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Turbulent drag reduction through rotating discs
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An active technique for friction drag reduction in a turbulent channel flow is studied
by direct numerical simulations. The flow modification is induced by the steady
rotation of rigid flush-mounted discs, located next to one another on the walls. The
effect of the disc motion on the turbulent drag is investigated at a Reynolds number
of Rτ = 180, based on the friction velocity of the stationary-wall case and the half
channel height. For a fixed maximum disc tip velocity, drag reduction can be achieved
when the disc diameter is larger than a threshold, while below this threshold the drag
increases. A maximum drag reduction of 23% is computed. The net power saved,
obtained by taking into account the power spent to enforce the rotational motion
against the fluid viscous resistance, is found to be positive and reach 10%. The
disc-flow parameters required for commercial aircraft flight conditions and flows over
high-speed trains and ship hulls are estimated and future implementations based on
existing micro-electromagnetic motor and micro-air turbine technologies are discussed.
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1. Introduction
Turbulent drag reduction represents one of the great challenges in modern fluid

mechanics research and an opportunity to facilitate the immense energy savings
that could be achieved in numerous industrial applications. The need for lower fuel
consumption and improved environmental sustainability has driven large efforts in the
academic and industrial worlds to study new drag-reduction techniques.

Amongst the open-loop active methods (for which energy is input to the
system to modify the flow in a predetermined manner), the technique of spanwise
wall oscillations has experienced a growing interest since first studied by Jung,
Mangiavacchi & Akhavan (1992). They showed that drag reduction can be achieved
if the wall below a turbulent flow oscillates in time along the spanwise direction
according to w = W sin(2πt/T), where T is the oscillation period. The low-speed
streaks, recognized as key players in the near-wall turbulence dynamics, are cyclically
tilted to an angle and dragged laterally by the wall. This results in a suppressed
sweeping and bursting activity, which is instrumental in the reduction of turbulent
kinetic energy (Ricco 2004). An optimal period of oscillation, T+opt ≈ 120 (where +
here indicates scaling by viscous units of the stationary-wall case), has been found for

† Email address for correspondence: p.ricco@sheffield.ac.uk
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a fixed W and a drag reduction as large as 45% is obtained when W is comparable
with the free-stream velocity of a turbulent boundary layer (Choi, DeBisschop &
Clayton 1998). Research has also been carried out to model the near-wall flow and to
explain the drag-reduction mechanism (Dhanak & Si 1999; Choi 2002; Duque-Daza
et al. 2012; Moarref & Jovanovic 2012).

Inspired by the oscillating-wall technique, Viotti, Quadrio & Luchini (2009) have
converted the unsteady motion into a steady streamwise-dependent forcing, i.e.
w = W sin(2πx/λ), where λ is the wavelength of forcing. Their direct numerical
simulations have shown that, analogously to the unsteady case, an optimal wavelength
for drag reduction exists, λ+opt ≈ 1250, which is related to T+opt through λopt = UwTopt ,
where Uw is the near-wall turbulent convection velocity. A maximum of 50% drag
reduction was found for W+ = 20 and the maximum net power saved was 23%
(computed by subtracting the power employed to move the wall against the viscous
flow resistance from the power saved thanks to the wall motion).

Although these methods are interesting for their large drag reduction, the net power
saved, and as test cases for studying the drag-reduction mechanism (Choi & Clayton
2001; Ricco et al. 2012), their practical realization clearly remains a major challenge.
Important steps in this direction are the experimental works by Auteri et al. (2010),
where drag reduction was achieved through the unsteady rotation of pipe sections, and
by Gouder, Potter & Morrison (2013), who forced the wall turbulence by in-plane,
high-frequency oscillatory deflections of an electroactive polymer. The implementation
of spanwise-moving wall sections in systems of technological importance, such
as flows over aircraft wings and turbine blades, however, appears elusive in the
foreseeable future. One of the main reasons for this lies in the estimated oscillation
frequency corresponding to T+opt = 120 being extremely high, i.e. about 15 kHz
over the wing of a commercial aircraft at a cruise speed of 225 m s−1 at 10 km
above sea level (the friction velocity uτ = 8 m s−1 and the kinematic viscosity
ν = 35× 10−6 m2 s−1).

A related novel device proposed by Keefe (1997, 1998), based on wall-normal
vorticity forcing, may instead offer exciting opportunities for industrial applications.
This actuator consists of arrays of discs which are flush-mounted on a flat surface and
rotate at constant angular velocity. To the best of our knowledge, neither experimental
nor numerical studies exist on this type of flow. Our objective is to investigate the
effects of the disc diameter and rotational frequency on the near-wall turbulence by
means of direct numerical simulations in the channel flow geometry. The focus is on
the turbulent friction drag and on the net power saved.

The numerical procedures are presented in § 2. The computational solver, scaling
procedures, disc arrangement, discretization parameters and averaging procedures are
contained in §§ 2.1–2.4. Section 2.5 outlines the numerical resolution checks. The
results are presented in § 3. The dependence of drag reduction on the wall forcing
parameters is discussed in § 3.1. In §§ 3.2 and 3.3, the disc flow is visualized and the
turbulence statistics are studied. The role of the period of rotation and the disc-flow
viscous layer thickness is discussed in § 3.4, while results on the power spent to drive
the disc motion and on the net power saved are given in § 3.5. A discussion on
the applicability of the disc-flow technique to flows of technological interest is found
in § 4.
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2. Numerical procedures
2.1. Numerical solver of the Navier–Stokes equations

A pressure-driven turbulent flow between infinite parallel flat plates at a low Reynolds
number has been studied by direct numerical simulations. The open-source numerical
code available on the Internet (Gibson 2006) has been modified to impose the rotation
of the discs on the walls. The code solves the incompressible Navier–Stokes equations
in the channel flow geometry using Fourier series expansions along the streamwise
(x) and spanwise (z) homogeneous directions, and Chebyshev polynomials along the
wall-normal direction (y). The numerical method is based on the Kleiser–Schumann
algorithm (Kleiser & Schumann 1980), also used in Gibson, Halcrow & Cvitanovic
(2008) and described in Canuto et al. (1988). The time-stepping algorithm, reported
in Ascher, Ruuth & Wetton (1995), is based on a third-order semi-implicit backward
differentiation scheme (SBDF3), which treats the nonlinear terms explicitly and the
linear terms implicitly. According to Gibson (2006), SBDF3 is set as default in the
code as it is the most efficient amongst the third-order implicit–explicit multi-step
schemes available for the code. Dealiasing is performed at each time step by setting to
zero the upper one-third of the Fourier coefficients along the streamwise and spanwise
directions. The calculations have been run in parallel using an OpenMP strategy on the
computer cluster Iceberg at the University of Sheffield.

2.2. Scaling of flow quantities
Dimensional quantities are henceforth indicated by the symbol ∗. Lengths are scaled
by h∗, the half channel height, velocities are scaled by U∗p , the maximum centreline
velocity of the laminar Poiseuille flow at the same mass flow rate, time is made
dimensionless by h∗/U∗p , and pressure by ρ∗U∗2p , where ρ∗ is the density. Quantities
scaled by these outer units are not marked by any symbol. The symbol + denotes
scaling by the viscous inner units of the flow, i.e. by the kinematic viscosity ν∗ and the
friction velocity u∗τ =

√
τ ∗w/ρ∗, where τ ∗w is the space- and time-averaged wall-shear

stress.

2.3. Arrangement of discs
The flow domain is shown in figure 1. The discs are located next to one another, have
a diameter D and rotate at a constant angular velocity Ω with tip velocity W =ΩD/2.
Discs which are next to each other along x have opposite direction of rotation, while
the direction of rotation along rows in the z direction is the same. Due to the domain
periodicity and the alternate sense of rotation along x, an even number of discs
is enforced in this direction. A triangular wave of spanwise velocity is generated
along lines parallel to x and connecting the disc centres. This disc configuration has
been chosen to mimic the standing-wave forcing by Viotti et al. (2009). The two
drag-reduction techniques however differ considerably because in Viotti et al. (2009)’s
case the wall forcing is sinusoidal, uniform along z, only oriented along the spanwise
direction, and covers the entire wall surface. The wall velocity is first assigned in the
physical space and then transformed into the spectral space to create the Fourier mode
representation. Dirichlet boundary conditions are imposed on the equations of motion
of the modes.

A thin buffer annular region around each disc is simulated, as shown in figure 1.
The percentage ratio between the clearance c and the disc radius if the clearance were
not present, 100 × 2c/(2c + D), is 6% for D= 0.84, 1.67, 5% for D= 3.38, 5.07, 4%
for D = 6.83 and 3% for D = 8.62, 10.35. A larger annular region is used for smaller
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FIGURE 1. Schematic of the turbulent channel flow with rotating discs. The z-component of
the wall velocity along lines parallel to x and passing through the disc centres.

diameters in order to avoid spurious oscillations at the boundary between the discs and
stationary wall as discussed below. The velocity field in this region is assumed to be
independent of the azimuthal angle and to decrease linearly from the maximum at the
disc tip to zero at the stationary wall, i.e. the wall tangential velocity wr varies with
the radial coordinate r, measured from the centre of each disc, as follows:

wr(r)=
{

2Wr/D, r 6 D/2
W(c− r + D/2)/c, D/2 6 r 6 D/2+ c.

(2.1)

The simulation of this region is useful for two reasons. It provides an idealized
representation of the gap between the spinning disc and the stationary wall, which
would be inevitably present in a laboratory apparatus. The other crucial advantage
brought about by simulating the clearance is that, as the wall velocity at y = 0 and
y = 2 is now continuous, the Gibbs phenomenon is strongly reduced, provided that
a sufficient number of Fourier modes is utilized. The spurious oscillations would
always occur if the clearance were not simulated because of the velocity discontinuity
between the disc tip and the stationary wall. Figure 2(a) shows that, for D = 0.84,
W = 0.77, no Gibbs-type oscillations occur in the wall streamwise velocity, shown as a
function of z at x = D/2. This is the location with the highest velocity jump between
neighbouring discs for the case with the largest number of discs in the computational
domain, and therefore this is the case which is most prone to spurious oscillations.
Figure 2(b) shows the same quantity for D= 5.07, W = 0.39, which yields the highest
drag reduction of 22.9%.

The strategy of simulating a region where the wall velocity changes linearly has
already been employed successfully by other researchers. Kannepalli & Piomelli
(2000) used a quite long adjustment region to study spanwise-shear-driven wall
turbulence. Skote (2012) recently simulated a turbulent boundary layer altered by
a finite-length spanwise-oscillating wall; a thin region was simulated between the
stationary wall and the moving wall, where the velocity increased linearly. Skote
(2012)’s approach is in line with ours as the adjustment region was intended to

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

92
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2013.92


Turbulent drag reduction through rotating discs 271

z z

–0.6

–0.4

–0.2

0

0.6

0.4

0.2

–0.8

0.8

3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9

(a) (b)

–0.4

–0.3

–0.2

–0.1

0

0.4

0.3

0.2

0.1

8 9 10 11 12 13

10.8 11.1

0.4

0.3

0.2

FIGURE 2. Profile of streamwise wall velocity versus z at x = D/2. (a) D = 0.84, W = 0.77
(D+ = 188, W+ = 14.4). (b) D = 5.07, W = 0.39 (D+ = 801, W+ = 10.2). Circles indicate
data at grid points, while solid lines show the continuous representation of velocity by Fourier
series. The oblique lines denote the clearance.

suppress the Gibbs phenomenon. One could implement more realistic boundary
conditions by modelling the flow through the clearance and/or by simulating the
turbulent channel flow and the clearance flow as coupled systems, although these
objectives lie outside the scope of the present study.

2.4. Numerical parameters and averaging procedures
The simulations have been performed at a constant mass flow rate and at a Reynolds
number Rp = U∗p h∗/ν∗ = 4200. The stationary-wall friction Reynolds number is
Rτ,s = u∗τh

∗/ν∗=179.8 (where the subscript s indicates stationary-wall conditions). The
dimensions of the computational domain are Lx = 6.79π, Ly = 2, and Lz = 2.26π, i.e.
L+x = 3840, L+y = 360, and L+z = 1280 (viscous inner units of the stationary-wall case
are used henceforth in this section, unless otherwise stated). The numbers of Fourier
modes are Nx = 334 along x and Nz = 222 along z, providing spatial resolutions of
1x+ = 11.5 and 1z+ = 5.75. Because of the truncation of the upper one-third of
the Fourier modes to avoid dealiasing, the spatial resolution is not purely spectral.
The Nyquist critical wavelengths are thus λ+Nx = 31x+ and λ+Nz = 31z+, instead of
λ+Nx = 21x+ and λ+Nz = 21z+ in the purely spectral case. Nevertheless, the resolution
checks in § 2.5 show the robustness and accuracy of our computations. Larger box
sizes have been used for D = 5.07 and 10.35, Lx = 6.79π, Lz = 3.4π (Nz = 334,
L+z = 1926), and for D = 6.83, Lx = 9.05π, Lz = 2.26π (Nx = 446, L+x = 5118). The
number of modes has been adjusted to keep the same resolution for all cases. Along
y, Ny = 129 collocation points have been used along a stretched grid with resolution
of 1y+min = 0.054 near the wall and 1y+max = 4.42 at the centreline. The time step
varied between 1t+min = 0.008 and 1t+max = 0.08 to minimize the computational cost by
maximizing the CFL number within the specified range, i.e. 0.2< CFL< 0.4.

A total of 50 cases were run, for which W and D were varied independently in
the parameter range 0.064 6 W 6 0.77, 0.84 6 D 6 10.35. The computations were
initiated from a fully developed turbulent flow with stationary walls. The flow
experienced a transient state of up to about 250h∗/U∗p (1950ν∗/u∗2τ ) before reaching
its new fully developed regime. Turbulence statistics were computed by averaging
instantaneous flow fields at intervals of 30ν∗/u∗2τ for a minimum total time of
1150h∗/U∗p (8870ν∗/u∗2τ ) and a maximum total time of 1350h∗/U∗p (10 400ν∗/u∗2τ )
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Lx Lz 1x+ 1z+ Ny tf − ti Rτ,s Cf ,s × 103 |1Cf ,s| (%)
6.79π 2.26π 11.5 5.75 129 1450 179.8 8.25 —
6.79π 2.26π 11.5 5.75 129 725 179.8 8.24 0.07
5.65π 2.82π 12 6 129 1450 180.1 8.28 0.35

TABLE 1. Absolute values of 1Cf ,s, the percentage changes of Cf ,s with respect to the
top case in the table, for the stationary-wall case and different discretization parameters. In
this table and in the following ones, the parameters which are different from the reference
cases in § 2.4, the top cases in the tables, are highlighted in italics.

after the transient has elapsed. All statistical samples were doubled by averaging over
the two channel halves, and therefore the wall-normal coordinate for the averaged
quantities extends from the wall at y = 0 to the channel centreline at y = 1. By
defining

〈f 〉 ≡ 1
LxLz

∫ Lz

0

∫ Lx

0
f dx dz, f ≡ 1

tf − ti

∫ tf

ti

f dt, (2.2)

where ti and tf denote the start and finish averaging time, the flow field is expressed
as u(x, y, z, t) = um + ud + ut, where um(y) = {um, 0, 0} = 〈u〉 is the mean flow,
ud(x, y, z) = {ud, vd,wd} = u − um is the disc flow, and ut(x, y, z, t) represents the
turbulent fluctuations. The drag reduction is defined as R (%)≡ 100[1−u′m(0)/u

′
m,s(0)],

where the prime indicates differentiation with respect to y. The bulk velocity is defined
as

Ub ≡
∫ 1

0
um(y) dy. (2.3)

As the flow is studied at constant mass flow rate, Ub = 2/3.

2.5. Resolution checks
The Rτ,s = 179.8 value computed here is 1% different from the value found by the
correlation Rτ,s = 0.11593R0.88

p = 178.9, given on page 279 in Pope (2000), and 0.6%
different from the value found by the correlation Rτ,s = 0.12219R0.875

p = 180.9, given
on page 117 in Lesieur (1997). The skin-friction coefficient for the stationary-wall
case, Cf ,s = 2/U+2

b = 8.25 × 10−3 differs by 1% from the value computed by Kim,
Moin & Moser (1987) and by 1.3% from the value found by the empirical correlation
Cf ,s = 0.0336R−0.273

τ,s (Pope 2000). Table 1 shows that the percentage difference
between the Cf ,s value in the reference case (top case in table 1) and cases where
the discretization parameters have been changed is smaller than 1%.

The resolution checks on a case which gives a large drag reduction and on the case
which leads to the highest drag increase are presented in tables 2 and 3, respectively.
The percentage changes of Cf with respect to the reference case (top case in table 2)
for the large drag-reduction case are small and a conservative estimate of the R value
is R = 19.5± 0.3%. The percentage changes in Cf for the drag-increase case is higher
than for the drag-reduction case, although still smaller than 1%. This is expected
because the number of discs within the computational domain is larger and therefore
the resolution smaller. A conservative estimate is R =−55.8 ± 1%. It is evident from
the results presented in tables 2 and 3 that the wall-shear stress numerical values are
robust and reliable.
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Phase Lx Lz 1x+ 1z+ Ny tf − ti Cf × 103 |1Cf | (%) R (%)

In 6.79π 2.26π 11.5 5.75 129 1350 6.64 — 19.5
In 6.79π 2.26π 11.5 5.75 129 675 6.65 0.09 19.4
In 4.52π 2.26π 11.5 5.75 129 1350 6.63 0.18 19.6
In 6.79π 2.26π 8 5.75 129 1350 6.65 0.09 19.4
In 6.79π 2.26π 11.5 4 129 1350 6.63 0.18 19.6
In 6.79π 2.26π 11.5 5.75 161 1350 6.65 0.13 19.4
In 4.52π 3.34π 11.5 5.75 129 1350 6.64 0.11 19.6
In 6.79π 1.13π 11.5 5.75 257 1350 6.64 0.11 19.6
Out 6.79π 2.26π 11.5 5.75 129 1350 6.65 0.16 19.3

TABLE 2. Absolute values of 1Cf , the percentage changes of Cf with respect to the top
case in the table, for W = 0.39, D = 3.38 and different discretization parameters (viscous
units of the stationary-wall case are used here and in table 3). In this table and in table 3,
the first column on the left indicates whether discs at the same (x, z) location and on
opposite walls spin in phase or out of phase.

Phase Lx Lz 1x+ 1z+ Ny tf − ti Cf × 103 |1Cf | (%) R (%)

In 6.79π 2.26π 11.5 5.75 129 1350 12.85 — −55.8
In 6.79π 2.26π 11.5 5.75 129 675 12.86 0.05 −55.9
In 4.52π 2.26π 11.5 5.75 129 1350 12.82 0.27 −55.4
In 6.79π 2.26π 8 5.75 129 1350 12.93 0.55 −56.7
In 6.79π 2.26π 11.5 4 129 1350 12.79 0.52 −55
In 6.79π 2.26π 11.5 5.75 161 1350 12.85 0.01 −55.8
In 6.79π 1.13π 11.5 5.75 257 1350 12.88 0.23 −56.2
Out 6.79π 2.26π 11.5 5.75 129 1350 12.83 0.15 −55.6

TABLE 3. Absolute values of 1Cf , the percentage changes of Cf with respect to the top
case in the table, for W = 0.77 and D= 0.84 and different discretization parameters.

Forcing W D R (%)

Two walls Two-wall average 0.39 3.38 19.5
One wall Forced wall 0.39 3.38 18.7

Unforced wall 0.39 3.38 1.7
Two walls Two-wall average 0.77 1.67 −33.7
One wall Forced wall 0.77 1.67 −32.7

Unforced wall 0.77 1.67 0.6

TABLE 4. Drag-reduction and drag-increase values obtained by imposing the disc motion
on two walls and on one wall only.

The last line in tables 2 and 3 denotes cases for which discs at the same (x, z)
location and on opposite walls have opposite sense of rotation. The changes of
Cf with respect to the in-phase cases are within the uncertainty range obtained by
changing the discretization parameters, so the effect of the sense of rotation cannot
be inferred. Table 4 reports the R values when discs spin on one wall only. Both
the drag-reduction and drag-increase values decrease by about 1%. Drag reduction was
measured on the stationary walls, although in the second case the value was within the
estimated uncertainty range.
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FIGURE 3. Temporal evolution of space-averaged streamwise wall friction for drag-reduction
and drag-increase cases. The dashed line indicates the value of the stationary-wall skin-
friction coefficient.

The code was further tested by applying spatially uniform spanwise wall oscillations,
w+ =W+ sin(2πt+/T+), with Rτ = 180, W+ = 12 and T+ = 100 (scaled by stationary-
wall viscous units). The measured drag reduction was R = 34.4%, which compares
well with R = 34% computed recently by Quadrio’s group (Gatti 2011) and with
R = 32.8% obtained by Quadrio & Ricco (2004) (both simulations were run at
Rτ = 200).

3. Results and discussion
The main quantities obtained from the simulations are reported in table 5. The

power budget quantities Psp,t, Pnet, and G are defined in § 3.5 and the disc-flow
boundary layer thickness δ is defined in § 3.4. The case investigated in §§ 3.2 and
3.3 is for D = 3.38 and W = 0.39 (D+ = 546 and W+ = 10, R = 19.5%, case 24 in
table 5).

The temporal evolution of space-averaged streamwise wall friction of drag-reduction
and drag-increase cases from the start-up of the disc motion is depicted in figure 3.
The friction changes quickly for cases showing drag increase and low drag reduction,
while the adjustment to the wall forcing is slower for the large drag-reduction cases.

3.1. Turbulent drag reduction as a function of diameter D and tip velocity W
Figure 4 shows three-dimensional maps of R(D,W) (%) (a) and R(D+,W+) (%) (b),
where the size of the circles is proportional to the absolute value of R. For fixed W,
drag reduction occurs when D is larger than a threshold, while the drag increases for
smaller D (the hatched areas denote drag-increase cases). The threshold D for drag
reduction (indicated by the dashed line bounding the hatched areas), the optimal D
at fixed W and the optimal W at fixed D (denoted by black dots and open circles
respectively in figure 4b) all increase with W. The profile of optimum D at a fixed
W follows closely the zero-R profile and is shifted by about 600 viscous units to
the right. An overall maximum R = 22.9% is computed for D = 5.07 and W = 0.39
(D+ = 801 and W+ = 10.2), which is case 25 in table 5. The graphs in figure 5 present
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Case W D T R (%) Psp,t (%) Pnet (%) G δ+ W+ D+ T + ti

1 0.06 0.84 40.8 1.1 1 0.6 1.2 5.3 1.5 150 311 50
2 0.06 1.67 81.7 2.3 0.8 1.9 2.9 6.7 1.5 297 616 50
3 0.06 3.38 165.1 2.7 0.6 2.5 4.3 8.6 1.5 600 1239 50
4 0.06 5.07 247.6 2.3 0.5 1.7 4.2 10 1.5 902 1866 50
5 0.06 6.83 333.6 2.3 0.5 1.8 4.6 11.2 1.5 1215 2515 50
6 0.06 8.62 421.4 1.9 0.5 1.4 4.2 12.1 1.5 1537 3189 50
7 0.06 10.35 505.6 1.7 0.4 1.3 4.0 13.1 1.5 1847 3834 50

8 0.13 0.84 20.4 0.5 3.9 −3 0.1 5.4 3 150 157 50
9 0.13 1.67 40.8 6.4 3.1 3.7 2 6.6 3.1 291 295 50
10 0.13 3.38 82.5 8.3 2.5 6.2 3.3 8.3 3.1 582 584 50
11 0.13 5.07 123.8 7.7 2.2 5.6 3.6 9.7 3.1 876 881 50
12 0.13 6.83 166.8 6.6 2 4.6 3.4 10.9 3.1 1188 1202 50
13 0.13 8.62 210.7 5.9 1.8 4.1 3.3 12 3.1 1506 1530 50
14 0.13 10.35 252.8 5.1 1.7 3.5 3.1 13 3.1 1814 1850 150

15 0.26 0.84 10.2 −11.6 16.3 −28 −0.7 5.5 5.7 159 88 50
16 0.26 1.67 20.4 8.3 12.8 −4.1 0.6 6.4 6.3 288 144 50
17 0.26 3.38 41.3 17.6 10.1 7.8 1.7 7.8 6.6 552 262 150
18 0.26 5.07 61.9 19.2 8.6 10.5 2.2 9.1 6.7 820 386 150
19 0.26 6.83 83.4 17.1 7.8 9.3 2.2 10.3 6.6 1189 533 150
20 0.26 8.62 105.3 15.4 7.2 8.2 2.1 11.4 6.5 1427 687 150
21 0.26 10.35 126.4 13.4 6.7 6.6 2.0 2.4 6.4 1733 845 150

22 0.39 0.84 6.8 −22.7 38.9 −61.1 −0.6 5.5 8.1 167 64 100
23 0.39 1.67 13.6 1 29.9 −28.5 0 6.5 9 299 104 50
24 0.39 3.38 27.5 19.5 23.3 −3.8 0.8 7.4 10 546 171 50
25 0.39 5.07 41.3 22.9 19.8 3.1 1.2 8.7 10.2 801 245 150
26 0.39 6.83 55.6 21.8 17.9 3.9 1.2 9.8 10.2 1087 335 200
27 0.39 8.62 70.2 20.6 16.6 4 1.2 10.7 10.1 1383 430 200
28 0.39 10.35 84.3 19.0 15.5 3.5 1.2 11.7 10 1677 527 225

29 0.51 0.84 5.1 −32.3 74.7 −106.4 −0.4 5.3 10.4 173 52 50
30 0.51 1.67 10.2 −8.9 56.8 −65.2 −0.2 6.3 11.5 314 86 100
31 0.51 3.38 20.6 12.3 43.5 −30.8 0.3 7.5 12.8 570 140 150
32 0.51 5.07 31 19.2 37 −17.8 0.5 8.5 13.3 820 193 150
33 0.51 6.83 41.7 21.7 33.3 −11.5 0.7 9.4 13.6 1087 252 250
34 0.51 8.62 52.7 22.2 30.9 −8.7 0.7 10.1 13.6 1369 316 250
35 0.51 10.35 63.2 20.5 29.1 −8.6 0.7 10.8 13.5 1660 387 230

36 0.64 0.84 4.1 −43.2 128.3 −170.9 −0.3 4.9 12.5 180 45 50
37 0.64 1.67 8.2 −20.1 97.2 −117.3 −0.2 6.1 13.7 330 252 100
38 0.64 3.38 16.5 3.8 73.9 −70.1 0.1 7.2 15.3 596 123 150
39 0.64 5.07 24.8 13.6 62 −48.4 0.2 8.2 16.1 848 165 140
40 0.64 6.83 33.4 17.2 55.4 −38.2 0.3 9 16.5 1118 213 250
41 0.64 8.62 42.1 20.8 51.5 −30.7 0.4 9.5 16.9 1381 258 250
42 0.64 10.35 50.6 19.9 48.3 −28.4 0.4 10.2 16.8 1667 313 250

43 0.77 0.84 3.4 −55.8 204.7 −260.5 −0.3 4.7 14.4 188 41 50
44 0.77 1.67 6.8 −33.7 154.1 −187.8 −0.2 5 15.3 348 70 70

TABLE 5. (Continued on next page)
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Case W D T R (%) Psp,t (%) Pnet (%) G δ+ W+ D+ T + ti

45 0.77 3.36 13.8 −6.1 115.4 −121.5 −0.1 7 17.5 626 112 100
46 0.77 5.07 20.6 6 96.3 −90.3 0.1 7.9 18.6 884 150 120
47 0.77 6.83 27.8 12.1 86.3 −74.3 0.1 8.6 19.2 1152 189 250
48 0.77 8.62 35.1 14.1 79.6 −65.5 0.2 9.3 19.4 1439 233 250
49 0.77 10.35 42.1 12.4 75.3 −62.8 0.2 9.9 19.2 1743 284 250

TABLE 5. Disc-flow forcing conditions and power budget data. The final averaging time is
tf = 1400 for all cases.
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FIGURE 4. Maps of (a) R(D,W) (%) and (b) R(D+,W+) (%). The size of the grey circles is
proportional to the absolute value of R. The hatched areas highlight the drag-increase cases
and the zero-R lines delimiting the hatched areas are found by linear data interpolation. In
(a), the maximum R = 22.9% is circled and the boxed values report the positive net power
saved Pnet (%), studied in § 3.5 (the thick box denotes the maximum Pnet = 10.5%). In (b),
the black dots indicate the estimated D for maximum R at fixed W and the open circles
denote the estimated W for maximum R at fixed D.
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FIGURE 5. (a) R(D;W) (%); (b) R(W;D) (%). The values of W (in a) and D (in b) are
given in the legends.
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FIGURE 6. Visualizations of the time-averaged disc flow ud. (a) Isosurfaces of q+(u+d ,w+d )≡√
u+2

d + w+2
d = 2.3, where one sixth of the domain is shown along x. (b) The same isosurfaces

observed from the y–z plane at x+ = 0. (c) Contour plot of u+d in the centreline x–z plane; half
of the domain is shown along x.

the drag change data as a function of D for a fixed W (a) and as a function of W
for a fixed D (b). For a fixed D the drag reduction increases with W from zero to
an optimum, then drops, and drag increase eventually occurs. For a fixed W, the drag
reduction decreases slowly for diameters larger than the optimum, which agrees with
the finding by Willis, Hwang & Cossu (2010) of a plateau region for drag reduction
when the near-wall turbulence is forced at large spanwise scales. The occurrence of
drag increase at small diameters and of high drag reduction for D+ between about 500
and 1800 also confirms the results by Willis et al. (2010). They reported an increase in
wall-shear stress when the spanwise-forcing length scale matched the average spanwise
spacing of the low-speed streaks, λ+z ≈ 100, and maximum drag reduction for forcing
scales between 400 and 800 viscous units.

3.2. Flow visualization of the time-averaged disc flow

Three-dimensional isosurfaces of q+(u+d ,w+d ) ≡
√

u+2
d + w+2

d = 2.3, shown in
figure 6(a), distinctly visualize the time-averaged disc flow ud as near-wall circular
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FIGURE 7. Contour plot of time-averaged streamwise wall friction
2∂u/∂y|y=0/(U

2
bRp) (×103). The skin-friction coefficient is Cf = 6.64× 10−3.

patterns of thickness of about 10ν∗/u∗τ . Well-defined, streamwise-elongated structures
appear over sections of the stationary wall, where the shear brought about by the
tangential disc flow is largest because discs which are next to each other along z have
opposite sense of rotation. Figure 6(b) shows that these structures have a round shape
when observed on the y–z plane at x+ = 0, are centred at about y+ ≈ 40, and are
higher than the ring-shaped patterns as they extend to about y+ ≈ 80.

Contour plots of ud in x–z planes (not shown) reveal that for y+ > 15 the discs
engender spanwise-alternating streamwise bands of positive and negative ud, i.e. of
flow faster and slower than um respectively, showing that an interaction occurs between
the two halves of the channel. The negative-ud bands become wider and the positive-ud

bands become narrower as y increases. Figure 6(c) shows the bands in the centreline
x–z plane. The wide positive-ud bands are centred along lines parallel to x and passing
through the disc centres, while the thinner and more energetic negative-ud bands are
centred along lines tangent to the discs.

Figure 7 shows the contour plot of the scaled time-averaged wall-normal gradient
of the streamwise velocity at the wall, 2∂u/∂y|y=0/(U

2
bRp). The disc motion imposes

a steady-wave pattern with a streamwise wavelength equal to 2D + 4c. The wall
forcing differs significantly from the one studied by Viotti et al. (2009). In the
present case, the time-averaged streamwise wall-shear stress is spanwise dependent
and negative over large portions of the disc, where the wall streamwise velocity
attains large positive values near the disc tip. The absolute value of the maximum
negative streamwise wall-shear stress (∼0.02) is about three times larger than the
spatial average, Cf = 6.64 × 10−3. In Viotti et al.’s case, the streamwise wall-shear
stress is instead always positive and uniform along z.

3.3. Turbulent flow visualizations and statistics
Figure 8 shows instantaneous isosurfaces of sgn(ut)q+(u+t ,w+t ) = −3 for stationary-
wall (a) and disc-flow (b) conditions. The isosurfaces clearly visualize the low-speed
streaks in the near-wall region. The intensity of these structures is reduced when
they travel along the central part of the discs, whereas they are less affected when
convecting over stationary-wall sections between discs.

Figure 9(a) presents the r.m.s. profiles of the components of ud (henceforth the
r.m.s. of a quantity a is defined as arms ≡√〈aa〉). The ud,rms and wd,rms profiles reduce
from the wall (u+d,rms(0) = w+d,rms(0) =W+

√
(π/3)[1+ 2D+/(2c+ + D+)]/4 = 4.37) and

overlap when y+ < 10, while ud,rms > wd,rms, vd,rms at higher locations. The ud,rms profile
reaches a local minimum at y+ ≈ 15 (u+d,rms ≈ 1.2) and a local maximum at y+ ≈ 35
(u+d,rms ≈ 1.5). The minimum at y+ ≈ 15 is the cut-off between the region where the
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FIGURE 8. Isosurfaces of sgn(ut)q(u+t ,w+t )=−3 for (a) stationary-wall and (b) disc-flow
cases.
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FIGURE 9. (a) Wall-normal profiles of r.m.s. of ud components and of 〈udvd〉+ (the latter
multiplied by a factor of 6); the disc-flow boundary layer thickness δ, defined in § 3.4, is
shown. (b) Wall-normal profiles of r.m.s. of velocity components and Reynolds stresses.

disc-flow ring patterns exist near the wall and the region where the x-stretched bands
appear at higher locations. The wd,rms profile drops up to y+ ≈ 60, and then it levels to
w+d,rms ≈ 0.15. It matches the vd,rms profile for y+ > 90. Figure 9(b) shows the r.m.s. and
Reynolds stresses 〈uv〉 of ud + ut (dash-dotted lines), ut (solid lines), and ut,s (dashed
line). The intensity of the turbulent fluctuations and the Reynolds stresses is lower near
the wall when compared with the stationary-wall case, as for the oscillating-wall case
(Choi et al. 1998). The urms is affected the most as the peak is reduced by about 15%
and shifts upward from y+ ≈ 15 to y+ ≈ 20. The 〈uv〉 peak decreases by about 30%.

The FIK identity (Fukagata, Iwamoto & Kasagi 2002), adapted to account for the
disc-flow effect (refer to appendix A), shows that the drag change is related to the
disc-flow stresses 〈udvd〉, shown in figure 9(a), and to the modification of the turbulent
stresses, 〈utvt〉 − 〈ut,svt,s〉, as follows:

R (%)= 100
Rp

∫ 1

0
(1− y)[〈utvt〉 + 〈udvd〉 − 〈ut,svt,s〉]dy

Ub − Rp

∫ 1

0
(1− y)〈ut,svt,s〉 dy

. (3.1)
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FIGURE 10. Map of (a) R(T +,D+) (%) and (b) R(δ+,W+) (%). The size of the grey
circles is proportional to the absolute value of R. The hatched areas denote drag-increase
cases.

The drag reduction measured through (3.1) is R = 19.5% for D= 3.38 and W = 0.39,
which agrees with the value computed by the wall-shear stress, also R = 19.5%. The
major contribution of 〈udvd〉 comes from the x-stretched structures appearing between
discs, shown in figure 6(a,b), while these stresses are of smaller magnitude over the
discs. Along the dashed zero-R line in figure 4, both 〈udvd〉 and 〈utvt〉 increase and
balance each other as W grows, leaving the drag unchanged.

3.4. Role of rotation period T and disc boundary layer thickness δ
Figure 10(a) shows that the drag reduction reaches its maximum for a period
of rotation T + = πD+/W+ = 2π/Ω+ ≈ 246 (T = 41) and D+ = 801 (D = 5.07).
This characteristic time is about three times larger than the optimal period for the
oscillating-wall technique, T+opt ≈ 75 (Ricco et al. 2012). All the tested drag-increase
cases (except R = −6.1% for D+ = 626, T + = 112) cluster in the area marked
by the hatching at small T + and D+. For W+ 6 15, this area is represented well
by (T +/a+T )

2+ (D+/a+D)2 < 1, where a+T = 120, a+D = 480. The condition for drag
increase is therefore W+ > πD+a+D/[a+T (a+2

D − D+2)
1/2] for W+ 6 15.

Figure 10(b) shows R(δ+,W+) (%), where δ is the disc-flow turbulent boundary
layer thickness, defined as δ ≡−[ud,rms(0)/u′d,rms(0) + wd,rms(0)/w′d,rms(0)]/2, i.e. as the
average of the y locations obtained by the interception of the tangents at the wall of
the ud,rms and wd,rms profiles with the y axis (figure 9a). It is a measure of the wall-
normal diffusion of the time-averaged viscous effects generated by the disc rotation.
A minimum thickness is required for drag reduction; it increases from about 6ν∗/u∗τ
at W+ = 4 to about 7.5ν∗/u∗τ at W+ = 18. The thickness δ+ = 8.7 corresponds to
maximum drag reduction. These results are analogous to the travelling-wave technique
(Quadrio & Ricco 2011), although for that case the viscous effects need to diffuse less
from the wall, the minimum thickness being δ+ = 1 and the optimal thickness being
δ+ = 6.5.

Figure 10(b) is also useful to compare the disc flow with steady-wave flow, studied
by Viotti et al. (2009). As observed in figure 4, at a fixed D drag reduction increases
with W up to an optimum, decreases, and then drag increase occurs. This behaviour is
in sharp contrast with the corresponding one of Viotti et al. (2009)’s flow, for which
R increases monotonically with W for a fixed forcing wavelength λx. In the disc-flow
case, the initial growth of R with W occurs analogously to the steady-wave case
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(although it is more gradual), but R eventually drops because the disc-flow boundary
layer thickness becomes too thin to affect the near-wall turbulence effectively and to
sustain the drag-reduction effect. In the steady-wave case, a good estimate is δ ∼ λ1/3

x
(even in the turbulent flow case) and therefore the detrimental mismatch between the
wall-normal scales of the wall turbulence and the generalized boundary layer thickness
does not occur as W grows. The two techniques also present different drag-reduction
dependences on D at fixed W. An optimum forcing streamwise length scale exists in
both cases. However, in the disc case, the optimum D grows with W from D+ = 600
as W+→ 0 to D+ = 1500 when W+ ≈ 20, as shown by the black dots in figure 4(b),
whereas, in the steady-wave case, the optimum wavelength is approximately constant,
λ+x ≈ 1000–1250, as the maximum wall velocity increases to W+ = 12. Furthermore,
while the disc flow exhibits large drag increase at small D, Viotti et al. (2009) report
drag reduction at small λx.

3.5. Power spent on disc motion, net power saved, and power gain
As the disc-flow technique is active, power is supplied to the system for rotating the
discs against the viscous resistance of the fluid. The power Psp,t (%) is the percentage
of the power spent W to move the discs with respect to the power Px employed to
drive the fluid along the streamwise direction in the stationary-wall case, i.e.

Psp,t (%)≡ 100W

Px
=−100Rp

R2
τ,sUb

〈
ud(x, 0, z)

∂ud

∂y

∣∣∣∣
y=0

+ wd(x, 0, z)
∂wd

∂y

∣∣∣∣
y=0

〉

=− 100Rp

2R2
τ,sUb

d
(
u2

d,rms + w2
d,rms

)
dy

∣∣∣∣∣
y=0

, (3.2)

which are found from the viscous work term in the kinetic energy equation (1–108) on
page 71 in Hinze (1975) (refer to appendix B). Through the definition of δ in § 3.4 and
by assuming u′d,rms(0)≈ w′d,rms(0) as suggested by figure 9(a), (3.2) can be simplified to
Psp,t (%)≈ 25πW2Rp/(2δUbR2

τ,s).
Figure 11(a) depicts Psp,t (%) versus Psp,l (%), which is computed through the

solution of the laminar flow induced by an infinite disc rotating beneath a still fluid,
i.e. Psp,l (%)=−100GW5/2R3/2

p /(
√

2DUbR2
τ,s), where G=−0.61592 (Rogers & Lance

1960). This formula is also useful to compute the power spent in rotating a disc
below a laminar flow with uniform shear (Wang 1989). The laminar power spent Psp,l

predicts Psp,t well for Psp,t up to about 25%. The agreement at low power is expected
because W is small when Psp,t is small and therefore the infinite-disc approximation is
satisfactory because the interaction between the radial flows produced by neighbouring
discs is negligible. Similarly to the travelling-wave case (Quadrio & Ricco 2011), the
laminar flow is instrumental in the computation of the power spent.

The time-averaged power per unit area spent to activate the discs is also studied:

w(x, z)≡ 1
Rp

ui

(
∂ui

∂xj
+ ∂uj

∂xi

)

= 1
Rp

[
ud(x, 0, z)

(
u′m(0)+

∂ud

∂y

∣∣∣∣
y=0

)
+ wd(x, 0, z)

∂wd

∂y

∣∣∣∣
y=0

]
, (3.3)

which is related to the total power employed to move the discs, W = 2LxLz〈w〉 (refer
to appendix B). Comparing (3.3) and (B 5) shows that u′m(0), the mean wall-normal
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FIGURE 11. (a) Psp,t (%), computed through (3.2), versus Psp,l (%), obtained from the
laminar solution of the flow induced by an infinite disc rotating beneath a still fluid.
(b) Contour plot of w(x+, z+) (×103), time-averaged power per unit area spent to activate
the discs, defined in (3.3). The dashed lines, computed through the laminar-flow inequality
(C 2), denote the predicted regions of disc surface where w > 0.
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FIGURE 12. (a) Pnet(D;W) (%); the values of W are given in the legend.
(b)Pnet(W;D) (%); the values of D are given in the legend.

gradient of the streamwise velocity at the wall, only has an effect on the local power
w , and not on the space-averaged power W . Figure 11(b) shows the contour plot
of w . The round region near the disc centre corresponds to positive w , i.e. the fluid
exerts work on the disc, while w is negative over most of the disc surface, i.e. where
energy is supplied to the fluid. This is a case of spatially localized regenerative braking
effect, which has a temporal analogue in the oscillating-wall technique. For this latter
flow, the space-averaged power may be positive or negative during the temporal cycle.
The dashed lines enclose areas over the disc surface where w > 0 as predicted by the
laminar flow generated by an infinite spinning disc (refer to appendix C). Although
larger than the regions obtained via direct numerical simulations, their round shape and
location (confined to ud(y= 0) > 0) are satisfactorily predicted.

Another quantity of interest is the net power saved Pnet, defined as the
difference between the power saved thanks to the wall motion, which coincides
with drag reduction at constant mass flow rate, and the power spent Psp,t, i.e.
Pnet (%) ≡ R (%) − Psp,t (%). The graphs in figure 12 and the map at the top
of figure 4 (boxed numbers) show that a positive Pnet may occur for W 6 0.39
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FIGURE 13. (a) R (%) versus G and (b) Psp,t (%) versus G . The black circles indicate
disc-flow data, the white circles the travelling-wave data by Quadrio et al. (2009), the squares
the steady-wave data by Viotti et al. (2009), and the triangles the oscillating-wall data by
Quadrio & Ricco (2004).

and a maximum Pnet = 10.5% is computed for D = 5.07 and W = 0.26 (D+ = 820,
W+ = 6.7, T + = 386, δ+ = 9.1, R = 19.2%). The threshold diameter above which
Pnet is positive increases with W. The power Pnet grows negative for small D and
large W because both the drag and Psp,t increase significantly. Figure 11(a) also
shows that the power spent for the positive-Pnet cases (which include the maximum-
R case) is computed through the laminar flow solution more accurately than for the
negative-Pnet cases. The optimum W+ = 6.7 for maximum Pnet is comparable with
the one for the steady-wave case studied by Viotti et al. (2009), W+ = 5.3, while the
optimum forcing streamwise length scales differ approximately by a factor of two, i.e.
D+ = 820 and λ+x = 870 in Viotti et al.’s case.

The power gain, defined as G ≡ R/Psp,t (Iwamoto, Suzuki & Kasagi 2002), is
another useful parameter for assessing the performance of a drag-reduction technique.
Its values are reported in table 5. Figure 13(a) shows that the maximum R achieved
by the rotating discs is about half of that achieved by the travelling waves, studied by
Quadrio, Ricco & Viotti (2009), or by the oscillating-wall technique (Quadrio & Ricco
2004). The G values for maximum R for the discs and the waves are comparable,
G ≈ 1.25 and 1.6 respectively, and higher than the ones for the oscillating-wall
flow, G ≈ 0.16. In the tested parameter range, the discs may offer G values which
are comparable with the ones of the oscillating-wall technique. It is further noted
that large disc-flow gain values (the largest being G = 4.5%) correspond to low R.
Figure 13(b) shows that, although the waves perform better in terms of maximum
gain values, the power spent in rotating the discs may be lower than that needed by
the steady or travelling waves to obtain the same G > 1 values. It should be noted
that the steady or travelling waves may offer even higher values for maximum R and
maximum G because the full space of the forcing parameters has not been explored
yet.

4. Outlook for the future
Table 6 presents estimated data for low-speed laboratory conditions and for three

flows of technological interest for disc-flow parameters leading to R = 20%. They
are found through the empirical correlations given in the table caption. These values
can be a useful guide for practical implementations. Wind tunnel and water channel
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Quantity Flight
(BL)

Ship
(BL)

Train
(BL)

WT
(BL)

WC
(BL)

WC
(CF)

U∗ (m s−1) 225 10 83 11.6 0.37 0.28
ν∗ × 106 (m2 s−1) 35.3 1.52 15.7 15.7 1 1
x∗ (m) 1.5 1.45 1.8 1 2 —
h∗ (mm) 22.3 21.6 26.8 24.8 49.6 10
u∗τ,s (m s−1) 7.9 0.35 2.9 0.51 0.02 0.02
Rτ,s 4970 4970 4970 800 800 180
Cf ,s × 103 2.44 2.44 2.44 3.82 3.82 8.14

D∗ (mm) 6.7 6.5 8.1 46.5 93 83.5
W∗ (m s−1) 78.6 3.5 29 5.1 0.16 0.18
f ∗ (Hz) 3718 170 1138 34.6 0.55 0.68
δ∗ (µm) 39 38 47 270 540 480
T∗ (µNm) 6 35 6 55 380 230
Psp,t

∗ (mW)-one disc 140 40 40 12 1.3 1

TABLE 6. Dimensional quantities for typical conditions of turbulent boundary layers with
no pressure gradient (BL) and pressure-driven channel flows (CF) (WT stands for wind
tunnel and WC for water channel). Top seven rows: Stationary-wall conditions; U∗
indicates the free-stream mean velocity for BLs and U∗b for CF, x∗ is the downstream
location, h∗ = 0.37x∗ (x∗U∗/ν∗)−0.2 denotes the BL thickness, and Cf = 0.0336R−0.273

τ for
CF and Cf = 0.37 [log10(x

∗U∗/ν∗)]−2.584 for BLs (Pope 2000). Flight conditions are at
10 km above sea level. Bottom six rows: Disc-flow parameters for D+ = 1500, W+ = 10
(R = 20%). T∗ indicates the torque.

experiments may be realizable with contained costs as the diameter is of the order of
5–10 cm and the rotational frequency is about 35 Hz in air and less than 1 Hz in water
(for Rτ = 800 for free-stream boundary layers and Rτ = 180 for channel flow).

The predicted quantities in flight conditions also look promising, as the diameter
is about 6.7 mm, the tip velocity is about 80 m s−1, and the rotational frequency
is about 3700 Hz. A lower rotational frequency of 2230 Hz at the same diameter
(W∗ = 50 m s−1, W+ = 6.5) guarantees Pnet = 8%. These estimates are more
optimistic for future implementations than the ones put forward by Keefe (1997).
For flight conditions, the diameter in table 6 is about two orders of magnitude larger
than the one suggested by Keefe (D∗ = 80–90 µm, D+ = 20) and the frequency is
one order of magnitude smaller than Keefe’s (f ∗ = 72 kHz, T + = 20). The reason
for these disagreements lies in Keefe’s estimates being based on untested physical
hypotheses, i.e. the diameter being smaller than the streak spacing along the spanwise
direction, about 100ν∗/u∗τ , and the frequency being comparable with the peak of the
fluctuating normal vorticity at y+ ≈ 10. Keefe’s figures may lead to drag increase as
his proposed case falls within the hatched area in figure 10(a).

The disc-flow parameters for turbulent flows over hulls of large-scale ships and
over high-speed trains at the same flight-condition Rτ are also of interest. The values
of the disc diameter are similar to the ones in flight conditions (D∗ = 6.5 mm for
ships and D∗ = 8.1 mm for trains), but the advantage is in the lower rotational
rates, i.e. W∗ = 3.5 m s−1 and f ∗ = 170 Hz for ships, and W∗ = 29 m s−1 and about
f ∗ = 1140 Hz for trains. Figure 14 shows typical spatial and temporal scales of
turbulent coherent structures (Kasagi, Suzuki & Fukagata 2009) and the corresponding
disc diameters and periods of rotation for the above-mentioned flows of technological
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FIGURE 14. Spatial scales l∗ and temporal scales t∗ of near-wall vortical structures for
l+ = 30 and t+ = 100 for flows over aircraft (U∗ = 225 m s−1), ship hulls (U∗ = 10 m s−1),
and high-speed trains (U∗ = 83 m s−1) in the range 0.1 m 6 x∗ 6 5 m (black circles), adapted
from Kasagi et al. (2009). The disc diameters D∗ and periods of rotation T ∗, indicated by
white circles, are for D+ = 1500 and T + = 470. The numbers denote the values of Rτ and the
thicker circles denote the cases presented in table 6.

interest. For an extended Rτ range and for all three cases, the disc diameter is almost
two orders of magnitude larger than the length scale of the vortices and the period of
rotation is almost one order of magnitude larger than the time scale of the near-wall
turbulence. This renders the discs attractive compared to presently studied feedback-
control actuators, which are thought to operate optimally at spatio-temporal scales
comparable with the ones of the near-wall turbulence (Yoshino, Suzuki & Kasagi
2008). These results prove that forcing the near-wall turbulence at a scale which is
much larger than that of the near-wall vortices (the optimal diameter is about five
times the half channel height) is an effective method for drag reduction. This is in
line with the works by Willis et al. (2010) and Sharma et al. (2011), which indicate
that a near-wall body-force controller is most potent when acting on low-wavenumber
structures.

Rotation rates of O(103) Hz may be obtained by commercially available
electromagnetic motors which can be as small as 2 mm in diameter (Kuang-Chen
Liu, Friend & Yeo 2010). The micromachined air turbine developed for the first time
by Frechette et al. (2005), supported by gas-lubricated bearings and consisting of
a single-stage radial inflow, may represent another solution for the implementation
of the discs. The turbine has a rotor diameter of 4.2 mm and can operate at a
maximum tip speed of 300 m s−1 (maximum frequency of 17 kHz) with an isentropic
efficiency of 87%. It can exert a maximum torque of 30 µNm and supply a maximum
mechanical power of 5 W. The flight-condition values in table 6 may be achieved by
this technology.

The discs may offer some advantages over passive drag-reduction techniques, such
as riblets and compliant surfaces, which, despite about thirty years of research, have
never been utilized in technological flow systems and have never led to amounts
of drag reduction higher than 10% (Gad-el Hak 2002). Differently from compliant
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surfaces, the discs are rigid and therefore more resistant to wear due to use. Their
motion and size can be relatively easily adjusted to the boundary layer growth and
they may offer more possibilities for optimized forcing conditions and controlled
parametric studies than passive methods. The main advantage over suction/blowing
techniques is the absence of fluid exchange through the surface. In case of failure, the
rotating discs would not lead to off-design drag increase, as for compliant surfaces
because of undesired changes of mechanical properties, or for suction and ribbed
surfaces because of dirt deposition, caused in the latter case by the very small
maximum riblet height in flight conditions, about 0.15 mm (Viswanath 2002).

In spite of these advantages, there are major challenges related to the technological
implementation of the discs. The complexity of the design, the increase of weight,
the achievement of a positive net energy balance when electrical and mechanical
losses are taken into account, the influence of fatigue and frictional wearing on the
long-term reliability of the system, the difficulties related to repair of faulty parts,
and the functionality of the discs in adverse environmental conditions are undoubtedly
serious issues that would have to be considered. For commercial aircraft cruising at
high-Mach-number subsonic conditions, the shear flow induced between discs may
reach supersonic speed, giving rise to intense aerothermodynamic heating.

The influence of Rτ cannot be accounted for at this stage. Recent studies on
spanwise wall forcing, by Gatti (2011) from Quadrio’s group and Touber & Leschziner
(2012), suggest that the optimal forcing parameters remain largely unchanged as Rτ
increases, while the drag reduction may drop as ∼R−ατ (α in the range 0.007–0.22), i.e.
R = 40% may decrease to R = 25% at Rτ = 5000. The power spent Psp,t is predicted
to drop as ∼R−0.19

τ , which indicates that the Rτ effect on Pnet may be less significant
than on the drag reduction.

The experimental verification of our simulations and studies on the effects of
the flow geometry (free stream versus confined flows) and compressibility are other
priorities in view of future applications. It is to be investigated how such variations
impinge on the drag reduction and the net power saved, on the optimal tip velocity
and diameter, and on the predicted values in table 6 and in figure 14. Despite the
complexity of this technique, it is our hope that the present results will spur further
interest towards active forcing of wall turbulence by wall-normal vorticity, as opposed
to the widely studied suction–blowing actuation. As foreseen by Keefe (1998), the
possibilities of improvement, in terms of drag reduction, net power saved, separation
control, enhancement of heat transfer and lift, may be broad and interesting.
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Appendix A. Derivation of Fukagata–Iwamoto–Kasagi identity (3.1) for disc
flow

The FIK identity for the disc flow is obtained through a straightforward extension
of the original identity discovered by Fukagata et al. (2002) (FIK). Consider first the
streamwise momentum equation:

∂u

∂t
+ ∂(uu)

∂x
+ ∂(uv)

∂y
+ ∂(uw)

∂z
=−∂p

∂x
+ 1

Rp

(
∂2u

∂x2
+ ∂

2u

∂y2
+ ∂

2u

∂z2

)
. (A 1)

By inserting the velocity decomposition introduced in § 2 and the analogous pressure
decomposition p= pm + pd + pt in (A 1), by averaging in time, along x and z, and over
the two channel halves, it follows that:

−dpm

dx
= 1

Rp

∂

∂y

[
〈utvt〉 + 〈udvd〉 − ∂um

∂y

]
. (A 2)

Equation (A 2) is analogous to equation (1) in FIK: the only difference resides in
the additional disc-flow Reynolds stress term 〈udvd〉 (the last two terms in equation
(1) in that paper are null here because the time-averaged mean flow is statistically
homogeneous along x). The procedure which follows is therefore exactly the same as
in FIK if the Reynolds stress term in equation (1) in FIK is replaced by 〈utvt〉 + 〈udvd〉.
It is found that

Cf = 6
UbRp

− 6
U2

b

∫ 1

0
(1− y) [〈utvt〉 + 〈udvd〉] dy. (A 3)

As R (%)= 100(Cf ,s − Cf )/Cf ,s, formula (3.1) is obtained.

Appendix B. Derivation of formula (3.2) for power spent on disc motion
The work W done by the viscous stresses per unit time within the volume

Lx × Ly × Lz is found by the volume integral of term III in equation (1–108) on
page 71 in Hinze (1975) for the kinetic energy balance for the incompressible flow of
a Newtonian fluid, i.e.

W = LxLz

Rp

〈∫ 2

0

∂

∂xj

[
ui

(
∂ui

∂xj
+ ∂uj

∂xi

)]
dy

〉
, (B 1)

where the Einstein summation convention of repeated indices is adopted and the
subscripts i = 1, 2, 3 denote the x, y, z directions and the corresponding velocity
components. Formula (B 1) simplifies to

W = LxLz

Rp

〈∫ 2

0

∂

∂y

[
u

(
∂u

∂y
+ ∂v
∂x

)
+ 2v

∂v

∂y
+ w

(
∂w

∂y
+ ∂v
∂z

)]
dy

〉
(B 2)

through integration over x–z planes because of periodicity along x and z. By
integration along y, formula (B 2) reduces to

W = LxLz

Rp

〈
u(y= 0)

∂u

∂y

∣∣∣∣
y=0

+ w(y= 0)
∂w

∂y

∣∣∣∣
y=0

+ u(y= 2)
∂u

∂y

∣∣∣∣
y=2

+ w(y= 2)
∂w

∂y

∣∣∣∣
y=2

〉
, (B 3)
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because v(y = 0) = v(y = 2) = 0. By substituting the velocity decomposition given at
the end of § 2 and noting that u(y = 0) = u(y = 2) = ud(x, 0, z) and w(y = 0) = u(y =
2)= wd(x, 0, z), formula (B 3) becomes

W = LxLz

Rp

〈
ud(x, 0, z)

(
∂ud

∂y

∣∣∣∣
y=0

+ ∂ut

∂y

∣∣∣∣
y=0

+ ∂ud

∂y

∣∣∣∣
y=2

+ ∂ut

∂y

∣∣∣∣
y=2

)

+ wd(x, 0, z)

(
∂wd

∂y

∣∣∣∣
y=0

+ ∂wt

∂y

∣∣∣∣
y=0

+ ∂wd

∂y

∣∣∣∣
y=2

+ ∂wt

∂y

∣∣∣∣
y=2

)〉
, (B 4)

because u′m(0) and u′m(2) are constants and 〈ud(x, 0, z)〉 = 〈wd(x, 0, z)〉=0. Averaging
(B 4) in time and over the two channel walls leads to

W = 2LxLz

Rp

〈
ud(x, 0, z)

∂ud

∂y

∣∣∣∣
y=0

+ wd(x, 0, z)
∂wd

∂y

∣∣∣∣
y=0

〉
(B 5)

because ut = wt = 0. The work W is the power employed to move the discs against
the viscous resistance of the fluid.

The other quantity of interest is Px, the time-averaged volume integral of the power
used to drive the fluid along the streamwise direction in the stationary-wall case (refer
to the first term on the right-hand side of the first equation (1–108) in Hinze 1975),
which reads

Px = LxLz

〈∫ 1

0
u
∂p

∂x
+ v ∂p

∂y
+ w

∂p

∂z
dy

〉
. (B 6)

By substituting the velocity decomposition introduced in § 2 and the pressure
decomposition given in appendix A, formula (B 6) simplifies to

Px = LxLz

[
dpm

dx

∫ 1

0
um(y)dy+

〈∫ 1

0
ui,d
∂pd

∂xi
+ ui,t

∂pt

∂xi
dy

〉]
, (B 7)

because ut = vt = wt = pt = 0 and dpm/dx is spatially uniform. The x–z-integrated
term in (B 7) is shown to be null by use of the continuity equation and because of
periodicity along x and z. By use of (2.3), on noting that dpm/dx = −u′m(0)/Rp (found
by integrating (A 2) along y) and u′m(0)= R2

τ,s/Rp, it follows that

Px =−2UbLxLz

(
Rτ,s
Rp

)2

. (B 8)

The percentage power required to move the discs is defined as Psp,t (%)= 100W /Px.
Substitution of (B 5) and (B 8) into the latter gives the first formula in (3.2). By noting
that ud(x, 0, z)∂ud/∂y|y=0 = 0.5∂u2

d/∂y|y=0 and u2
d,rms = 〈u2

d〉, the second formula in (3.2)
is obtained.

Appendix C. Estimation of time-averaged power spent w through solution of
laminar flow induced by an infinite spinning disc

The time-averaged local power w(x, z) spent to move the discs (given in (3.3)) can
be estimated through the solution of the laminar flow induced by an infinite disc
rotating below a still fluid (Rogers & Lance 1960). The streamwise and spanwise
components of the disc flow can be expressed as ud = wr cos(θ) and wd = −wr sin(θ),
respectively, where wr is the laminar tangential velocity component and θ is the angle
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in the cylindrical coordinate system with origin located at the centre of the disc. By
writing wr(y= 0)= 2Wr/D and ∂wr/∂y|y=0 = rGR1/2

p (2W/D)3/2, (3.3) becomes

w = 2Wr

DRp

[
u′m(0) cos(θ)+ rGR1/2

p

(
2W

D

)3/2
]
. (C 1)

The contribution of the disc flow ud to w , given by the right-hand term in (C 1), is
always negative because G< 0. The mean-flow gradient at the wall, u′m(0), may cause
w to be positive and only when cos(θ) > 0. For the disc on the left of figure 11(b), the
condition w > 0 translates to

(2x+ − D̂+)
2
< (D̂+ − 2z+)(γ − D̂+ + 2z+),

D̂= D+ 2c, γ = −2u′m(0)Rτ
GR1/2

p

(
D

2W

)3/2

.

 (C 2)

It is clear that the region of positive w , indicated by the dashed lines in figure 11(b),
becomes smaller as W grows.
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