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SUMMARY

This paper presents new low-cost systems for the automa-
tion of some fish farm operations. Particularly, computer
vision is applied to non-contact fish weight estimation.
Stereo vision systems with synchronised convergent cam-
eras are employed to perform fish 3-D segmentation in tanks
and sea cages. Several pre-processing algorithms are
applied to compensate for illumination local variations. The
approach applied for fish 3-D segmentation consists in
detecting in both images certain fish features. Once these
points have been detected and validated in both images, the
fish are 3-D segmented by applying stereo vision matching
considerations. Fish weight is estimated by using simple
length-weight relations well known in the aquaculture
domain. The paper also briefly describes robotics systems
for fish feeding and underwater pond cleaning, which can be
also used to implement the above mentioned computer
vision techniques for the fish estimation.

KEYWORDS: Computer vision; Fish farm automation; Aqua-
culture; Image processing; Cost-oriented automation; Mobile
robotics systems.

1. INTRODUCTION

Aquaculture has experienced a dramatic growth in the last
years, with a growing rate of near 15% per year. According
to the UN Food and Agriculture Organisation (FAO),
aquaculture produces about 20 million of fish food tons per
year in about 200,000 ponds or cages. This amount
represents about 20% of the world fisheries requirement.
However, the fish-farm production technology is clearly
underdeveloped, still very far from the state of the art in
factories of manufactured products or even from many food
production processes.

The work presented in this paper is part of a project
aiming to improve the production processes in fish farms
using new perception, control and automation technologies.
The project involves all the phases in the fish growing
process including sizing, quality control, grading and the
control of the variables involved in the growing. Thus, a
distributed control system has been developed and imple-
mented to control all the relevant variables involved in the
fish farm process.'

Biomass estimation is of great interest in aquaculture
with a direct impact on the optimisation of the production
management, process automation and monitoring and
quality control.
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Traditional techniques to estimate the fish biomass in
ponds under thermal cover, in large earthen ponds and sea
cages involve manual sampling and weighting. However,
the minimisation of the fish handling operation is highly
desirable to reduce fishes stress and increase the quality of
the product. Then, special attention is paid to the estimation
of the number and size distribution of the fish using non-
manual and non-intrusive procedures.

Sensors and techniques to estimate the biomass are still
very scarce. There are some devices such as submersible
frames that count and estimate the size of the passing fish
using optical techniques (biomass counters or biomass
estimators). Automatic systems using computer vision for
monitoring the fish passage through special devices in rivers
have also been presented.>’ It should be noted that most fish
species are very reluctant to pass through artificial devices,
which increases their level of stress. Furthermore, measure-
ments of the fish passing through these devices could not be
representative of the whole fish population in the cage.

In the last years, techniques using underwater video
monitoring have also been proposed by several authors in
the aquaculture domain.*® However, many of these systems
still operate with a low level of automation and require
intense activity from operators.

Automatic fish segmentation and measurement requires
the computation of 3-D variables, such as the distance from
the fish observed, fish orientation and size. Thus, 3-D
computer vision techniques should be applied. However, the
cost of industrial 3-D computer vision systems is still high
for many fish farms and cannot be easily applied due to
difficulties in fish-farm environment.

Moreover, the hardware and software computational
requirements of the system have been minimised by
avoiding complex 3-D fish models. The proposed systems
use simplified models based on fish features, and existing
relations between the fish length and its weight. This
approach has significant advantages for its simplicity,
modularity and flexibility to adapt to different fish species.
Besides, it needs lower computer requirements than other
segmentation methods based on 3-D models or active
contours.

This paper presents several low cost systems for fish
farm automation. First, the paper describes stereo vision
systems that provide automatically fish weight estimations
(including fish average weight and weight histogram) in
tanks and in sea cages. Prototypes of these systems have
been tested in several fish farms including ponds with
thermal cover in Ayamonte (Spanish province of Huelva)
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and sea cages in the Spanish Mediterranean coast of
Valencia and Murcia. The paper also introduces some other
low-cost systems for fish-farm automation including a
robotic system for fish feeding and an underwater robot for
autonomous pond cleaning. The stereo vision systems are
ready to be implemented in these robotic systems.

The paper is organised as follows: Section 2 presents the
general description of the stereo vision systems; Section 3
presents the calibration and stereo matching procedures;
Section 4 describes the techniques employed to estimate fish
weight by using computer vision techniques; Section 5
presents some experimental results. Section 6 presents some
low-cost robotic applications in fish farms. Sections 7 and 8
refer to the Conclusions and Acknowledgements, respec-
tively.

2. DESCRIPTION OF THE SYSTEM

Figure 1 shows a general scheme of the stereo systems for
fish weight estimation presented in this paper. Two stereo
systems have been developed: underwater and on the water
surface.

One of the main disadvantages of using non-underwater
cameras is the high number of reflections on the water
surface.” These solar reflections often cause camera satura-
tion, which avoids the correct performance of the
image-processing algorithms. These reflections can be
compensated in indoor scenarios (ponds with thermal
covers and inside buildings) by applying artificial lighting.
However, in outdoor environments they are very difficult to
compensate. Thus, an underwater stereo system is used to
estimate the weight of fish in sea cages, and a system over
the water surface is used for indoor tanks. The first one is
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employed for fish at adult state of growth and, the second is
used for fish nursery (intermediate stage of growth).

The underwater system incorporates cameras with metha-
crylate-made housings. It also has floats and lead ballast
units to maintain the stability of the structure.

Both stereo systems employ two convergent monochrome
cameras. The cameras have been synchronised in order to
reduce errors in the stereo system and calibration. The
images from both cameras are captured by a RGB frame-
grabber configured in such a way that the left image is
introduced via the red component of the color image and the
right view through the green one. The result is a RGB color
image with an empty blue component and the two images of
the stereo system in the red and green components.

Both stereo systems should be calibrated in order to
compute fish length estimations in the real world co-
ordinates. Section 3 describes the calibration method and
the stereo matching technique employed.

Sea cages and tanks are highly unstructured scenarios
from an image-processing point of view. These images
suffer from effects such as multiple object overlapping, high
level of noise and presence of unwanted objects such as
bubbles. Illumination irregularities were shown as one of
the most harmful effects for the automatic image analysis,
both for underwater and non-underwater images. Other
specific drawbacks and limitations are imposed by the
particular nature of fish, such as reflections on fish scales
and high speed of motion. It should be noticed that the use
of artificial means to mitigate these drawbacks presents
limitations due to fish nature and behavior. For the
underwater stereo vision system, a white metallic panel to
be part of the image background was incorporated to
increase the fish contrast in the images. Artificial lighting

Biomass estimation
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Fig. 1. General scheme of the stereo system for fish weight estimation.
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was also incorporated to compensate for illumination
variations. Both ideas were soon discarded since the
increments in fish stress and their extreme reluctance to
approach the system. All these drawbacks make fish
automatic segmentation a very complex problem.

In order to cope with these problems fish segmentation is
performed at three levels: image pre-processing; image
processing in both independent images; and stereo process-
ing. The approach used consists in detecting certain fish
points of interest, and then associating the points of interest
of the same fish in real-world co-ordinates according to
information on the fish specie and application knowledge.
Other segmentation methods based on fish 3-D models have
been investigated. However, the complexity of these proce-
dures involves significant computer requirements that are
not always justified for the application.

The first step consists in applying noise reduction filters
and illumination compensation techniques. The second and
third steps of processing consists in applying a set of
methods in order to detect several fish points of interest,
such as caudal fins and other features. The detection of these
points is performed independently in both images. Then,
stereo information is employed to match these points and
locate them in the real world. The following step consists in
associating the points of interest of the same fish by
considering criteria based on geometrical aspects of the fish
species.

Once the fish have been segmented and their size has
been estimated, the weight is measured by using length-
weight relations. The validation tests obtain weight errors
lower than 5% for the underwater system and 4% for the
system with cameras over the water surface.

3. CALIBRATION AND STEREO MATCHING

The application requires a stereo vision perception system
to obtain measurements in the real world of objects located
at different distances from the cameras. Figure 2a shows a
simplified scheme of the stereo vision system with con-
vergent cameras. The optical axes of both cameras have
been disposed to converge at a distance of 1 meter, which
has been determined, by means of extensive experimenta-
tion, as the most appropriated distance for the application.
The distance between cameras has been selected to obtain
the required accuracy of the stereo system.
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The method proposed in Ayache® has been used to
calibrate the stereo system. Although the execution of the
calibration algorithm requires at least six non-coplanar
calibration points, in practice, dozens of points are used to
increase precision. In this application the aluminium-made
calibration grid has two planes with a total of one hundred
points distributed at different heights (see Figure 2b). The
calibration grid measured by using high-precision machin-
ery achieved an accuracy lower than 0.1 mm.

3.1. Calibration

The first step of image calibration consists in computing the
perspective matrix for each camera. Assuming a simple pin-
hole camera model, consider that I(u,v) is the intersection of
the projection of a point in the space P(x,y,z) on the image
plane. The transformation between I and P can be modelled
as a linear transformation 7 in projective co-ordinates:

, €]
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where I*(U,V,S) is I(u,v) expressed in projective co-
ordinates and 7T is the perspective matrix. In the general
case, S#0 and the co-ordinates of I can be computed as
I=[u v]'=[U/S VIS]. Each point on the image I(u,v)
corresponds to a point in the real world P, which originates
two linear equations:

Pti+t,—u(Pt;+1)=0 @)
P'ty+t,, —v(P't;+1)=0 |’

where t;; represents the (7, j) of T, ¢; is the i-th column of T.
T can be determined by solving the set of equations by
applying simple least-squares methods.® Although the
computation of T only requires six non-coplanar points,
all the points of the calibration grid are considered to
increase the precision. Stereo applications require the
computation of the perspective matrix for both cameras.

3.2. Stereo matching
Assuming that the cameras are denoted as camera 1 and
camera 2, the problem of stereo matching, which consists in

Fig. 2. (a) Scheme of the stereo vision system, (b) calibration grid used for the stereo calibration.
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identifying in the image from camera 2 any point in
the image from camera I, can be divided in computing the
epipolar line, and matching the point on image I with its
corresponding point on the epipolar line in image 2.
According to the Ayache method, the epipoles and the
perspective matrices can be obtained during the calibration
process. Thus, the determination of the epipolar line of a
point of image I in image 2 only requires the computation
of its direction vector, which is defined by the following

expression:®
u
2
(i”vg):m. v, 3)

where M?! is defined as:
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where 77 is the 3x3 submatrix extracted from 7° (per-
spective matrix of camera 2) by eliminating the last column,
#} is the vector composed of the first three elements of the i-
th row of T', T' and T° are the perspective matrices for
cameras I and 2, and (U, Vi, Sg)'" are the projective co-
ordinates of the epipole of image 2.

The matching of the point in image I on the epipolar line
in image 2 is solved by maximising a similarity index based
on criteria such as cross-correlation functions and distance
to the epipolar line, similarity in the local illumination
conditions, and geometrical characteristics, such as size and
orientation, of the object in which the point is located. The
normalised cross-correlation function is often employed to
avoid the differences in the illumination conditions in both
images:

DD raypiia—ay—b)
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3.3. 3-D reconstruction

The last step of the algorithm computes the co-ordinates in
the real world of the points identified in both images. The
reconstruction of a point P observed in the image from
camera I as (u'v') and in image from camera 2 as (u?, v*)
can be obtained by solving the following set of equations:

(t —u'ty) P+, —u't;,;=0
&=Vt P+t —v'ty,=0
(i —u’B) P+6,—u'5,=0 |’
(B V) P+~ 18,=0

(6)
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where ¢, JZ represents the (i, j) component of 7°. This set of
equations can be easily solved applying simple least square
methods. The result is a vector P composed by the co-
ordinates in the real world of the observed point referred to
the same co-ordinate system chosen for points of the
calibration grid.

Several calibration validation tests have been performed
with errors in the estimation of the distance in the real world
lower than 0.7%.

4. FISH WEIGHT ESTIMATION BY USING
COMPUTER VISION

3-D fish segmentation is carried out in several steps: The
first one is responsible for noise filtering and for illumina-
tion compensation. Then, certain fish points of interest
are detected in both independent images. Finally, the fish are
segmented by associating the points of interest of the same
fish, and their weight is estimated by using length-weight
relations.

4.1. Pre-processing

Irregularities in illumination conditions were shown as one
of the most harmful effects for the automatic image
analysis, both in underwater images in sea cages and non-
underwater images in nursery tanks. In indoor nursery
tanks, these reflections were avoided by incorporating
external lamps placed with an angle of approximately 45
degrees between the light lamps and the water surface.
Artificial lightning cannot be easily used in cages in the
open sea.

The main disadvantage of underwater sea-cages images
illumination is due to the wide range of local illumination
variations, as can be observed in Figure 3. It can be noticed
that the illumination at the upper part of the images is
usually very light in the Mediterranean coast due to intense
sunlight. The illumination at the lower part is usually
considerably dark due to sunlight attenuation and fish
shades.

Image-processing techniques based on global illumina-
tion correction such as histogram equalisation fail when

Fig. 3. Underwater image showing severe local variations of
illumination.
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considering the local variations in the images. Local
illumination correction methods based on square-block
neighbourhoods provide unsatisfactory results since they do
not fit the illuminations characteristics of this application.
Methods based on modelling illumination as the low-
frequency components of images’ do not consider the
sudden changes in the distribution of local illumination. The
method for illumination correction employed aims to model
the illumination variations and compensate them to generate
an image with uniform intensity and contrast levels.

4.1.1. Illumination model of underwater images. The
illumination variations in underwater sea-cages images
were mainly due to fish shades, reflections on scales and
sunlight attenuation. Although it is very difficult to model
the detailed impact of these effects in the illumination, a
qualitative model is of high utility to develop illumination
compensation methods.

Image illumination is traditionally considered as the
addition of three components: ambient illumination, diffuse
reflections and specular reflections:

I: Iambient + Idiﬁuse — reflection + Ispecular — reflection (7)

These three components suffer from water scattering and
attenuation that depend on the distance covered by the light
ray from the water surface to the observer. Ambient
illumination models the reflection of ambient light, which
arrives at the object after being bounced in multiple
reflections from the objects of the scene. Its global effect is
usually approximated by the following expression:'?

I

ambient

= aala Satt’ (8)
where I, is the intensity of the ambient light, «, is the
coefficient of ambient illumination reflection of the object
surface and §,, is the light attenuation factor.

Diffuse reflection originates from the scattering of light
from a punctual light source (in this case the sun) on rough
object surfaces. According to Lambert’s law, diffuse reflec-
tion intensity is described by the following expression:

Id’ﬁ'use — reflection = arIP COS(q) 8atr’ (9)

where «, is the coefficient of reflection of the object surface,
1, is the intensity of punctual light source and, g is the angle
between the incident ray and the normal of the object
surface.

Specular reflection originates when the light from a
punctual source has stronger reflection in the line of view of
the observer. Several specular reflection models have been
proposed, including empirical-based models such as
Phong'' and physical-based ones such as Blinn.'*> According
to Phong model, specular reflection can be modelled by:

prevular — reflection = Ip SattW(q) COS(B)9 ( 1 0)

where W(g) is the reflectance angular distribution function
that depends on g and on the material (fish scales) and, 3 is
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the angle between the reflected ray and the line of sight of
the observer.

At the upper part of the image, ambient illumination and
diffuse reflections have considerably high contributions,
and specular reflections on fish scales are very intense and
occur very frequently. Thus, the upper part of the images
has high intensity levels and medium-high local contrast
values. At the lower part of the images, ambient illumina-
tion and diffuse reflections weaken, and the probability of
specular reflection decreases due to the fish shades. The
intensity of specular reflections also decreases due to water
attenuation and scattering. The lower parts of the images
have low intensity levels and low local contrast. The central
part corresponds to the transition between both situations
and suffers from extreme local illumination variations
mainly due to specular reflections and fishes shades. The
central part of the images has average intensity levels and
very high local contrast values.

Assuming vertical cameras, the sunlight attenuation
effect involves different illumination features in each row in
the image, which can be noticed in the row-pixel distribu-
tion (from now on, row histograms). Figures 4a and 4b show
the vertical distribution of the mean intensity and contrast in
the image shown in Figure 3. This distribution validates the
qualitative illumination model proposed.

The method applied aims to compensate for this vertical
distribution by transforming the histogram distribution of
each row so that all the rows in the resulting image have the
same histogram features.

4.1.2. Nllumination compensation techniques. Many tech-
niques such as histogram equalisation and histogram
specification" perform illumination compensation by apply-
ing histogram transformation functions that depend directly
on the histogram of the original images. However, the
application of these techniques to all the rows for both
images needs considerable computational requirements. In
order to reduce the computational cost, the technique
implemented is simple direct grey-level transformation, in
which only some features from the histogram of the image
are considered to design the transformation function. Two
main types of transformation functions were considered:
linear and non-linear functions.

Let f(x, y) be an image of L grey levels with N rows and
M columns. Illumination in grey-level images is often
characterised by intensity and contrast values. The mean
intensity and contrast of the r-th row of f{x, y) can be defined
as shown in the following linear expression:

M—1
1
Mi= > Ry, G (1D
y=0

where n,, . and n),, are, respectively, the maximum and
minimum intensity levels in the r-th row of f(x, y). Consider
that M1, . and C,are the desired mean intensity and contrast
value for the row grey-level distributions. Thus, the
histogram transformation function for row r depends on MI,

and C, (features from row r in the original image) and on the
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Fig. 4. Distribution of row average intensity level (a) and row contrast values (b).

desired features (MI,,, and C,,) and can be expressed by the
following expression:

C
* —_ref
fEry) c

r

(fry) —MI)+MI, 12)

Thus, the row histograms at the upper part of the image are
shifted (decreasing the mean intensity) and contracted
(decreasing the contrast) and, at the lower part of the image
they are shifted (increasing the mean intensity) and
stretched (increasing the contrast). The application of Eq.
(12) for all the rows cancels the vertical distribution of
illumination, achieving images with the same mean inten-
sity (Ml,,;) and contrast (C,,) for all the rows. Figure 5
shows the result of the application of grey-level transforma-
tion to image in Figure 3 with M1, =120 and C,,,=130.

A considerable number of non-linear histogram trans-
formation functions for contrast enhance have been
described in the literature, including polynomial"* and
sigmoidal® functions. Although non-linear functions

allow a richer variety of histogram transformations, linear

Fig. 5. Transformed image with MI,,=130 and C,,,=80.
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functions showed adequate performance with a lower
computational cost.

4.2. Detection of points of interest
Once the image illumination has been compensated, the
next step consists in the detection of fish points of interest or
features. In nursery tanks fish are segmented by detecting
the frontal and rear fish points and a certain number of
intermediate points. The segmentation is carried out by
applying region-growing techniques (see Figure 6).
However, this technique did not work well in underwater
images due to the difficulty of automatic detection of the
frontal and rear points because low contrast in these images.
It should be noted that, in general, the most critical fish
features depend on the fish species. In this paper, caudal fins
have been used for the segmentation of gilthead sea
breams.

4.2.1. Caudal fins detection. Figure 7 shows the images of
six caudal fins extracted from the several images. One can
observe the wide variety of caudal fin features and
conditions. The grey-level intensities of caudal fins strongly
depend on the illumination conditions. Besides, the posi-
tion, size and angle of the caudal fins are not invariant and
depend on the fish considered. According to the nature of

Distance between extreme points
as the module of the union vector

Approximation to the fish length using
intermediate points between the extremes

Fig. 6. Detection of frontal and rear fish points and computation
of fish length.
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Fig. 7. Six zoomed images of caudal fins extracted from Fig. 5.

the problem the method to be employed for caudal fin
detection should have the following properties:

¢ illumination invariant,

¢ scale invariant, in order to detect caudal fins from fishes
at different stages of growth and at different distances
from the cameras,

¢ rotation invariant, in order to detect caudal fins of fishes
with different angle and to adapt the non-rigid nature of
the fin,

* high selectivity, in order to avoid false caudal-fin
detections.

The approach proposed in this paper for caudal-fin detection
aims to detect the caudal fin angles by applying template-
based matching (which is a scale-invariant operation) on a
high-pass description of the images.

The application of the high-pass filter has two main
objectives. The first one is to enhance the contrast of caudal

@
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fin (in order to increase selectivity), which in many cases is
considerable low. The second objective is to increase the
illumination independence. The illumination correction
technique described in Section 4.1.2 is designed to com-
pensate mainly the sunlight attenuation, and it does not
eliminate the local illumination variations originated by fish
shades. It should be noticed that high-pass filters have well-
known illumination rejection properties, since illumination
often corresponds to low-frequency components of the
image.’

The selection of the high-pass filter is of high relevance to
reduce the number of false detections in the performance of
the overall system. Many operators were tested including
the Roberts, Sobel, Prewitt and Laplacian operators. The
experiments carried out revealed that emboss filter'®
achieved the most appropriate performance. Figure 8 shows
the images resulting from the filtering of the images shown
in Figure 7. The border originated by the caudal fins appear

Fig. 8. Images resulting from the high-pass filtering of the images shown in Fig 7c, d and f.
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on the filtered image as transitions between pixels whose
intensity levels are lower and higher than the mean level of
the image.

A set of templates has been designed to match the above-
mentioned transitions. The selection of templates with
different caudal fin angles improves the rotation-invariance
property of the method. The templates selected have low
size in order to reduce the computational cost, to increase
the local properties of the operator and, improve the
resolution in the caudal-fin detection and stereo matching.
The method consist in selecting the higher value resulting of
the application of the templates on the filtered image

JHx y):

folx,y)=max template; (xt, yt) f*(x+xt, y+yt) |,

(13)

where template;(xt, yt) for i={1, ... NT} represents the i-th
template and NT is the total number of templates con-
sidered. The local maxima points of the resulting image
folx,y) are considered caudal fins. Local aspects, such as
level of the local maxima, can be considered to discard false
detections. It should be noticed that this method also
provides estimations of the caudal-fin angles, which can be
useful to estimate the fish orientation. However, the
flexibility of caudal-fin limits the reliability of the angle
estimations.

4.3. 3-D segmentation methods for stereo images

Once the fish points of interest have been detected, the
points of interest of the same fish should be associated in
order to estimate fish length. The first step is the stereo
matching of the points of interest detected in both images.
This task is carried out according to the method described in
Section 3.2. Various similarity criteria are taken into
account, including cross-correlation function, distance to
the epipolar line, similarity in local illumination conditions
and geometrical aspects of the fish point of interest such as
size and orientation. Once the points of interest have been
matched, it is possible to reconstruct their location in real
world co-ordinates.

Then, the points of interest of the same fish should be
associated in 3-D co-ordinates by applying criteria that
mainly depend on the fish species (such as fish geometry
and orientation). For instance, gilthead sea breams usually
move parallel to water surface, i.e. the angle between the
fish axis (defined between caudal fin and mouth) and water
surface is near to zero. Potential errors in the fish points
association give rise to incoherent or divergent length and
weight estimations, which can be eliminated by post-
processing filters.

Once the fish points of interest have been associated, the
fish length in real-world co-ordinates (L) can be simply
computed. The weight is estimated by using length-weight
relations, well known in the domain due to their relevance
for production management of fish farms.'” One of the most
used relations is W=a - L’ (see Figure 9), where a and b are
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Fig. 9. Representation of the length-weight relation.

two coefficients that depend on factors such as water
conditions and fish feeding. For gilthead sea breams these
coefficients are commonly taken as a=0.02263 and
b=3.032.

5. EXPERIMENTAL RESULTS

This Section describes the operation of the systems and
presents some experimental results. The experiments of the
underwater stereo system were conducted in several cages
of gilthead sea breams in the open sea on the Spanish
Mediterranean coast of Valencia and Murcia. The experi-
ments of the non-underwater system were carried out in a
fish farm in the Spanish province of Huelva.

Figures 10a and 10b show two synchronised images
captured by the underwater stereo system in a sea cage on
the Spanish Mediterranean coast of Valencia. Figures 10c
and 10d show the corresponding images after the applica-
tion of the illumination correction method with MI,,,=120
and C,,=130.

Figures 11a and 11b shows the results of caudal-fin
detection in both images. These images contain some false
detections due to spurious fin-shaped objects and illumina-
tion effects. Figures 11c and 11d show the resulting images
after caudal fins stereo matching. In this example 4 fins have
been matched and located in real world co-ordinates. It
should be noticed that the stereo matching process is
sufficient to discard many of the above-mentioned false
detections. Figure 12 shows the images resulting from the
association of the points from the same fish. Three fishes
have been segmented in these images.

The system is also capable of providing fish length
distribution histograms such as that shown in Figure 13,
which corresponds to the results in Table I obtained in the
experiments performed in a nursery tank with the cameras
over the water surface. In this experiment a total of 122
fishes were correctly segmented. The experiments carried
out show weight errors lower that 4% for the system with
the cameras over the surface in the nursery tanks, and lower
than 5% for the underwater system in sea cages.
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Fig. 10. (a) and (b) show two synchronised images captured by the underwater stereo system; (c) and (d) corresponding images after
the application of the illumination correction method with MT,,,=130 and C,,=130.

Fig. 11. (a) and (b) show the caudal fins detected in both independent images; (c) and (d) show the resulting images with the fins
validated after the stereo matching.
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Fig. 12. (a) and (b) show the resulting images after mouth-caudal fin association.

Histogram Fish Length
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Fig. 13. Histogram of the fish length measured in the tank.

6. ROBOTIC APPLICATIONS

In addition to the above presented method for the automa-
tion of the fish weighting process by avoiding fish contact,
some other new low cost systems for fish farm automation
has been designed and implemented. In the following two
robotics systems will be shortly described.

The first one is a system for automatic fish feeding. The
system consists of an auto-demand component and a mobile
robot for food transportation and supplying. Auto-demand is
activated by fish contacts on a small sensor installed inside
the tanks. Several criteria, such as frequency of contacts, are
employed to discard false food demands due to water
turbulence.

On the other hand, several mobile robot designs were
considered in the project, including mobile wheeled plat-
forms, which can navigate autonomously by using position
estimation techniques based on triangulation with a number
of radio beacons distributed in the fish farm that can be
detected by the robot. The objective of this robot was not
only feeding but also to obtain several measures of the tank,

Table I. Experimental Statistics.

Item Value
Number of fish processed 122

Average fish length (cm.) 11.14
Standard deviation of fish length (cm.) 1.58
Average fish weight (g.) 19.06
Standard deviation of fish weight (g.) 8.40
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including the application of the computer vision techniques,
described in the previous Section, with the pair of stereo
cameras mounted on a simple arm attached to the robot
which can be placed over the tank surface. However, due to
reliability and cost, the final solution was a robot that moves
along a rail at the top of the tanks. The robot takes the food
from the food box and distributes it in several tanks
according to fish demands. The stereo cameras and lights
can be easily mounted in this mobile system to estimate the
fish weight distribution in all the tanks as described above.

The second system is a low-cost autonomous underwater
robot for pond cleaning which has also been applied in
open-air fish farms with ponds. The trajectory of the robot in
the pond is controlled by using visual feedback techniques.
The robot is equipped with a float that is employed to
indicate its position and orientation in the pond. A camera
installed in a tower registers images of the float and
computes the position and the orientation of the robot by
applying image-processing techniques. The position and
orientation of the robot are used for the automatic control of
its trajectory. This robot could be also used as a platform to
install the underwater system for the optical estimation of
weights presented in the above sections.

Finally, it should be pointed out that the stereo vision
system for fish weighting can also be integrated in a
SCADA system which has been developed and imple-
mented for the monitoring and operation of a nursery
distributed control system. Thus, it would be possible to
implement advanced fish-feeding strategies based on the
weight distribution. Moreover, the use of this information is
very valuable for production control.

7. CONCLUSIONS

Automation is an important need of modern fish farms,
which are increasing their production and quality require-
ments very significantly. However, cost automation plays an
important role and some technologies that could be applied
in industrial automation are not suitable here.

Image processing is a very valuable non-intrusive tech-
nique for the biomass estimation in fish farms since it avoids
the manual handling of the fish required for the sampling
and weighting of the fish population in tanks and cages.
However, the application of these techniques involves
several constraints to the reliability and cost of the
systems.
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In this paper a low-cost stereo system for the estimation
of fish biomass has been presented. Two different designs
have been developed for the two types of ponds: sea cages
and tanks. An underwater option has been chosen for sea
cages and ponds in open-air fish farms, while a technique
with the cameras over the surface and controlled lights have
been selected for indoor tanks.

The paper summarises the most relevant aspects of the
systems, including image processing methods and calibra-
tion and stereo matching procedures. Instead of complex
3-D modelling of the fish, the systems apply simple
techniques based on the estimation of the fish length and
length-weight relations commonly used in the domain.

The paper describes the experiments conducted with
gilthead sea breams in sea cages (in fish farms at the east
coast of Spain) and nursery tanks in a fish farm in Ayamonte
(south-west Spain). The fish weight distribution resulting of
the proposed systems achieved errors of 4% (in nursery
tanks) and 5% (in sea cages), that were validated by means
of traditional methods.

These stereo perception systems could be applied in fish
farms with low cost requirements. Furthermore, several
robotic systems have been developed to automate various
tasks including an automatic auto-demand food distribution
robotic system and an autonomous pond-cleaning robot. A
robotic system based on auto-demand allows one to design
a feed process that adapts automatically to the state of
growth of the fish and their food demands. The cleaning of
the ponds is carried out by a robot controlled by visual
feedback techniques.

The presented techniques could be integrated in a
distributed system for the whole fish farm control, improv-
ing the quality of the product and decreasing the production
cost.
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