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SUMMARY
Autonomous mobile robot navigation systems are based on
three principal kinds of techniques: map-based navigation,
map-building-based navigation and mapless navigation. We
propose a mapless method for trajectory description in un-
known indoor environments. The method uses distance meas-
urements from a 2D laser range finder, digitises the robot’s
visibility area, eliminates superfluous data and reorients
their presentation with laws similar to those used in cellular
automata. The landmarks are extracted and organised in a
panoramic description called fresco. The frescoes which
are validated by means of neighbourhood rules. The most
informative frescoes are detected by means of two criteria
and stored. The stored frescoes are considered as a human-
like descritption of the robot’s route and could be used by the
robot to retrieve its route to its starting point.

KEYWORDS: Mobile robotics; Indoor navigation; Sym-
bolic environment.

I. INTRODUCTION AND RELATED WORKS
The main issue for mobile robots is their capacity to go from
one point to another autonomously. This is based on three
concepts: i) planning which computes a trajectory between
the two points, ii) navigation which gives motion orders to the
robot to follow the computed trajectory and iii) environment
representation which allows the robot to know if it goes
in the right direction. Works presented here are interested
in point iii), trying to perform a qualitative description of
a structured indoor environment. This description should
be used by a middle-cost mobile robot that is sent in an
apartment to pick up objects in order to bring them back to,
for example, a physically handicapped person. We are aware
that the robot cannot replace a person. The main interest
that is seen in such system is its use while the immobilized
person is alone. The environment is then considered as
static, a priori unknown and therefore cannot be modelled
in advance. Ideally, the mission, if based on the knowledge
of room situation in the flat, could be given to the robot
using orders very close to the natural language such as “Go
to the kitchen, pick up the fork and bring it back to me”
through an ad hoc interface. In fact, it is more realistic to
think to a lower-levelled language based on a succession of
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topological markers. For example, a part of a mission could
be: “move through the corridor, take the third opening on the
left, enter the room” followed by a more precise description
of the goal situation the robot has to find. In that case, the
route and/or the place to go can be described both in global
terms and by using landmarks. Whatever the skill of the
language interpreter, the robot must have the ability to build
a model restricted to very global and syntactical information.
We choose to describe the surrounding environment by
means of clues such as “Opening”, “Closure”, “End of
Closure”, “Angle of Closures”, . . . organised into ordered
series called frescoes according to the data delivered by the
sensor.

One immediately thinks to the memorisation of the en-
vironments that the robot chronologically covers during a
journey. As the robot moves along the trajectory, it is also
interesting to analyse how the frescoes are modified and
transformed. In other words what new information a fresco
brings up in relation with the preceding ones? When all the
uncertainties are solved the fresco qualified as a relevant one –
has to be stored in a long term memory. Another interesting
problem to tackle is to use the pertinent frescoes stored in
the long term memory to give the robot the ability to return
to its starting point in a return journey.

In the field of Image Based Navigation systems, several
great classes of systems can be identified from the literature.
The first one uses conventional telemeters and vision to find
and identify objects in the environment.1 The second one
is the class of the systems coupling more or less directly
sensor data to motor control thanks to a supervised learning
process. Among them neural networks systems used as
classifiers are noticeable. These systems begin to classify
the environment into global classes such as “corridor, corner,
room, crossing . . .”2,3 are often followed by a second pro-
cessing unit that outputs a navigation command. In addition
to restrictions related to the supervised learning, these classes
give only a global description and are of least interest in
cluttered and complex environments. The third class includes
the systems which compare current sensor data and pre-
defined models both at a low level (edges, planes . . .)4 and
at a high level (door, room, object . . .). These systems use
mainly vision sensors (cameras) that provide a huge amount
of data that must be reduced to be processed in real time.
The elements extracted from the data are compared to
reference models known a priori. The fourth class evoked
here includes the systems trying to geometrically build
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environment models before deciding an optimised path
plan.5

Vision for mobile robot navigation did have specific
development during the last twenty years. DeSouza6 gives a
complete survey of the different approaches. For indoor navi-
gation, systems are classified in three groups: map-based
navigation using predefined geometric and/or topological
models, map-building-based navigation constructing by
themselves geometric and/or topological models, and map-
less navigation using only object recognition and actions
associated to these objects.7

In the field of shape understanding using sensor data,
environment interpretation stresses the use of natural land-
marks to ease the navigation and the pose estimation of a
mobile robot. Among other works, one can pinpoint Simhon8

which is interested in defining islands of reliability for ex-
ploration. He proposes strategies to couple navigation and
sensing algorithms through hybrid topological metric maps.
Oor9 considers the problem of locating a robot in an
initially unfamiliar environment from visual input while
MacKenzie10 involves a methodology to bind raw noisy
sensor data to a map of object models and an abstract map
made of discrete places of interest.

In the field of vision based homing, several implementa-
tions are presented in reference [11]. A method aiming at
highlighting salient features, as for example landmarks,
between these two views and deriving a decision is used in
reference [12]. In these works, a homing system extracts
landmarks from the view and allows a robot to move to
home location using sequence target locations situated en
route between its current location and home. Other works are
biologically inspired. Judd13 showed that ants store series of
snapshots at different distances from their goal to use them
for navigating during subsequent journeys. Judd and Collett
experimented their theory with a mobile robot navigating
through a corridor, homing successive target locations. Weber
et al.14 propose an approach using the bearings of the features
extracted of the panoramic view leading to a robust homing
algorithm. This algorithm pairs two landmarks situated into
two snapshots to derive the homing direction. The bear-
ings pairing process uses a list of preferences similar to
neighbourhood rules.

Symbolic processing methods are described in Tedder’s
works.15 This formal approach is often called structural or
syntactic description and recognition. The general method
for perception and interpretation proposes to symbolically
represent and manipulate data in a mapping process.Tedder
solves the problem in modelling the 3D environment as
symbolic data and in processing all data input on this sym-
bolic level. The results of obstacle detection and avoidance
experiments demonstrate that the robot can successfully
navigate the obstacle course using symbolic processing
control. These works use a laser range finder. A way for
defining suitable landmarks from an enviuronment as the
robot travels is a research problem pointed out in reference
[16]. An automatic landmark selection algorithm chooses
as landmarks any places where a trained anticipation model
makes poor detection. This model has been applied to the
navigation of a mobile robot. An evaluation has been made
according to how well landmarks align between different
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Fig. 1. Voronoii diagram with numbers label symbols.

runs on the same route. These works show that the robot is
able to navigate reliably using only odometric and landmark
category information.

Simultaneous Localisation And Mapping (SLAM)
methods have been introduced by Leonard and Durrant-
Whyte17,18 showing that it is possible to associate the topo-
logical and geometric structure of an environment and its
symbolic description. Kuipers19 defined symbols as distinct
places situated at equal distances from the nearby obstacles.
Connections between these places link symbols and represent
free path.20 Figure 1 shows the Voronoii graph of an environ-
ment. In this Figure, the labelled vertices represent the sym-
bols while edges connecting the symbols are the path the
robot can use.

The proposed work goes on the way proposed by Simhon21

and Tedder.15 According to these works, our contribution
applies mainly on a method to extract clues of interest among
raw distance data delivered by a 2D panoramic laser range
finder installed on the robot. In addition to this qualitative
approach, one must consider that the system will have to
be embarked on a vehicle, which vibrates, runs at variable
speeds on a non-uniform ground. This leads to constraints
of speed, size, robustness, compactness and cost, implying
various choices both at the design and at the development
levels of the system. The methods used have been chosen
as simple as possible to reduce the cost and the complexity
of the processing. Nevertheless the method must be robust
compared with the robot movements, the sensor accuracy
and the variations of the complexity of the environment. Its
originality stays in the digitisation process, the validation and
the selection of the fresco for memorisation. The following
points will be successively highlighted: i) how the robot
recognises and sets up a description of the surroundings,
ii) how this description, the fresco, is validated, iii) how the
clues are used to construct the fresco.

This paper is organised in 4 sections: Section II presents
our approach in the digitised construction of the environment.
Every steps from the overview of the perception system to
the landmarks extraction is explained. Section III details
the fresco construction and its validation. Section V intro-
duces the criteria used to detect the relevant changes in
the environment. Results and performances are shown in
section VI.
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II. LANDMARKS EXTRACTION
The problem is to extract the “Opening, Closure,
End of Closure, Angle of Closures” landmarks from the
distance data. These landmarks will be used to build the
qualitative description of the environment. Four steps are
necessary. The first one consists of environment perception
(section II.1). It is realised with a laser range finder.
The second step describes the construction of the digital
representation of the environment (section II.2). It is based
on grid representation. The third one develops the technique
used for landmarks extraction (section II.3). The fourth
step buids the environment representation from landmarks.
Distance information is not used in the following sections
dealing with frescoes construction, choice of relevant
frescoes, and return journey computing to be as close as
possible of a human-like perception and description of the
environment.22

II.1. Perception system: laser range finder
The size of the non holonomic robot is (width × length)
0.50 m × 0.75 m. Its linear and angular speeds are up to 1 m/s
and 2.45 rad/s. Placed at the geometrical centre of the robot
with a practical range of 3 m, a panoramic telemeter captures
the circular environment. It has been decided to consider a
6 m squared environment to ease the reconstruction process.
The robot is always considered as situated at the centre of the
environment. Experiments in the following have been made
with measurements coming from both a simulated laser range
finder and the real telemeter.

This telemeter is able to deliver up to 1024 measurements
per rotation with a 5 rpm rotation speed but only 256 inform-
ation over the 1024 will be used by the fresco construction
process. For a regular speed of 1 m/s, the translation
displacement error remains lower than 0.10 m for one
complete rotation of the telemeter. In 100 ms, the rotation
of the robot remains lower than 23◦.

According to these considerations, we chose to digitise the
environment on a 32 × 32 cells grid which covers the area
seen by the telemeter, each cell representing a 0.1875 m ×
0.1875 m area. The terms “grid” or “cellular space” will now
be considered as equivalent.

The cellular space appears in Figure 4a. On the cellular
space, a cell will have two states: active or idle. When the
laser beam hits an obstacle the corresponding cell will be
active and will appear in black in the cellular space. Due
to its size the robot can only pass through openings whose
width is greater than 3 cells.

II.2. Construction of the digitised description
The first step in the symbolic environment consists in gene-
rating the digitised environment from the measurements
(section II.2.i). The second step performs the segmentation
of the cellular space (section II.2.ii). Then the third step
reorients the cellular space (section II.2.iii) to make easier
the landmark extraction.

(i) Generation of the digitised environment: The method
uses evolution laws in the cellular space that act on every
cells. For a cell called CELL the neighbourhood conventions
use standard directions according to the Von Neuman
neighbourhood. For example, CELLW , CELLE , CELLN ,

CELLS are the names of the cells situated westbound,
eastbound, northbound, southbound. We add the word Great
to name the cells in the second neighbourhood layer (Great
West: CELLGW , Great East: CELLGE, . . .). The quadrants
are numbered counterclockwise in relation to the lengthwise
axis; quadrant 0 is the front right one.

The very first operation consists in the lay-down of the
distance measurements onto the grid to create the initial
cellular space. This lay-down operation is not a mere polar-
to-Cartesian transformation but takes into account the noise
introduced in the measurements as they are made while
the robot is moving. Noise appears mainly on the form of
cells agglomerations (Figure 4a). Agglomerations also occur
when measurements belong to the border between adjacent
cells. Elimination of agglomerations (Figures 4a and 4b) is
performed keeping only the cells situated the closest to the
robot for obvious safety reasons. The method adopted for
this elimination uses evolution laws close to those used in
cellular automata.

(ii) Segmentation of the cellular space: The next operation
is the extraction of the segments corresponding to the ob-
stacles from the cellular space. Four directions are con-
sidered. In addition to the lengthwise (Figure 2a) and
crosswise axis (Figure 2c), a search for the segments is made
onto the two diagonals (Figures 2d and 2f). The extraction
laws leave alive a cell owning a neighbour alive in the
considered direction.

(iii) Reorientation of the cellular space: As shown in
Figure 4a, another origin of noise is bound to the oblique
walls. These digitised oblique walls take the form of small
adjacent segments with junctions without real significance
(Figure 3a). To eliminate these oblique walls and the noise
they introduce we decided to use a second grid on which the
measurements are laid with a 45◦ angular shift (Figure 3b).
Superfluous data elimination and segmentation are also
applied on this second grid. More details can be found in
reference [23].

II.3. Landmarks extraction
As told in the introduction, environments are described
using a fresco made of ordered series of landmarks:
“Opening”, “Closure” and “Angle of Closures”. Let us note
that an “Angle of Closures” must be neighboured by two
“End of Closure” landmarks. The landmarks extraction first
considers the “Opening” elements that are directly extracted
from the reoriented cellular space.

The second operation aims at extracting the “Lenghtwise
End of Closure” and “Crosswise End of Closure” land-
marks by evolution laws as well. Figures 4d and 4e examplify
the “Angle of Closures” and “End of Closure” landmarks
extraction process. The extracted landmarks are shown posi-
tionned on the grids. Finally the set of landmarks constitutes
the landmark language shown in Table I. Landmarks identity
and attributes have been chosen according to the indoor
environment in which the robot moves.

With each landmark are associated three qualitative
attributes representing three properties. The off-sight at-
tribute is set when the landmark stands on the cellular space
border. The position attribute can take the following values:
crosswise, diagonal, lengthwise. The certainty attribute is
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Fig. 2. Extraction of segments in the 4 filtering directions: a (upper left): Lengthwise segmentation, b (upper centre): Refined environment,
c (upper right): Crosswise segmentation, d (lower left): First diagonal segmentation, e (lower centre): Initial measurements, f (lower right):
Second diagonal segmentation.

Fig. 3. Example effects of the reorientation effect in the cellular space: a (left): real world from raw measurements, b (centre): 45◦ angular
shifted cellular space, c (right): reoriented cellular space.

introduced to take into account landmarks that could come
from a possible noise introduced in the digitisation process
not detected by the previous laws or a still possible bad
reorientation. It is false for every landmark (for instance,
diagonal “End of Closure”, “45◦ angles”) whose evolution
cannot be known.

III. FRESCO CONSTRUCTION
In the first phase of the fresco construction, the landmarks are
gathered into ordered series of semantic clues. Landmarks
are postionned in respect to each others. Each landmark has
exactly two neighbours (the last landmark in the list has the

first one as second neighbour). Building the fresco is made
using the language presented in Table I which gathers
landmarks identity and attributes. This operation mainly aims
at eliminating the notion of distance to the profit of a spatial
series and at highlighting the symbolic representation of the
environment.

The second step focuses on the fresco validation. Assum-
ing that there is only one description for one environment,
strict laws of neighbourhood are defined. Table II shows
these neighbourhood laws that can be interpreted as a
set of logical assertions. For example, the neighbours of
an Angle of Closure can only be Angle of Closures or
End of Closures. For each landmark, the neighbourhood is

https://doi.org/10.1017/S026357470400102X Published online by Cambridge University Press

https://doi.org/10.1017/S026357470400102X


Mobile robotics 531

Fig. 4. Example of the digitised constructions: a (upper left): real world from raw measurements, b (upper centre): reoriented cellular
space, c (upper right): refined space after superfluous data elimination, d (lower left): Angles of Closure extraction, e (lower centre):
End of Closure extraction, f (lower right): Fresco construction.

Table I. Landmark language used in the fresco construction.

Symbol Landmark Position Off-sight Certainty

Angle of Closure true

End of Closure lengthwise true

End of Closure lengthwise off sight false

End of Closure crosswise true

End of Closure crosswise off sight false

End of Closure diagonal1 false

End of Closure diagonal1 off sight false

End of Closure diagonal2 false

End of Closure diagonal2 off sight false

45◦Angle lengthwise false

45◦Angle crosswise false

Opening lengthwise true

Breakthrough lengthwise true

Opening crosswise true

Breakthrough crosswise true

checked. Every time a fresco is built, the whole set of these
rules is applied in order to validate the fresco. If a rule failed,
the fresco is not valid.

Table II. Landmarks neighbourhood rules.

Landmark Possible neighbours

The validation fails mainly due to a bad landmark ex-
traction process in a very noisy cellular space or a bad
reorientation. Making the necessary corrections in the
extraction laws to solve these seldom failing cases leads to an
increasing of the complexity of the evolution laws, increasing
not really justified by the low frequency of the failures.
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Fig. 5. Test environment: the lab.

IV. RESULTS
Two kinds of results are given in this section. The first ones
deal with fresco construction. The second ones present the
behaviour of the robot for a return journey.

Experiments in a realistic environment have been made to
validate the reconstruction model and among them, our lab.
For various positions along a trajectory in this environment,
the frescoes have been built. Fourty five frescoes (Labo1.gif
to Labo45.gif) are shown as the robot moves in the lab
according to the route drawn (Figure 5). They are built
every 0.50 m for straight forward moves and every 22.5◦
for rotations. The number in the names of the gif files
corresponds to the robot’s position along the route. They
represent a large panel of possible situations in indoor
environments.

At the very beginning (Figure 6), the robot is situated
at the entrance and is well lined up with the wall on its
right. No reorientation is needed. The upper middle picture
shows the openings the robot could take as well as the
orientation to adopt if this opening is chosen. This orientation
comes from the computation of the Voronoii graph (not
shown) between obstacles [23]. It also can be seen that
small openings have been closed in the upper right Figure.
In Figure 7, the upper left cellular space shows the effect of
digitisation. Nevertheless, the left side wall is considered as
the most continuous one and no reorientation is needed. In
Figure 8, the position of the robot shows a case in which the
effects of the digitisation are more important. A reorientation
is applied. The reorientation angle (in this case, −45◦) is
represented in the fresco (lower right), the arrow indicates
the real orientation of the robot. The active cells in the
lower left and lower middle pictures give the localisation
of the “Angle of Closures” and “End of Closures” based

on the refined environment in the upper right picture. It is
easy see the corresponding relations between, for example,
the “Angle of Closures” active cells (lower left, quadrants 0
and 4) and the “Angle of Closures” symbols in the fresco
(lower right). As the route of the robot (Figure 9) is rather
straight between positions 10 and 20, no significant reorienta-
tion is made and the fresco construction is made without
any major difficulties even if the environment includes many
breakthroughs and Angle of Closures (Figure 10).

The frescos constructed during the trajectory in this
realistic environment shows that the described mechanism
permits to extract consistent information from the perception
system. The consistency of the frescoes ensures they could
be used for robot navigation or localisation. A proof of this
consistency would be to give to the robot the capacity to
execute a return trajectory based only on the use of the
frescoes. That means that the frescoes give to the robot a
sufficient representation of the environment to allow it to find
its way back. That also means that one has to find criteria
to detect and keep only the frescoes that bring up relevant
changes in the environment.

V. CRITERIA USED TO DETECT RELEVANT
CHANGES IN THE ENVIRONMENT EVALUATION
It is not useful to store all the frescoes that are built.22 This
section presents the first works on two criteria that aims at
the selection of the frescoes carrying significant information
on the changes in the environment. The first criteria uses a
ressemblance function. The second is based on a barycentre
displacement evaluation. Finally, the fusion of these criteria
and the results of their use in a simulated return journey are
given.
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Fig. 6. Test environment: Initial position, position 1.

Fig. 7. Test environment: Position 5.
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Fig. 8. Test environment: Position 10.

Fig. 9. Test environment: Position 15.
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Fig. 10. Test environment: Position 20.

V.1. Resemblance evaluation between two frescoes
This criterion uses a nearby principle of that presented in
reference [12]. A correlation function allows to calculate
the resemblance between two frescoes. This criterion has
been tested in the same environment as that used for the
construction and the validation of the frescoes. The use
of this criterion shows that the landmarks not defined as
certain (section II.3) act as a noise making very difficult
the evaluation of the resemblance. From then only were
considered the certain elements. The resemblance between
two consecutive frescoes is calculated by taking into account
the difference between the number of certain landmarks in the
corresponding quadrants. The comparison of this difference
with a threshold indicates if the current fresco should be kept
or rejected because not bringing enough information.

V.2. Barycentre evaluation between two frescoes
This criterion is inspired by the works of cited in
reference [24, 25] who measure the distance between two
sets (groups). In our case, this notion was very simplified
to take into account the real-time constraints in agreement
with those embarked on the robot. The number of certain
landmarks was positioned as indicated on the Figure 11 and
the barycentre was positioned. Any variation of the number of
elements in a quadran implies a movement of the barycentre.
If this displacement is superior to an experimentally adjusted
value, the fresco is kept.

quadrant 3

quadrant 2

quadrant 1

quadrant 0

Number of certain land—marks

barycentre

Fig. 11. Barycentre computation between certain landmarks.

V.3. Comparison of both criteria
The experiments carried out in simulated environments are
not very satisfactory. For the environments comprising a great
number of land-marks, the number of changes in the fresco
must be high so that the criterion of resemblance preserves
measurement. For simple environments, the number of
changes is too weak and not enough frescos is preserved.
The use of the criterion of the barycentre in environments for
which the number of certain land-marks is weak does not give
very good results either, except only for extrememely simple
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Table III. Criteria retained during the tests in the environments
resulting from the agent of classification.

Chosen
Environment Used criterion criterion

Left angle bary (0.75)
√

resemb (5)

Right angle bary (0.75)
√

resemb (5)

T crossing n◦1 resemb (4)
√

resemb (5)
resemb (6)
resemb (7)
resemb (8)
resemb (6) + bary (0.75) +5

X crossing resemb (5)
√

resemb (6)

Dead end resemb (5)
resemb (4)
resemb (6) + bary (0.75) +5

√
resemb (6) + bary (0.75) +4

Exit/Entrance/ all
Corridor

Wall resemb (5) + bary (1) +5
√

Room resemb (5)
√

resemb (7)
resemb (5) + bary (0.75) +5
resemb (5) + bary (1.5) +5

Corner resemb (5)
resemb (7)
resemb (5) + bary (0.75) +5

√
resemb (5) + bary (1) +5

corridor with resemb (5)
zig-zag resemb (7)

√
resemb (7) + bary (0.75) +5

with :
resemb (s) : resemblance criterion with a threshold = s,

bary (s) : barycentre criterion with a threshold = s,
resemb (s1) + bary (s2) + s3 : if the number of certain elements is
less than s3, the the barycentre criterion is used with a theshold =
s1, else the resemblance criterion is used with a threshold = s2

environments. The adaptation of the threshold in the case of
the resemblance or the distance between two barycentres
to the number of land-marks did not make remarkable
improvements either.

V.4. Fusion of the agent of classification of environment
and the barycentre criteria and resemblance
The two criteria which have been just described were tested in
the various environments. One can however wonder whether
one of these criteria is not more powerful according to the
type of environment. Previous studies26 one the uses of on
the use of a neural classifier allow the classification of the
current into environment 11 classes (Open space, dead-end,
T-crossing, X-crossing, . . . angle on the left, angle on the
right, X crossing, T crossing, wall, room, corner, dead end,
corridor). We sought to determine if a fusion of the output of
this classifier with the criteria of resemblance and barycentre

improved the evaluation of the resemblance. A series of tests
was carried out in these environments. The results of these
tests are gathered in Table III. For each class of environment
we compared the number of frescoes preserved by each
criterion. For example, in the case of X-crossing, the criterion
of resemblance used to thresholds of 5 and 6 preserve almost
all the frescos.

For a threshold of 7 only 5 frescos are preserved. The
frescos describing the corridor are:

• before X-crossing,
• during the detection of the opening,
• on arrival in X-crossing,
• at the exit of X-crossing,
• on arrival in the corridor after X-crossing.

These 5 frescoes are sufficient even if the fresco correspon-
ding to the position at the centre of the crossing is missing.

V.5. Fusion of the agent of classification of environment
and the barycentre and resemblance criteria
The validation of this work called upon an environment of the
interior type of apartment. We simulated the displacement
of the robot in this apartment in order to have variable
configurations during displacement. The results obtained
are much more satisfactory by far. On the one hand, the
relationship between the number of memorized frescos and
those built are about 1 per 5. This ratio varies in fact,
according to the speed of the robot. It is more significant
(33%) when speed is 0.50 m/s that for a speed of 0.25 m/s
for which it is 20%. Indeed, for a significant speed, the
differences between two environments are more significant.
The speed limits which the robot can reach so that the analysis
of resemblance can be carried out was estimated at 1 m/s.

VI. CONCLUSION AND PERSPECTIVES
Human beings, as well as insects27, use resemblance (or
dissimilarity) to compare views of the environment rejecting
those that do not bring up new elements without using
metrics, only using the occurence of landmarks. In this
paper, we present a qualitative method inspired of homing
methods14 to construct the environment surrounding an
indoor mobile robot equipped with a 2D telemetry sensor.
To represent the environment the method uses a cellular
space on which the distance measurements are laid. The
status of the cell represents the existence of an obstacle
in the area it is associated with. This method, very robust
according to the movements of the robot, has been chosen
for its simplicity. Every times distance measurements are
made, the cellular space is built. From the cellular space,
landmarks are extracted and organised into series called
frescoes. Until this point, distance information are not more
used. These frescoes, validated according to neighbourhood
laws, are stored in the robot’s memory and provide minimal
information for environment shape understanding. In order to
derive the pertinent frescoes that have to be stored along the
robot way out, we plan to use a pairing-like method. The first
criterion that is primarily being investigated uses a correlation
between two frescoes. The landmarks are bounded and
a correlation function measures the difference between
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consecutives frescoes. The second criterion is based on the
difference between the barycentre positions of consecutive
frescoes.25 Those frescoes separated by a difference higher
than the threshold are considered as pertinent and stored in
memory. In both cases the differences are compared with
thresholds that are experimentally set up. Nevertheless, the
first results in the very changing test environment (Figure 5)
are promising.

Remember that the robot has to go in the flat and move
back to the handicapped person it is in service of. If it has to
return to its starting point, is it able to retrieve its route using
only the pertinent frescoes recorded during the way on and
those stored during its way back? The robot’s return route is
not exactly the same than the way on. Therefore, the current
fresco does not correspond exactely to the stored frescoes (the
180◦ rotation is, obviously, taken into account): the fresco and
one situated on the top of the LIFO do not correspond. A first
method consists in shifting left or right the current fresco
to better fit to one of the stored frescoes.22 Another method
consisting in gathering landmarks into representative sets
(alcove, cupboard . . .) and using all possible transformations
of the current fresco is too bound to human representation and
is time consuming. On the contrary, a method grounded on
the study of the evolution of very small groups of landmarks
seems more promising, simple and low resource consuming.
On the other hand, with this method, the robot must anticipate
future environments. This anticipation, even if it needs a
complete description of all transforms of a fresco, is simpler
when the fresco is split into small groups of landmarks.
Anticipating frescoes from the current one and comparing
them with the stored frescoes seems to be a promising method
that allow the robot to choose the right way.
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