for (η, α) = (0.1, 0.6546)
calculated from the numerical solution. The greyscale represents contours of ε−2ũY . The
radial plot intervals are the same as the close-up plots in figures 3 and 4: (a) P1, R = 2 × 106

upper branch; (b) P2, R = 2 × 105 upper branch; (c) P3, R = 2 × 105 lower branch; (d) P4,
R= 2× 106 lower branch; (e) P5, R= 2× 107 lower branch; (f ) P6, R= 108 lower branch.

can detect a similar quasi-discontinuous structure in the high R numerical solutions
(P1 and P6). However, when R is smaller than its value at the kink, the discontinuity
seems to be smoothed out due to the thicker nonlinear critical layer structure which
effectively overlaps with the inner wall layer. For example, the visualization for P1
and P2 is similar at first glance, but there is only an upper (outer) discontinuity
for P2 whereas we can see a lower (inner) discontinuity for P1. In other words
the kink, which differentiates between the LR and HR modes, can be considered to
be the product of the separation of the nonlinear critical layer and the inner wall
layer structures. This feature is reminiscent of the role of the kink investigated by
Healey (1995) for the linear stability of the Blasius boundary layer, but seen here in a
nonlinear setting.
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FIGURE 12. The comparison of the real part of the fluctuation F for the lower branch finite-
amplitude solutions (solid lines, ε−2F) and the asymptotic results (dashed lines, A0F2 for a,b,
Fa for c, Fb for d) for (η, α) = (0.1, 0.6546). The values of R = A × 10N are abbreviated as
AeN.

Next we compare asymptotic and numerical streamwise velocity solutions in the
core and the wall layers, restricting our attention to the lower branch numerical
solution. The asymptotic core solution for the streamwise component expands in the
form

u= εū1(y)+ ε2{A0F2(y) cos ξ + ū2(y)} + · · · , (6.2)

while the inner wall layer solution is written in terms of functions of Za = R1/2(1 + y)
as

u= ε2
{

1
2Fa(Za)eiξ + c.c.

}+ ε4U a(Za)+ · · · , (6.3)

and the outer wall layer solution is expressed in terms of the variable Zb = R1/2(1− y)
as

u= ε2
{

1
2Fb(Zb)eiξ + c.c.

}+ ε4U b(Zb)+ · · · . (6.4)

Therefore, we see that the axial-dependence in the leading-order terms of the
asymptotic solution in both the core and the wall layers consists of just a single
harmonic. We recall that the numerical solution for the streamwise velocity takes the
form

u= ū(y)+ { 1
2 F(y)eiξ + c.c.

}+ higher-order Fourier modes. (6.5)

The real and imaginary parts of ε−2F and A0F2, Fa,Fb are compared in figures 12
and 13, respectively. Note that the real and imaginary parts of F correspond to the
even (cos ξ ) and odd (sin ξ ) axial dependence, respectively. In the outer part of the
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FIGURE 13. Same as figure 12 except that the imaginary parts are now compared.

core, above the critical layer, both asymptotic and numerical solutions predict that
F is even, to leading order. In the inner core, where the asymptotic theory again
predicts an even streamwise velocity, such agreement is harder to obtain, in part
due to the interaction of the nonlinear critical layer and inner wall layer referred
to earlier. Except for this difference, the numerical solutions qualitatively agree with
the asymptotic result. Furthermore, the solutions begin to show quantitative agreement
after the kink is passed, as predicted in figure 9. The two peaks of F for R = 108 in
figure 12(b) also suggest that the separation of the inner wall layer and the nonlinear
critical layer is underway.

The mean-flow distortion is also compared in figure 14. Because the leading-order
magnitude of the asymptotic solutions is different in each layer, we compare ε−1ū
and ū1 for the core region and ε−4ū and U a, U b for the wall layers. Again, good
qualitative and quantitative agreement of asymptotic and numerical solutions can be
found before and after the kink. There are two prominent features close to the inner
wall. One is the sharp peak, which is related to the asymptotic discontinuity of the
core solution at the critical layer. The other is the negative perturbation to the mean
flow near the inner wall which arises in order to maintain the same value of M at the
inner and outer walls. A plot of the normalized nonlinear forcing

Nf (y)≡ (αR)r−1∂r{rψξ (ψr + r−1ψ)} = −r−1∂r(rū′), (6.6)

calculated from the numerical solution (figure 15), reveals that the mean-flow
distortion is almost unforced in the outer core, as predicted by asymptotic theory.

7. The behaviour of the solutions as α→ 0
Here we focus on LR mode solutions which, we recall, do not show quantitative

agreement with the asymptotic analysis of § 5 due to the incomplete nature of the
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nonlinear critical layer structure (see, for example, figure 11). One of the reasons that
this limit is of interest is that numerical evidence suggests that the maximum value
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FIGURE 16. The axial fluctuation velocity field ũ for (η,R)= (0.33, 5× 104). The resolution
(L,N) = (50, 240) is used for (a) while (L,N) = (30, 500) is used for (b,c). The dashed line
represents the location of the critical layer: (a) α = 0.05; (b) α = 0.02; (c) α = 0.01.

of η, ηmax say, beyond which solutions do not exist, occurs as α→ 0. In this section
we will first study the behaviour of the solutions of the full Navier–Stokes equations
at fixed Reynolds number and radius ratio when α is small but finite. We will then
continue the solution branch in the limit α→ 0 by studying the reduced (long-wave)
problem that emerges when α ∼ O(R−1).

From examination of figure 7, it appears that ηmax tends to a maximum limiting
value in the range 0.33–0.40 as α→ 0. A more accurate estimate than this is difficult
to obtain due to the high resolution required. In view of this, we choose to examine
the behaviour as α→ 0 by fixing η = 0.33, R = 5 × 104. The fluctuation component
of the streamwise velocity is visualized in figure 16(a–c) for α = 0.05, 0.02 and 0.01.
These figures show an intriguing localization of the disturbance in the streamwise
direction. To see the localization more clearly, the fluctuation field at the critical level
y= yc is shown in figure 17 where we can see the concentration of both the axial and
radial velocities in the localized region.

For the reader who is interested in the spectral convergence properties of the
localized solution, we remark in passing that the shape of this localized structure
does not change when the resolution level is increased with η below the cut-off value
(which lies in the range 0.33–0.40 as mentioned previously). If a lower resolution
level is used however, it is possible to continue our branch beyond this threshold;
however, these solutions are sensitive to spectral accuracy and cease to exist once
the resolution level is improved. The latter property of our solution is similar to that
for poorly resolved localized solutions observed in plane Couette flow by Cherhabili
& Ehrenstein (1995): see Mehta (2004), Mehta & Healey (2005), Rincon (2007) and
Ehrenstein, Nagata & Rincon (2008) for further discussion of this issue. Thus, we
conclude that our existence threshold of η for the LR mode is reliable.

The smaller the value of α, the stronger the localization becomes and it appears
that the shape of the fluctuation is converging to a limiting form as α→ 0. To show
this tendency more clearly, the plots of ũ and ṽ are combined in figure 18(a). The
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FIGURE 17. The fluctuation velocity field at the critical layer location y = yc for (η,R) =
(0.33, 5 × 104). Left and right figures represent ũ and ṽ. The solid, dashed and dotted curves
correspond to α = 0.01, 0.02 and 0.05, respectively. The truncation level is the same as for
figure 16.
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FIGURE 18. The convergence of the flow field as the wavenumber α is decreased for
(η,R) = (0.33, 5 × 104). The truncation level is the same as for figure 16. (a) Plot of flow
field along the axis in the phase space spanned by ũ and ṽ for ξ ∈ [0, 2π] at the critical
layer location y= yc. (b) The normalized mean flow ū/α. The solid, dashed and dotted curves
correspond to α = 0.01, 0.02 and 0.05, respectively. The crosses indicate the critical layer
locations.

mean-flow distortion for the different values of α is compared in figure 18(b) and
we see that this quantity scales with α when α is small. This makes sense because
the mean-flow distortion is sustained by the spatial average of the nonlinear self-
interaction of the fluctuation (see (4.4)) and therefore if the shape of the fluctuation
is becoming independent of α, the mean-flow distortion divided by α must converge
to a limiting form. However, when α is sufficiently small, specifically of O(R−1), the
solution cannot continue to exist in its present form at finite R as it would violate
the energy analysis of § 3 which, for η = 0.33, shows that all disturbances must
monotonically decay if αRE . 108.20.

The new structure that controls the behaviour of the modes at very small α is the
long-wave version of the asymptotic structure of § 5, and the governing equations
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FIGURE 19. (a) The continuation to the long-wave limit for α† ≡ Rα = 2500. (b) The solid
line shows the solution branch of the long-wave limit problem. The vertical dash-dotted line
represents the energy threshold, calculated from the analysis of § 3. The truncation level
(L,N) = (50, 240), which is sufficient to see the tendency of the branch, is used. Crosses are
the same solution but computed at a higher-resolution level, i.e. (L,N)= (50, 400) is used for
α† = 1500 while (L,N)= (40, 500) is used for α† = 500.

are (5.62)–(5.63). Indeed, in figure 16, we can see that the nonlinear critical layer
structure we saw in figure 11 is completely smoothed out as we discussed in § 5.4.

The strategy we adopt to obtain the solution of (5.62)–(5.63) is the continuation
of the solution branch of (4.3)–(4.4), gradually decreasing α, while keeping the
quantity α† ≡ αR constant. Once the solutions for ψ(ξ, y) and u(y) are obtained,
[u†, v†](ξ, y) can be found as [u+ψr+ r−1ψ,−α†ψξ ]. The continuation is started from
the lower branch solution at (η, α,R) = (0.33, 0.05, 5 × 104) as shown in figure 19(a).
The solution branch successfully reaches α = 0, allowing us to then compute the
bifurcation curve shown in figure 19(b) by varying α†. The solution branch reaches a
minimum in M at α† ' 500 and then further decrease in α† leads to a rapid increase
in M, thereby avoiding crossing the energy boundary calculated in § 3 and shown
as a vertical dot-dashed line on figure 19(b). As expected, the solutions of the long-
wave problem possess highly streamwise-localized fluctuations with no discernible
critical-layer structure (figures 20 and 21) and there is good qualitative agreement with
the finite-Reynolds-number calculations shown in figure 16. The strong localization
observed here clearly requires a large number of axial modes N for satisfactory
resolution. However, the lack of an obvious critical layer means that the solution can
be fully resolved in the radial direction without L needing to be excessively large. We
have exploited this fact when producing figure 19(b) where we have lowered L and
increased N to calculate the solution marked with a cross for α† = 500.

8. Conclusion
In this paper we have examined the large-Reynolds-number asymptotic behaviour

of two-dimensional finite-amplitude travelling-wave solutions of shear flows. For this
purpose, we extended the axisymmetric solution branch of annular sliding Couette flow
computed by DN11 and developed a corresponding axisymmetric asymptotic theory
valid at high Reynolds number.

The initial finite-amplitude computation was conducted at a radius ratio η = 0.1,
where we can find linear instability, and we fixed the wavenumber α at its linear
critical value of 0.6546. Finite-amplitude solutions come into existence due to a saddle-
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FIGURE 20. The axial fluctuation velocity field ũ† for the long-wave limit solution at a radius
ratio η = 0.33. (a) α† = 1500; (b) α† = 500. The resolution (L,N) = (50, 400) is used for
α† = 1500, while (L,N) = (40, 500) is used for α† = 500. The dashed line represents the
location of the critical layer.
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FIGURE 21. The fluctuation velocity field at the critical layer location y = yc for η = 0.33.
The left figure represents ũ† whereas the right figure represents ṽ†/α†. The solid and dashed
curves correspond to α† = 500 and 1500, respectively. The truncation level is the same as for
figure 20.

node bifurcation, and upper and lower branches in amplitude–Reynolds number space
are formed. Both branches continue to exist as R is increased, although the lower
branch coincides with the linear instability, i.e. the zero-amplitude state, for a finite
range of R. At sufficiently high R, our calculations indicated that there exist kinks
in both the upper and lower branches. The part of each branch before and after the
kink is referred to as the LR (low-Reynolds-number) and HR (high-Reynolds-number)
mode, respectively.

A multi-structured analytic solution valid for asymptotically large R was derived
in § 5: this asymptotic theory divides the shear layer into five decks (figure 8). At
leading order viscosity is only present in the boundary layers near the inner and outer
walls and is also vital in the nonlinear critical layer where a cats-eye shape quasi-
singularity exists and the mean flow is strongly modified. The asymptotic theory was
then compared with the finite Reynolds number calculations. For the LR mode, where
R is in the range O(104)–O(107), we observed good qualitative agreement between the
asymptotic solutions for the various layers and the corresponding visualization of the
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numerical solutions. However, for this mode, the inner inviscid core layer is absent
and, hence, the nonlinear critical layer structure is incomplete, due to the effective
interaction with the inner wall layer. The reason for this is that the distance between
the nonlinear critical layer and the inner wall layer is so close that it is comparable
with the thickness of the critical layer, which is of order R−1/6 according to the
theory. When we further increase R to 108, so that the relevant solution branch belongs
to the HR mode, we find that the flow visualization of the lower branch solution
agrees quantitatively with the asymptotic solution, with visualizations showing a clear
separation of the inner wall layer and the critical layer. Therefore, we conclude that
the kink in the solution branch results from the separation of the inner wall layer
and the nonlinear critical layer. In the linear setting, Healey (1995) came to a similar
conclusion when considering boundary-layer stability.

One of the notable properties of this asymptotic solution, and one which agrees with
the numerically computed lower branch asymptotic behaviour, is that all disturbances
decay as R is increased. This means that when we consider practical laminar flow
control at high R, the present Tollmien–Schlichting-type flow structure could become
more important than the vortex–wave interaction type streamwise roll equilibrated
states, which require an O(1) modification of the mean flow, because it would
be ‘closer’ to laminar flow in the sense of disturbance magnitude (e.g. disturbance
norm or energy). Thus, it is likely that our solution opens up the route to transition
first in some cases. We also note here that for moderate R, it is known that an
O(R−1) streamwise roll can trigger shear-flow transition by the lift-up mechanism (e.g.
Lemoult et al. 2012). When R is sufficiently large, our solutions, which have O(R−1/6)

deviation from the basic flow, would also affect this route to transition where the
magnitude of the disturbance evolves from O(R−1) to an O(1) size.

As we have already remarked in the introduction, one of the possible practical
applications of annular sliding Couette flow would be to the boundary-layer flow
surrounding an object in flight. At first, one might be concerned that the values
of Reynolds number R considered in this paper are too large to apply to this
real situation. However, we note here that the length scale must be chosen as the
inner cylinder radius in order to make the comparison. Thus, when the results of
annular sliding Couette flow with η = 0.1 are applied, we find that the Reynolds
number, Rf say, determined by the radius and speed of the flying body is given by
Rf = 2Rη/(1 − η) = 0.22R and, therefore, stays at a realistic value. Obviously the
smaller the value of η, the smaller the corresponding value of Rf . We also note that
our results demonstrate that the main activity in the flow field is localized near the
inner wall so that the effective boundary-layer thickness is significantly less than the
gap width.

We also examined how the finite-amplitude solution branch behaved as η is varied.
It is found that the solution branches of both the HR and LR mode can be continued
well beyond the linear long-wave cut-off value of η ' 0.1415. For the LR mode,
the nonlinear cut-off value of η increases as α decreases. The ultimate value for
small α is estimated to lie between 0.33 and 0.40. This observation suggests that the
nonlinear version of the cut-off is also a long-wave phenomenon. Although the present
calculation failed to trace the HR mode solution branch beyond a value of η ' 0.159,
it must also reach a cut-off if we assume that this mode asymptotes according to the
large R theory which must itself experience a cut-off before the narrow gap limit of
plane Couette flow is reached.

The viscous layers in the asymptotic structure become thinner as R is increased,
but thicken as α is decreased. A distinguished limit α ∼ O(R−1) arises at which
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the wall layers and critical layer thicken to an O(1) size and merge together. An
identical effect is observed in the numerical solutions where we observe that as α is
decreased to 0.01 for η = 0.33, the rapidly varying behaviour near the critical location
is completely smoothed out. Instead, there is the formation of a prominent streamwise
localized structure. This localized structure can be explained by the α ∼ O(R−1) theory
because all streamwise Fourier modes become leading order in size, in contrast to
the asymptotic theory for α ∼ O(1). In order to check this argument, we examined
numerically the limit α→ 0 of the finite-amplitude solution branch, while keeping the
product αR fixed. In this limit, the governing equations coincide with the α ∼ O(R−1)

version of the asymptotic equations. The visualization of the corresponding solution
indeed shows strong localization. The retreat of the solution to high Reynolds number
in the small wavenumber limit is also necessary so that the solutions do not cross the
energy boundary derived in § 3.

Although the axisymmetric solutions presented here appear to have some connection
to the initiation of localized turbulent spots, it should be noted that the present
solutions cannot be linked directly to fully developed ‘puffs’ in pipe flow, because the
axisymmetric asymptotic solution presented in this study does not exist in this flow (as
remarked at the beginning of § 5). Instead, by analogy with our results, it might be
expected that a more relevant asymptotic model for that situation would be the spiral
wave structure given by Smith & Bodonyi (1982a), and in particular its long-wave
limit, which gives a threshold amplitude for the instability.
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Appendix A. The phase shift calculation for the asymptotic solution
Here our aim is to calculate the jump in the sin ξ component of axial velocity across

the critical layer considered in § 5.3. It is shown there that the term Û5(ξ,Y) in (5.40)
is the largest to possess an odd part about ξ = π. We therefore write

Û5 = Û5O + Û5E, (A 1)

with subscripts O and E to denote the odd and even parts of this expression, and
we do likewise for the corresponding radial velocity and pressure components. From
substitution of (5.40) into the Navier–Stokes (2.3)–(2.5), we find that (Û5O, V̂5E, P̂5O)

are governed by

αÛ5Oξ + V̂5EY = 0, (A 2a)

αÛ1Û5Oξ + V̂1Û5OY + V̂5EÛ1Y =−αP̂5Oξ + Û2YY + Û1Y/rc. (A 2b)

If we differentiate the second of these equations with respect to Y, use expressions
(5.41), (5.47) for the velocity components, and change to the characteristic variable ζ
defined in (5.46), we can simplify this system to

∂

∂ξ̂
(Û5OY)=∓

(
2ατ0

rc

)1/2
∂

∂ζ

(
(ζ − µ cos ξ)1/2 κ ′(ζ )

)
, (A 3)
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where κ(ζ ) is given by (5.50) and ∂/∂ξ̂ denotes differentiation with respect to ξ,
holding ζ fixed.

To determine the velocity jump we write

Û5O =
∞∑

n=1

bn(Y) sin nξ, (A 4)

so that the quantity φ defined in (5.11) is given by

φ = lim
Y→∞

b1 − lim
Y→−∞

b1, (A 5)

where

b1(Y)= 1
π

∫ 2π

0
Û5O(ξ,Y) sin ξ dξ. (A 6)

By changing variables from (ξ,Y) to (ξ̂ , ζ ), where ξ = ξ̂ , integrating by parts with
respect to ξ̂ , and using (A 3), we finally obtain

b1 = 2
µ
(2ζκ ′ − κ)+ constant. (A 7)

Then, using the properties of κ given in (5.48), (5.50), (5.51) and (5.52), we can
establish that

φ = 2τ0C1

αr2
c A1/2

0

, (A 8)

which is the result (5.57) quoted in the main text.
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