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We define BACI (Boxed Ambients with Communication Interfaces), an ambient calculus with

a flexible communication policy. Traditionally, typed ambient calculi have a fixed

communication policy determining the kind of information that can be exchanged with a

parent ambient, even though mobility changes the parent. BACI lifts that restriction,

allowing different communication policies with different parents during computation.

Furthermore, BACI separates communication and mobility by making the channels of

communication between ambients explicit. In contrast with other typed ambient calculi

where communication policies are global, each ambient in BACI is equipped with a

description of the communication policies ruling its information exchange with parent and

child ambients. The communication policies of ambients increase when they move: more

precisely, when an ambient enters another ambient, the entering ambient and the host

ambient can exchange their communication ports and agree on the kind of information to

be exchanged. This information is recorded locally in both ambients.

We show the type-soundness of BACI, proving that it satisfies the subject reduction

property, and we study its behavioural semantics by means of a labelled transition system.

1. Introduction

In an ambient calculus, one can distinguish between two forms of dynamic behaviour:

communication and migration (Cardelli and Gordon 2000). By communication, we mean

the exchange of information between processes, which may be located in different

ambients. By migration, we mean the ability of an ambient to relocate itself by entering or

exiting other ambients. Communication and migration are deeply related since migration

and communication may enable or disable each other.
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Fig. 1. Example of an ambient using different TOCs with different parents.

In calculi such as BA (Bugliesi et al. 2004) and NBA (Bugliesi et al. 2005), and those in

Castagna et al. (2005) and Merro and Sassone (2002), an ambient can communicate with

its parent ambient (the host ambient) or with a child ambient (an ambient it contains), and

there may also be local communication between the processes within an ambient. In typed

ambient calculi, communication is controlled by types, and the type of information being

exchanged is often called the topic of conversation (TOC). For example, if an ambient

sends the number 3 to its parent, we can say that the TOC is Int.

Migration, entering or exiting an ambient, changes the parent of an ambient. Existing

typed mobile ambient calculi fix a TOC for communication with the parent for each

ambient, and the TOC remains fixed even if migration changes the parent.

For example, consider Figure 1, where host 1 needs to send data to host 2. host 1

does not know where host 2 is located, but it knows the location (addr) of a router

that can forward to host 2 the packet (pkt) containing the data. Assuming this, host 1

spawns the packet and forwards the data to be transported along with the location of the

router (Fig. 1(a)). Next, the packet moves inside the router, where it obtains the route to

host 2 (Fig. 1(b)). Finally, using that route, the packet reaches host 2 and delivers data

(Fig. 1(c)).

Note that the pkt ambient uses three different TOCs with its three different parents

(that is, host 1, router and host 2). In order to implement this example in calculi

where each ambient has a fixed type for parent communication, additional messenger

ambients are needed to encode the communication with the different parents, using an

auxiliary messenger ambient for each communication type. The use of these messenger

ambients may lead to an overpopulation of ambients that makes the design of systems

both error-prone and more difficult to understand.

The type systems of almost all ambient calculi assume that the communication

behaviour of any ambient is known globally. This means that every ambient knows

exactly what the communication types (that is, TOCs) of the rest of the ambients are.

This assumption greatly simplifies reasoning with ambients; however, for distributed

systems, this kind of global knowledge is not realistic. A more faithful model would allow

each ambient to carry its own local view of its surroundings. Furthermore, in a mobile

setting, such local views would be updateable, given that processes expand their local

views as they move about.
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In this paper we introduce BACI, a new mobile ambient calculus where each ambient

carries a communication interface specifying how an ambient may interact with the

environment. The design of BACI was driven by the desire to lift the restriction of

a fixed TOC with parents, by allowing an ambient to change the TOC when changing

parents and enabling the straightforward design of ambients that need to exchange

information of different types with different ambients.

Moreover, BACI tackles the problem of describing the behaviour of systems that have

local information regarding the usage of the communication channels. In BACI, each

ambient is provided with its own local view of the communication behaviour of the rest

of the system. This design provides both more flexibility and a framework that is closer

to the implementation of distributed systems.

1.1. Ports and names

Communication with a child ambient is often labelled with the ambient’s name (named

communication). For example:

n[[[ 〈3〉↓m | m[[[ · · · ]]] | · · · ]]] (ambient n wants to send 3 to its child m) .

However, in communication with a parent, the name is often left implicit, since the parent

can be uniquely determined by the location of an ambient.

n[[[ m[[[ 〈3〉↑ | · · · ]]] | · · · ]]] (ambient m wants to send 3 to its parent n) .

In order to allow different TOCs with different parents along with local typing information,

BACI introduces named communication with parents and the use of communication ports.

A natural choice, which is used in most ambient calculi, is to use ambient names to

identify communication with ambients. However, in a setting with local typing information,

this can be problematic: an ambient name that is received as a message might be used

to reference the ambient’s communication in a way that contradicts the local typing

information. In the example

〈m〉↓n | n[[[(x)↑.〈3〉↓x | 〈p〉↓m | m[[[ · · · ]]] ]]]

−→
n[[[〈3〉↓m | 〈p〉↓m | m[[[ · · · ]]] ]]] ,

when the message containing the name m is transmitted down to the ambient n, the

variable x is replaced by m in the expression 〈3〉↓x. If the local information in ambient n

dictates that the communication type with child ambient m is not Int (that is, m expects

ambient names from its parent), this substitution produces an inconsistency with the

typing assumptions of n and a potential type mismatch in the communication between n

and m.

Therefore, in order to gain control over communication, we introduce the concept of a

communication port: each ambient is locally associated (in addition to its ambient name)

with a communication port. In this way, the communication ports are used to exchange

information, and the ambient names are kept purely for migration.
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In this framework, an ambient n with communication port cn is written n[[[cn‖ · · · ]]]. For

example:

n[[[cn‖ · · · | m[[[cm‖ 〈3〉↑cn ]]] | · · · ]]] (ambient m wants to send 3 to parent port cn).

Communication and mobility are decoupled: an ambient’s name denotes a location and

an ambient’s port denotes its unique communication channel. Notice that any combination

of ports and ambient names is possible. This allows us to have non-determinism

independently in either communication or mobility if, for instance, two ambients have the

same port or the same name, respectively. Two ambients denoting different locations (that

is, with different names) are indistinguishable from the communications point of view if

they have the same port name.

The introduction of communication ports naturally leads us to associate TOCs with

ports rather than, as usual, with ambient names. As we suggested earlier, there is no

global knowledge of this association: each ambient has its local view, which associates

communication ports with its communication behaviour. Moreover, local views can

increase dynamically with relocation.

An ambient n with port cn and local view Γ is written n[[[ Γ ‖ cn ‖ · · · ]]]. So, our last

example becomes

n[[[ {· · · , Int↓cm} ‖ cn ‖ · · · | m[[[ {· · · , Int↑cn} ‖ cm ‖ 〈3〉↑cn | · · · ]]] ]]] .

In summary, each ambient in BACI comes equipped with its own local communication

interface. A communication interface consists of:

— a communication port to exchange information with other ambients; and

— a local view associating topics of conversation to parent and children ports.

These two new ingredients allow

— different TOCs with different parents, and

— different TOCs with different children,

while sharing the same ambient name. Neither of these features is supported in any other

BA calculus. Moreover, we will see in Subsection 1.3 that, when an ambient enters another

ambient, they can exchange their port names, enriching in this way both their local views.

For example, in the expression

m[[[ {Int↓cn} ‖ cm ‖ (x : Int)↓cn .P | n[[[ {Int↑cm} ‖ cn ‖ 〈3〉↑cm ]]] ]]] ,

the ambient m has local view {Int↓cn} and communication port cm, while the ambient n has

local view {Int↑cm} and communication port cn. Here, n sends the integer 3 to its parent

port cm. Similarly, m reads a message x from the port cn of its child ambient n. The local

views of each participating ambient guarantee that the type of the message expected by m

and the type of the value sent by n are compatible. In this example, since the local views

are compatible (they both want to communicate information of type Int, and the channel

names match), communication can take place without a risk of a type mismatch:

m[[[ {Int↓cn} ‖ cm ‖ (x : Int)↓cn .P | n[[[ {Int↑cm} ‖ cn ‖ 〈3〉↑cm ]]] ]]]

−→
m[[[ {Int↓cn} ‖ cm ‖P {x := 3} | n[[[ {Int↑cm} ‖ cn ‖ 0 ]]] ]]] .
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After this communication has been performed, x becomes 3 in P , and the input prefix

(x : Int)↓cn and the output 〈3〉↑cm are consumed.

1.2. Local interfaces

As in other ambient calculi (Giovannetti 2003), different ambients in BACI may share

the same ambient name, but, additionally, in BACI the same port name may also be

used by different ambients. BACI not only allows an ambient to have any arbitrary port

name associated with it, but also allows ambients with the same port name and the same

ambient name to have different local views. For example, the two ambients

p[[[ {Int↓cn} ‖ cp ‖ (x : Int)↓cn .P ]]] | p[[[ {cap↓cn} ‖ cp ‖ (x : cap)↓cn .Q ]]]

both have the name p and port cp, but differ in their local views.

Moreover, BACI can type the following example, which in statically typed calculi with

global typing information would be rejected by the type-checker:

n[[[{Int↑cp}‖ cn ‖ in p.〈3〉↑cp ]]] | p[[[{Int↓cn}‖ cp ‖ (x : Int)↓cn .P ]]] | p[[[{cap↓cn}‖ cp ‖ (x : cap)↓cn .Q ]]] .

In this example, ambient n wants to enter ambient p; however, there are two different

ambients called p and only one of them can receive the 3 that n wants to send. The

reason this example would be rejected in other calculi is that ambients p have different

types (one declaring that it can communicate an Int and the other declaring that it can

communicate a capability, cap), contradicting the fact that names, such as p, have a

unique type associated with them in a global environment. The local typing information

in BACI’s ambients will allow n to enter only the ambient p that can receive the 3 that n

wants to send.

In all the variants of ambient calculi considered in Giovannetti (2003), ambient n could

enter either of the ambients named p, because those ambients would necessarily have the

same type. However, since BACI allows different types for ambients with the same name,

it only allows entry to the ambient that expects an Int, preventing a type mismatch during

communication – we will illustrate this feature with an example in Subsection 3.2.

1.3. Knowledge acquisition

When an ambient enters another ambient, the host and the entering ambients can exchange

their communication ports and establish a TOC between them. This is accomplished by

sibling ambients using the actions inC(v: ϕ̃)m and inC(u : ϕ̃), where m is the destination

ambient, ϕ̃ is the topic of conversation, and the variables v and u are formal parameters

for the communication ports of the destination and entering ambients. For example,

n[[[ � ‖ cn ‖ inC(v: cap)m.〈in p〉↑v ]]] | m[[[ � ‖ cm ‖ inC(u : cap).(x : cap)↓u.x ]]]

−→
m[[[ {{cap↓cn}} ‖ cm ‖ n[[[ {{cap↑cm}} ‖ cn ‖ 〈in p〉↑cm ]]] | (x : cap)↓cn .x ]]]

−→
m[[[ {{cap↓cn}} ‖ cm ‖ n[[[ {{cap↑cm}} ‖ cn ‖ 0 ]]] | in p ]]] .
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At first, both ambients have no knowledge about each other’s ports because their local

views are empty. However, when n enters m, the ambients exchange their ports and they

replace the port variables v and u bound by inC and inC with the actual port names

cm and cn. During the exchange, the local views are also updated, reflecting the fact

that the processes inside the ambients will communicate using those newly identified port

names.

1.4. Related work

Modelling the world wide web requires a notion of process at a given location and a

location space where processes can move from one location to another. In the earliest

proposals, such as the Dπ-calculus (Hennessy and Riely 2002) and the language Klaim

(De Nicola et al. 1998), the structure of locations is flat. The Mobile Ambient (MA)

calculus (Cardelli and Gordon 2000) deals with a hierarchical structure of locations

called ambients. An interesting core model generalising many of the available calculi and

languages has been developed within the Mikado project (Boudol 2003).

Many variants of MA have been designed: see Giovannetti (2003) for a tutorial. A

crucial choice to be made in all these calculi is the form of interaction between processes

in different ambients. In the original calculus (Cardelli and Gordon 2000), interaction

is only local to an ambient; therefore, in order for processes in different ambients to

communicate, at least one of the ambients’ boundaries has to be dissolved. In Cardelli

and Gordon (2000), Amtoft et al. (2001), Bugliesi and Castagna (2002), Merro and

Hennessy (2006) and Levi and Sangiorgi (2003), the open capability dissolves the ambient

boundary.

The calculus M3 (Coppo et al. 2003; Coppo et al. 2004) allows general process mobility.

In Boxed Ambients (BA) (Merro and Sassone 2002; Bugliesi et al. 2004; Bugliesi et al.

2005), parents and children can communicate as in the Seal calculus (Castagna et al.

2005). Our calculus, BACI, follows this last protocol.

The co-actions (which were first introduced in Levi and Sangiorgi (2003), and then

used with modifications in Bugliesi and Castagna (2002), Merro and Hennessy (2006),

Merro and Sassone (2002) and Bugliesi et al. (2005)) require the agreement of the

‘passive’ ambients involved in mobility. The co-actions of BACI, in which port names

are communicated, were inspired by those of Bugliesi et al. (2005), though there the

communication only involves the name of the entering ambient.

Ambient calculi are often typed: the types assure behavioural properties concerning

communication, mobility, resource access, security, and so on (Cardelli et al. 2002;

Amtoft et al. 2001; Bugliesi and Castagna 2002; Merro and Hennessy 2006; Merro

and Sassone 2002; Levi and Sangiorgi 2003; Barbanera et al. 2003; Bugliesi et al. 2004;

Lhoussaine and Sassone 2004; Bugliesi et al. 2005). To our knowledge, before BACI,

only the calculi of Hennessy and Riely (2003), Bugliesi and Castagna (2002), Coppo

et al. (2004) and Coppo et al. (2005) consider type information local to ambients, while

in the other proposals there is a global environment containing all typing assumptions.

When dealing with computing in wide area ‘open’ systems it is sensible to assume

the existence of different local environments. The price to pay is that static checks
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are no longer enough to assure correctness: we now need to carry typing information

at run time. Following ideas from Goguen (1995), Goguen (1999) and Hennessy and

Riely (2003), we define an operational semantics with types, which is simpler than a fully-

fledged typed operational semantics in the sense that we only need to check agreement

between the local views upon mobility. In both BACI and the calculus of Hennessy

and Riely (2003) mobility is constrained by type-checking: the difference is that while

in Hennessy and Riely (2003) a whole process must be type checked in order to see if

it agrees with the view (called a filter) of the destination location, BACI only compares

the types of the ports in the local views of the moving and destination ambients. To

reduce the need for type-checking, Hennessy and Riely (2003) introduces the notion

of trust between locations: processes originating at trusted locations need not be type

checked.

In some sense, the run-time checking of BACI can be seen as a special case of proof

carrying code (Necula 1997), since an ambient can be seen as mobile code that carries

typing information to enable or disable mobility.

The local type information in BACI can dynamically increase with ambient movements:

this is inspired by the mechanisms of knowledge acquisition for the Dπ-calculus considered

in Hennessy et al. (2004).

The flexibility of sub-typing alone (see, for example, Zimmer (2000) and Merro and

Sassone (2002)) does not allow different TOCs with different parents and with children

sharing the same ambient name, or an increase in the type information.

Behavioural types (Amtoft et al. 2001; Amtoft et al. 2004) resemble computational traces

in allowing polymorphic communications. BACI’s communication interfaces are also a

permissive tool for typing non-local communications. In Amtoft et al. (2004), the type

of communication with the parent changes when communication takes place. However,

there is no named communication with the parent, making it impossible to express

the fact that communication with different parents has different types, as in our last

example.

In Section 4 we will discuss the behaviour of BACI processes by introducing a labelled

transition system, which, essentially, follows Merro and Hennessy (2006), Coppo et

al. (2003) and Bugliesi et al. (2005).

BACI was extended in Garralda and Compagnoni (2005) by the addition of multiple

ports and port restriction. Furthermore, BACI provided the motivation for BACIR , a

mobile ambient calculus with distributed role-based access control (Compagnoni and

Gunter 2005). Finally, Garralda et al. (2006) presents BASS, which is an extension of

BACI with safe sessions (Honda et al. 1998; Bonelli et al. 2005; Dezani-Ciancaglini et al.

2006).

1.5. Organisation of the paper

Section 2 introduces the syntax of the calculus, its operational semantics, and the type

system. Section 3 discusses two extended examples highlighting the features of BACI.

Section 4 studies a reduction barbed congruence and a labelled transition system (LTS).

The bisimilarity induced by the LTS is shown to be sound with respect to the congruence,
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Table 1. Syntax of BACI

Basic types

ϕ ::= amb ambient

| cap capability

Located types

τ ::= (ϕ1, . . . , ϕk)
η

Names

α, β ::= n name constant

| x name variable

(Co)-Capabilities

C,D ::= in α enter

| out α exit

| in allow enter

| out allow exit

| C.D path

| x capability variable

Prefixes

π ::= C capabilities

| (x1 : ϕ1, . . . , xk : ϕk)
η input

| 〈M1, . . . ,Mk〉η output

| inC(v:ϕ1, . . . , ϕk)α port enter

| outC(v:ϕ1, . . . , ϕk)α port exit

| inC(v : ϕ1, . . . , ϕk) allow port enter

| outC(v : ϕ1, . . . , ϕk) allow port exit

Communication types

ρ ::= shh no exchange

| (ϕ1, . . . , ϕk) exchange tuple

Local view

Γ ::= � empty

| Γ, τ interface

Ports

γ ::= c port constant

| v port variable

Locations

η ::= ↑γ parent port γ

| ↓γ child port γ

| 	 local

Messages

M,N ::= α name

| C capability

Pre-processes

P ::= 0 nil process

| π.P prefixing

| P1 | P2 composition

| α[[[ Γ ‖ c ‖P ]]] ambient

| !π.P guarded replication

| (νννn)P restriction

and some congruence laws are identified. Finally, we present conclusions and suggest

further research.

Most of the technical proofs are included in the Appendices. An extended abstract

of this work was presented at MFCS 2004 (Bonelli et al. 2004). We have improved the

syntax with respect to that earlier presentation, and include all the technical proofs that

were omitted from the earlier work due to space restrictions.

2. The calculus

2.1. Syntax of BACI

The syntax for types and terms of BACI is given in Table 1.

Types

BACI has two basic types: the type amb of ambient names and the type cap of capabilities.

Communication types are the types of information being exchanged: shh denotes the

absence of communication (no information exchange), and (ϕ1, . . . , ϕk) is the type of a

tuple of messages. Located types are communication types decorated with locations, of

the form (ϕ1, . . . , ϕk)
η , where the location η can be 	 for local communication, ↓γ for

communication with a child port, or ↑γ for communication with a parent port.
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Terms

We assume two disjoint denumerable sets of variables: one for ambient name, capability

and message variables, which are ranged over by x, y, z, . . .; the other for port variables,

which are ranged over by v, u, . . .. We use m, n, o, p, q . . . for ambient name constants and

x, y, z, . . . for ambient name variables, and use α, β to range over both ambient constants

and ambient variables. We use N for the set of ambient names. Communication port

constants are written c, cn, . . . and communication port variables are written v, u, . . ., and

we use γ to represent either a communication port constant or variable. The expressions

inC(v:ϕ1, . . . , ϕk)α, outC(v:ϕ1, . . . , ϕk)α, inC(v : ϕ1, . . . , ϕk), outC(v : ϕ1, . . . , ϕk) are binders

for v in prefixes and processes.

A pre-process is a process only if it is well formed according to the rules of Table 9.

Hence, process and well-formed process are synonyms.

The process 0 is the null process, P1 | P2 denotes the parallel composition of processes

P1 and P2, and (νννn)P is the usual restriction operator that binds all free occurrences of n

in P . The expression π.P denotes the process that performs an action or a co-action π and

then continues with P . The π action includes input/output (I/O) actions and mobility

actions. The I/O exchanges are directed upwards to the parent ambient, downwards

to a child ambient or locally to other processes at the same level. The direction of

each communication is determined by the superscript η. Only prefixed processes can be

replicated; as usual, the symbol ! denotes the replication operator. Replicated input in the

π-calculus has the same expressive power of full replication (Honda and Yoshida 1994)

and recursion (Milner 1993; Sangiorgi and Walker 2002). Moreover, prefixed replication

allows a simpler labelled transition, that is, the transition (lts Repl) of Table 15, as

discussed in Section 4. Finally, note that the proof of congruence of full bisimilarity

(Theorem 4.10) relies on this restriction.

Information is exchanged between processes by communicating tuples of messages.

Each message can be either an ambient name or a (co-)capability†. The ambient names

received as messages can substitute an ambient name variable in an ambient constructor

or in a capability. Capabilities and co-capabilities constitute the mobility actions and

co-actions: the capability in α allows an ambient to enter ambient α, and the capability

out α allows an ambient to exit ambient α. In order to be executed, each capability must

be matched at the destination ambient with a corresponding co-capability in or out. Both

capabilities and co-capabilities can be sent as messages. A single (co-)capability or several

(co-)capabilities forming a path may be sent.

In addition to these standard mobility actions and co-actions, BACI introduces the inC

and outC actions and their corresponding co-actions inC and outC. These actions and

co-actions are similar to the enter and exit (co-)capabilities. However, they also have a

port variable, which is bound at execution time with the port of the counterpart ambient

involved in the mobility action.

† It is easy to extend the types of messages to handle basic types such as integer or boolean without any

technical problems, but we shall not do so here for the sake of simplicity.
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Table 2. Structural congruence

!P ≡ P | !P (Struct Rep Par)

(νννn)(νννm)P ≡ (νννm)(νννn)P (Struct Res Res)

(νννn)(P | Q) ≡ P | (νννn)Q, if n /∈ fn(P ) (Struct Res Par)

(νννn)m[[[ Γm ‖ cm ‖P ]]] ≡ m[[[ Γm ‖ cm ‖ (νννn)P ]]], if n 
= m (Struct Res Amb)

(C.D).P ≡ C.D.P (Struct .)

Port names cannot be sent as messages; therefore, the only way of learning a port

name is by using the inC and outC actions with their co-actions. In their execution, the

ambients affected by this action exchange port names using the binders in these special

(co-)actions. Additionally, in order to retain typability, port variables have an associated

exchange tuple (ϕ1, . . . , ϕk).

An ambient is written α[[[ Γ ‖ c ‖P ]]], where: α is an ambient name constant or an ambient

name variable; Γ is the local view, a finite set of located types; c is the communication

port; and P is the enclosed process.

Each local view Γ can be seen as a function from locations to exchange tuples, so a

particular location cannot appear twice with different tuples in the same Γ.

A process is said to be closed if it does not contain any free variables. Processes differing

only in the names of their bound variables are considered equal. In the following, we

always consider well-formed processes unless we say explicitly otherwise.

Notation: We write ϕ̃ as a shorthand for (ϕ1, . . . , ϕk) and x̃ : ϕ̃ for (x1 : ϕ1, . . . , xk : ϕk).

If x̃ = (x1, . . . , xn) and M̃ = (M1, . . . ,Mn), we write P {x̃ := M̃} for the simultaneous

capture-free substitution of all free occurrences of xi by Mi, 1 � i � n. We extend this

notation to other syntactic constructs throughout the paper. We write fn(P ) for the set of

free ambient names in P , and fv(P ) for the set of free variables in P .

2.2. Operational semantics

The operational semantics is defined in terms of structural congruence and reduction

rules.

Structural congruence is the least congruence such that the set of processes is a

commutative monoid with respect to | , having 0 as its neutral element, and the axioms

of Table 2 are satisfied. This definition is standard and equates processes that should be

regarded as essentially the same from an operational point of view.

The reduction relation is given by three groups of rules: mobility, communication and

structural. The structural rules are standard. Before describing mobility and communica-

tion, we need the definitions presented in Tables 3 and 4.

The application Γ(η) of a local view Γ to a location η returns the exchange tuple

associated with η in Γ if there exists a corresponding located type in Γ. Otherwise, the

application returns shh, which means that the location has no associated type (that is,

the location does not occur in Γ).

The extension ⊕ of a local view Γ with a located type ϕ̃η has three possible outcomes:

— if η does not occur in Γ, it is the local view Γ, ϕ̃η obtained by adding ϕ̃η to Γ;
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Table 3. Operations on locations and local views

Application of local views to locations

Γ(η) =

{
ϕ̃ if ϕ̃η ∈ Γ,

shh otherwise.

Addition of located types to local views

Γ ⊕ ϕ̃η =

⎧⎪⎨
⎪⎩

Γ, ϕ̃η if Γ(η) = shh,

Γ if Γ(η) = ϕ̃,

undefined otherwise.

Preorder on communication types

ρ � ρ′ if, and only if ρ = ρ′ or ρ = shh

Table 4. Location substitution on processes

0{‡c/‡v} = 0

(P1 | P2){‡c/‡v} = P1{‡c/‡v} | P2{‡c/‡v}
((νννn)P ){‡c/‡v} = (νννn)(P {‡c/‡v})
(!P ){‡c/‡v} = !(P {‡c/‡v})
α[[[ Γα ‖ cα ‖P ]]]{‡c/‡v} = α[[[ Γα ‖ cα ‖P ]]]

((x̃ : ϕ̃)η .P ){‡c/‡v} = (x̃ : ϕ̃)η .(P {‡c/‡v}) if η 
= ‡v
((x̃ : ϕ̃)‡v .P ){‡c/‡v} = (x̃ : ϕ̃)‡c.(P {‡c/‡v})
(〈M̃〉η .P ){‡c/‡v} = 〈M̃〉η .(P {‡c/‡v}) if η 
= ‡v
(〈M̃〉‡v .P ){‡c/‡v} = 〈M̃〉‡c.(P {‡c/‡v})
(C.P ){‡c/‡v} = C.(P {‡c/‡v})
(in/outC(u: ϕ̃)α.P ){‡c/‡v} = in/outC(u: ϕ̃)α.(P {‡c/‡v}) if u 
= v

(in/outC(u : ϕ̃).P ){‡c/‡v} = in/outC(u : ϕ̃).(P {‡c/‡v}) if u 
= v

— if Γ does already contain ϕ̃η , then it is simply Γ; and

— it is undefined otherwise.

The set of communication types with the preorder � is the flat domain whose bottom

is shh.

Let ‡ ∈ {↑, ↓}. The location substitution on processes P {‡c/‡v} recursively replaces free

occurrences of the location ‡v with the location ‡c in all input and output prefixes except

across ambient boundaries. This requirement justifies the use of a different notation

for location substitutions compared with that used for message substitutions. We use

the convention of renaming the port variables bound in prefixes to ensure capture-free

substitutions. Note that Γ(η) and P {‡c/‡v} are always defined, while Γ ⊕ ϕ̃η may be

undefined.

The communication rules in Table 5 include three different message passing forms:

— local between two processes inside the same ambient,

— input from a process inside an ambient, and

— output to a process inside an ambient.

These rules are fairly standard; however, instead of using the ambient names to establish

communication, the processes involved in the communication use port names. In order

to engage in communication with a process at the immediate upper level, a process needs
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Table 5. Operational semantics (communication)

(Red-Local)

(x̃ : ϕ̃)	.P | 〈M̃〉	.Q −→ P {x̃ := M̃} | Q

(Red-Recv↓)

m[[[ Γm ‖ cm ‖ (x̃ : ϕ̃)↓cn .P | n[[[ Γn ‖ cn ‖ 〈M̃〉↑cm .Q | R ]]] | S ]]]

−→
m[[[ Γm ‖ cm ‖P {x̃ := M̃} | n[[[ Γn ‖ cn ‖Q | R ]]] | S ]]]

(Red-Send↓)

m[[[ Γm ‖ cm ‖ 〈M̃〉↓cn .P | n[[[ Γn ‖ cn ‖ (x̃ : ϕ̃)↑cm .Q | R ]]] | S ]]]

−→
m[[[ Γm ‖ cm ‖P | n[[[ Γ ‖ cn ‖Q{x̃ := M̃} | R ]]] | S ]]]

Table 6. Operational semantics (mobility)

(Red-Enter)

n[[[ Γn ‖ cn ‖ in m.P1 | P2 ]]] | m[[[ Γm ‖ cm ‖ in.Q1 | Q2 ]]]

−→
m[[[ Γm ‖ cm ‖ n[[[ Γn ‖ cn ‖P1 | P2 ]]] | Q1 | Q2 ]]]

if Γn(↑cm) � Γm(↓cn)

(Red-Exit)

p[[[ Γp ‖ cp ‖ n[[[ Γn ‖ cn ‖m[[[ Γm ‖ cm ‖ out n.P1 | P2 ]]] | Q ]]] | out.R1 | R2 ]]]

−→
p[[[ Γp ‖ cp ‖m[[[ Γm ‖ cm ‖P1 | P2 ]]] | n[[[ Γn ‖ cn ‖Q ]]] | R1 | R2 ]]]

if Γm(↑cp) � Γp(↓cm)

(Red-EnterC)

n[[[ Γn ‖ cn ‖ inC(v: ϕ̃)m.P1 | P2 ]]] | m[[[ Γm ‖ cm ‖ inC(u : ϕ̃).Q1 | Q2 ]]]

−→
m[[[ Γm ⊕ ϕ̃↓cn ‖ cm ‖ n[[[ Γn ⊕ ϕ̃↑cm ‖ cn ‖P1{↑cm/↑v} | P2 ]]] | Q1{↓cn/↓u} | Q2 ]]]

if Γm ⊕ ϕ̃↓cn and Γn ⊕ ϕ̃↑cmare defined

(Red-ExitC)

p[[[ Γp ‖ cp ‖ n[[[ Γn ‖ cn ‖m[[[ Γm ‖ cm ‖ outC(v: ϕ̃)n.P1 | P2 ]]] | Q ]]] | outC(u : ϕ̃).R1 | R2 ]]]

−→
p[[[ Γp ⊕ ϕ̃↓cm ‖ cp ‖m[[[ Γm ⊕ ϕ̃↑cp ‖ cm ‖P1{↑cp/↑v} | P2 ]]] | n[[[ Γn ‖ cn ‖Q ]]] | R1{↓cm/↓u} | R2 ]]]

if Γp ⊕ ϕ̃↓cm and Γm ⊕ ϕ̃↑cpare defined

to use the port name associated with its parent ambient. Similarly, if a process wants

to communicate with another process inside an ambient, it needs to use the port name

associated with the ambient.

As shown in Table 6, the mobility rules consist of two pairs of rules: the rules that

exercise the simple entry and exit capabilities, and the rules that use special primitives,

which are similar to capabilities, but which additionally establish a TOC and exchange

the port names associated with the ambients involved in the movement.
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Table 7. Operational semantics (structural)

(Red-Struct)

P ≡ P ′, P ′ −→ Q′, Q′ ≡ Q

P −→ Q

(Red-Par) P −→ Q =⇒ P | R −→ Q | R
(Red-Res) P −→ Q =⇒ (νννn)P −→ (νννn)Q

(Red-Amb) P −→ Q =⇒ n[[[ Γ ‖ c ‖P ]]] −→ n[[[ Γ ‖ c ‖Q ]]]

The rules (Red-Enter) and (Red-Exit) require that the local views of the moving

and destination ambients agree. This condition prevents type mismatch during possible

message exchanges, as we will show at the end of the present section.

Consider (Red-Enter), for instance. If the entering ambient n is willing to communicate

with the host ambient m using a type ϕ̃, the restriction Γn(↑cm) � Γm(↓cn) requires that

the processes inside m also use the type ϕ̃ when they are communicating with the location

↓cn. This restriction allows some flexibility: if the incoming ambient is silent with respect

to the communication with the host ambient, no restriction is really imposed on the local

view of the host ambient. In that case, there is no risk of type mismatch in future message

exchanges.

Note that the rule (Red-Exit) includes the outermost ambient p, which is the destination

for the moving ambient m. Including ambient p is necessary in order to compare the local

views of the ambients m and p. The destination ambient does not appear in the original

formulation (Bugliesi et al. 2004), but it does contain the exiting co-action in the calculi

of Merro and Hennessy (2006) and Teller et al. (2002).

After an ambient moves to a new location, the ambient can start communicating with

processes at the host ambient. However, the processes at both ends of the communication

must have prior knowledge of the communication port associated with that location.

In order to enable a process to learn dynamically the port name associated with the

location it is moving to, we introduce the inC, outC actions and the inC, outC co-actions.

As mentioned earlier, these action prefixes bind port variables. In both the rules (Red-

EnterC) and (Red-ExitC), the port names of the ambients involved in the movement are

exchanged: the moving ambient gets the port name associated with the destination and

the ambient that receives the moving ambient obtains the port associated with it. In this

way, the port variables bound by these prefixes are substituted by the corresponding port

names within the continuation processes.

The variables bound in these actions and co-actions have a communication type ϕ̃.

This is the type that the continuation process is expecting on that port. Therefore, to

prevent type mismatches during communication, the types of the actions and co-actions

are required to be the same. After the reduction, the type of the process inside the

ambient affected by the movement may change, since new information was given to

their processes. Consequently, the local views need to be updated as well. The resulting

local views must not have any conflicting types. Therefore, we include a side condition

in the (Red-EnterC) and (Red-ExitC) rules to guarantee that updated local views are

defined.
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Table 8. Well-formed Messages

(amb)

n ∈ N

Σ � n : amb

(var)

Σ, x : ϕ � x : ϕ

(cocap)

C ∈ {in, out}

Σ � C : cap

(cap)

Σ � α : amb C ∈ {in α, out α}

Σ � C : cap

(cap−comp)

Σ � C : cap Σ � D : cap

Σ � C.D : cap

2.3. Typing rules

A typing environment, denoted by Σ, declares variables of type amb and cap.

Σ ::= � empty environment

| Σ, x : ϕ variable declaration

In the rest of the paper, we only consider typing environments that assign a unique type

to each variable in their domains. The typing rules define two judgements:

— Σ � M : ϕ, read ‘M is a well-formed message of type ϕ’; and

— Σ �c P : Γ, read ‘P is a well-formed process, assuming the local communication

interface of its host consists of the communication port c and of the local view Γ’.

The typing rules for the first judgement are given in Table 8.

The (amb) rule assigns to an ambient name the constant type amb rather than

a more informative type, as in the majority of systems (Giovannetti 2003). Indeed,

more informative types presuppose the availability of global information on the type of

ambients. In our setting, which is based on local views, the only assumption we make is

that we can identify an ambient name when we see one.

The (cap) and (cocap) rules are also simpler than in formulations based on global

knowledge of the communication types of ambients, since the control of message

exchanges enabled by movements is delegated to run time.

The (var) and (cap−comp) rules are standard.

The rules defining the judgement Σ �c P : Γ are given in Table 9.

The typing rule (Inact) says that, since 0 does not interact with its host, it may be

typed under a communication interface consisting of any port name c and any local view

Γ.

The rule for replication (Rep) is standard; however, the rule (Res) is not. Normally, the

name n together with its type is assumed to belong to the global context Σ, where it is

associated with a type expressing properties of processes that stay in ambients named n.

However, in our local setting, the only relevant information is that n is an ambient name,

that is, n ∈ N.

The rule for parallel composition (Comp) is also standard.
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Table 9. Well-formed processes

(Inact)

Σ �c 0 : Γ

(Rep)

Σ �c P : Γ

Σ �c !P : Γ

(Res)

Σ �c P : Γ n ∈ N

Σ �c (νννn)P : Γ

(Comp)

Σ �c P1 : Γ Σ �c P2 : Γ

Σ �c P1 | P2 : Γ

(Cap)

Σ � C : cap Σ �c P : Γ

Σ �c C.P : Γ

(CapC)

Σ �c P : Γ, ϕ̃↑v π ∈ {inC(v: ϕ̃)α, outC(v: ϕ̃)α} Σ � α : amb

Σ �c π.P : Γ

(coCapC)

Σ �c P : Γ, ϕ̃↓v π ∈ {inC(v : ϕ̃), outC(v : ϕ̃)}

Σ �c π.P : Γ

(Recv)

Σ, x1 : ϕ1, . . . , xk : ϕk �c P : Γ Γ(η) = (ϕ1, . . . , ϕk)

Σ �c (x1 : ϕ1, . . . , xk : ϕk)
η.P : Γ

(Send)

Σ �c P : Γ Σ � Mi : ϕi (1 � i � k) Γ(η) = (ϕ1, . . . , ϕk)

Σ �c 〈M1, . . . ,Mk〉η.P : Γ

(Amb)

Σ �c′ P : Γ′ Σ � α : amb Γ′(↑c) � Γ(↓c′) Γ′ is closed

Σ �c α[[[ Γ′ ‖ c′ ‖P ]]] : Γ

The typing rule (Cap) says that the only information given by capabilities is the fact

that they are capabilities. Since we rely purely on local information, we shall relegate the

correct use of capabilities to run time.

A process of the form inC(v: ρ)α.P is well formed under the assumption that the host

ambient has local view Γ only if P is well formed under the assumption that the host

ambient has local view Γ, ϕ̃↑v . In this way, we require that P is typed with a local view

where the parent port v has the type ϕ̃ associated with it.

The typing of the other prefixes mentioned in rules (CapC) and (coCapC) is similar.

The difference between these two rules is that in the first rule the process communicates
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with a new host ambient, while in the second it communicates with a newly entering child

ambient.

The rules (Recv) and (Send) require that the type of the information that is exchanged

together with its location must belong to the local view of the host ambient.

The (Amb) rule may be interpreted as follows. In order for α[[[ Γ′ ‖ c′ ‖P ]]] to be considered

a well-formed process under a host ambient whose communication interface consists of a

port c and a local view Γ, it must be the case that:

1 process P is well formed under a host ambient whose communication interface consists

of port c′ and local view Γ′;

2 α must be an ambient name or an ambient variable;

3 either α[[[ Γ′ ‖ c′ ‖P ]]] communicates with its host ambient using the same communication

type, or the ambient α does not engage in any communication with the host ambient

(condition Γ′(↑c) � Γ(↓c′));

4 no free port variables should occur in Γ′, that is, Γ′ should be closed.

The condition Γ′(↑c) � Γ(↓c′) guarantees that, in the local view of the host ambient,

there is a record of the communication types that child ambients use to communicate

with the host. This constraint must be enforced regardless of whether or not the processes

at the host ambient effectively communicate using the ports associated with the child

ambient. Observe that port variables on the processes inside ambients may be replaced

eventually by actual port names and the local view of the ambients will be updated

accordingly. If the local views of host ambients do not record all of the information about

the communication types used by any child ambient, some conflicts may arise after the

substitution of a port variable with a port name.

Consider the following example. If the condition in question is not enforced, the

pre-process (which is not a process!)

m[[[ � ‖ c ‖ inC(v1 : amb).〈q〉↓v1 | n[[[ {cap↑c} ‖ c′ ‖ (x : cap)↑c.x ]]] ]]]

could be well formed for any port, local view and typing assumptions. Notice that the

process in m does not use the location ↓c′: it is silent with respect to this port. However,

the child ambient n is willing to communicate with its current host exchanging messages

of type cap.

This pre-process is fine on its own. However, remember that the local views can be

altered after the application of the (Red-EnterC) or (Red-ExitC) rules. If we put the

previous process in parallel with the process

p[[[ � ‖ c′ ‖ inC(v2: amb)m.(x : amb)↑v2 ]]] ,

we can apply the rule (Red-EnterC) allowing the ambient p to enter ambient m resulting

in

m[[[ {amb↓c′ } ‖ c ‖ 〈q〉↓c′ | p[[[ {amb↑c} ‖ c′ ‖ (x : amb)↑c ]]] | n[[[ {cap↑c} ‖ c′ ‖ (x : cap)↑c.x ]]] ]]] .

Note that the pre-process inside m can now communicate with either p or n. This

particular situation has arisen because the entering ambient p has the port c′ associated

with it, which is the same port associated with the ambient n already inside m.

https://doi.org/10.1017/S0960129507006226 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006226


Boxed ambients with communication interfaces 603

If we do not annotate the local view of m with the communication type used by its

child ambient, we get the following expression, which is not a pre-process:

m[[[ {amb↓c′ } ‖ c ‖ p[[[ {amb↑c} ‖ c′ ‖ (x : amb)↑c ]]] | n[[[ {cap↑c} ‖ c′ ‖ q ]]] ]]] .

This arises because the name q can be wrongly communicated to ambient n after

applying rule (Red-Enter C) in the preprocess where a capability was expected.

The final condition for (Amb) requires that no port variables occur free in the local

view of an ambient. This condition agrees with the definition of location substitution on

processes (see Table 4). In fact, since the location substitution does not affect local views

inside nested ambients, a free variable would always remain free. Allowing free variables

in local views and propagating the location substitution inside nested ambients would

lead to inconsistencies. For instance, in the pre-process

m[[[ � ‖ c ‖ inC(v: amb)n.P ]]] | n[[[ � ‖ cn ‖ inC(u : amb).(p[[[ {cap↓u, amb↓c} ‖ c′ ‖Q ]]]) ]]] ,

the ambient m could enter ambient n thanks to the (Red-EnterC) rule (see Table 6),

which replaces the port variables in both ambients by the actual port names. The resulting

process would be

n[[[ Γn ‖ cn ‖m[[[ Γm ‖ c ‖P {↑cn/↑v} ]]] | p[[[ {cap↓c, amb↓c} ‖ c′ ‖Q{↓c/↓u} ]]] ]]]

where Γn = {amb↓c}, Γm = {amb↑cn}, and the local view of the ambient p is inconsistent.

The type system guarantees that communication inside ambients and across ambient

boundaries never leads to type mismatches. This is formalised in the following theorem.

Theorem 2.1 (Subject Reduction). If Σ �c P : Γ and P −→ Q, then Σ �c Q : Γ.

The proof of this theorem and supporting lemmas are included in Appendix A.

Finally, we want to prove formally that communication is safe, that is, no type mismatch

can occur during communication. To this end, we extend without modification the

reduction of processes to include pre-processes. Moreover, we add the constant Error

to the syntax of pre-processes, and add the reduction rule

P −→ Error

when one of the following conditions holds:

— P = (x̃ : ϕ̃)	.Q | 〈M̃〉	.R, and � � M̃ : ϕ̃;

— P = m[[[ Γm ‖ cm ‖ (x̃ : ϕ̃)↓cn .Q | n[[[ Γn ‖ cn ‖ 〈M̃〉↑cm .R | S ]]] | T ]]], and � � M̃ : ϕ̃;

— P = m[[[ Γm ‖ cm ‖ 〈M̃〉↓cn .Q | n[[[ Γn ‖ cn ‖ (x̃ : ϕ̃)↑cm .R | S ]]] | T ]]], and � � M̃ : ϕ̃;

— P = m[[[ Γm ‖ cm ‖ (x̃ : ϕ̃)η.Q | S ]]], and ϕ̃ 
= Γm(η);

— P = m[[[ Γm ‖ cm ‖ 〈M̃〉η.Q | S ]]], and � � M̃ : Γm(η);

— P = m[[[ Γm ‖ cm ‖ n[[[ Γn ‖ cn ‖Q ]]] | R ]]], and Γn(↑cm) 
� Γm(↓cn).

From the Subject Reduction Theorem we immediately get the following proposition.

Proposition 2.1. If P is a well-formed process and P −→ Q, then Q does not contain

Error.
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Clearly, for an arbitrary pre-process generated using the syntax of Table 1, it is easy to

check if it is well formed according to the typing rules of Tables 8 and 9. In other words,

there is no problem in writing a type checking algorithm for our calculus.

We think that it would not be sensible to infer the local views, since they express the

communication policies of ambients. For this reason, we do not see how to design a

reasonable type inference strategy for BACI.

3. Examples

In this section we sketch some examples to show the expressiveness of BACI. Before

doing so, we define the following auxiliary notation to make the examples easier to read:

α�[[[ Γ ‖ c ‖P ]]] � α[[[ Γ ‖ c ‖ !in | !out | P ]]].

This allows sibling and nested ambients of α to freely enter and exit. Note that α�

allows the entry of ambients that do not communicate with α and of ambients whose

communication port name is already known by α�. For the sake of clarity, we may omit

the type of input variables, since they can be obtained from the context.

3.1. Remote printer

In this example we represent two networks using ambients n1 and n2. Suppose the client

is located in network n1 and the printer in n2, and routing from network n1 to n2 is

also required. For simplicity, we place n1 and n2 at the same nesting level inside a larger

ambient, called inter . However, the locations n1 and n2 may be far from each other within

the nesting hierarchies.

INTERNET � inter�[[[ � ‖ c ‖ N1 | N2 ]]]

N1 � n1�[[[ � ‖ c1 ‖ CLIENT | ROUTER ]]]

N2 � n2�[[[ � ‖ c2 ‖ PRINTER ]]].

The idea is that the client sends a print job to PRINTER via ROUTER. A job ambient

should receive two parameters, data and printer name, from CLIENT after releasing the

job. After receiving the parameters, the job exits the client and enters ROUTER. There, it

receives the path to n2, where the printer is located. After reaching n2, the job enters the

printer and communicates the data to be printed:

JOB cl � job[[[ Γjob ‖ cj ‖ (d, p)↑ccl .out cl.in r1to2.(route)↑cr .route.in p.〈d〉↑cpr ]]]

where Γjob � {(data,amb)↑ccl , cap↑cr , data↑cpr}.
Notice that the job ambient is able to communicate with different parent ports using

different TOCs. Here, cj is the job’s port, ccl is the client’s port, cr is the router’s port and

cpr is the printer’s port.

CLIENT spawns the job and sends the data to be printed using the job ambient. Then,

the job is received by ROUTER, which communicates the route for reaching n2 to the

job. Finally, the job enters PRINTER and delivers its data:
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CLIENT � client1�[[[ {(data,amb)↓cj } ‖ ccl ‖ 〈(d1, printer1)〉↓cj | ! JOB client1 ]]]

ROUTER � r1to2�[[[ {cap↓cj } ‖ cr ‖ !〈(out r1to2.out n1.in n2)〉↓cj ]]]

PRINTER � printer1�[[[ {data↓cj } ‖ cpr ‖ ! (d)↓cj ]]].

Once it has delivered its data, the job ambient becomes inactive and useless. Using the

algebraic properties of Section 4.3, we can show (using ∼= to denote barbed congruence

as defined in Definition 4.3) that

job[[[ Γjob ‖ cj ‖ 0 ]]] ∼= 0 ,

and hence also that

printer1�[[[ {data↓cj } ‖ cpr ‖ ! (d : data)↓cj | job[[[ Γjob ‖ cj ‖ 0 ]]] ]]] ∼=

printer1�[[[ {data↓cj } ‖ cpr ‖ ! (d : data)↓cj ]]].

Then, all the ‘garbage’ ambients that accumulate inside the printer ambient can safely be

discarded.

3.2. Printer services

We assume now that the printer can accept different file formats: for instance, postscript

and proprietary formats. For each of these formats, we shall have a different type: we

shall use ps to denote postscript format and prop to denote proprietary format.

The printer should have two different threads: one for managing the requests in

postscript format and the other for managing the requests in proprietary format. After

receiving a request, each thread translates it to an internal format, denoted by the type

inter, which is understood by the printer drivers. After the printer receives data in inter

format from one if its threads, it proceeds to print that data:

PRINTER � printer�[[[ {inter↓cpr} ‖ cint ‖ ! (d : inter)↓cpr | PSTHREAD | PROPTHREAD ]]]

PSTHREAD � thread[[[ {inter↑cj , ps↓cj } ‖ cpr ‖ ! in .(x : ps)↓cj .〈 ps2inter(x)〉↑cint ]]]

PROPTHREAD � thread[[[ {inter↑cj , prop↓cj } ‖ cpr ‖ ! in .(x : prop)↓cj .〈 prop2inter(x)〉↑cint ]]].

Note that the only difference between the two threads is the kind of data they receive

from the printing job. This must be reflected in the local view of each thread. The TOC

between a printing job (that is, port cj) and the thread is either ps or prop depending on

the thread function.

Similarly, we shall allow two kinds of printing jobs: one for each format. For instance,

a postscript printing job would look like the process

PSJOB � job[[[ {ps↑cpr} ‖ cj ‖ in printer.in thread.〈data〉↑cpr ]]].

As with the threads in the printer, the two versions of printing jobs only differ in their

local views (and the type of data they are carrying). Also, the mobility path followed

by a job to reach a thread is the same. The typing information in the local views only

allows jobs with the same data format to enter a thread, that is, only postscript jobs are

allowed to enter the postscript thread and only jobs with data in the proprietary format

are allowed to enter the thread that specifically handles that format.
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Clearly, encoding a similar example in the original BA calculus (Bugliesi et al. 2004)

would be rather cumbersome.

3.3. File server cluster

This example represents some free download sites in which the user has a list of servers to

choose for his download. We require that every time a customer requests a file download,

the cluster designates one server from all the available servers in the cluster (that is, all

the servers that are not serving other clients) to serve that request. Additionally, we want

a cluster administrator to be able to execute some administrative operations like shutting

down or powering up any particular server. For this reason, we assign a unique and

distinctive name to each server. However, we use a common port name and interface for

all of them to allow the cluster to communicate with all of them:

CLUSTER � cluster�[[[ Γclu ‖ cclu ‖LOAD BAL | SRV1 | SRV2 ]]]

where Γclu � {(amb,filename)↓csrv}

LOAD BAL �!(inC(vcl : (amb,filename)).(clname, fn)↓vcl .〈clname, fn〉↓csrv ).

The cluster includes all the servers and the load balancing mechanism. This mechanism

allows a client to enter the cluster: the cluster receives the client’s request that it forwards

to any available server. Note that the cluster does not know the client’s communication

port in advance, and vice versa: they are learnt on the enter reduction, where the

port names replace the variables bound by inC and inC. Each server has two main

sub-processes: the service itself and the power management process. The SERVE process

receives the forwarded request from the cluster ambient, and then it responds by spawning

a messenger ambient called job. This job reaches the client and delivers the requested file.

Note that before receiving a request, SERVE waits for an ‘on’ message from the power

management ambient called pwr. The pwr ambient is used to inform the serving process

that the server is still on. We now show how to use this feature to ‘shut down’ a server:

SRVi � srvi�[[[ Γsrvi ‖ csrv ‖ !(on)↓cpwr .SERVE | PWR ]]]

where Γsrvi � {onMsg↓cpwr , (amb,filename)↑cclu}

SERVE � (clname, fname)↑cclu .JOB

JOB � job[[[ � ‖ cj ‖ out srvi.inC(v: data)clname.〈file(fname)〉↑v ]]]

PWR � pwr[[[ {onMsg↑csrv} ‖ cpwr ‖ !〈on〉↑csrv | in pwroff ]]].

The purpose of pwr is simple. If it is present inside a server, it enables the service by

continuously sending ‘on’ messages. However, if it is not present, the server is not able

to listen to or respond to a request. Therefore, in order to shut a server down, the

administrator should send a POWER OFF message to that server:

POWER OFF (s) � pwroff[[[ � ‖ cpoff ‖ in cluster.in s.in ]]].

The pwr ambient would be locked inside pwroff after entering that ambient. Once inside

pwroff, pwr is rendered inoperative. In fact, using algebraic properties we can show that

pwroff[[[ � ‖ cpoff ‖ pwr[[[ {onMsg↑csrv} ‖ cpwr ‖ !〈on〉↑csrv ]]] ]]] ∼= 0,

and get rid of these garbage ambients.
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Similarly, the administrator can restore the pwr ambient inside the server to ‘power on’

that server:

POWER ON (s) � pwron[[[ � ‖ cpon ‖ in cluster.in s.TURN ON ]]]

TURN ON � pwr[[[ {onMsg↑csrv} ‖ cpwr ‖ out pwron | !〈on〉↑csrv | in pwroff ]]].

Finally, we present a ‘generic’ client. The clients are generic in the sense that they do not

need to know any of the port names in advance, since all of them are learnt on execution.

The only requirement is that the client is well behaved and sends its own name in the

request. A malicious client could send a different name. However, this can only cause a

response to be lost or sent to the wrong client, which is unlikely since the malicious client

needs to guess a correct client name.

CLIENT � client�[[[ Γcl ‖ cclient ‖ inC(vclu: (amb,filename))cluster.

〈client, afilename〉↑vclu .inC(vj : data).(file)↓vj .P | Q ]]].

This is the basic structure of a client ambient. The port name can be changed without

restrictions. The local view Γcl and the processes P and Q are arbitrary but for the

restriction of not having conflicting types with the cluster and job ambients. The whole

configuration looks like

SYSTEM � ADMIN | CLUSTER | CLIENTS.

The ADMIN process could include processes like those in the power management and

the CLIENTS are also initially placed outside the cluster. As we have seen, they need to

enter the cluster to get served.

4. Behavioural semantics

In order to study the behavioural semantics of BACI, we define an intuitive notion of

barbed congruence (Milner and Sangiorgi 1992; Gordon and Cardelli 2003) based on the

unlabelled reduction semantics given in Tables 2, 5, 6 and 7. We then introduce a labelled

transition semantics inspired by Levi and Sangiorgi (2003), Merro and Hennessy (2006),

Bugliesi et al. (2005) and Coppo et al. (2003), and prove that it coincides with unlabelled

reduction. Finally, we define a notion of labelled bisimilarity and show that it is sound

with respect to barbed congruence. The immediate benefit is that the co-inductive nature

of bisimilarity can be exploited by putting its vast body of proof techniques to work

in order to reason about barbed congruence. Since BACI has co-capabilities and allows

parent-child communications, there are several reasonable choices of barbs, among which

we have

P↓1
(n) � P ≡ (νννm̃)(n[[[ Γn ‖ cn ‖ in.Q | R ]]] | S) (1)

P↓2
(n) � P ≡ (νννm̃)(n[[[ Γn ‖ cn ‖ inC(v : ϕ̃).Q | R ]]] | S) (2)

P↓3
(c,cn)

� P ≡ (νννm̃)(n[[[ Γn ‖ cn ‖ (x̃ : ϕ̃)↑c.Q | R ]]] | S) (3)

P↓4
(c,cn)

� P ≡ (νννm̃)(n[[[ Γn ‖ cn ‖ 〈M̃〉↑c.Q | R ]]] | S) (4)

provided that P is closed in all cases and n 
∈ m̃ in (1) and (2).
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When possible we will use P ↓1
Ξ as shorthand for P ↓1

(n), which we call a 1-barb, and

similarly for the other barbs. We write P ⇓i
Ξ (with i ∈ [1 . . . 4]) if P � P ′ and P ′ ↓iΞ, where

� is the reflexive and transitive closure of −→.

For each i ∈ [1 . . . 4], we define a reduction i-barbed congruence ∼=i between processes,

which takes into account the i-barbs. We require ∼=i to be the largest equivalence relation

that is preserved by typed contexts, and when restricted to closed processes it is reduction

closed and i-barb preserving.

Definition 4.1. For i ∈ [1 . . . 4],
•≈i-barbed bisimilarity is the largest symmetric relation,

•≈i,

such that whenever P
•≈iQ:

— P ↓iΞ implies Q⇓i
Ξ;

— P −→ P ′ implies Q � Q′ for some P ′ •≈iQ
′.

A typing environment Θ extends an environment Σ if Σ is a subset of Θ.

Definition 4.2 ({Φ, d,∆}/{Σ, c,Γ}-context). Let Φ, Σ be typing environments, d, c be port

names and ∆, Γ be local views. We say that a context C[·] is a ({Φ, d,∆}/{Σ, c,Γ})-context

if Φ �d C[·] : ∆ is a valid type judgement when the hole [·] of C[·] is considered as a

process and the following typing rule for [·] is added to the rules in Table 9:

({Σ, c,Γ}-hole)

Θ extends Σ

Θ �c [·] : Γ

Definition 4.3 (Barbed congruence). Let i ∈ [1 . . . 4]. Two processes P ,Q are i-barbed

congruent (P ∼=i Q) if, for each typing environment Σ, port name c and local view Γ such

that Σ �c P : Γ and Σ �c Q : Γ, if C[·] is an arbitrary {Φ, d,∆}/{Σ, c,Γ}-context, we have

that C[P ]
•≈iC[Q].

As expected, the four congruences coincide, so we can denote barbed congruence for

BACI simply by ∼=.

Theorem 4.4 (Independence from barbs). ∼=i = ∼=j for all i, j ∈ [1 . . . 4].

Proof. The proof is by showing that the barbs imply each other by constructing, in

each case, a context that relates two different barbs. The complete proof is deferred to

Appendix B.

4.1. Labelled transition semantics

This section presents a labelled transition semantics (LTS) and proves that it coincides with

reduction. It is the first step towards a characterisation of reduction barbed congruence

in terms of labelled bisimulation. The LTS is given in Tables 11–15. These tables define

the labelled transition relation

P
ξ−−−−→ O

where

— P is a closed process,
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Table 10. Labels and outcomes

Labels ξ ::= (M̃)η | 〈−〉η | get(M̃, c, c′) | put(c, c′) | pre-comm(c)

| in n | out n | in | out | in(c : ρ, c′)n | out(c : ρ, c′)n
| [[[ Γ ‖ c ‖ in n ]]] | pop(c : ρ, c′) | pre-exit(c : ρ, c′)
| inC(c : ϕ̃)n | outC(c : ϕ̃)n | inC(c : ϕ̃) | outC(cm : ϕ̃)

| inC(c : ϕ̃, c′)n | outC(c : ϕ̃, c′)n
| [[[ Γ ‖ c ‖ inC(c′ : ϕ̃)n ]]] | popC(c : ϕ̃, c′) | pre-exitC(c : ϕ̃, c′)
| τ

Concretions K ::= (νννp̃)〈〈P 〉〉Q | (νννp̃)〈〈M̃〉〉P

Outcomes O ::= P | K

Table 11. Commitments: visible transitions (communication)

(lts Send)

〈M̃〉η .P
〈−〉η
−−−→ 〈〈M̃〉〉 P

(lts Recv)

(x̃ : ϕ̃)η .P
(M̃)η

−−−→ P {x̃ := M̃}

(lts Get)

P
(M̃)↑cn
−−−−→ P ′

m[[[ Γm ‖ cm ‖P ]]]
get(M̃,cn,cm)
−−−−−−−→ m[[[ Γm ‖ cm ‖P ′ ]]]

(lts Put)

P
〈−〉↑cn
−−−→ (νννp̃)〈〈M̃〉〉P ′ m 
∈ p̃

m[[[ Γm ‖ cm ‖P ]]]
put(cn,cm)
−−−−−−→ (νννp̃)〈〈M̃〉〉m[[[ Γm ‖ cm ‖P ′ ]]]

(lts pre-Comm-Get)

P
〈−〉↓cm
−−−−→ (νννp̃)〈〈M̃〉〉P ′

Q
get(M̃,cn,cm)
−−−−−−−→ Q′ fn(Q) ∩ p̃ = �

P | Q
pre-comm(cn)−−−−−−−−→ (νννp̃)(P ′ | Q′)

(lts pre-Comm-Put)

P
put(cn,cm)
−−−−−−→ (νννp̃)〈〈M̃〉〉P ′

Q
(M̃)↓cm
−−−−→ Q′ fn(Q) ∩ p̃ = �

P | Q
pre-comm(cn)−−−−−−−−→ (νννp̃)(P ′ | Q′)

— ξ is a label that encodes the interaction between P and the environment, and

— O is an ‘outcome’ resulting from that interaction.

Labels and outcomes are defined in Table 10.

An outcome may be a process P or a concretion (νννp̃)〈〈P 〉〉Q. Concretions are required

to deal with transitions of components of the system that need to interact with the

environment to be completed. Indeed, they prove convenient for formulating the silent

transitions. In the concretion (νννp̃)〈〈P 〉〉Q, the process P is part of the system that interacts

with the environment. For example, to complete an in n transition, the sibling ambient that

hosts the entering one must be requested from the context. Similarly, in the concretion

(νννp̃)〈〈M̃〉〉Q, the message M̃ is the part of the system that interacts with the environment.

This outcome is required only for the case of the transition for message output. In both
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Table 12. Commitments: visible transitions (mobility without port exchanges)

(lts Cap)

ζ ∈ {in, out}

ζ n.P
ζn−→ P

(lts coCap)

ζ ∈ {in, out}

ζ .P
ζ−→ P

(lts In-Out)

ζ ∈ {in, out} P
ζn−→ P ′ Γm(↑c) = ρ

m[[[ Γm ‖ cm ‖P ]]]
ζ(c : ρ,cm)n
−−−−−−→ 〈〈m[[[ Γm ‖ cm ‖P ′ ]]]〉〉 0

(lts coIn)

P
in−→ P ′

n[[[ Γn ‖ cn ‖P ]]]
[[[ Γn ‖ cn ‖ in n ]]]
−−−−−−−−→ 〈〈P ′〉〉 0

(lts Pop)

P
out(c : ρ,cm)n
−−−−−−−→ (νννp̃)〈〈P ′〉〉Q

n[[[ Γn ‖ cn ‖P ]]]
pop(c : ρ,cm)
−−−−−−−→ (νννp̃)(n[[[ Γn ‖ cn ‖Q ]]] | P ′)

(lts pre-Exit)

P
pop(c : ρ,cm)
−−−−−−−→ P ′ Q

out−−→ Q′

P | Q
pre-exit(c : ρ,cm)
−−−−−−−−−−→ P ′ | Q′

Table 13. Commitments: visible transitions (mobility with port exchanges)

(lts CapC)

ζ ∈ {inC, outC}

ζ(v: ϕ̃)n.P
ζ(c : ϕ̃)n
−−−−−→ P {↑c/↑v}

(lts In-OutC)

ζ ∈ {inC, outC} P
ζ(c : ϕ̃)n
−−−−−→ P ′

Γ′
m = Γm ⊕ ϕ̃↑c is defined

m[[[ Γm ‖ cm ‖P ]]]
ζ(c : ϕ̃,cm)n
−−−−−−→ 〈〈m[[[ Γ′

m ‖ cm ‖P ′ ]]]〉〉 0

(lts coCapC)

ζ ∈ {inC, outC}

ζ(v : ϕ̃).P
ζ(cm : ϕ̃)
−−−−−→ P {↓cm/↓v}

(lts coInC)

P
inC(cm : ϕ̃)
−−−−−−→ P ′ Γn ⊕ ϕ̃↓cm is defined

n[[[ Γn ‖ cn ‖P ]]]
[[[ Γn ‖ cn ‖ inC(cm : ϕ̃)n ]]]
−−−−−−−−−−−−−→ 〈〈P ′〉〉 0

(lts pre-ExitC)

P
popC(c : ϕ̃,cm)
−−−−−−−−→ P ′

Q
outC(cm : ϕ̃)
−−−−−−−→ Q′

P | Q
pre-exitC(c : ϕ̃,cm)
−−−−−−−−−−−→ P ′ | Q′

(lts PopC)

P
outC(c : ϕ̃,cm)n
−−−−−−−−→ (νννp̃)〈〈P ′〉〉Q

n[[[ Γn ‖ cn ‖P ]]]
popC(c : ϕ̃,cm)
−−−−−−−−→ (νννp̃)(n[[[ Γn ‖ cn ‖Q ]]] | P ′)

cases, Q represents the remaining part of the process that is not affected by the transition.

The transitions are inspired by those of Bugliesi et al. (2005) and Coppo et al. (2003).

The τ transitions for message exchanges are (lts τ-LocalComm) for local exchange and

(lts τ-Comm-↓) for non-local exchange. Rule (lts τ-Comm-↓) uses the label pre-comm

generated by rules (lts pre-Comm-Get) and (lts pre-Comm-Put). In (lts pre-Comm-Get),

the directed input action towards the child ambient must be met by a corresponding output

action from the child. In (lts pre-Comm-Put), the input and output roles are exchanged.

The τ transitions for mobility are (lts τ-Enter), (lts τ-EnterC), (lts τ-Exit) and

(lts τ-ExitC). Since these are similar in spirit, we shall confine our discussion to (lts

τ-EnterC). Rule (lts τ-EnterC) is in charge of synchronising two actions, namely the

request by an ambient to enter a host ambient with the action witnessing the approval (by

means of an appropriate co-action) on the part of the host ambient. Therefore, the label
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Table 14. Commitments: τ transitions

(lts τ-LocalComm)

P
〈−〉	
−−−→ (νννp̃)〈〈M̃〉〉P ′

Q
(M̃)	

−−−→ Q′ fn(Q) ∩ p̃ = �

P | Q τ−→ (νννp̃)(P ′ | Q′)

(lts τ-Comm-↓)

P
pre-comm(cn)−−−−−−−−→ P ′

n[[[ Γn ‖ cn ‖P ]]]
τ−→ n[[[ Γn ‖ cn ‖P ′ ]]]

(lts τ-Enter)

P
in(cn : ρ,cm)n
−−−−−−−→ (νννp̃)〈〈Pm〉〉P ′

Q
[[[ Γn ‖ cn ‖ in n ]]]
−−−−−−−−−→ (νννq̃)〈〈Qn〉〉Q′

fn(P ) ∩ q̃ = fn(Q) ∩ p̃ = p̃ ∩ q̃ = �
ρ � Γn(↓cm)

P | Q τ−→ (νννp̃, q̃)(n[[[ Γn ‖ cn ‖Qn | Pm ]]] | P ′ | Q′)

(lts τ-Exit)

P
pre-exit(cp : ρ,cm)
−−−−−−−−−−→ P ′

ρ � Γp(↓cm)

p[[[ Γp ‖ cp ‖P ]]]
τ−→ p[[[ Γp ‖ cp ‖P ′ ]]]

(lts τ-EnterC)

P
inC(cn : ϕ̃,cm)n
−−−−−−−−→ (νννp̃)〈〈Pm〉〉P ′

Q
[[[ Γn ‖ cn ‖ inC(cm : ϕ̃)n ]]]
−−−−−−−−−−−−−→ (νννq̃)〈〈Qn〉〉Q′

fn(P ) ∩ q̃ = fn(Q) ∩ p̃ = p̃ ∩ q̃ = �

P | Q τ−→ (νννp̃, q̃)(n[[[ Γn ⊕ ϕ̃↓cm ‖ cn ‖Qn | Pm ]]] | P ′ | Q′)

(lts τ-ExitC)

P
pre-exitC(cp : ϕ̃,cm)
−−−−−−−−−−−→ P ′

Γ′
p = Γp ⊕ ϕ̃↓cm is defined

p[[[ Γp ‖ cp ‖P ]]]
τ−→ p[[[ Γ′

p ‖ cp ‖P ′ ]]]

Table 15. Commitments: structural transitions

(lts Par)

P
ζ−→ O

P | Q ζ−→ O | Q

(lts Path)

C.(D.P )
ζ−→ P ′

(C.D).P
ζ−→ P ′

(lts Res)

P
ζ−→ O ñ ∩ fn(ζ) = �

(νννñ)P
ζ−→ (νννñ)O

(lts Amb)

P
τ−→ P ′

n[[[ Γn ‖ cn ‖P ]]]
τ−→ n[[[ Γn ‖ cn ‖P ′ ]]]

(lts Repl)

π.P
ζ−→ O

!π.P
ζ−→ O | !π.P

of the first action is inC(cn : ϕ̃, cm)n, while that of the second is [[[ Γn ‖ cn ‖ inC(cm : ϕ̃)n ]]]. The

former records the communication ports of both the moving and destination ambients,

their topic of conversation and the name of the destination ambient. The latter gives the

same information plus the local view Γn of the destination ambient to which we add ϕ̃↓cm .

We know that Γn ⊕ ϕ̃↓cm is defined by rule (lts coInC). The process that actually moves

is represented by Pm in the concretion resulting from the first action, while Qn represents

the process that runs alongside the visiting ambient. The processes P ′ and Q′ are the

sub-components of P and Q that do not participate in the movement. A third premise of

the rule guarantees that free ambient names are not erroneously captured by the name

restrictions on the conclusion of the rule.
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Note that the transition (lts Repl) is sound only because we do not allow full

replication. For example, the expression !n[[[ � ‖ cn ‖ in n | in ]]] is not a pre-process according

to the syntax of Table 1.

By comparing the notion of observability (cf. the definition of barbs) with rule (lts

coIn), one can easily see that a name is observable if and only if the action [[[ Γ ‖ c ‖ in n ]]]

can be performed. In particular, we have the following lemma.

Lemma 4.5. P ↓1
(n) if and only if P

[[[ Γn ‖ cn ‖ in n ]]]
−−−−−−−−→ O for some Γn, cn and O.

Proof. The proof of this lemma and its supporting lemmas are in Appendix C.

A similar observation applies to rules (lts coInC), (lts Get), (lts Put) and the

observability of co-in with port exchanges or of pairs of port names (cf. barbs (2), (3) and

(4) at the start of Section 4). Thanks to Theorem 4.4, we need only consider one notion

of barb.

As expected, unlabelled reduction and labelled reduction coincide.

Theorem 4.6. Let P be closed.

1 If P
τ−−−→ P ′, then P −→ P ′.

2 If P −→ P ′, then P
τ−−−→ Q and Q ≡ P ′ for some Q.

Proof. The proof of the first statement is by induction on the transition rules. For the

second statement, the proof is by induction on the reduction rules. See Appendix D for

the proof of this theorem.

4.2. Full bisimilarity and its soundness

This section defines a notion of labelled bisimilarity and shows that it is sound with

respect to reduction barbed congruence. Labelled bisimilarity requires checking when two

processes produce equal observable actions. The problem is that the current definition

of labelled reduction may produce a concretion instead of a process. This situation is

remedied by introducing higher-order (HO) transitions (Merro and Hennessy 2006) for

those labelled transitions of Tables 11–13 that produce a concretion as an outcome.

The HO-transitions are given in Tables 16–18. In these transitions we use richer labels

obtained by adding to some of the previous labels ξ a new component (prefixed by �),

which can have one of the following three shapes:

— P ;

— [[[ Γ ‖ c ‖P ]]];

— n[[[ Γ ‖ c ‖P ]]] | Q.

This component describes the minimum contribution of the context necessary to fire the

transition. For example, in rule (HO Out) the context must provide the three components

(local view, port and process) of the ambient n from which the process Pm exits and in

which the process P ′ remains.
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Table 16. Commitments: higher-order transitions (communication)

(HO Send 	-↓)

P
〈−〉η
−−−→ (νννp̃)〈〈M̃〉〉P ′

η ∈ {{	, ↓c′}}
fn(Q) ∩ p̃ = �

fv(Q) ⊆ x̃

P
〈−〉η�Q
−−−−→ (νννp̃)(P ′ | Q{x̃ := M̃})

(HO Send
↑
)

P
〈−〉↑c
−−−→ (νννp̃)〈〈M̃〉〉P ′

(fn(Q) ∪ fn(R) ∪ {{m}}) ∩ p̃ = �
fv(Q) ⊆ x̃

fv(R) ∩ x̃ = �

P
〈−〉↑c�m[[[ Γm ‖ cm ‖R ]]] | Q
−−−−−−−−−−−−−−−→ (νννp̃)(m[[[ Γm ‖ cm ‖P ′ | R ]]] | Q{x̃ := M̃})

(HO Put)

P
put(cn,cm)
−−−−−−→ (νννq̃)〈〈M̃〉〉P ′ fn(Q) ∩ p̃ = �

fv(Q) ⊆ x̃

P
put(cn,cm)�Q
−−−−−−−→ (νννq̃)(P ′ | Q{x̃ := M̃})

Table 17. Commitments: higher-order transitions (mobility without port exchanges)

(HO In)

P
in(cn : ρ,cm)n
−−−−−−−→ (νννp̃)〈〈Pm〉〉P ′ fn(Q) ∩ p̃ = �

P
in(cn : ρ,cm)n�[[[ Γn ‖ cn ‖Q ]]]
−−−−−−−−−−−−−−−→ (νννp̃)(n[[[ Γn ‖ cn ‖Pm | Q ]]] | P ′)

(HO Out)

P
out(cq : ρ,cm)n
−−−−−−−−→ (νννp̃)〈〈Pm〉〉P ′ fn(Q) ∩ p̃ = �

P
out(cq : ρ,cm)n�[[[ Γn ‖ cn ‖Q ]]]
−−−−−−−−−−−−−−−−→ (νννp̃)(Pm | n[[[ Γn ‖ cn ‖P ′ | Q ]]])

(HO Co-In)

P
[[[ Γn ‖ cn ‖ in n ]]]
−−−−−−−−→ (νννp̃)〈〈P1〉〉P2 fn(Qm) ∩ p̃ = �

P
[[[ Γn ‖ cn ‖ in n ]]]�Qm−−−−−−−−−−−→ (νννp̃)(n[[[ Γn ‖ cn ‖P1 | Qm ]]] | P2)

Since we always consider well-formed processes, in the higher-order labels we only

allow processes, port names and local views to ensure that the processes obtained by the

transition are well formed.

For HO transitions we get the following version of Lemma 4.5.

Lemma 4.7. P ↓1
(n) if and only if P

[[[ Γ ‖ c ‖ in n ]]]�Q
−−−−−−−−→ P ′ for some Γ, c, Q and P ′.

Proof. The proof is straightforward by inspecting the higher-order transitions and

Lemma 4.5.
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Table 18. Commitments: higher-order transitions (mobility with port exchanges)

(HO InC)

P
inC(cn : ϕ̃,cm)n
−−−−−−−−→ (νννp̃)〈〈Pm〉〉P ′ fn(Q) ∩ p̃ = �

P
inC(cn : ϕ̃,cm)n�[[[ Γn ‖ cn ‖Q ]]]
−−−−−−−−−−−−−−−−→ (νννp̃)(n[[[ Γn ‖ cn ‖Pm | Q ]]] | P ′)

(HO OutC)

P
outC(cq : ϕ̃,cm)n
−−−−−−−−−→ (νννp̃)〈〈Pm〉〉P ′ fn(Q) ∩ p̃ = �

P
outC(cq : ϕ̃,cm)n�[[[ Γn ‖ cn ‖Q ]]]
−−−−−−−−−−−−−−−−−→ (νννp̃)(Pm | n[[[ Γn ‖ cn ‖P ′ | Q ]]])

(HO Co-InC)

P
[[[ Γn ‖ cn ‖ inC(cm : ϕ̃)n ]]]
−−−−−−−−−−−−−→ (νννp̃)〈〈P1〉〉P2 fn(Qm) ∩ p̃ = �

P
[[[ Γn ‖ cn ‖ inC(cm : ϕ̃)n ]]]�Qm−−−−−−−−−−−−−−−−→ (νννp̃)(n[[[ Γn ‖ cn ‖P1 | Qm ]]] | P2)

We use Λ to denote the set of labels that includes both the first-order labels defined in

Table 10, and the HO labels of Tables 16–18. In the following, we let λ range over Λ and

=⇒ denote the reflexive and transitive closure of
τ−→. We adopt the following notation:

1
λ

=⇒ denotes =⇒ λ−→=⇒.

2
λ̂

=⇒ denotes =⇒ if λ = τ, and
λ

=⇒ otherwise.

As a final step towards defining bisimilarity, we adapt the notion of a typed relation to

our setting. A typed relation R is a set of pairs of the form (P ;Q) where P and Q are two

closed processes such that � �c P : Γ implies � �c Q : Γ for any c, Γ and vice versa. We

use the notation PRQ when (P ;Q) ∈ R.

Definition 4.8 (Bisimilarity).

1 A symmetric typed relation R over closed processes is a bisimulation if PRQ and

P
λ−→ P ′ imply that there exists Q′ such that:

— Q
λ̂

=⇒ Q′; and

— P ′RQ′.

2 We say that two closed processes P and Q are bisimilar, written P ≈ Q, if PRQ for

some bisimulation R.

Since variables in processes can only stand for ambient names, port names or (co)-

capabilities, we can immediately define closing substitutions that respect types.

The definition of bisimulation is extended to arbitrary processes as usual.

Definition 4.9 (Full bisimilarity). Two processes P and Q are fully bisimilar, written P ≈c Q,

if Ps ≈ Qs for every closing substitution s that respects types.

Following the proof scheme of Bugliesi et al. (2005) and Merro and Hennessy (2006),

we can show that full bisimilarity is preserved by context.
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Theorem 4.10. Full bisimilarity is a congruence.

Proof. See Appendix E.

Finally, we prove that ≈c is contained in ∼=, as desired.

Theorem 4.11 (Soundness of full bisimilarity). If P ≈c Q, then P ∼= Q.

Proof. See Appendix F.

We conjecture the incompleteness of ≈c for the same reason as the authors of Bugliesi

et al. (2005) conjecture the incompleteness of the full bisimilarity arising from a similar

LTS for NBA, namely the difficulty of finding a context that discriminates the label 〈M̃〉↑c.

We also conjecture that an LTS for BACI inducing a complete full bisimilarity could be

developed by following the approach of (Bugliesi et al. 2005).

4.3. Algebraic laws

This section presents some algebraic laws that give a better account of the semantics

of processes in BACI. These and other laws can be proved by means of the labelled

bisimilarity developed in the previous subsections.

The laws holding in BACI that deal with mobility are very similar to those true for the

NBA calculus (Bugliesi et al. 2005), so we will not discuss them further here.

Instead, BACI’s refined treatment of communication using port names allows us to

get quite interesting laws concerning input–output. For example, an ambient that is only

willing to communicate with its father, but using a ‘wrong’ port name, is dead, that is, we

have the following garbage collection laws:

n[[[ Γn ‖ cn ‖m[[[ Γm ‖ cm ‖ (x̃ : ϕ̃)↑c.P ]]] | Q ]]] ∼= n[[[ Γn ‖ cn ‖Q ]]]

n[[[ Γn ‖ cn ‖m[[[ Γm ‖ cm ‖ 〈M̃〉↑c.P ]]] | Q ]]] ∼= n[[[ Γn ‖ cn ‖Q ]]] .

In NBA, a parent–child communication can be forced only if the processes involved in

the communication are the only active processes inside both ambients. In BACI, however,

there can be other active processes provided they do not know the port name of the

communication partner and some ambient names do not occur in some processes or they

are restricted. The conditions on port names avoid interfering communications, and the

conditions on ambient names avoid interfering movements. More precisely, we have the

following.

If cm does not occur in S , and hence no process in S can communicate with a process

inside the ambient m,

(νννn)(n[[[ Γn ‖ cn ‖m[[[ Γm ‖ cm ‖ 〈M̃〉↑cn .P ]]] | (x̃ : ϕ̃)↓cm .Q | S ]]])

∼=
(νννn)(n[[[ Γn ‖ cn ‖m[[[ Γm ‖ cm ‖P ]]] | Q{x̃ := M̃} | S ]]])

https://doi.org/10.1017/S0960129507006226 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006226


P. Garralda, E. Bonelli, A. Compagnoni and M. Dezani-Ciancaglini 616

and

(νννn)(n[[[ Γn ‖ cn ‖m[[[ Γm ‖ cm ‖ (x̃ : ϕ̃)↑cn .P ]]] | 〈M̃〉↓cm .Q | S ]]])

∼=
(νννn)(n[[[ Γn ‖ cn ‖m[[[ Γm ‖ cm ‖P {x̃ := M̃} ]]] | Q | S ]]]).

If cn and n do not occur in R,

n[[[ Γn ‖ cn ‖ (νννm)(m[[[ Γm ‖ cm ‖ 〈M̃〉↑cn .P | R ]]]) | (x̃ : ϕ̃)↓cm .Q ]]]

∼=
(νννm)(n[[[ Γn ‖ cn ‖m[[[ Γm ‖ cm ‖P | R ]]] | Q{x̃ := M̃} ]]])

and

n[[[ Γn ‖ cn ‖ (νννm)(m[[[ Γm ‖ cm ‖ (x̃ : ϕ̃)↑cn .P | R ]]]) | 〈M̃〉↓cm .Q ]]]

∼=
n[[[ Γn ‖ cn ‖ (νννm)(m[[[ Γm ‖ cm ‖P {x̃ := M̃} | R ]]] | Q ]]]).

If R contains a process that could communicate with a process inside the ambient n,

this process would contain cn. If R contains a process that could take ambient m out of

ambient n, this process would contain n.

Note that in the following group of equivalences, R cannot contain m, since if it did,

an ambient inside R could exit m and communicate the port name cm to the process S .

If cm does not occur in S , and cn, n, m do not occur in R, then

(νννn)(n[[[ Γn ‖ cn ‖ (νννm)(m[[[ Γm ‖ cm ‖ 〈M̃〉↑cn .P | R ]]]) | (x̃ : ϕ̃)↓cm .Q | S ]]])

∼=
(νννn)(νννm)(n[[[ Γn ‖ cn ‖m[[[ Γm ‖ cm ‖P | R ]]] | Q{x̃ := M̃} | S ]]])

and

(νννn)(n[[[ Γn ‖ cn ‖ (νννm)(m[[[ Γm ‖ cm ‖ (x̃ : ϕ̃)↑cn .P | R ]]]) | 〈M̃〉↓cm .Q | S ]]])

∼=
(νννn)(n[[[ Γn ‖ cn ‖ (νννm)(m[[[ Γm ‖ cm ‖P {x̃ := M̃} | R ]]]) | Q | S ]]]) .

Each law can be proved by exhibiting the bisimulation {(LHS, RHS)} ∪ I, where LHS

and RHS denote the left- and right-hand sides of the equation and I is the identity.

5. Conclusions

We have presented a typed calculus of mobile ambients that features both local and

dynamic typing. Each ambient comes equipped with a local communication interface

consisting of a communication port and a local view indicating the type of information that

may be exchanged over parent and child ports. In addition to the usual communication

within an ambient, messages may be exchanged across ambient boundaries. The type

system guarantees that in this case the types of the local ports of the sending and

receiving ambients agree. Since communication interfaces are local and ambients may

migrate, ambients must be able to increase their local knowledge of their surroundings.

Therefore, the mobility rules allow an ambient to learn the communication type of the
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local port of the ambient that it enters. Appropriate run-time checks are required so that

the entering and host ambients agree on a topic of conversation. Among the novel aspects

of BACI are:

— Communicating ports. In contrast with previous ambient calculi, BACI uses names for

mobility and ports for communication.
— Named communication with parents. In previous calculi communication with a parent

was decided by the location of an ambient, but in BACI the communication with a

parent is indexed by the parent’s port, in a way similar to that in which communication

with a child is usually indexed. This new named communication allows an ambient to

communicate with different parents at different types.
— Finer control of non-determinism. The division between names and ports introduces the

ability to have non-determinism for mobility and determinism for communication and

vice versa, while in previous calculi this was not possible.
— Local typing. Having different TOCs with different parents allows us to control which

parent can exchange information, while in previous calculi the type of a communication

with the parent remained fixed.

Although communication control is local, this is not the case for mobility. Mobility

is currently unrestricted, which poses the question of whether one might also include,

in the local knowledge of an ambient, some indication of whether the ambient is

allowed to move. Among the possible enhancements for BACI are the inclusion of

access control mechanisms to regulate mobility and the extension of BACI’s type system

with correspondence assertions to describe more complex protocols for port use.

Appendix A. Subject Reduction (Theorem 2.1)

Table A gives the full definition of structural congruence. We start with some preliminary

lemmas.

Lemma A.1 (Subject congruence).

(1) If Σ �c P : Γ and P ≡ Q, then Σ �c Q : Γ.

(2) If Σ �c Q : Γ and P ≡ Q, then Σ �c P : Γ.

Proof. The proof is by simultaneous induction on the derivations of Σ �c P : Γ and

Σ �c Q : Γ. Stating the lemma in its two parts allows us to deal easily with the case of

rule (Struct Symm). The other inductive cases are immediate by induction, so we will just

focus on the interesting base cases.

(Struct Rep Par)

(1) The derivation of Σ �c P : Γ ends in

Σ �c R : Γ

Σ �c!R : Γ
(Rep)

We may derive

Σ �c R : Γ

Σ �c R : Γ

Σ �c!R : Γ
(Rep)

Σ �c R | !R : Γ
(Comp)
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Table A. Structural congruence (full definition)

P ≡ P (Struct Refl)

P ≡ Q =⇒ Q ≡ P (Struct Symm)

P ≡ Q,Q ≡ R =⇒ P ≡ R (Struct Trans)

P ≡ Q =⇒ (νννn)P ≡ (νννn)Q (Struct Res)

P ≡ Q =⇒ P | R ≡ Q | R (Struct Par)

π.P ≡ π.Q =⇒ !π.P ≡!π.Q (Struct Rep)

P ≡ Q =⇒ n[[[ Γn ‖ cn ‖P ]]] ≡ n[[[ Γn ‖ cn ‖Q ]]] (Struct Amb)

P ≡ Q =⇒ π.P ≡ π.Q (Struct Prefix)

P | Q ≡ Q | P (Struct Par Comm)

(P | Q) | R ≡ P | (Q | R) (Struct Par Assoc)

!π.P ≡ π.P | !π.P (Struct Rep Par)

(νννn)(νννm)P ≡ (νννm)(νννn)P (Struct Res Res)

(νννn)(P | Q) ≡ P | (νννn)Q, if n /∈ fn(P ) (Struct Res Par)

(νννn)m[[[ Γm ‖ cm ‖P ]]] ≡ m[[[ Γm ‖ cm ‖ (νννn)P ]]], if n 
= m (Struct Res Amb)

P | 0 ≡ P (Struct Zero Par)

(νννn)0 ≡ 0 (Struct Zero Res)

(C.D).P ≡ C.D.P (Struct .)

(2) Note that a derivation of Σ �c R | !R : Γ includes, as a subderivation, a derivation

of Σ �c R : Γ.

(Struct Res Res)

(1) The derivation of Σ �c P : Γ ends in

Σ �c R : Γ

Σ �c (νννm)R : Γ
(Res)

Σ �c (νννn)(νννm)R : Γ
(Res)

Thus we derive

Σ �c R : Γ

Σ �c (νννn)R : Γ
(Res)

Σ �c (νννm)(νννn)R : Γ
(Res)

(Struct Res Par)

(1) The derivation of Σ �c P : Γ ends in

Σ �c R1 : Γ Σ �c R2 : Γ

Σ �c R1 | R2 : Γ
(Comp)

Σ �c (νννn)(R1 | R2) : Γ
(Res)
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We derive

Σ �c R1 : Γ

Σ �c R2 : Γ

Σ �c (νννn)R2 : Γ
(Res)

Σ �c R1 | (νννn)R2 : Γ
(Comp)

(Struct Res Amb)

(1) The derivation of Σ �c P : Γ ends in

Σ �cm R : Γm Σ � m : amb Γm(↑c) � Γ(↓cm) Γm is closed

Σ �c m[[[ Γm ‖ cm ‖R ]]] : Γ
(Amb)

Σ �c (νννn)m[[[ Γm ‖ cm ‖R ]]] : Γ
(Res)

We derive

Σ �cm R : Γm

Σ �cm (νννn)R : Γm
(Res)

Σ � m : amb Γm(↑c) � Γ(↓cm) Γm is closed

Σ �c m[[[ Γm ‖ cm ‖ (νννn)R ]]] : Γ
(Amb)

(Struct Zero Par)

(1) The derivation of Σ �c P : Γ ends in

Σ �c Q : Γ Σ �c 0 : Γ

Σ �c Q | 0 : Γ
(Comp)

and we already have as hypothesis a derivation of Σ �c Q : Γ.

(2) Suppose we have a derivation of Σ �c Q : Γ. Thus we may derive Σ �c P : Γ as

follows:

Σ �c Q : Γ Σ �c 0 : Γ
(Inact)

Σ �c Q | 0 : Γ
(Comp)

(Struct Zero Res)

(1) The derivation of Σ �c P : Γ ends in

Σ �c 0 : Γ
(Inact)

Σ �c (νννn)0 : Γ
(Res)

and we may conclude by taking the subderivation of Σ �c 0 : Γ.

We now generalise the definition of location substitution on processes given in Table 3

in two respects: we consider the simultaneous substitution of multiple locations on both

processes and local views. If σ is a substitution, σ{η1 �→ η2} denotes the substitution that

maps η1 to η2 and behaves like σ elsewhere.

Definition A.2 (tpl-substitution). We say that a location substitution σ is a type preserving

location substitution (tpl-substitution) from a local view Γ to the local view ∆ if

∀η.Γ(η) � ∆(ησ).
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Lemma A.3 (Location substitution). If we have

— σ is a tpl-substitution from Γ to ∆, and

— Σ �c P : Γ,

then Σ �c Pσ : ∆.

Proof. The proof is by structural induction on processes. It is easy to prove most cases

by applying the induction hypothesis on the premises of each rule. For the rules (Recv)

and (Send), observe that if Γ(η) = ϕ̃, then ∆(ησ) = ϕ̃.

For rule (Amb), note that location substitution does not go recursively inside the

ambient, but stops there instead. Therefore, the substitution does not change the original

process. Additionally, we get Γ′(↑c) � Γ(↓c′) � ∆(↓c′σ) = ∆(↓c′) (since, by definition,

location substitution never affects port names), so the ambient can also be typed with ∆.

The rule (CapC) applies for inC and outC prefixes. Both cases are analogous, so we will

just show the case inC. Therefore, we have the process inC(v: ϕ̃)α.P where (CapC)

(CapC)

Σ �c P : Γ, ϕ̃↑v Σ � α : amb

Σ �c inC(v: ϕ̃)α.P : Γ

Let ↑u be a fresh location. So, by construction, the substitution σ{↑u/↑v} is a tpl-

substitution from Γ, ϕ̃↑v to ∆, ϕ̃↑u. Now, by the induction hypothesis, we get

Σ �c Pσ{↑u/↑v} : ∆, ϕ̃↑u

and hence

Σ �c inC(u: ϕ̃)α.(Pσ{↑u/↑v}) : ∆

is derivable. Note that the equality

inC(u: ϕ̃)α.(Pσ{↑u/↑v}) = (inC(v: ϕ̃)α.P )σ

holds (due to α-equivalence), so the induction step follows.

Lemma A.4 (Local view subsumption). If Σ �c P : Γ and Γ ⊂ ∆, then Σ �c P : ∆.

Lemma A.5 (Weakening). If Σ �c P : Γ and Σ ⊂ Π, then Π �c P : Γ.

Definition A.6 (Variable substitution). We define the simultaneous substitution of name

and capability variables with messages by structural induction:

— For names

α{x̃ := M̃} =

{
Mi if α = xi

α otherwise.

— For capabilities

C{x̃ := M̃} =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

in (α{x̃ := M̃}) if C = in α

out (α{x̃ := M̃}) if C = out α

(D{x̃ := M̃}).(E{x̃ := M̃}) if C = D.E

Mi if C = xi

C otherwise.
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— For messages

M{x̃ := M̃} =

{
α{x̃ := M̃} if M = α

C{x̃ := M̃} if M = C.

— For processes

P {x̃ := M̃} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if P = 0

P1{x̃ := M̃} | P2{x̃ := M̃} if P = P1 | P2

(νννn)P1{x̃ := M̃} if P = (νννn)P1

and n 
∈ fn(M̃)

!(P1{x̃ := M̃}) if P =!P1

(ỹ : ϕ̃)η.(P1{x̃ := M̃}) if P = (ỹ : ϕ̃)η.P1

and (fv(M̃) ∪ x̃) ∩ ỹ = �

〈. . . ,Mi{x̃ := M̃}, . . .〉η.(P1{x̃ := M̃}) if P = 〈. . . ,Mi, . . .〉η.P1

(C{x̃ := M̃}).(P1{x̃ := M̃}) if P = C.P1

in/outC(v: ϕ̃)(α{x̃ := M̃}).P1{x̃ := M̃} if P = in/outC(v: ϕ̃)α.P1

in/outC(v : ϕ̃).P1{x̃ := M̃} if P = in/outC(v : ϕ̃).P1

α{x̃ := M̃}[[[ Γ ‖ c ‖P1{x̃ := M̃} ]]] if P = α[[[ Γ ‖ c ‖P1 ]]] .

Lemma A.7. Let Σ = Σ′, x1 : ϕ1, . . . , xk : ϕk and Σ′ � Mi : ϕi for i ∈ [1 . . . k].

1 If Σ � M ′ : ϕ′, then Σ′ � M ′{x̃ := M̃} : ϕ′.

2 if Σ �c P : Γ, then Σ′ �c P {x̃ := M̃} : Γ.

Proof. The proofs of both parts are by induction on the height of the derivation. We

will just consider two interesting cases:

(Amb)

Σ �c′ P : Γ′ Σ � α : amb Γ′(↑c) � Γ(↓c′) Γ′ is closed

Σ �c α[[[ Γ′ ‖ c′ ‖P ]]] : Γ
(Amb)

By the induction hypothesis, Σ′ �c′ P {x̃ := M̃} : Γ′ and Σ′ � α{x̃ := M̃} : amb hold.

Then, by (Amb) and the definition of substitution, we derive Σ′ �c α[[[ Γ′ ‖ c′ ‖P ]]]{x̃ :=

M̃} : Γ, and the induction step follows.

(Recv)

Σ, y1 : ϕ1, . . . , yk : ϕk �c P : Γ Γ(η) = (ϕ1, . . . , ϕk)

Σ �c (y1 : ϕ1, . . . , yk : ϕk)
η.P : Γ

(Recv)

By α-renaming, we can assume (fv(M̃) ∪ x̃) ∩ ỹ = �. By the induction hypothesis, we

derive

Σ′, y1 : ϕ1, . . . , yk : ϕk �c P {x̃ := M̃} : Γ ,

and hence by rule (Recv),

Σ′ �c (y1 : ϕ1, . . . , yk : ϕk)
η.(P {x̃ := M̃}) : Γ.

Finally, by the definition of substitution,

Σ′ �c ((y1 : ϕ1, . . . , yk : ϕk)
η.P ){x̃ := M̃} : Γ ,

and the induction step follows.
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We can now prove subject reduction.

Theorem 2.1 (Subject Reduction). If Σ �c P : Γ and P −→ Q, then Σ �c Q : Γ.

Proof. The proof is by induction on the definition of −→. The most interesting cases

are the base cases, as it is easy to prove the induction cases by applying Lemma A.1 and

the induction hypothesis.

Communication reductions are proved using Lemma A.7. We consider two paradigmatic

cases of movements.

(Red-Enter) We have

P −→ Q

with

P = n[[[ Γn ‖ cn ‖ in m.P1 | P2 ]]] | m[[[ Γm ‖ cm ‖ in.Q1 | Q2 ]]],

Q = m[[[ Γm ‖ cm ‖ n[[[ Γn ‖ cn ‖P1 | P2 ]]] | Q1 | Q2 ]]]

where Γn(↑cm) � Γm(↓cn).

For this reduction rule, the derivation of Σ �c P : Γ ends in

Σ �c n[[[ Γn ‖ cn ‖ in m.P1 | P2 ]]] : Γ Σ �c m[[[ Γm ‖ cm ‖ in.Q1 | Q2 ]]] : Γ

Σ �c n[[[ Γn ‖ cn ‖ in m.P1 | P2 ]]] | m[[[ Γm ‖ cm ‖ in.Q1 | Q2 ]]] : Γ
(Comp)

The derivations above end in

Σ �cn P1 : Γn

Σ �cn in m.P1 : Γn
(Cap)

Σ �cn P2 : Γn

Σ �cn in m.P1 | P2 : Γn

Σ � n : amb Γn(↑c) � Γ(↓cn) Γn is closed

(Comp)

Σ �c n[[[ Γn ‖ cn ‖ in m.P1 | P2 ]]] : Γ
(Amb)

and

Σ �cm Q1 : Γm

Σ �cm in.Q1 : Γm

(coCapC)

Σ �cm Q2 : Γm

Σ �cm in.Q1 | Q2 : Γm

Σ � m : amb Γm(↑c) � Γ(↓cm) Γm is closed

(Comp)

Σ �c m[[[ Γm ‖ cm ‖ in.Q1 | Q2 ]]] : Γ
(Amb)

respectively.

From the previous derivations and the hypothesis we obtain

Σ �cn P1 : Γn Σ �cn P2 : Γn

Σ �cn P1 | P2 : Γn

Σ � n : amb Γn(↑cm) � Γm(↓cn) Γn is closed

(Comp)

Σ �cm n[[[ Γn ‖ cn ‖P1 | P2 ]]] : Γm

(Amb)
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and
Σ �cm Q1 : Γm Σ �cm Q2 : Γm

Σ �cm Q1 | Q2 : Γm

(Comp)

Finally, composing these two derivations using (Comp) we get

Σ �cm n[[[ Γn ‖ cn ‖P1 | P2 ]]] : Γm

Σ �cm Q1 | Q2 : Γm

Σ �cm n[[[ Γn ‖ cn ‖P1 | P2 ]]] | Q1 | Q2 : Γm

Σ � m : amb Γm(↑c) � Γ(↓cm) Γm is closed

(Comp)

m[[[ Γm ‖ cm ‖ n[[[ Γn ‖ cn ‖P1 | P2 ]]] | Q1 | Q2 ]]]
(Amb)

and the induction step follows.

(Red-EnterC) We have

P −→ Q

where

P = n[[[ Γn ‖ cn ‖ inC(v: ϕ̃)m.P1 | P2 ]]] | m[[[ Γm ‖ cm ‖ inC(v′ : ϕ̃).Q1 | Q2 ]]],

Q = m[[[ Γm ⊕ ϕ̃↓cn ‖ cm ‖ n[[[ Γn ⊕ ϕ̃↑cm ‖ cn ‖P1{↑cm/↑v} | P2 ]]] | Q1{↓cn/↓v′} | Q2 ]]]

where Γm ⊕ ϕ̃↓cn and Γn ⊕ ϕ̃↑cm are defined.

For this reduction rule, the derivation of Σ �c P : Γ ends in

Σ �c n[[[ Γn ‖ cn ‖ inC(v: ϕ̃)m.P1 | P2 ]]] : Γ

Σ �c m[[[ Γm ‖ cm ‖ inC(v′ : ϕ̃).Q1 | Q2 ]]] : Γ

Σ �c n[[[ Γn ‖ cn ‖ inC(v: ϕ̃)m.P1 | P2 ]]] | m[[[ Γm ‖ cm ‖ inC(v′ : ϕ̃).Q1 | Q2 ]]] : Γ
(Comp)

The derivations above end in

Σ �cn P1 : Γn, ϕ̃
↑v

Σ �cn inC(v: ϕ̃)m.P1 : Γn
(CapC)

Σ �cn P2 : Γn

Σ �cn inC(v: ϕ̃)m.P1 | P2 : Γn

Σ � n : amb Γn(↑c) � Γ(↓cn) Γn is closed

(Comp)

Σ �c n[[[ Γn ‖ cn ‖ inC(v: ϕ̃)m.P1 | P2 ]]] : Γ
(Amb)

and

Σ �cm Q1 : Γm, ϕ̃
↓v′

Σ �cm inC(v′ : ϕ̃).Q1 : Γm

(coCapC)

Σ �cm Q2 : Γm

Σ �cm inC(v′ : ϕ̃).Q1 | Q2 : Γm

Σ � m : amb Γm(↑c) � Γ(↓cm) Γm is closed

(Comp)

Σ �c m[[[ Γm ‖ cm ‖ inC(v′ : ϕ̃).Q1 | Q2 ]]] : Γ
(Amb)

respectively.

Note that Γ′
m = Γm ⊕ ϕ̃↓cn and Γ′

n = Γn ⊕ ϕ̃↑cm are defined by hypothesis, and the

substitutions {↓cn/↓v′} and {↑cm/↑v} are tpl-substitutions from Γm, ϕ̃
↑v′

to Γ′
m and

from Γn, ϕ̃
↓v to Γ′

n, respectively.

https://doi.org/10.1017/S0960129507006226 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006226


P. Garralda, E. Bonelli, A. Compagnoni and M. Dezani-Ciancaglini 624

Applying Lemma A.3 to Σ �cn P1 : Γn, ϕ̃
↑v and Σ �cm Q1 : Γm, ϕ̃

↓v′
, respectively, and

Lemma A.4 to Σ �cn P2 : Γn and Σ �cm Q2 : Γm, respectively, we can derive

Σ �cn P1{↑cm/↑v} : Γn ⊕ ϕ̃↑cm Σ �cn P2 : Γn ⊕ ϕ̃↑cm

Σ �cn P1{↑cm/↑v} | P2 : Γn ⊕ ϕ̃↑cm

Σ � n : amb Γn(↑cm) ⊕ ϕ̃↑cm � Γm(↓cn) ⊕ ϕ̃↓cn Γn ⊕ ϕ̃↑cm is closed

(Comp)

Σ �cm n[[[ Γn ⊕ ϕ̃↑cm ‖ cn ‖P1{↑cm/↑v} | P2 ]]] : Γm ⊕ ϕ̃↓cn
(Amb)

and

Σ �cm Q1{↓cn/↓v′} : Γm ⊕ ϕ̃↓cn Σ �cm Q2 : Γm ⊕ ϕ̃↓cn

Σ �cm Q1{↓cn/↓v′} | Q2 : Γm ⊕ ϕ̃↓cn
(Comp)

Finally, composing these two derivations using (Comp), we get

Σ �cm n[[[ Γn ⊕ ϕ̃↑cm ‖ cn ‖P1{↑cm/↑v} | P2 ]]] : Γm ⊕ ϕ̃↓cn

Σ �cm Q1{↓cn/↓v′} | Q2 : Γm ⊕ ϕ̃↓cn

Σ �cm n[[[ Γn ⊕ϕ̃↑cm ‖ cn ‖P1{↑cm/↑v} | P2 ]]] |Q1{↓cn/↓v′} |Q2 : Γm ⊕ ϕ̃↓cn

Σ � m : amb Γm ⊕ ϕ̃↓cn (↑c) = Γm(↑c) � Γ(↓cm) Γm ⊕ ϕ̃↓cn is closed

(Comp)

m[[[ Γm ⊕ ϕ̃↓cn ‖ cm ‖ n[[[ Γn ⊕ ϕ̃↑cm ‖ cn ‖P1{↑cm/↑v} | P2 ]]] | Q1{↓cn/↓v′} | Q2 ]]]
(Amb)

Appendix B. Independence from barbs (Theorem 4.4)

Lemma B.1. If P is a well-formed process in the environment Σ, then for all c there exists

Γ such that Σ �c P : Γ.

Proof. We can build Γ by structural induction on P as the result of the map LV(Σ, P , c)

defined by:

LV(Σ, 0, c) = �

LV(Σ, P1 | P2, c) = LV(Σ, P1, c) ∪ LV(Σ, P2, c)

LV(Σ, (νννn)P ′, c) = LV(Σ, P ′, c)

LV(Σ, !P ′, c) = LV(Σ, P ′, c)

LV(Σ, π.P ′, c) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

LV(Σ, P ′, c) ∪ {ϕ̃η} if either π = (x̃ : ϕ̃)η

or π = 〈M̃〉η and Σ � M̃ : ϕ̃

LV(Σ, P ′, c) − {{ϕ̃↑v}} if either π = inC(v: ϕ̃)α

or π = outC(v: ϕ̃)α

LV(Σ, P ′, c) − {{ϕ̃↓v}} if either π = inC(v : ϕ̃)

or π = outC(v : ϕ̃)

LV(Σ, P ′, c) otherwise
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LV(Σ, α[[[ Γα ‖ cα ‖P ′ ]]], c) =

{
{ϕ̃↓cα} if Γα(↑c) = ϕ̃

� otherwise.

Note that, given Σ and M̃, there is a unique ϕ̃ such that Σ � M̃ : ϕ̃.

It is easy to verify that Σ �c P : LV(Σ, P , c), and that LV(Σ, P , c) ⊆ Γ′ for all Γ′ such

that Σ �c P : Γ′.

Theorem 4.4 (Independence from barbs). ∼=i = ∼=j for all i, j ∈ [1 . . . 4].

Proof. We need to show that all barbs imply each other. This can be accomplished, as

usual, by exhibiting a corresponding typed context.

Suppose we have to prove that ∼=i ⊆ ∼=j . We need to prove that if P∼=iQ, then P and Q

expose the same barbs of the form j.

Following the standard procedure, we prove that for each pair i 
= j ∈ [1 . . . 4] we can

build a context Ci,j[·] such that, if Ci,j[P ] is well formed, then Ci,j[P ] ⇓i
Ξ if and only if

P ⇓j
Ξ′ . The name exposed in the i barb must be a fresh name introduced by the context

Ci,j[·], so it cannot be exposed by the process P .

Next, we provide the details for each case:

— P ∼=1 Q =⇒ P ∼=2 Q

Assuming that P exposes the barb ↓2
(n), we need to show that Q exposes the barb ⇓2

(n).

To this end, we build the context

C2,1[·] � l[[[ � ‖ cl ‖ inC(v: ϕ̃)n.out n.in ]]] | [·] | out

where l is a fresh name and cl is arbitrary.

Note that for an arbitrary processes R, we have that C2,1[R] exposes the barb ⇓1
(l) if

and only if the process R allows ambient l to enter n with a inC(v: ϕ̃)n prefix. This

means that R exposes the barb ⇓2
(n) . Therefore, if C2,1[P ] ∼=1 C2,1[Q], then either they

both expose the barb⇓1
(l) or neither does, and hence, if P exposes the above barb, then

Q must also expose the same barb.

— P ∼=2 Q =⇒ P ∼=3 Q

Assuming that P exposes the barb ↓3
(c,cn)

, that Γ = LV(�, P , c) (the definition of

LV(�, P , c) is given in the proof of Lemma B.1) and that Γ(↓c) = ϕ̃, we build the

context

C3,2[·] � l[[[ Γ ‖ c ‖ 〈M̃〉↓cn .inC(v : amb) | [·] ]]]

where l is a fresh name, and � M̃ : ϕ̃. Note that each type in ϕ̃ must be either amb

or cap, so such an M̃ always exists.

— P ∼=3 Q =⇒ P ∼=4 Q

Assuming that P exposes the barb ↓4
(c,cn)

, that Γ = LV(�, P , c) and that Γ(↓c) = ϕ̃,

we build the context

C4,3[·] � l[[[ Γ′ ‖ c ‖ (x̃ : ϕ̃)↓cn .(y : amb)↑c′ | [·] ]]]

where Γ′ = {{Γ, amb↑c′ }} and l, c′ are fresh.
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— P ∼=4 Q =⇒ P ∼=1 Q

Assuming that P exposes the barb ↓1
(n), we build the context

C1,4[·] � l[[[ {{amb↑c}} ‖ cl ‖ in n.out n.〈l〉↑c ]]] | [·]

where l, c and cl are fresh.

Appendix C. Observability and the labelled transition system (Lemma 4.5)

We need to relate the structure of the processes and the outcomes in the LTS rules to the

labels of the visible transitions (Lemmas C.1–C.3). To this end, we extend the structural

congruence for processes to concretions by adding the following axioms and rules:

(Struct Concr P) P ≡ P ′ and Q ≡ Q′ =⇒ (νννp̃)〈〈P 〉〉Q ≡ (νννp̃)〈〈P ′〉〉Q′

(Struct Concr M) P ≡ P ′ =⇒ (νννp̃)〈〈M̃〉〉P ≡ (νννp̃)〈〈M̃〉〉P ′

(Struct ConcrNCommP) (νννr̃, p̃)〈〈P 〉〉Q ≡ (νννp̃, r̃)〈〈P 〉〉Q
(Struct ConcrNCommM) (νννr̃, p̃)〈〈M̃〉〉P ≡ (νννp̃, r̃)〈〈M̃〉〉P
(Struct ConcrNLeft) (νννp̃)〈〈P 〉〉Q ≡ 〈〈(νννp̃)P 〉〉 Q if p̃ ∩ fn(Q) = �
(Struct ConcrNRightP) (νννp̃)〈〈P 〉〉Q ≡ 〈〈P 〉〉 (νννp̃)Q if p̃ ∩ fn(P ) = �
(Struct ConcrNRightM) (νννp̃)〈〈M̃〉〉Q ≡ 〈〈M̃〉〉 (νννp̃)Q if p̃ ∩ fn(M̃) = �

We also use the following notational conventions:

— (νννq̃)((νννp̃)〈〈P 〉〉Q) is defined to be (νννq̃, p̃)〈〈P 〉〉Q,

— (νννq̃)((νννp̃)〈〈M〉〉P ) is defined to be (νννq̃, p̃)〈〈M〉〉P ,

— ((νννp̃)〈〈P 〉〉Q) | R is defined to be (νννp̃)〈〈P 〉〉(Q | R),

— ((νννp̃)〈〈M̃〉〉P ) | R is defined to be (νννp̃)〈〈M̃〉〉(P | R),

where fn(R) ∩ p̃ = � in the last two cases.

The proofs of the following three lemmas by induction on the LTS rules are standard.

Lemma C.1 (Structure of the processes on visible transitions – communication).

1 If P
(M̃)η

−−→ P ′, then for some ϕ̃, p̃, x̃, P1 and Q:
� M̃ : ϕ̃,

P ≡ (νννp̃)((x̃ : ϕ̃)η.P1 | Q)

and

P ′ ≡ (νννp̃)(P1{x̃ := M̃} | Q).

2 If P
〈−〉η
−−→ O, then for some M̃, ϕ̃, p̃, P1 and Q:

� M̃ : ϕ̃,

P ≡ (νννp̃)(〈M̃〉η.P1 | Q)

and

O ≡ (νννp̃)〈〈M̃〉〉P1 | Q.

3 If P
get(M̃,cn,cm)
−−−−−−→ P ′, then for some ϕ̃, p̃, m,Γm, x̃, P1, P2 and Q:

� M̃ : ϕ̃,

P ≡ (νννp̃)(m[[[ Γm ‖ cm ‖ (x̃ : ϕ̃)↑cn .P1 | P2 ]]] | Q)
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and

P ′ ≡ (νννp̃)(m[[[ Γm ‖ cm ‖P1{x̃ := M̃} | P2 ]]] | Q).

4 If P
put(cn,cm)
−−−−−→ O, then for some M̃, ϕ̃, p̃, m,Γm, P1, P2 and Q:

� M̃ : ϕ̃,

P ≡ (νννp̃)(m[[[ Γm ‖ cm ‖ 〈M̃〉↑cn .P1 | P2 ]]] | Q)

and

O ≡ (νννp̃)〈〈M̃〉〉m[[[ Γm ‖ cm ‖P1 | P2 ]]] | Q.

5 If P
pre-comm(cn)−−−−−−−→ P ′, then for some M̃, ϕ̃, p̃, m,Γm, cm, x̃, P1, P2, Q1 and Q2:

� M̃ : ϕ̃,

and either
P ≡ (νννp̃)(m[[[ Γm ‖ cm ‖ (x̃ : ϕ̃)↑cn .P1 | P2 ]]] | 〈M̃〉↓cm .Q1 | Q2)

and

P ′ ≡ (νννp̃)(m[[[ Γm ‖ cm ‖P1{x̃ := M̃} | P2 ]]] | Q1 | Q2)

or

P ≡ (νννp̃)(m[[[ Γm ‖ cm ‖ 〈M̃〉↑cn .P1 | P2 ]]] | (x̃ : ϕ̃)↓cm .Q1 | Q2)

and

P ′ ≡ (νννp̃)(m[[[ Γm ‖ cm ‖P1 | P2 ]]] | Q1{x̃ := M̃} | Q2).

Lemma C.2 (Structure of the processes on visible transitions – mobility without port

exchanges).

1 If P
ζ−→ P ′ where ζ ∈ {{in n, out n, in, out}}, then for some p̃, P1 and Q:

P ≡ (νννp̃)(ζ.P1 | Q),

P ′ ≡ (νννp̃)(P1 | Q)

and

n 
∈ p̃.

2 If P
ζ(c:ρ,cm)n
−−−−−→ O where ζ ∈ {{in , out }}, then for some p̃, m,Γm, P1, P2 and Q:

P ≡ (νννp̃)(m[[[ Γm ‖ cm ‖ ζ n.P1 | P2 ]]] | Q),

O ≡ (νννp̃)〈〈m[[[ Γm ‖ cm ‖P1 | P2 ]]]〉〉Q,

Γm(↑c) = ρ

and

n 
∈ p̃.

3 If P
[[[ Γn ‖ cn ‖ in n ]]]
−−−−−−−→ O, then for some p̃, P1, P2 and Q:

P ≡ (νννp̃)(n[[[ Γn ‖ cn ‖ in.P1 | P2 ]]] | Q),

O ≡ (νννp̃)〈〈P1 | P2〉〉Q
and

n 
∈ p̃.

4 If P
pop(c:ρ,cm)
−−−−−−→ P ′, then for some p̃, n,Γn, cn, m,Γm, P1, P2, Q1 and Q2:

P ≡ (νννp̃)(n[[[ Γn ‖ cn ‖m[[[ Γm ‖ cm ‖ out n.P1 | P2 ]]] | Q1 ]]] | Q2),

P ′ ≡ (νννp̃)(n[[[ Γn ‖ cn ‖Q1 ]]] | Q2 | m[[[ Γm ‖ cm ‖P1 | P2 ]]])

and

Γm(↑c) = ρ.
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5 If P
pre-exit(c:ρ,cm)
−−−−−−−−→ P ′, then for some p̃, n,Γn, cn, m,Γm, P1, P2, Q1, Q2 and Q3:

P ≡ (νννp̃)(n[[[ Γn ‖ cn ‖m[[[ Γm ‖ cm ‖ out n.P1 | P2 ]]] | Q1 ]]] | out.Q2 | Q3),

P ′ ≡ (νννp̃)(n[[[ Γn ‖ cn ‖Q1 ]]] | m[[[ Γm ‖ cm ‖P1 | P2 ]]] | Q2 | Q3)

and

Γm(↑c) = ρ.

Lemma C.3 (Structure of the processes on visible transitions – mobility with port exchanges).

1 If P
ζ(c : ϕ̃)n
−−−−→ P ′ where ζ ∈ {{inC, outC}}, then for some p̃, v, P1 and Q:

P ≡ (νννp̃)(ζ(v: ϕ̃)n.P1 | Q),

P ′ ≡ (νννp̃)(P1{↑c/↑v} | Q)

and

n 
∈ p̃.

2 If P
ζ(cm : ϕ̃)
−−−−→ P ′ where ζ ∈ {{inC, outC}}, then for some p̃, v, P1 and Q:

P ≡ (νννp̃)(ζ(v : ϕ̃).P1 | Q)

and

P ′ ≡ (νννp̃)(P1{↓cm/↓v} | Q).

3 If P
ζ(c:ϕ̃,cm)n
−−−−−→ O where ζ ∈ {{inC, outC}}, then for some p̃, m,Γm, v, P1, P2 and Q:

P ≡ (νννp̃)(m[[[ Γm ‖ cm ‖ ζ(v : ϕ̃)n.P1 | P2 ]]] | Q),

O ≡ (νννp̃)〈〈m[[[ Γm ⊕ ϕ̃↑c ‖ cm ‖P1{↑c/↑v} | P2 ]]]〉〉Q
and

n 
∈ p̃.

4 If P
[[[ Γn ‖ cn ‖ inC(cm : ϕ̃)n ]]]
−−−−−−−−−−−−→ O, then for some p̃, v, P1, P2 and Q:

P ≡ (νννp̃)(n[[[ Γn ‖ cn ‖ inC(v : ϕ̃).P1 | P2 ]]] | Q),

O ≡ (νννp̃)〈〈P1{↓cm/↓v} | P2〉〉Q,

Γn ⊕ ϕ̃↓cm is defined

and

n 
∈ p̃.

5 If P
popC(c : ϕ̃,cm)
−−−−−−−→ P ′, then for some p̃, n,Γn, cn, m,Γm, v, P1, P2, Q1 and Q2:

P ≡ (νννp̃)(n[[[ Γn ‖ cn ‖m[[[ Γm ‖ cm ‖ outC(v: ϕ̃)n.P1 | P2 ]]] | Q1 ]]] | Q2),

P ′ ≡ (νννp̃)(n[[[ Γn ‖ cn ‖Q1 ]]] | m[[[ Γm ⊕ ϕ̃↑c ‖ cm ‖P1 | P2 ]]] | Q2)

and

Γ ⊕ ϕ̃↑c is defined.

6 If P
pre-exitC(c : ϕ̃,cn)−−−−−−−−−−→ P ′, then for some p̃, n,Γn, cn, m,Γm, v, P1, P2, Q1, u, Q2, and Q3:

P ≡ (νννp̃)(n[[[ Γn ‖ cn ‖m[[[ Γm ‖ cm ‖ outC(v: ϕ̃)n.P1 | P2 ]]] | Q1 ]]] | outC(u : ϕ̃).Q2 | Q3),

P ′ ≡ (νννp̃)(n[[[ Γn ‖ cn ‖Q1 ]]] | m[[[ Γm ⊕ ϕ̃↑c ‖ cm ‖P1{↑c/↑v} | P2 ]]] | Q2{↓cm/↓u} | Q3)

and

Γ ⊕ ϕ̃↓cm is defined.

The following three lemmas are useful for showing that structurally congruent processes

have the same labelled transitions (Lemma C.7).
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Lemma C.4 (LTS message receive). If P
(M̃)η

−−→ P ′ and ñ ∩ fn(P ) = �, then, for any fresh

names m̃, we have P
(M̃ ′)η

−−−→ P ′′ where M̃ ′ = M̃{ñ := m̃}, P ′′ = P ′{ñ := m̃}.

Proof. We proceed by induction on the LTS rules. Most of the rules hold trivially or

can be proved straightforwarly using the induction hypothesis. We only consider the proof

for the rules (lts Recv) and (lts Res).

— (lts Recv)

We have

P = (x̃ : ϕ̃)η.P1

(M̃)η

−−→ P1{x̃ := M̃} = P ′ .

So, by the same rule,

P
(M̃ ′)η

−−−→ P1{x̃ := M̃ ′} = P ′′

where M̃ ′ = M̃{ñ := m̃}. Finally,

P ′′ = P1{x̃ := M̃{ñ := m̃}} = P ′{ñ := m̃}

since ñ ∩ fn(P1) = � and m̃ are fresh.

— (lts Res)

We have

P = (νννp̃)P1

(M̃)η

−−→ (νννp̃)(P1{x̃ := M̃}) = P ′

because

P1

(M̃)η

−−→ P1{x̃ := M̃} = P ′
1

and p̃ ∩ fn(M̃) = �. By the induction hypothesis,

P1

(M̃ ′)η

−−−→ P ′
1{ñ := m̃}

where M̃ ′ = M̃{ñ := m̃}. Since fn(M̃ ′) ⊆ fn(M̃) ∪ m̃ and p̃ ∩ m̃ = �, we apply the rule

(lts Res) to get

P
(M̃ ′)η

−−−→ (νννp̃)(P ′
1{ñ := m̃}) = P ′′ .

Finally, note that

P ′′ = (νννp̃)(P1{x̃ := M̃{ñ := m̃}}) = (νννp̃)(P ′
1{ñ := m̃})

because fn(P1) ∩ ñ = �, and

(νννp̃)(P ′
1{ñ := m̃}) = P ′{ñ := m̃}

because ñ can only appear free in M̃, p̃ ∩ fn(M̃) = � and m̃ are fresh.

Lemma C.5 (Location renaming and message variable substitution preserve structural

equivalence). If P ≡ Q, then:

1 P {η′/η} ≡ Q{η′/η};
2 P {x̃ := M̃} ≡ Q{x̃ := M̃}.

Proof. The proof is by induction on the structural equivalence rules.

https://doi.org/10.1017/S0960129507006226 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006226


P. Garralda, E. Bonelli, A. Compagnoni and M. Dezani-Ciancaglini 630

Lemma C.6. If P ≡ Q, then fn(P ) = fn(Q).

Proof. The proof is by induction on the structural equivalence rules.

Lemma C.7. If P
ξ−→ O and P ≡ Q, there exists O′ such that Q

ξ−→ O′ and O ≡ O′.

Proof. As with Lemma A.1, we must show a stronger statement in order to make the

proof easier. That statement is:

If

(a) P
ξ−→ O and P ≡ Q,

or

(b) P
ξ−→ O and Q ≡ P ,

there exists O′ such that Q
ξ−→ O′.

The proof is by simultaneous induction on the derivations of P ≡ Q and Q ≡ P .

For each structural equivalence rule we need to inspect both sides of the equivalence

in the consequent of the rule. For each of these subcases we have to consider different

sub-subcases for each LTS rule that matches the structure of the subcases. This gives us

a lot of sub-subcases, but most of them have similar proofs. For the induction cases of

the structural rules, most of the proofs are tedious but simple. The most interesting cases

are the base cases. Some of these use Lemmas C.4–C.6.

Lemma 4.5 P ↓1
(n) if and only if P

[[[ Γn ‖ cn ‖ in n ]]]
−−−−−−−−→ O for some Γn, cn, and O.

Proof. By definition, in order to expose the barb n, the process P must be structurally

equivalent to (νννm̃)(n[[[ Γn ‖ cn ‖ in.Q | R ]]] | S). Using Lemma C.7, we can show that P moves

using the transition above. The converse is easily proved by Lemma C.2(3).

Appendix D. Coincidence between unlabelled and labelled reductions (Theorem 4.6)

Theorem 4.6. Let P be closed.

(1) If P
τ−−−→ P ′, then P −→ P ′.

(2) If P −→ P ′, then P
τ−−−→ Q and Q ≡ P ′ for some Q.

Proof.

(1) We use induction on the LTS rules. For each case, we use Lemmas C.1–C.3 to determine

the structure of the process P so that we can apply the reduction rules, and, hence,

show that P reduces to P ′. Most of the cases are similar. We illustrate, as an example,

the proof for the rule (lts τ-EnterC).

(lts τ-EnterC)

P
inC(cn : ϕ̃,cm)n
−−−−−−−→ (νννp̃)〈〈Pm〉〉P ′

Q
[[[ Γn ‖ cn ‖ inC(cm : ϕ̃)n ]]]
−−−−−−−−−−−−→ (νννq̃)〈〈Qn〉〉Q′

fn(P ) ∩ q̃ = fn(Q) ∩ p̃ = p̃ ∩ q̃ = �

P | Q τ−→ (νννp̃, q̃)(n[[[ Γn ⊕ ϕ̃↓cm ‖ cn ‖Qn | Pm ]]] | P ′ | Q′)
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By Lemma C.3(3) and (4),
P ≡ (νννp̃)(m[[[ Γm ‖ cn ‖ inC(v: ϕ̃)n.P1 | P2 ]]] | P ′),

Pm ≡ m[[[ Γm ⊕ ϕ̃↑cn ‖ cm ‖P1{↑cn/↑v} | P2 ]]]

and

n 
∈ p̃,

for some m,Γm, v, P1 and P2,
and
Q ≡ (νννq̃)(n[[[ Γ′

n ‖ cn ‖ inC(u : ϕ̃).Q1 | Q2 ]]] | Q′),

Qn ≡ Q1{↓cm/↓u} | Q2,

Γn ⊕ ϕ̃↓cm is defined

and

n 
∈ p̃,

for some u, Q1 and Q2.

Now,

P | Q ≡ (νννp̃)(m[[[ Γm ‖ cm ‖ inC(v: ϕ̃)n.P1 | P2 ]]] | P ′) |
(νννq̃)(n[[[ Γn ‖ cn ‖ inC(u : ϕ̃).Q1 | Q2 ]]] | Q′)

≡ (νννp̃, q̃)(m[[[ Γm ‖ cm ‖ inC(v: ϕ̃)n.P1 | P2 ]]] |
n[[[ Γn ‖ cn ‖ inC(u : ϕ̃).Q1 | Q2 ]]] | P ′ | Q′)

because fn(Q) ∩ p̃ = �, fn(P ) ∩ q̃ = �, and p̃ ∩ q̃ = �.

By (Red-EnterC)

m[[[ Γm ‖ cm ‖ inC(v: ϕ̃)n.P1 | P2 ]]] | n[[[ Γn ‖ cn ‖ inC(u : ϕ̃).Q1 | Q2 ]]]

−→
n[[[ Γn ⊕ ϕ̃↓cm ‖ cn ‖Q1{↓cm/↓u} | Q2 | m[[[ Γm ⊕ ϕ̃↑cn ‖ cn ‖P1{↑cn/↑v} | P2 ]]] ]]].

Finally, applying the structural reduction rules in Table 7, we conclude that

P | Q −→ (νννp̃, q̃)(n[[[ Γn ⊕ ϕ̃↓cm ‖ cn ‖Qn | Pm ]]] | P ′ | Q′) .

(2) The proof of this part is routine using induction on the reduction rules.

Appendix E. Congruence of full bisimilarity (Theorem 4.10)

In this appendix we prove the same result as we proved for first-order transitions

and arbitrary outcomes in Lemma C.7, but now allowing higher-order transitions and

restricting the outcomes to be processes.

Lemma E.1 (≡ is a bisimulation). If P
λ−→ P ′ and P ≡ Q, there exists Q′ such that Q

λ−→ Q′

and P ′ ≡ Q′.

Proof. Lemma C.7 applies directly for most of the cases. The HO cases are simple, and

for most of them we again use Lemma C.7 by applying it to the antecedents of each

rule. We include the paradigmatic case where (HO Out) is the last rule applied in the

derivation of P
λ−→ P ′. We have

P
out(cq : ρ,cm)n�[[[ Γn ‖ cn ‖R ]]]
−−−−−−−−−−−−−−−→ P ′
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because

P
out(cq : ρ,cm)n
−−−−−−−→ (νννp̃)〈〈Pm〉〉P1 .

So

P ′ = (νννp̃)(Pm | n[[[ Γn ‖ cn ‖P1 | R ]]]) .

By Lemma C.7 we have

Q
out(cq : ρ,cm)n
−−−−−−−→ O

and O ≡ (νννp̃)〈〈Pm〉〉P1.

Now we need to consider each possible rule used to derive that equivalence. The

cases of the basic rules are the most interesting ones. We show the case where (Struct

ConcrNLeft) was used and O = 〈〈(νννp̃)Pm〉〉 P1. By (HO Out), we get

Q
out(cq : ρ,cm)n�[[[ Γn ‖ cn ‖R ]]]
−−−−−−−−−−−−−−−→ Q′

where

Q′ = (νννp̃)Pm | n[[[ Γn ‖ cn ‖P1 | R ]]] .

Since p̃ ∩ ({n} ∪ fn(P1) ∪ fn(R)) = �, the result follows.

In the following we will use
λ−→≡ and

λ
=⇒≡ as shorthand notation for the composition

of
λ−→ and

λ
=⇒ (respectively) with ≡.

Lemma E.2 (Higher-order transitions of processes in parallel).

(1) If P
λ−→ P ′ and λ 
∈ { 〈−〉↑c � m[[[ Γm ‖ cm ‖Q ]]] | Q′, out(cq : ρ, cm)n � [[[ Γn ‖ cn ‖Q ]]],

outC(cq : ϕ̃, cm)n � [[[ Γn ‖ cn ‖Q ]]] }, then P | R λ−→≡ P ′ | R for all processes R.

(2) If P
λ̂

=⇒ P ′ and λ 
∈ { 〈−〉↑c � m[[[ Γm ‖ cm ‖Q ]]] | Q′, out(cq : ρ, cm)n � [[[ Γn ‖ cn ‖Q ]]],

outC(cq : ϕ̃, cm)n � [[[ Γn ‖ cn ‖Q ]]] }, then P | R λ̂
=⇒≡ P ′ | R for all processes R.

(3) If P
〈−〉↑c�m[[[ Γm ‖ cm ‖R | Q ]]] | Q′

−−−−−−−−−−−−−−−−→ P ′, then P | R
〈−〉↑c�m[[[ Γm ‖ cm ‖Q ]]] | Q′

−−−−−−−−−−−−−−→≡ P ′.

(4) If P
out(cq : ρ,cm)n�[[[ Γn ‖ cn ‖R | Q ]]]
−−−−−−−−−−−−−−−−−→ P ′, then P | R

out(cq : ρ,cm)n�[[[ Γn ‖ cn ‖Q ]]]
−−−−−−−−−−−−−−−→≡ P ′.

(5) If P
outC(cq : ϕ̃,cm)n�[[[ Γn ‖ cn ‖R | Q ]]]
−−−−−−−−−−−−−−−−−−→ P ′, then P | R

outC(cq : ϕ̃,cm)n�[[[ Γn ‖ cn ‖Q ]]]
−−−−−−−−−−−−−−−−→≡ P ′.

(6) If Q
(M̃)	

−−→ Q′ ≡ (νννñ)(Q1{x̃ := M̃} | Q2) and P
〈−〉	�R
−−−−→ P ′ where R ≡ (νννñ)(Q1 | Q2),

then P | Q τ−→≡ P ′.

(7) If Q
get(M̃,cn,cm)
−−−−−−→ Q′ ≡ (νννñ)(m[[[ Γm ‖ cm ‖Q1{x̃ := M̃} | Q2 ]]] | Q3) and P

〈−〉↓cm�R
−−−−−→ P ′

where R ≡ (νννñ)(m[[[ Γm ‖ cm ‖Q1 | Q2 ]]] | Q3), then P | Q
pre-comm(cn)−−−−−−−→≡ P ′.

(8) If Q
(M̃)↓cm

−−−→ Q′ ≡ (νννñ)(Q1{x̃ := M̃} | Q2) and P
put(cn,cm)�R
−−−−−−→ P ′ where R ≡ (νννñ)(Q1 | Q2),

then P | Q
pre-comm(cn)−−−−−−−→≡ P ′.

(9) If P
in(cn : ρ,cm)n�[[[ Γn ‖ cn ‖Q ]]]
−−−−−−−−−−−−−−→P ′ and R

[[[ Γn ‖ cn ‖ in n ]]]
−−−−−−−→ (νννp̃)〈〈Q〉〉R′, then P |R τ−→ (νννp̃)(P ′ |R′).

(10) If P
in(cn : ρ,cm)n
−−−−−−→ (νννp̃)〈〈Q〉〉P ′ and R

[[[ Γn ‖ cn ‖ in n ]]]�Q
−−−−−−−−−→ R′, then P | R τ−→≡ (νννp̃)(P ′ | R′).
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(11) If P
inC(cn : ϕ̃,cm)n�[[[ Γn ‖ cn ‖Q ]]]
−−−−−−−−−−−−−−−→ P ′ and R

[[[ Γn ‖ cn ‖ inC(cm : ϕ̃)n ]]]
−−−−−−−−−−−−→ (νννp̃)〈〈Q〉〉R′, then P | R τ−→

(νννp̃)(P ′ | R′).

(12) If P
inC(cn : ϕ̃,cm)n
−−−−−−−→ (νννp̃)〈〈Q〉〉P ′ and R

[[[ Γn ‖ cn ‖ inC(cm : ϕ̃)n ]]]�Q
−−−−−−−−−−−−−→ R′, then P | R

τ−→≡
(νννp̃)(P ′ | R′).

Proof. In the proofs of all cases with higher-order labels, we derive the transitions of

processes and their shapes by inspection of the transition rules.

(1) If λ is a first-order label, this transition follows from rule (lts Par). Otherwise we

will just consider the paradigmatic case where λ = inC(cn : ϕ̃, cm)n � [[[ Γn ‖ cn ‖Q ]]].

Then

P
inC(cn : ϕ̃,cm)n
−−−−−−−→ (νννp̃)〈〈Pm〉〉P1

and P ′ ≡ (νννp̃)(n[[[ Γn ‖ cn ‖Pm | Q ]]] | P1). By the parallel composition rule (lts Par)

we get

P | R
inC(cn : ϕ̃,cm)n
−−−−−−−→ (νννp̃)〈〈Pm〉〉P1 | R .

So we can conclude P | R λ−→≡ P ′ | R by rule (HO InC).

(2) P
λ̂

=⇒ P ′ means either P =⇒ P ′ if λ = τ or P =⇒ Q
λ−→ Q′ =⇒ P ′ for some Q,Q′.

In the first case (2) follows from rule (lts Par); in the second case it follows from

(1), Lemma E.1, and rule (lts Par).

(5) (The proofs of (3) and (4) are similar.)

If

P
outC(cq : ϕ̃,cm)n�[[[ Γn ‖ cn ‖R | Q ]]]
−−−−−−−−−−−−−−−−−−→ P ′ ,

then

P
outC(cq : ϕ̃,cm)n
−−−−−−−−→ (νννp̃)〈〈Pm〉〉P1

and

P ′ ≡ (νννp̃)(Pm | n[[[ Γn ‖ cn ‖P1 | R | Q ]]]) .

By rule (lts Par) we get

P | R
outC(cq : ϕ̃,cm)n
−−−−−−−−→ (νννp̃)〈〈Pm〉〉P1 | R .

So we can conclude

P | R
outC(cq : ϕ̃,cm)n�[[[ Γn ‖ cn ‖Q ]]]
−−−−−−−−−−−−−−−−→≡ P ′

by rule (HO OutC).

(7) (The proofs of (6) and (8) are similar.)

If

P
〈−〉↓cm�R
−−−−−→ P ′ ,

then

P
〈−〉↓cm

−−−→ (νννq̃)〈〈M̃〉〉P1
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and

P ′ ≡ (νννq̃)(P1 | R{x̃ := M̃}) ≡ (νννq̃)(P1 | Q′) ,

since fn(M̃) ∩ ñ = �. Finally,

P | Q
pre-comm(cn)−−−−−−−→ (νννq̃)(P1 | Q′) ≡ P ′ .

(11) (The proofs of (9), (10) and (12) are similar.)

If

P
inC(cn : ϕ̃,cm)n�[[[ Γn ‖ cn ‖Q ]]]
−−−−−−−−−−−−−−−→ P ′ ,

then

P
inC(cn : ϕ̃,cm)n
−−−−−−−→ (νννq̃)〈〈Pm〉〉P1

and

P ′ ≡ (νννq̃)(n[[[ Γn ‖ cn ‖Pm | Q ]]] | P1) .

We then get P | R τ−→≡ (νννp̃)(P ′ | R′) by rule (lts τ-Enter).

Lemma E.3.

(1) If !P
λ−→ Q, then λ is different from τ and P

λ−→ P ′ for some P ′.

(2) If P
λ−→ Q and q 
∈ fn(λ), then (νννq)P

λ−→ (νννq)Q.

Proof.

(1) The proof is immediate if we recall that P must be prefixed.

(2) When λ is first order the proof is immediate by rule (lts Res). For higher-order labels,

we consider the case λ = outC(cq : ϕ̃, cm)n � [[[ Γn ‖ cn ‖R ]]] only, the other cases being

similar. In this case

P
outC(cq : ϕ̃,cm)n
−−−−−−−−→ (νννp̃)〈〈Pm〉〉P1

and

Q = (νννp̃)(n[[[ Γn ‖ cn ‖P1 | R ]]] | Pm) .

By rule (lts Res) we get

(νννq)P
outC(cq : ϕ̃,cm)n
−−−−−−−−→ (νννq, p̃)〈〈Pm〉〉P1 ,

so we can conclude by rule (HO Out).

Lemma E.4. Full bisimilarity is an equivalence relation.

Proof. The proof is standard apart from the condition on types, which only matters for

reflexivity. We require that P well formed and P
λ−→ P ′ imply that P ′ is well formed too.

If λ is a first-order label, the proof by cases on λ is standard. If λ is a higher-order label,

it holds by definition. Then we get that {(P ;P ) | P well-formed} is a bisimulation.

Theorem 4.10. Full bisimilarity is a congruence.

Proof. The proof is organised in the following three steps:

A Full bisimilarity is preserved by input prefixes and by the capabilities and co-

capabilities that exchange communication ports.
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B Bisimilarity is preserved by capability and output prefixes and by parallel composition,

ambient construction and restriction.

C Bisimilarity is preserved by replication.

Step A For input prefixes, assuming P ≈c Q, we need to show that (x : ϕ̃)η.Ps ≈
(x : ϕ̃)η.Qs for all closing substitutions s. By definition, we have (x : ϕ̃)η.Ps =

(x : ϕ̃)η.(Ps) (with s capture free). The only transitions from (x : ϕ̃)η.(Ps) are of

the form

(x : ϕ̃)η.(Ps)
(M̃)η

−−→ Ps{x̃ := M̃}
for a message M̃ such that � M̃ : ϕ̃. Since we also have

(x : ϕ̃)η.(Qs)
(M̃)η

−−→ Qs{x̃ := M̃} ,

it remains to prove that Ps{x̃ := M̃} ≈ Qs{x̃ := M̃}. But this follows directly from

the assumption P ≈c Q, since it implies Ps′ ≈ Qs′ where s′ = s{x̃ := M̃}.
The proof is similar for the binding capabilities (and co-capabilities). For example, we

need to show that inC(v: ϕ̃)n.Ps ≈ inC(v: ϕ̃)n.Qs, assuming that P ≈c Q. Again, by

definition, we have that inC(v: ϕ̃)n.Ps = inC(v: ϕ̃)n.(Ps) (with s capture free). As in

the previous case, inC(v: ϕ̃)n.(Ps) can only move with a transition of the form

inC(v: ϕ̃)n.(Ps)
inC(cn : ϕ̃)n
−−−−−−→ Ps{↑cn/↑v} .

Then

inC(v: ϕ̃)n.(Qs)
inC(cn : ϕ̃)n
−−−−−−→ Qs{↑cn/↑v} .

We need to prove that Ps{↑cn/↑v} ≈ Qs{↑cn/↑v}. But this follows directly from the

assumption P ≈c Q since it implies Ps′ ≈ Qs′ where s′ = s{↑cn/↑v}.
Step B Since we know that ≈c is preserved by input prefixes, we can consider ≈. We

define B as the contextual closure of ≈ with respect to capability and output prefixes

and by parallel composition, ambient construction and restriction, that is, as the least

symmetric relation such that:

(1) ≈ ⊆ B .

(2) P BQ implies C.P B C.Q.

(3) P BQ implies 〈M̃〉η.P B 〈M̃〉η.Q.

(4) P BQ implies P | R BQ | R and R | P B R | Q.

(5) P BQ implies n[[[ Γ ‖ c ‖P ]]] B n[[[ Γ ‖ c ‖Q ]]].

(6) P BQ implies (νννn)P B (νννn)Q.

It is clearly enough to show that B is a bisimulation up to ≡, since this implies

B ⊆ ≈, and we conclude B = ≈, which proves that ≈ (and then ≈c) is preserved by

the listed process constructors. The proof is by induction on the definition of B using

Lemmas E.2 and E.3.

(1) This condition follows by definition.

(2) Note that if C.P
λ−→ P ′, then λ = C ∈ {in α, out α, in, out} and P ′ ≡ P . Since we

also have C.Q
C−→ Q for C ∈ {in α, out α, in, out}, we are done.
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(3) This proof is similar to (2).

(4) We need to consider many different subcases:

— If P | R λ−→ P | R′ because R
λ−→ R′ and

λ 
∈ {〈−〉↑c � m[[[ Γm ‖ cm ‖Q ]]] | Q′,

out(cq : ρ, cm)n � [[[ Γn ‖ cn ‖Q ]]],

outC(cq : ϕ̃, cm)n � [[[ Γn ‖ cn ‖Q ]]] } .

The proof follows trivially by Lemma E.2(1) and contextuality of B .

— Let P | R λ−→ P ′ | R because P
λ−→ P ′ and

λ 
∈ {〈−〉↑c � m[[[ Γm ‖ cm ‖Q ]]] | Q′,

out(cq : ρ, cm)n � [[[ Γn ‖ cn ‖Q ]]],

outC(cq : ϕ̃, cm)n � [[[ Γn ‖ cn ‖Q ]]] } .

Then, by induction, Q
λ̂

=⇒ Q′ for some Q′ such that P ′ BQ′. By Lemma E.2(2),

we get Q | R λ̂
=⇒≡ Q′ | R, and then P ′ | R BQ′ | R by the contextuality of B .

— Let

P | R
〈−〉↑c�m[[[ Γm ‖ cm ‖ S1 ]]] | S2−−−−−−−−−−−−−−→ R′

because

R
〈−〉↑c

−−→ (νννp̃)〈〈M̃〉〉R1 .

Then

R′ =(νννp̃)(m[[[ Γm ‖ cm ‖P |R1 | S1 ]]] | S2{x̃ := M̃}) .
By rule (lts Par), we have

Q | R
〈−〉↑c

−−→ (νννp̃)〈〈M̃〉〉Q | R1

and then, by rule (HO Send
↑), we get

Q | R
〈−〉↑c�m[[[ Γm ‖ cm ‖ S1 ]]] | S2−−−−−−−−−−−−−−→ (νννp̃)(m[[[ Γm ‖ cm ‖Q | R1 | S1 ]]] | S2{x̃ := M̃}) ,

so we are done by the contextuality of B .

— The proofs in cases

P | R
ξ�[[[ Γn ‖ cn ‖ S ]]]
−−−−−−−−→ R′

with

ξ ∈ {out(cq : ρ, cm)n, outC(cq : ϕ̃, cm)n}

because R
ξ−→ (νννp̃)〈〈R1〉〉R2 are similar to the previous case.

— Let

P | R
〈−〉↑c�m[[[ Γm ‖ cm ‖ S1 ]]] | S2−−−−−−−−−−−−−−→ P ′
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because

P
〈−〉↑c

−−→ (νννp̃)〈〈M̃〉〉P1 .

Then

P ′ = (νννp̃)(m[[[ Γm ‖ cm ‖P1 | R | S1 ]]] | S2{x̃ := M̃}) .
By rule (HO Send

↑) we get

P
〈−〉↑c�m[[[ Γm ‖ cm ‖R | S1 ]]] | S2−−−−−−−−−−−−−−−−→ P ′ .

Then, by induction,

Q =⇒ Q1

〈−〉↑c�m[[[ Γm ‖ cm ‖R | S1 ]]] | S2−−−−−−−−−−−−−−−−→ Q2 =⇒ Q′

for some Q1, Q2, and Q′ such that P ′ BQ′. By rule (lts Par), we have Q | R =⇒
Q1 | R, and by Lemma E.2(3), we have

Q1 | R
〈−〉↑c�m[[[ Γm ‖ cm ‖ S1 ]]] | S2−−−−−−−−−−−−−−→≡ Q2 ,

so we are done.

— The proofs in cases

P | R
ξ�[[[ Γn ‖ cn ‖ S ]]]
−−−−−−−−→ P ′

with ξ ∈ {out(cq : ρ, cm)n, outC(cq : ϕ̃, cm)n} because P
ξ−→ (νννp̃)〈〈P1〉〉P2 are similar

to the previous case.

— If

P | R
pre-comm(cn)−−−−−−−→ P ′

because

P
〈−〉↓cm

−−−→ (νννp̃)〈〈M̃〉〉P1 and R
get(M̃,cn,cm)
−−−−−−→ R1 ,

then fn(R) ∩ p̃ = � and P ′ ≡ (νννp̃)(P1 | R1). By Lemma C.1(3) we have

R ≡ (νννq̃)(m[[[ Γm ‖ cm ‖ (x̃ : ϕ̃)↑cn .S1 | S2 ]]] | S3)

and

R1 ≡ (νννq̃)(m[[[ Γm ‖ cm ‖ S1{x̃ := M̃} | S2 ]]] | S3) .

We can assume that (fv(S2) ∪ fv(S3)) ∩ x̃ = �. Let

R2 ≡ (νννq̃)(m[[[ Γm ‖ cm ‖ S1 | S2 ]]] | S3) .

By (HO Put) and induction, we have

P
〈−〉↓cm�R2−−−−−→ P ′

and

Q =⇒ Q1

〈−〉↓cm�R2−−−−−→ Q2 =⇒ Q′
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for some Q1, Q2 and Q′ such that P ′ BQ′. By (lts Par), we have Q | R =⇒ Q1 | R
and by Lemma E.2 (7), we have

Q1 | R
pre-comm(cn)−−−−−−−→≡ Q2 =⇒ Q′ .

— The proofs in cases P | R
pre-comm(cn)−−−−−−−→ P ′ because

– P
get(M̃,cn,cm)
−−−−−−→ P1 and R

〈−〉↓cm

−−−→ (νννp̃)〈〈M̃〉〉R1

– P
put(cn,cm)
−−−−−→ (νννp̃)〈〈M̃〉〉P1 and R

(M̃)↓cm

−−−→ R1

– P
(M̃)↓cm

−−−→ P1 and R
put(cn,cm)
−−−−−→ (νννp̃)〈〈M̃〉〉R1

are similar to the previous case.

— The proofs in cases P | R τ−→ P ′ because

– P
〈−〉	
−−→ (νννp̃)〈〈M̃〉〉P1 and R

(M̃)	

−−→ R1

– P
(M̃)	

−−→ P1 and R
〈−〉	
−−→ (νννp̃)〈〈M̃〉〉R1

are simpler than the previous cases.

— If

P | R
pre-exitC(c : ϕ̃,cm)
−−−−−−−−−−→ P ′ | R′

because

P
popC(c : ϕ̃,cm)
−−−−−−−→ P ′ and R

outC(cm : ϕ̃)
−−−−−−→ R′ ,

then by the induction hypothesis

Q =⇒ Q1

popC(c : ϕ̃,cm)
−−−−−−−→ Q2 =⇒ Q′

and P ′ BQ′. By rule (lts pre-ExitC) we get

Q | R =⇒ Q1 | R
pre-exitC(c : ϕ̃,cm)
−−−−−−−−−−→ Q2 | R′ =⇒ Q′ | R′

and the case follows by contextuality of B .

— The proof for the case P | R
pre-exitC(c : ϕ̃,cm)
−−−−−−−−−−→ P ′ | R′ because P

outC(cm : ϕ̃)
−−−−−−→ P ′

and R
popC(c : ϕ̃,cm)
−−−−−−−→ R′ is analogous to the previous case.

— The proofs for the cases P | R
pre-exit(cp : ρ,cm)
−−−−−−−−−→ P ′ | R′ are similar to the previous

case.

— If P | R τ−→ P ′ because

P
in(cn : ρ,cm)n
−−−−−−→ (νννp̃)〈〈P1〉〉P2 and R

[[[ Γn ‖ cn ‖ in n ]]]
−−−−−−−→ (νννq̃)〈〈R1〉〉R2 ,

then

P ′ ≡ (νννp̃, q̃)(n[[[ Γn ‖ cn ‖P1 | R1 ]]] | P2 | R2) .

By rule (HO Send
↑) we get

P
in(cn : ρ,cm)n�[[[ Γn ‖ cn ‖R1 ]]]
−−−−−−−−−−−−−−→ (νννp̃)(n[[[ Γn ‖ cn ‖P1 | R1 ]]] | P2) .
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Then, by induction,

Q =⇒ Q1

in(cn : ρ,cm)n�[[[ Γn ‖ cn ‖R1 ]]]
−−−−−−−−−−−−−−→ Q2 =⇒ Q′

for some Q1, Q2 and Q′ such that

(νννp̃)(n[[[ Γn ‖ cn ‖P1 | R1 ]]] | P2) BQ′ .

By rule (lts Par), we have Q | R =⇒ Q1 | R, and by Lemma E.2(9), we have

Q1 | R =⇒≡ (νννq̃)(Q2 | R2), and this concludes the proof by contextuality of B .

— The proofs in the cases P | R τ−→ P ′ because

– P
[[[ Γn ‖ cn ‖ in n ]]]
−−−−−−−→ (νννp̃)〈〈P1〉〉P2 and R

in(cn : ρ,cm)n
−−−−−−→ (νννq̃)〈〈R1〉〉R2

– P
inC(cn : ϕ̃,cm)n
−−−−−−−→ (νννp̃)〈〈P1〉〉P2 and R

[[[ Γn ‖ cn ‖ inC(cm : ϕ̃)n ]]]
−−−−−−−−−−−−→ (νννq̃)〈〈R1〉〉R2

– P
[[[ Γn ‖ cn ‖ inC(cm : ϕ̃)n ]]]
−−−−−−−−−−−−→ (νννp̃)〈〈P1〉〉P2 and R

inC(cn : ϕ̃,cm)n
−−−−−−−→ (νννq̃)〈〈R1〉〉R2

are similar to the previous case.

(5) This condition also requires us to examine different cases:

— The case n[[[ Γ ‖ c ‖P ]]]
τ−→ n[[[ Γ ‖ c ‖P ′ ]]] because P

τ−→ P ′ is trivial.

— Let

m[[[ Γm ‖ cm ‖P ]]]
get(M̃,cn,cm)
−−−−−−→ m[[[ Γm ‖ cm ‖P ′ ]]]

because

P
(M̃)↑cn

−−−→ P ′ .

By induction,

Q =⇒ Q1

〈M̃〉↑cn

−−−→ Q2 =⇒ Q′

for some Q1, Q2 and Q′ such that P ′ BQ′. Note that m[[[ Γm ‖ cm ‖Q ]]] is a

well-formed process since m[[[ Γm ‖ cm ‖P ]]] is well formed and P BQ. We have

m[[[Γm ‖ cm ‖Q ]]] =⇒ m[[[Γm ‖ cm ‖Q1 ]]]

and

m[[[Γm ‖ cm ‖Q2 ]]] =⇒ m[[[Γm ‖ cm ‖Q′ ]]]

by rule (lts Amb). Moreover,

m[[[ Γm ‖ cm ‖Q1 ]]]
get(M̃,cn,cm)
−−−−−−→ m[[[ Γm ‖ cm ‖Q2 ]]]

by rule (lts Get), and this concludes the proof.

— The proofs in cases:

– n[[[ Γn ‖ cn ‖P ]]]
τ−→ n[[[ Γn ‖ cn ‖P ′ ]]] because P

pre-comm(cn)−−−−−−−→ P ′

– p[[[ Γp ‖ cp ‖P ]]]
τ−→ p[[[ Γp ‖ cp ‖P ′ ]]] because P

pre-exit(cp : ρ,cm)
−−−−−−−−−→ P ′

– p[[[ Γp ‖ cp ‖P ]]]
τ−→ p[[[ Γp ⊕ ϕ̃↓cm ‖ cp ‖P ′ ]]] because P

pre-exitC(cp : ϕ̃,cm)
−−−−−−−−−−→ P ′

are similar to the previous case.
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— Let

n[[[ Γn ‖ cn ‖P ]]]
pop(c : ρ,cm)
−−−−−−→ (νννp̃)(n[[[ Γn ‖ cn ‖Pn ]]] | Pm)

because

P
out(c : ρ,cm)n
−−−−−−−→ (νννp̃)〈〈Pm〉〉Pn .

By rule (HO Out), we get

P
out(cq : ρ,cm)n�[[[ Γn ‖ cn ‖ 0 ]]]
−−−−−−−−−−−−−−→ (νννp̃)(n[[[ Γn ‖ cn ‖Pn | 0 ]]] | Pm) .

By induction,

Q =⇒ Q1

out(cq : ρ,cm)n�[[[ Γn ‖ cn ‖ 0 ]]]
−−−−−−−−−−−−−−→ Q2 =⇒ Q′

for some Q1, Q2 and Q′ such that (νννp̃)(n[[[ Γn ‖ cn ‖Pn | 0 ]]] | Pm) BQ′. We have

n[[[ Γn ‖ cn ‖Q ]]] =⇒ n[[[ Γn ‖ cn ‖Q1 ]]]

and

n[[[ Γn ‖ cn ‖Q2 ]]] =⇒ n[[[ Γn ‖ cn ‖Q′ ]]]

by rule (lts Amb). From

Q1

out(cq : ρ,cm)n�[[[ Γn ‖ cn ‖ 0 ]]]
−−−−−−−−−−−−−−→ Q2

we get

Q1

out(c : ρ,cn)n−−−−−−→ (νννq̃)〈〈Qm〉〉Qn

and

Q2 ≡ (νννq̃)(n[[[ Γn ‖ cn ‖Qn | 0 ]]] | Qm) .

By rule (lts Pop) we get

n[[[ Γn ‖ cn ‖Q1 ]]]
pop(c : ρ,cn)−−−−−−→≡ Q2 ,

and this concludes the proof.

— The proof in case

n[[[ Γn ‖ cn ‖P ]]]
popC(c : ϕ̃,cm)
−−−−−−−→ (νννp̃)(n[[[ Γn ‖ cn ‖Pn ]]] | Pm)

because

P
outC(c : ϕ̃,cm)n
−−−−−−−−→ (νννp̃)〈〈Pm〉〉Pn

is similar to the previous case.

(6) We also have several cases for this condition. Let

(νννq)P
outC(cq : ϕ̃,cm)n�[[[ Γn ‖ cn ‖R ]]]
−−−−−−−−−−−−−−−−→ P ′

because

(νννq)P
outC(cq : ϕ̃,cm)n
−−−−−−−−→ (νννq, p̃)〈〈Pm〉〉Pn .

Then P ′ ≡ (νννq)P ′′ and

P
outC(cq : ϕ̃,cm)n�[[[ Γn ‖ cn ‖R ]]]
−−−−−−−−−−−−−−−−→ P ′′
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where

P ′′ ≡ (νννp̃)(Pm | n[[[ Γn ‖ cn ‖Pn | R ]]]) .

By induction,

Q =⇒ Q1

outC(cq : ϕ̃,cm)n�[[[ Γn ‖ cn ‖R ]]]
−−−−−−−−−−−−−−−−→ Q2 =⇒ Q′′

and P ′′ BQ′′ for some Q1, Q2, Q
′′. As q is bound, we can assume

q 
∈ fn(outC(cq : ϕ̃, cm)n � [[[ Γn ‖ cn ‖R ]]]) .

By Lemma E.3(2),

(νννq)Q =⇒ (νννq)Q1

outC(cq : ϕ̃,cm)n�[[[ Γn ‖ cn ‖R ]]]
−−−−−−−−−−−−−−−−→ (νννq)Q2 =⇒ (νννq)Q′′ ,

and (νννq)Q′′ B (νννq)P ′′ ≡ P ′ by contextuality of B .

The proofs in the other cases are similar.

Step C For the final step, we consider the relation C defined as B plus a rule for

replication:

(1) ≈⊆ C ;

(2) P C Q implies C.P C C.Q;

(3) P C Q implies 〈M̃〉η.P C 〈M̃〉η.Q;

(4) P C Q implies P | R C Q | R and R | P C R | Q;

(5) P C Q implies n[[[ Γ ‖ c ‖P ]]] C n[[[ Γ ‖ c ‖Q ]]];

(6) P C Q implies (νννn)P C (νννn)Q;

(7) P ≈ Q implies !P C !Q, where P ,Q are prefixed processes.

We prove that

— If P
λ−→ P ′ where λ 
= τ, then Q

λ
=⇒ Q′ and P ′ ≈ C ≈ Q′.

— If P
τ−→ P ′, then Q =⇒ Q′ and P ′ ≡ C ≡ Q′.

— If Q
λ−→ Q′ where λ 
= τ, then P

λ
=⇒ P ′ and Q′ ≈ C ≈ P ′.

— If Q
τ−→ Q′, then P =⇒ P ′ and Q′ ≡ C ≡ P ′.

From the above we can conclude that C is a bisimilarity using Exercise 2.4.64 of

Sangiorgi and Walker (2002), and hence, C = ≈.

The proofs for the first six cases are exactly as in Step B.

For (7), note first that if !P
λ−→ P ′, then P

λ−→ P1 and λ 
= τ by Lemma E.3(1). If λ is a

first-order label, we get P ′ ≡ !P | P1. By definition, Q
λ−→ Q2 =⇒ Q1 and P1 ≈ Q1 for

some Q2, Q1. By rules (lts Repl) and (lts Par) !Q
λ−→ !Q | Q2=⇒!Q | Q1. Finally, note

that !P | P1 C !Q | P1 ≈ !Q | Q1, since in Step B we proved that ≈ is preserved by

parallel composition.

If λ is a higher-order label, note that only the HO rules (HO Send 	-↓) and (HO

Send
↑) can be used. We give the proof for λ = 〈−〉↑c � m[[[ Γm ‖ cm ‖R ]]] | S , that is, for

rule (HO Send
↑). The proof for (HO Send 	-↓) is simpler.

We have

P
〈−〉↑c

−−→ (νννp̃)〈〈M̃〉〉P1
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and

P ′ = (νννp̃)(m[[[ Γm ‖ cm ‖P1 | !P | R ]]] | S{x̃ := M̃}) .
By rule (HO Send

↑),

P
〈−〉↑c�m[[[ Γm ‖ cm ‖ !Q | R ]]] | S
−−−−−−−−−−−−−−−−→ P ′′ ,

where

P ′′ = (νννp̃)(m[[[ Γm ‖ cm ‖P1 | !Q | R ]]] | S{x̃ := M̃}) .
Note that P ′ C P ′′ by the definition of C . By definition,

Q
〈−〉↑c�m[[[ Γm ‖ cm ‖ !Q | R ]]] | S
−−−−−−−−−−−−−−−−→ Q′ =⇒ Q′′

for some Q′, Q′′ such that P ′′ ≈ Q′′. Then, by Lemma E.2(3),

Q | !Q
〈−〉↑c�m[[[ Γm ‖ cm ‖R ]]] | S
−−−−−−−−−−−−−→≡ Q′ .

By Lemma E.1, we get

!Q
〈−〉↑c�m[[[ Γm ‖ cm ‖ !Q | R ]]] | S
−−−−−−−−−−−−−−−−→ T

for some T ≡ Q′, and T =⇒ T ′ for some T ′ ≡ Q′′. Finally, P ′ C P ′′ ≈ Q′′ ≡ T ′, so

we are done.

Note that the above proof uses the restriction that all replicated processes are

prefixed.

Appendix F. Soundness of full bisimilarity (Theorem 4.11)

Lemma F.1. Full bisimilarity is barb preserving over closed processes.

Proof. Suppose P , Q are closed processes, P ≈ Q and P ↓1
(n). By Lemma 4.7, P ↓1

(n)

implies

P
[[[ Γ ‖ c ‖ in n ]]]�R
−−−−−−−−→ P ′

for some Γ, c, R, P ′. Then, since P ≈ Q, we get

Q
[[[ Γ ‖ c ‖ inn ]]]�R

=⇒ Q′

for some Q′. In particular, there are Q1, Q2 such that

Q =⇒ Q1

[[[ Γ ‖ c ‖ inn ]]]�R
−−−−−−−−→ Q2 =⇒ Q′ .

From Lemma 4.7 we deduce Q1 ↓1
(n), and hence Q⇓1

(n), as required.

Theorem 4.11 (Soundness of full bisimilarity). If P ≈c Q, then P ∼= Q.

Proof. It suffices to show that ≈c is a barbed bisimulation. This follows from the fact

that ≈c:

1 is a congruence (This follows from Theorem 4.10.);

2 is reduction closed on closed processes (Suppose P ,Q are closed processes, P ≈c Q and

P −→ P ′. By Theorem 4.6, P
τ−→ P1 and P1 ≡ P ′. Since P ≈c Q, there exists Q′ such
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that Q =⇒ Q′ and P ′ ≡ P1 ≈c Q′. By Lemma E.1 and by transitivity of ≈c we are

done.);

3 Is barb preserving on closed processes (This follows from Lemma F.1.).
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