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Abstract

We present in this paper a first-order axiomatization of an extended theory T of finite or

infinite trees, built on a signature containing an infinite set of function symbols and a relation

finite(t), which enables to distinguish between finite and infinite trees. We show that T has

at least one model and prove its completeness by giving not only a decision procedure, but

a full first-order constraint solver that gives clear and explicit solutions for any first-order

constraint satisfaction problem in T . The solver is given in the form of 16 rewriting rules that

transform any first-order constraint ϕ into an equivalent disjunction φ of simple formulas

such that φ is either the formula true or the formula false or a formula having at least one

free variable, being equivalent neither to true nor to false and where the solutions of the free

variables are expressed in a clear and explicit way. The correctness of our rules implies the

completeness of T . We also describe an implementation of our algorithm in CHR (Constraint

Handling Rules) and compare the performance with an implementation in C++ and that of

a recent decision procedure for decomposable theories.

KEYWORDS: logical first-order formula, theory of finite or infinite trees, complete theory,

rewriting rules

1 Introduction

The algebra of finite or infinite trees plays a fundamental role in computer science:

it is a model for data structures, program schemes and program executions. As early

as 1930, Herbrand (1930) gave an informal description of an algorithm for unifying

finite terms, that is solving equations in finite trees. Robinson (1965) rediscovered a

similar algorithm when he introduced the resolution procedure for first-order logic

in 1965. Some algorithms with better complexities have been proposed after by

Paterson and Wegman (1978) and Martelli and Montanari (1982). A good synthesis

on this field can be found in the paper of Jouannaud and Kirchner (1991). Solving

conjunctions of equations on infinite trees has been studied by Huet (1976), by
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Colmerauer (1982) and by Jaffar (1984). Solving conjunctions of equations and

disequations on finite or infinite trees has been studied by Burkert (1988) and

Colmerauer (1984). An incremental algorithm for solving conjunctions of equations

and disequations on rational trees has then been proposed by Ramachandran

and Van Hentenryck (1993) and a quasi-linear incremental algorithm for testing

entailment and disentailment over rational trees has been given by Podelski and Van

Roy (1994).

On the other hand, K. L. Clark has proposed a complete axiomatization of

the equality theory, also called Clark equational theory (CET), and gave intuitions

about a complete axiomatization of the theory of finite trees (Clark 1978). B.

Courcelle has studied the properties of infinite trees in the scope of recursive program

schemes (Courcelle 1983, 1986), and A. Colmerauer has described the execution of

Prolog II, III and IV programs in terms of solving equations and disequations in the

algebra of finite or infinite trees (Colmerauer 1984, 1990; Benhamou et al. 1996).

Concerning quantified constraints, solving universally quantified disequations on

finite trees has been studied by Smith (1991) and there exist some decision procedures

which transform any first-order formula into a Boolean combination of quantified

conjunctions of atomic formulas using elimination of quantifiers. In the case of

finite trees we can refer to Malcev (1971), Kunen (1987) and Comon (1988, 1991b);

Comon and Lescanne (1989). For infinite trees, we can refer to the work of Comon

(1988, 1991a) and Maher (1988).

Maher (1988) has axiomatized all the cases by complete first-order theories. In

particular, he has introduced the theory T of finite or infinite trees built on an

infinite set F of function symbols and showed its completeness using a decision

procedure which transforms any first-order formula ϕ into a Boolean combination

φ of quantified conjunctions of atomic formulas. If ϕ does not contain free variables

then φ is either the formula true or false.

Djelloul (2006a) has then presented in the class of decomposable theories and

proved that the theory of finite or infinite trees is decomposable. He has also given a

decision procedure in the form of five rewriting rules which, for any decomposable

theory, transforms any first-order formula ϕ into an equivalent conjunction φ of

solved formulas easily transformable into a Boolean combination of existentially

quantified conjunctions of atomic formulas. In particular, if ϕ has no free variables

then φ is either the formula true or ¬true.

Unfortunately, all the preceding decision procedures are not able to solve complex

first-order constraint satisfaction problems in T. In fact, these algorithms are only

basic decision procedures and not full first-order constraint solvers: they do not

warrant that the solutions of the free variables of a solved formula are expressed

in a clear and explicit way and can even produce, starting from a formula ϕ which

contains free variables, an equivalent solved formula φ having free variables but

being always false or always true in T. The appropriately solved formula of ϕ in

this case should be the formula false or the formula true instead of φ. If we use, for

example, the decision procedure of Djelloul (2006a) to solve the following formula ϕ

¬(∃y x = f(y) ∧ ¬(∃zw x = f(z) ∧ w = f(w))),
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then we get the following solved1 formula φ

¬(∃y x = f(y) ∧ ¬(∃z x = f(z))).

The problem is that this formula contains free variables but is always true in the

theory of finite or infinite trees. In fact, it is equivalent to

¬(∃y x = f(y) ∧ ¬(∃z x = f(y) ∧ x = f(z))),

i.e. to

¬(∃y x = f(y) ∧ ¬(x = f(y) ∧ (∃z z = y))),

thus to

¬(∃y x = f(y) ∧ ¬(x = f(y))),

which is finally equivalent to true. As a consequence, the solved formula of ϕ should

be true instead of φ. This is a good example which shows the limits of the decision

procedures in solving first-order constraints having at least one free variable.

Much more elaborated algorithms are then needed, specially when we want

to induce solved formulas expressing solutions of complex first-order constraint

satisfaction problems in the theory of finite or infinite. Of course, our goal in these

kinds of problems is not only to know if there exist solutions or not, but to express

these solutions in the form of a solved first-order formula φ which is either the

formula true (i.e. the problem is always satisfiable) or the formula false (i.e. the

problem is always unsatisfiable) or a simple formula which is equivalent neither to

true nor to false and where the solutions of the free variables are expressed in a

clear and explicit way. Algorithms which are able to produce such a formula φ are

called first-order constraint solvers.

We have then presented in Djelloul and Dao (2006b) not only a decision procedure

but a full first-order constraint solver in the theoryT of finite or infinite trees, in the

form of 11 rewriting rules, which gives clear and explicit solutions for any first-order

constraint satisfaction problem in T. The intuitions behind this algorithm come

from the works of Dao (2000), in which many elegant properties of the theory of

finite or infinite trees were given. As far as we know, this is the first algorithm which

is able to do a such work in T.

This is an extended and detailed version with full proofs of our previous work on

the theory T of finite or infinite trees (Djelloul and Dao 2006b). Moreover, in this

paper we extend the signature of T by the relation finite(t) which forces the term

t to be a finite tree. Then we extend Maher’s axiomatization by two new axioms

and show its completeness by giving an extended version of our previous first-order

constraint solver (Djelloul and Dao 2006b). We also describe a CHR (Constraint

Handling Rules) implementation of our rules and compare the performances with

those obtained using a C++ implementation of our solver and the decision procedure

for decomposable theories (Djelloul 2006a).

1 φ is solved according to Definition 4.2.4 of Djelloul (2006a)
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1.1 Overview of the paper

This paper is organized in five sections followed by a conclusion. This introduction

is the first section. In section 2, we introduce the structure of finite or infinite trees

and give formal definitions of trees, finites trees, infinite trees and rational trees. We

end this section by presenting particular algebras which handle finite or infinite trees.

In section 3, after a brief recall on first-order logic, we present the five axioms of

our extended theory2 T of finite or infinite trees built on a signature containing not

only an infinite set of function symbols but also a relation finite(t) which enables to

distinguish between finite and infinite trees. We then extend the algebras given at

the end of section 2 by the relation finite(t) and show that these extended algebras

are models of T . In particular, we show that the models of sets of nodes, of finite

or infinite trees and of rational trees are models of T .

In section 4, we present structured formulas that we call working formulas and

give some of their properties. These working formulas are extensions of those given

in Djelloul (2006a). We also introduce the notion of reachable variables and show

that there exist particular formulas which have only quantified reachable variables,

do not accept elimination of quantifiers and cannot be simplified any further. Such

formulas are called general solved formulas. We then present 16 rewriting rules

which handle working formulas and transform an initial working formula into an

equivalent conjunction of final working formulas from which we can extract easily

an equivalent conjunction of general solved formulas. We end this section by a

full first-order constraint solver in T . This algorithm uses, among other things, our

16 rules and transforms any first-order formula ϕ into a disjunction φ of simple

formulas such that φ is either the formula true or the formula false or a formula

having at least one free variable, being equivalent neither to true nor to false and

where the solutions of the free variables are expressed in a clear and explicit way.

The correctness of our algorithm implies the completeness of T .

Finally, in section 5, we give a series of benchmarks. Our algorithm was imple-

mented in C++ and CHR (Fruehwirth 1998; Fruehwirth and Abdennadher 2003;

Schrijvers and Fruehwirth 2006). The C++ implementation is able to solve formulas

of a two-player game involving 80 nested alternated quantifiers. Even if the C++

implementation is fastest, we found interesting to see how we can translate our

algorithm into CHR rules. Using this high-level approach, we will be able to quickly

prototype optimizations and variations of our algorithm and hope to parallelize

it. We also compare the performances with those of C++ implementation of the

decision procedure for decomposable theories3 Djelloul (2006a).

The axiomatization of T , the proof that T has at least one model, the 16 rewriting

rules, the proof of the correctness of our rules, the first-order constraint solver in

T , the completeness of T , the CHR implementation, the two-player game and the

benchmarks are new contributions in this paper.

2 We have chosen to denote by T the Maher’s theory of finite or infinite trees and by T our extended
theory of finite or infinite trees.

3 In Djelloul (2006a), we have shown that the Maher’s theoryT of finite or infinite trees is decomposable.
We can show easily using a similar proof that our extended theory T is also decomposable.
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2 The structure of finite or infinite trees

2.1 What is a tree?

Trees are well-known objects in the computer science world. Here are some of them:

a

f

f

b a

a

a

a

f

f

s

s

s s

s

s

f

fa

a

a

f

f

f

f

b

b

s

their nodes are labeled by the symbols a,b,f,s of respective arities 0,0,2,1. While the

first tree is a finite tree, i.e. it has a finite set of nodes, the two others are infinite

trees, i.e. they have an infinite set of nodes.

Let us now number from 1 to n and from left to right the branches that connect

each node l to his n sons. We get
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Each node c labeled by l can now be seen as a pair (p, l) where p is the position

of the node, i.e. the smallest series of positive integers that we meet if we move

from the root of the tree to the node c. Thus, the preceding trees can be represented

by the following sets of nodes:

{(ε, f), (1, f), (2, s), (11, a), (12, b), (21, a)}
{(ε, f), (1, a), (2, f), (21, b), (22, f), (221, a), (222, f), (2221, b), . . .}{

(ε, f), (1, a), (2, f), (21, s), (22, f), (211, a), (221, s), (222, f),

(2211, s), (2221, s), (2222, f), (22111, a), (22211, s), (222111, s), (2221111, a), . . .

}

Let us now formalize all the preceding statements. Let L be a (possibly infinite)

set. Its elements are called labels. To each label l ∈ L is linked a non-negative integer

called arity of l. An n-ary label is a label of arity n. A position is a word built on

strictly positive integers (the empty word is denoted by ε). Let p be a position and
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l a label. The pair (p, l) is called node and its depth is the length4 of p. An n-ary

node is a node whose label is of arity n. A root is a node of depth 0. The row of an

n-ary node, with n �= 0, is the last integer of its position. We say that c is the father

of c′ or c′ is the son of c if c and c′ are nodes whose positions are respectively of

the form i1, . . . , ik and i1, . . . , ikik+1, where the ij ’s are strictly positive integers and k

a (possibly null5) positive integer. Let us denote by N the set of the nodes labeled

by elements of L.

Definition 2.1.1

A node c of N is called arborescent in a sub-set N1 of N if N1 �= ∅ and either c �∈ N1,

or c ∈ N1 and the two following conditions hold:

• N1 − {c} does not contain any node whose position is the same as those of c,

• c is either a root or the son of an n-ary node of N1 which has exactly n sons

in N1 of respective rows 1, . . . , n.

We can now define formally a tree:

Definition 2.1.2

A tree tr is a sub-set of N such that each element of N is arborescent in tr. A finite

tree is a tree whose set of nodes is finite. An infinite tree is a tree whose set of nodes

is infinite.

Let us now define the notion of subtree:

Definition 2.1.3

Let tr be a tree. The subtree linked to a node (i1, . . . , ik, l) of tr is the set of the nodes

of the form (ik+1, . . . , ik+n, l
′) with (i1, . . . , ik+n, l

′) ∈ tr and6 n � 0. We call subtree of

tr a subtree linked to one of the nodes of tr. A subtree of tr of depth k is a subtree

linked to a node of tr of depth k.

From Definition 2.1.2, we deduce that each subtree of a tree tr is also a tree.

Definition 2.1.4

A rational tree is a tree whose set of subtrees is a finite set.

Note that an infinite tree can be rational. In fact, even if its set of nodes is infinite

but n subtrees linked to n different nodes can be similar. Let us see this in the

following example:

Example 2.1.5

Let us consider the three trees presented in the beginning of Section 2.1. Let us

name them from left to righ by: tr1, tr2 and tr3. The set of the subtrees of tr1 is the

4 As usual, the length of the empty word ε is 0.
5 Of course, for k = 0, i1, . . . , ik is reduced to ε.
6 Of course, for n = 0, (ik+1, . . . , ik+n, l

′) is reduced to (ε, l′).

https://doi.org/10.1017/S1471068407003171 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003171


Theory of finite or infinite trees revisited 437

following finite set:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{(ε, a)},
{(ε, b)},
{(ε, s), (1, a)},
{(ε, f), (1, a), (2, b)},
{(ε, f), (1, f), (2, s), (11, a), (12, b), (21, a)}

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

i.e.

The set of the subtrees of tr2 is the following finite set:

⎧⎪⎪⎨
⎪⎪⎩
{(ε, a)},
{(ε, b)},
{(ε, f), (1, a), (2, f), (21, b), (22, f), (221, a), . . .},
{(ε, f), (1, b), (2, f), (21, a), (22, f), (221, b), . . .}

⎫⎪⎪⎬
⎪⎪⎭

i.e.

The set of the subtrees of tr3 is the following infinite set:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(ε, a)},
{(ε, s), (1, a)},
{(ε, s), (1, s), (11, a)},
{(ε, s), (1, s), (11, s), (111, a)},
. . .

{(ε, f), (1, a), (2, f), (21, s), (22, f), . . .},
{(ε, f), (1, s), (2, f), (11, a), (21, s), (22, f), . . .}
. . .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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i.e.

Note that the tree tr1 has a finite set of nodes and a finite set of subtrees. Thus, it

is a finite rational tree. The tree tr2 has an infinite set of nodes but a finite set of

subtrees. Thus, it is an infinite rational tree. The tree tr3 has an infinite set of nodes

and an infinite set of subtrees. Thus, it is an infinite non-rational tree.

Note also that a rational tree can always be represented by a finite directed graph.

For that, it is enough to merge all the nodes whose linked subtrees are similar. A

non-rational tree cannot be represented by a finite directed graph. In this case, only

an infinite directed graph representation will be possible. For example, the trees tr1,

tr2 and tr3 can be represented as follows:

Of course, two different directed graphs can represent the same tree. For example

the trees tr2 and tr3 can also be represented as follows:
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2.2 Construction operations

We would like to provide the set Tr of finite or infinite trees with a set of construction

operations; one for each label l of L. These operations will be schematized as follows:

with n the arity of the label l. To formally define these construction operations, we

need first to define them in the set D of sets of nodes7 of N. Let i be a strictly positive

integer. If d = (j1, . . . , jk, l) is a node then we denote by i.d the node (ij1, . . . , jk, l). If

a is a set of nodes (i.e. a ∈ D), then we denote by i.a the set of nodes {i.d | d ∈ a}.

Definition 2.2.1

In the set D, the construction operation linked to the n-ary label l is the application

lD : (a1, . . . , an) 	→ {(ε, l)} ∪ 1.a1∪, . . . ,∪n.an with a1, . . . , an elements of D.

Remark 2.2.2

Let a be an element of D. Let us denote by νk(a) the set of nodes of a of depth k.

Many remarks must be stated concerning any elements a, ai and b of D:

1. a = b↔
∧∞
k=1 νk(a) = νk(b).

2. ν0(l
D(a1, . . . , an)) = {(ε, l)}.

3. For all k � 0, there exists a function ϕk+1, which is independent from all the

νk+1(ai), with i ∈ {1, . . . , n}, such that νk+1(l
D(a1, . . . , an)) = ϕk+1(νk(a1), . . . , νk(an)).

4. The elements of ν0(l
D(a1, . . . , an)) are arborescent in lD(a1, . . . , an).

5. For all k � 0, the elements of νk+1(l
D(a1, . . . , an)) are arborescent in lD(a1, . . . , an)

if and only if, for each i ∈ {1, . . . , n}, the elements of νk(ai) are arborescent in

ai.

6. If for all k � 0 the elements of νk(l
D(a1, . . . , an)) are arborescent in lD(a1, . . . , an)

then each element of N is arborescent in lD(a1, . . . , an).

Let now F be an infinite set of function symbols. Let us denote by

• N the set of the nodes labeled by F ,

• D the set of sets of nodes of N,

• Tr the set of the elements of D which are trees,

• Ra the set of the elements of Tr which are rational, and

• Fi the set of the elements of Tr which are finite.

If f is an n-ary function symbol taken from F then the operation of construction fD

associated to f is an application of the form Dn → D. Let tr1, . . . , trn be elements of

Tr. From the fourth and fifth point of Remark 2.2.2 we deduce that fD(tr1, . . . , trn) is

also a tree, i.e. an element of Tr. Thus, we can introduce the following application:

7 In other words, each element of D is a set of nodes, i.e. a subset of N.
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fTr : (tr1, . . . , trn) 	→ fD(tr1, . . . , trn) which is of type Trn → Tr.

On the other hand, the set of the subtrees of the tree fD(tr1, . . . , trn) is obtained

by the union of the sets of the subtrees of all the tri plus the tree fD(tr1, . . . , trn).

Thus, if all the tri’s are rational trees then the tree fD(tr1, . . . , trn) is rational. As a

consequence, we can introduce the following application:

fRa : (tr1, . . . , trn) 	→ fD(tr1, . . . , trn) which is of type Ran → Ra.

Finally, if all the tri’s are finite trees, then the tree fD(tr1, . . . , trn) is finite. Thus, we

can introduce the following application:

fFi : (tr1, . . . , trn) 	→ fD(tr1, . . . , trn) which is of type Fin → Fi.

The pairs < D, (fD)f∈F >, < Tr, (fTr)f∈F >, < Fi, (fFi)f∈F > and < Ra, (fRa)f∈F >

are known as the algebras of sets of nodes, of finite or infinite trees, of finite trees

and of rational trees.

3 The extended theory T of finite or infinite trees

3.1 Formal preliminaries

3.1.1 Formulas

We are given once and for all an infinite countable set V of variables and the set L

of logical symbols:

=, true, false,¬,∧,∨,→,↔, ∀, ∃, (, ).
We are also given once and for all a signature S , i.e. a set of symbols partitioned

into two subsets: the set of function symbols and the set of relation symbols. To each

element s of S is linked a non-negative integer called arity of s. An n-ary symbol is

a symbol of arity n. A 0-ary function symbol is called constant.

As usual, an expression is a word on L ∪ S ∪ V which is either a term, i.e. of one

of the two forms:

x, f(t1, . . . , tn), (1)

or a formula, i.e. of one of the 11 forms:

s = t, r(t1, . . . , tn), true, false,

¬ϕ, (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ→ ψ), (ϕ↔ ψ),

(∀xϕ), (∃xϕ).

(2)

In (1), x is taken from V , f is an n-ary function symbol taken from S and the ti’s

are shorter terms. In (2), s, t and the ti’s are terms, r is an n-ary relation symbol

taken from S and ϕ and ψ are shorter formulas. The set of the expressions forms a

first-order language with equality.

The formulas of the first line of (2) are known as atomic, and flat if they are of

one of the following forms:

true, false, x0 = x1, x0 = f(x1, . . . , xn), r(x1, . . . , xn),
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where all the xi’s are (possibly non-distinct) variables taken from V , f is an n-ary

function symbol taken from S and r is an n-ary relation symbol taken from S . An

equation is a formula of the form s = t with s and t terms.

An occurrence of a variable x in a formula is bound if it occurs in a sub-formula

of the form (∀xϕ) or (∃xϕ). It is free in the contrary case. The free variables of

a formula are those which have at least one free occurrence in this formula. A

proposition or a sentence is a formula without free variables. If ϕ is a formula, then

we denote by var(ϕ) the set of the free variables of ϕ.

The syntax of the formulas being constraining, we allowed ourselves to use infix

notations for the binary symbols and to add and remove brackets when there are

no ambiguities. Moreover, we do not distinguish two formulas which can be made

equal using the following transformations of sub-formulas:

ϕ ∧ ϕ =⇒ ϕ, ϕ ∧ ψ =⇒ ψ ∧ ϕ, (ϕ ∧ ψ) ∧ φ =⇒ ϕ ∧ (ψ ∧ φ),

ϕ ∧ true =⇒ ϕ, ϕ ∨ false =⇒ ϕ.

If I is the set {i1, . . . , in}, we call conjunction of formulas and write
∧
i∈I ϕi, each

formula of the form ϕi1 ∧ϕi2 ∧ . . .∧ϕin ∧ true. In particular, for I = ∅, the conjunction∧
i∈I ϕi is reduced to true.

3.1.2 Model

A model is a tuple M = < M, (fM)f∈F , (R
M)r∈R >, where

• M, the universe or domain ofM, is a nonempty set disjoint from S , its elements

are called individuals of M;

• F and R are sets of n-ary functions and relations in the set M, subscripted by

the elements of S and such that:

– for every n-ary function symbol f taken from S , fM is an n-ary operation

in M, i.e. an application from Mn in M. In particular, when f is a constant,

fM belongs to M;

– for every n-ary relation symbol r taken from S , rM is an n-ary relation in

M, i.e. a subset of Mn.

Let M = < M,F, R > be a model. An M-expression ϕ is an expression built on

the signature S ∪M instead of S , by considering the elements of M as 0-ary function

symbols. If for each free variable x of ϕ we replace each free occurrence of x by a

same element m in M, we get an M-expression ϕ′ called instantiation8 or valuation

of ϕ by individuals of M.

If ϕ is an M-formula, we say that ϕ is true in M and we write

M |= ϕ, (3)

if for any instantiation ϕ′ of ϕ by individuals of M the set M has the property

expressed by ϕ′, when we interpret the function and relation symbols of ϕ′ by the

8 We also say that the variable x is instantiated by m in ϕ′.
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corresponding functions and relations ofM and when we give to the logical symbols

their usual meaning.

Remark 3.1.3

For every M-formula ϕ without free variables, one and only one of the following

properties holds: M |= ϕ, M |= ¬ϕ.

Let us finish this sub-section by a convenient notation. Let x̄ = x1 . . . xn be a word

on V and let ī = i1, . . . , in be a word on M or V of the same length as x̄. If ϕ(x̄) and

φ are two M-formulas, then we denote by ϕ(̄i), respectively φx̄←ī , the M-formula

obtained by replacing in ϕ(x̄), respectively in φ, each free occurrence of xj by ij .

3.1.4 Theory

A theory is a (possibly infinite) set of propositions called axioms. We say that the

modelM is a model of T , if for each element ϕ of T ,M |= ϕ. If ϕ is a formula, we

write

T |= ϕ,

if for each modelM of T ,M |= ϕ. We say that the formulas ϕ and ψ are equivalent

in T if T |= ϕ↔ ψ.

Definition 3.1.5

A theory T is complete if for every proposition ϕ, one and only one of the following

properties holds: T |= ϕ, T |= ¬ϕ.

Let φ be a formula and x̄ = x1, . . . , xn be a word on V such that var(φ) = x̄. From

the preceding definition we deduce that a decision procedure is sufficient in the case

where we want just to show the completeness of a theory T , as it was done in

Djelloul (2006a) for decomposable theories. In fact, the completeness of T depends

only on the truth values of the propositions in T . On the other hand, finding for

each model M of T the instantiations ī of x̄ such that M |= φx̄←ī can be obtained

only using a first-order constraint solver in T . This kind of problem is generally

known as first-order constraint satisfaction problem.

3.1.6 Vectorial quantifiers

Let M be a model and T a theory. Let x̄ = x1, . . . , xn and ȳ = y1, . . . , yn be two

words on V of the same length. Let φ, ϕ and ϕ(x̄) be M-formulas. We write

∃x̄ ϕ for ∃x1, . . . , ∃xn ϕ,

∀x̄ ϕ for ∀x1, . . . , ∀xn ϕ,

∃?x̄ ϕ(x̄) for ∀x̄∀ȳ ϕ(x̄) ∧ ϕ(ȳ)→
∧
i∈{1,...,n} xi = yi,

∃!x̄ ϕ for (∃x̄ ϕ) ∧ (∃?x̄ ϕ).

The word x̄, which can be the empty word ε, is called vector of variables. Note that

the formulas ∃?εϕ and ∃!εϕ are respectively equivalent to true and to ϕ in any

model M.
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Notation 3.1.7

Let Q be a quantifier taken from {∀, ∃, ∃!, ∃?}. Let x̄ be vector of variables taken

from V . We write

Qx̄ϕ ∧ φ for Qx̄ (ϕ ∧ φ).

Example 3.1.8

Let I = {1, . . . , n} be a finite set. Let ϕ and φi with i ∈ I be formulas. Let x̄ and ȳi
with i ∈ I be vectors of variables. We write

∃x̄ ϕ ∧ ¬φ1 for ∃x̄ (ϕ ∧ ¬φ1),

∀x̄ ϕ ∧ φ1 for ∀x̄ (ϕ ∧ φ1),

∃!x̄ ϕ ∧
∧
i∈I (∃ȳiφi) for ∃!x̄ (ϕ ∧ (∃ȳ1φ1) ∧ . . . ∧ (∃ȳnφn) ∧ true),

∃?x̄ ϕ ∧
∧
i∈I ¬(∃ȳiφi) for ∃?x̄ (ϕ ∧ (¬(∃ȳ1φ1)) ∧ . . . ∧ (¬(∃ȳnφn)) ∧ true).

Notation 3.1.9

If x̄ is a vector of variables then we denote by X the set of the variables of x̄.

Let I be a (possible empty) finite set. The two following properties hold for any

theory T :

Property 3.1.10

If T |= ∃?x̄ ϕ then

T |=
(
∃x̄ ϕ ∧

∧
i∈I
¬φi

)
↔

(
(∃x̄ϕ) ∧

∧
i∈I
¬(∃x̄ ϕ ∧ φi)

)
.

Property 3.1.11

If T |= ∃!x̄ ϕ then

T |=
(
∃x̄ ϕ ∧

∧
i∈I
¬φi

)
↔

∧
i∈I
¬(∃x̄ ϕ ∧ φi).

Full proofs of these two properties can be found in detail in Djelloul (2006a).

3.2 The axioms of T

Let F be a set of function symbols containing infinitely many non-constant function

symbols and at least one constant. Let finite be an 1-ary relation symbol. The theory

T of finite or infinite trees built on the signature S = F ∪ {finite} has as axioms the

infinite set of propositions of one of the five following forms:

∀x̄∀ȳ ¬(f(x̄) = g(ȳ)) [1]

∀x̄∀ȳ f(x̄) = f(ȳ)→
∧
i xi = yi [2]

∀x̄∃!z̄
∧
i zi = ti[x̄z̄] [3]

∀x̄∀u ¬(u = t[u, x̄] ∧ finite(u)) [4]

∀x̄∀u (u = f(x̄) ∧ finite(u))↔ (u = f(x̄) ∧
∧
i finite(xi)) [5]

where f and g are distinct function symbols taken from F , x̄ is a vector of (possibly

non-distinct) variables xi, ȳ is a vector of (possibly non-distinct) variables yi, z̄ is a

vector of distinct variables zi, ti[x̄z̄] is a term which begins with an element of F
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followed by variables taken from x̄ or z̄, and t[u, x̄] is a term containing at least one

occurrence of an element of F and the variable u and possibly other variables taken

from x̄. For example, we have T |= ∀x1x2∀u¬(u = f1(x1, f2(u, x2)) ∧ finite(u)) and

T |= ∀u¬(u = f1(f2(u, f0), f0)∧finite(u)), where f1 and f2 are 2-ary function symbols

and f0 a constant of F .

The forms [1], . . . , [5] are also called schemas of axioms of the theory T . Proposi-

tion [1] called conflict of symbols shows that two distinct operations produce two

distinct individuals. Proposition [2] called explosion shows that the same operation

on two distinct individuals produces two distinct individuals. Proposition [3] called

unique solution shows that a certain form a conjunction of equations has a unique

set of solutions in T . In particular, the formula ∃z z = f(z) has a unique solution

which is the infinite tree f(f(f(. . .))). Proposition [4] means that a finite tree cannot

be a strict subtree of itself. We emphasize strongly that t[u, x̄] should contain at

least one occurrence of an element of F and the variable u. In Axiom [5], if x̄ is the

empty vector and f is a constant then we get ∀u u = f ∧ finite(u) ↔ u = f, which

means that the property finite(f) is true for each constant f of F .

This theory is an extension of the basic theory of finite or infinite trees given by

Maher (1988) and built on a signature containing an infinite set of function symbols.

Maher’s theory is composed of the three first axioms of T and its completeness

was shown using a decision procedure which transforms each proposition into a

Boolean combination of existentially quantified conjunctions of atomic formulas.

Note also that both Maher’s theory and the theory T do not accept full elimination

of quantifiers, i.e. there exist some quantified formulas whose quantifiers cannot be

eliminated. For example, the formula ∃x y = f(x) is neither true nor false in T . It

accepts in each model of T a set of solutions and another set of non-solutions.

As a consequence, we cannot simplify it any further. This non-full elimination of

quantifiers makes the completeness of T not evident.

3.3 The models of T

Let us extend the algebras given at the end of section 2.2 by the relation finite. More

precisely, if u1, u2, u3 and u4 are respectively elements of D, Tr, Fi and Ra then the

operations finiteD(u1), finiteTr(u2), finiteFi(u3) and finiteRa(u4) are true respectively in

D, Tr, Fi and Ra, if and only if u1, u2, u3 and u4 have a finite set of nodes.

Let us now denote by

• D =< D, (fD)f∈F , finiteD >, the model of sets of nodes,

• Tr =< Tr, (fTr)f∈F , finiteTr >, the model of finite or infinite trees,

• Ra =< Ra, (fRa)f∈F , finiteRa >, the model of rational trees, and

• Fi =< Fi, (fFi)f∈F , finiteFi >, the model of finite trees.

We have

Theorem 3.3.1

The models D, Tr and Ra are models of the theory T .

This theorem is one of the essential contributions given in this paper and shows that

our theory T is in fact an axiomatization of the structures D, Tr and Ra together
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with an infinite set of construction operations and the 1-ary relation finite. It also

shows that T has at least one model and thus T |= ¬(true ↔ false).
Proof, first part: Let us show first that the model D of sets of nodes is a model

of T . In other words, we must show that the following properties hold:

[1D] (∀a1, . . . , am ∈ D)(∀b1, . . . , bn ∈ D)¬(fD(a1, . . . , am) = gD(b1, . . . , bn))

[2D] (∀a1, . . . , an ∈ D)(∀b1, . . . , bn ∈ D) (fD(a1, . . . , an) = fD(b1, . . . , bn)→
∧n
i=1 ai = bi)

[3D] (∀a1, . . . , am ∈ D)(∃!b1, . . . , bn ∈ D) (
∧n
i=1 bi = tDi [b1, . . . , bn, a1, . . . , am])

[4D] (∀a1, . . . , am ∈ D)(∀u ∈ D)¬(u = tD[u, a1, . . . , an] ∧ finiteD(u))

[5D] (∀a1, . . . , an ∈ D)(∀u ∈ D)(u = fD(a1, . . . , an) ∧ finiteD(u))↔
(u = fD(a1, . . . , an) ∧

∧n
i=1 finiteD(ai))

where f and g are distinct function symbols taken from F , tDi [b1, . . . , bn, a1, . . . , am]

is a term which begins with an element of F followed by variables taken from

{a1, . . . , am, b1, . . . , bn}, and tD[u, a1, . . . , an] is a term containing at least one occurrence

of an element of F and the variable u and possibly other variables taken from

{a1, . . . , an}. According to Definition 2.2.1 and the definition of the relation finiteD ,

the properties [1D], [2D], [4D] and [5D] hold. On the other hand, property [3D] is

much less obvious and deserves to be proved.

Let a1, . . . , am and b1, . . . , bn be elements of D. According to the first point of

Remark 2.2.2, the D-formula

n∧
i=1

bi = tDi [b1, . . . , bn, a1, . . . , am], (4)

is equivalent in D to

∞∧
k=0

n∧
i=1

νk(bi) = νk(t
D
i [b1, . . . , bn, a1, . . . , am]). (5)

Let i ∈ {1, . . . , n}. Let us denote by fi respectively [b1, . . . , bn, a1, . . . , am]i the function

symbol respectively the set of the variables which occur in the term tDi [b1, . . . , bn,

a1, . . . , am]. According to the second and third points of Remark 2.2.2 we have

• For each i ∈ {1, . . . , n} there exists one node ϕi0 = (ε, fi) such that

ν0(t
D
i [b1, . . . , bn, a1, . . . , am]) = {ϕi0}.

• For each i ∈ {1, . . . , n} and each k � 0 there exists a function ϕik+1, which is

independent from all the νk+1(x), with x ∈ [b1, . . . , bn, a1, . . . , am]i, such that

νk+1(t
D
i [b1, . . . , bn, a1, . . . , am]) = ϕik+1([νk(b1), . . . , νk(bn), νk(a1), . . . , νk(am)]i),

where [νk(b1), . . . , νk(bn), νk(a1), . . . , νk(am)]i is a tuple of elements of the form

νk(x) for all x ∈ [b1, . . . , bn, a1, . . . , am]i.

Thus, the D-formula (5) is equivalent in D to(
n∧
i=1

ν0(bi) = {ϕi0}
)
∧

( ∞∧
k=0

n∧
i=1

νk+1(bi) = ϕik+1([νk(b1), . . . , νk(bn), νk(a1), . . . , νk(am)]i)

)
,
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from which we deduce that

• (i) For all i ∈ {1, . . . , n}, ν0(bi) has a constant value, which is equal to (ε, fi).

• (ii) Each νk+1(bi) depends in the worst case on νk(b1), . . . , νk(bn), νk(a1), . . . , νk(am),

i.e. on νk(b1), . . . , νk(bn) and a1, . . . , am.

Thus, by recurrence9 on k, we deduce that (iii) each νk+1(bi) with k � 0 and

i ∈ {1, . . . , n}, depends only on a1, . . . , am. From (i) and (iii) we deduce that all the

bi’s depend only on a1, . . . , am and thus property [3D] holds. In other words, for each

instantiation of a1, . . . , am by elements of D we can deduce the values of νk(bi) for

all i ∈ {1, . . . , n} and k � 0.
We have shown that the model D satisfies the five axioms of T and thus it is a

model of T .

Proof, second part: Let us now show that the model Tr of finite or infinite trees is
a model of T . For that, it is enough to show the validity of the following properties

[1Tr] (∀a1, . . . , am ∈ Tr)(∀b1, . . . , bn ∈ Tr)¬(fTr(a1, . . . , am) = gTr(b1, . . . , bn))

[2Tr] (∀a1, . . . , an ∈ Tr)(∀b1, . . . , bn ∈ Tr) (fTr(a1, . . . , an) = fTr(b1, . . . , bn)→
∧n
i=1 ai = bi)

[3Tr] (∀a1, . . . , am ∈ Tr)(∃!b1, . . . , bn ∈ Tr) (
∧n
i=1 bi = tTri [b1, . . . , bn, a1, . . . , am])

[4Tr] (∀a1, . . . , am ∈ Tr)(∀u ∈ Tr)¬(u = tTr[u, a1, . . . , an] ∧ finiteTr(u))

[5Tr] (∀a1, . . . , an ∈ Tr)(∀u ∈ Tr)(u = fTr(a1, . . . , an) ∧ finiteTr(u))↔
(u = fTr(a1, . . . , an) ∧

∧n
i=1 finiteTr(ai))

where f and g are distinct function symbols taken from F , tTri [b1, . . . , bn, a1, . . . , am]
is a term which begins with an element of F followed by variables taken from
{a1, . . . , am, b1, . . . , bn}, and tTr[u, a1, . . . , an] is a term containing at least one occur-
rence of an element of F and the variable u and possibly other variables taken
from {a1, . . . , an}. Since Tr is a subset of D, then according to the definition of

fTr, fD, finiteTr and finiteD , the properties [1D], [2D], [4D] and [5D] imply [1Tr], [2Tr],
[4Tr] and [5Tr]. On the other hand, to show property [3Tr], it is enough to show the
following implication:

(∀a1, . . . , am, b1, . . . bn ∈ D)(((
n∧
i=1

bi = tDi [b1, . . . , bn, a1, . . . , am]

)
∧

(
m∧
i=1

ai ∈ Tr
))
→

(
n∧
i=1

bi ∈ Tr
))

(6)

Let a, b, a1, . . . ,am, b1, . . . ,bn be elements of D. Let us consider the following notation:

Arb(a, b)↔ each element of a is arborescent in b.

According to Definition 2.1.2, the Tr-formula(
n∧
i=1

bi = tDi [b1, . . . , bn, a1, . . . , am]

)
∧

(
m∧
i=1

ai ∈ Tr
)
,

9 If k = 0 then according to (ii) each ν1(bi) depends in the worst case on ν0(b1), . . . , ν0(bn) and a1,. . . ,am.
According to (i) all the ν0(b1), . . . , ν0(bn) have constant values and thus each ν1(bi) depends only
on a1, . . . , am. Let us now assume that each νk(bi) depends only on a1, . . . , am and let us show that
this hypothesis is true for νk+1(bi). According to (ii), each νk+1(bi) depends in the worst case on
νk(b1), . . . , νk(bn) and a1, . . . , am, which according to our hypothesis depend only on a1, . . . , am. Thus, the
recurrence is true for all k � 0.
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is equivalent in Tr to(
n∧
i=1

bi = tDi [b1, . . . , bn, a1, . . . , am]

)
∧

(
m∧
i=1

Arb(N, ai)

)
,

which is equivalent to(
n∧
i=1

bi = tDi [b1, . . . , bn, a1, . . . , am]

)
∧

( ∞∧
k=0

m∧
i=1

Arb(νk(N), ai)

)
, (7)

which for each j � 0 is equivalent in Tr to(
n∧
i=1

bi = tDi [b1, . . . , bn, a1, . . . , am]

)
∧

( ∞∧
k=0

m∧
i=1

Arb(νk(N), ai)

)
∧

(
n∧
i=1

Arb(νj(bi), bi)

)
.

(8)

The equivalence (7 ↔ 8) holds for j = 0 according to the fourth point of

Remark 2.2.2, and if we assume that this equivalence holds for an integer j with

j � 0 then according to the fifth point of Remark 2.2.2, we deduce that it holds also

for j + 1. Thus, since the equivalence (7↔ 8) holds for any j � 0 then according to

the sixth point of Remark 2.2.2 and Definition 2.1.2 we deduce that (8) implies
n∧
i=1

Arb(N, bi),

which, according to Definition 2.1.2, implies
n∧
i=1

bi ∈ Tr.

Thus, the implication (6) holds and Tr is a model of T .

Proof, third part: Finally, let us show that the model Ra is a model of T . For that,
it is enough to show the validity of the following properties:

[1Ra] (∀a1, . . . , am ∈ Ra)(∀b1, . . . , bn ∈ Ra)¬(fRa(a1, . . . , am) = gRa(b1, . . . , bn))

[2Ra] (∀a1, . . . , an ∈ Ra)(∀b1, . . . , bn ∈ Ra) (fRa(a1, . . . , an) = fRa(b1, . . . , bn)→
∧n
i=1 ai = bi)

[3Ra] (∀a1, . . . , am ∈ Ra)(∃!b1, . . . , bn ∈ Ra) (
∧n
i=1 bi = tRai [b1, . . . , bn, a1, . . . , am])

[4Ra] (∀a1, . . . , am ∈ Ra)(∀u ∈ Ra)¬(u = tRa[u, a1, . . . , an] ∧ finiteRa(u))

[5Ra] (∀a1, . . . , an ∈ Ra)(∀u ∈ Ra)(u = fRa(a1, . . . , an) ∧ finiteRa(u))↔
(u = fRa(a1, . . . , an) ∧

∧n
i=1 finiteRa(ai))

where f and g are distinct function symbols taken from F , tRai [b1, . . . , bn, a1, . . . , am]

is a term which begins with an element of F followed by variables taken from

{a1, . . . , am, b1, . . . , bn}, and tRa[u, a1, . . . , an] is a term containing at least one occurrence

of an element of F and the variable u and possibly other variables taken from

{a1, . . . , an}. Since Ra is a subset of Tr and according to the definitions of fTr , fRa,

finiteTr and finiteRa then the properties [1Tr], [2Tr], [4Tr] and [5Tr] imply [1Ra],

[2Ra], [4Ra] and [5Ra]. On the other hand, in property [3Tr] (in the preceding proof),

a subtree of depth k of any bi is either one of the trees b1,. . . , bn or a subtree of

one of the aj ’s with i ∈ {1, . . . , n} and j ∈ {1, . . . , m}. This is true for k = 0 and if we

assume that it is true for k then we deduce that it is true for k + 1. Thus, if the aj ’s

are rational then the bi’s in [3Tr] are also rational and thus we get [3Ra].
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We have shown that the models D, Tr and Ra are models of T . What about the

model Fi of finite trees? Since F contains at least one function symbol f, which is

not a constant then according to Axiom [3] of T we have

T |= ∃!x x = f(x, . . . , x).

It is obvious that this property cannot be true in Fi, i.e. there exists no x ∈ Fi such

that x = fFi(x, . . . , x). Thus, the model Fi of finite trees is not a model of T .

Let us end this section by a property concerning the cardinality of any model of

T :

Property 3.3.2
Let M =< M, (fM)f∈F , finiteM > be a model of T . The model M has an infinity of

individuals i such that M |= finiteM(i).

Proof
Since the set F contains at least one function symbol f which is a constant then

according to Axiom [5], with x̄ = ε, we have

M |= finiteM(fM). (9)

On the other hand, according to the definition of the signature of T , the set F

contains an infinity of distinct function symbols which are not constants. Let f1 be

one of these symbols. According to (9) and Axiom [5], we have

M |= finiteM(fM1 (fM, . . . , fM)),

thus the individual fM1 (fM, . . . , fM) is finite in M. Since the set F contains an

infinity of distinct function symbols f1, f2, f3, . . . , which are not constants then we

can create by following the same preceding steps an infinity of finite individuals

fM1 (fM, . . . , fM), fM2 (fM, . . . , fM), fM3 (fM, . . . , fM), . . . , which start by distinct function

symbols. According to Axiom [1], all these individuals are distinct. According to (9)

and Axiom [5] all these individuals are finite in M. �

Corollary 3.3.3
Each model of T has an infinite domain, i.e. an infinite set of individuals.

4 Solving first-order constraints in T

4.1 Discipline of the formulas in T

Let us assume that the infinite set V is ordered by a strict linear dense order relation

without endpoints denoted by �. Starting from this section, we impose the following

discipline to every formula ϕ in T : the quantified variables of ϕ are renamed so

that

• (i) the quantified variables of ϕ have distinct names and different from those

of the free variables and
• (ii) for all variables x, y and all sub-formulas10 ϕi of ϕ, if y has a free

occurrence in ϕi and x has a bound occurrence in ϕi then x � y.

10 By considering that each formula is also a sub-formula of itself.
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Example 4.1.1
Let x, y, z, v be variables of V such that x � y � z � v. Let ϕ be the formula

∃x x = fy ∧
[
¬(∃z z = x)∧
¬(∃z z = v)

]
. (10)

The quantified variables of ϕ have no distinct names. Since the order � is dense

and without endpoints, there exists a variable w in V such that x � y � z � v � w,

and thus ϕ is equivalent in T to

∃x x = fy ∧
[
¬(∃z z = x)∧
¬(∃w w = v)

]
.

In the preceding formula, the variables z and w have bound occurrences while the

variables y and v have free occurrences. Since x � y � z � v � w then z and w must

be renamed. On the other hand, since the order � is dense and without endpoints,

there exist two variables u and d in V such that x � u � d � y � z � v � w. Thus,

the preceding formula is equivalent in T to

∃x x = fy ∧
[
¬(∃u u = x)∧
¬(∃d d = v)

]
.

In the sub-formula (∃u u = x) the variable x has a free occurrence while the variable

u has a bound occurrence. Since x � u then u must be renamed. On the other hand,

since the order � is dense and without endpoints, there exists a variable n in V such

that n � x � u � d � y � z � v � w. Thus, the preceding formula is equivalent in

T to

∃x x = fy ∧
[
¬(∃n n = x)∧
¬(∃d d = v)

]
. (11)

This formula satisfies our conditions. Of course, the equivalence between (11) and

(10) holds because in each step we renamed only the quantified variables. It is

obvious that we can always transform any formula ϕ into an equivalent formula φ,

which respects the discipline of the formulas in T , only by renaming the quantified

variables of ϕ. It is enough for that to rename the quantified variables by distinct

names and different from those of the free variables and then check each sub-formula

and rename the quantified variables if the condition (ii) does not hold.

We emphasize strongly that all the formulas which will be used starting from now

satisfy the discipline of the formulas in T .

4.2 Basic formula

In this sub-section we introduce particular conjunctions of atomic formulas that we

call basic formulas and show some of their properties. All of them will be used to

show the correctness of our rewriting rules given in section 4.6.

Definition 4.2.1
Let v1, . . . , vn, u1, . . . , um be variables. A basic formula is a formula of the form(

n∧
i=1

vi = ti

)
∧

(
m∧
i=1

finite(ui)

)
(12)
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in which all the equations vi = ti are flat. Note that if n = m = 0 then (12) is reduced

to true. The basic formula (12) is called solved if all the variables v1, . . . , vn, u1, . . . , um
are distinct and for each equation of the form x = y we have x � y. If α is a basic

formula then we denote by

• Lhs(α) the set of the variables which occur in the left-hand sides of the

equations of α and

• FINI(α) the set of the variables which occur in a sub-formula of α of the form

finite(x).

Note that if α is a solved basic formula then for all variables x of α we have

x ∈ Lhs(α)→ x �∈ FINI(α).

Example 4.2.2

The basic formula x = x ∧ finite(y) is not solved because x �� x. The basic formula

x = f(y) ∧ z = f(y) ∧ finite(x) is also not solved because x is a left-hand side of an

equation and occurs also in finite(x). The basic formulas true (empty conjunction)

and x = f(y) ∧ z = f(y) ∧ finite(y) are solved.

According to the axiom [3] of T , we deduce the following property:

Property 4.2.3

Let α be a solved basic formula containing only equations. Let x̄ be the vector of

the variables of Lhs(α). We have T |= ∃!x̄ α.

Property 4.2.4

Let α and β be two solved basic formulas containing only equations. If Lhs(α) =

Lhs(β) and T |= α→ β then T |= α↔ β.

Proof

Let α and β be two solved basic formulas containing only equations such that

Lhs(α) = Lhs(β) and T |= α → β. Let us show that we have also T |= β → α. Let

x̄ be the vector of the variables of Lhs(α) and let ȳ be the vector of the variables

which occur in α → β and do not occur in x̄. Since α and β are two solved basic

formulas such that Lhs(α) = Lhs(β) then (i) x̄ is also the vector of the left-hand

sides of equations of β. Moreover, the following equivalences are true in T :
α→ β

↔ ∀x̄∀ȳ α→ β

↔ ∀ȳ∀x̄¬α ∨ β
↔ ∀ȳ(¬(∃x̄ α ∧ ¬β))

↔ ∀ȳ(¬(¬(∃x̄ α ∧ β))) according to the properties 4.2.3 and 3.1.11

↔ ∀ȳ(¬(¬(∃x̄ β ∧ α)))
↔ ∀ȳ(¬(∃x̄ β ∧ ¬α)) according to (i) and Property 4.2.3 and using the other

sense (right to left) of the equivalence of Property 3.1.11

↔ ∀ȳ∀x̄¬β ∨ α
↔ ∀ȳ∀x̄ β → α

↔ β → α
�
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Property 4.2.5

Let α be a basic formula containing only equations and β and δ two conjunctions of

constraints of the form finite(x) such that α∧ β and α∧ δ are solved basic formulas.

We have T |= (α ∧ β) ↔ (α ∧ δ) if and only if β and δ have exactly the same

contraints.

Proof

If β and δ have the same constraints then it is evident that we have T |= (α ∧ β)↔
(α∧δ). Let us now show that if we have T |= (α∧β)↔ (α∧δ) then β and δ have the

same constraints. Suppose that we have (*) T |= (α ∧ β) ↔ (α ∧ δ) and let us show

that if finite(u) occurs in β then it occurs also in δ and vice versa. If finite(u) occurs

in β then T |= (α ∧ β)→ finite(u), thus from (*) we have (i) T |= (α ∧ δ)→ finite(u).

Since α∧β is solved then u is not the left-hand side of an equation of α. Thus, (ii) the

conjunction α ∧ δ does not contain sub-formulas of the form u = t[x̄] ∧
∧
i finite(xi).

Since α ∧ δ is solved then δ does not contain formulas of the form finite(v) where

v is the left-hand side of an equation of α. Thus, (iii) the conjunction α ∧ δ does

not contain also sub-formulas of the form v = t[x̄, u] ∧ finite(v). From (i), (ii) and

(iii), finite(u) should occur in δ. By the same reasoning (we replace β by δ and vice

versa), we show that if finite(u) occurs in δ then it occurs in β. �

Let us now introduce the notion of reachable variable:

Definition 4.2.6

Let α be a basic formula and x̄ a vector of variables. The reachable variables and

equations of α from the variable x0 are those which occur in a sub-formula of α of

the form:

x0 = t0(x1) ∧ x1 = t1(x2) ∧ . . . ∧ xn−1 = tn−1(xn),

where xi+1 occurs in the term ti(xi+1). The reachable variables and equations of ∃x̄ α
are those which are reachable in α from the free variables of ∃x̄ α. A sub-formula of

α of the form finite(u) is called reachable in ∃x̄ α if u �∈ x̄ or u is a reachable variable

of ∃x̄ α.

Example 4.2.7

In the formula: ∃uvw z = f(u, v) ∧ v = g(v, u) ∧ w = f(u, v) ∧ finite(u) ∧ finite(x), the

equations z = f(u, v) and v = g(v, u), the variables z, u and v and the formulas

finite(u) and finite(x) are reachable. On the other hand, the equation w = f(u, v) and

the variable w are not reachable.

Remark 4.2.8

Let α be a solved basic formula. Let x̄ be a vector of variables. We have

• if all the variables of x̄ are reachable in ∃x̄ α then all the equations and relations

of α are reachable in ∃x̄ α and

• if v = t[y] is a reachable equation in ∃x̄ α, then α contains a sub-formula of

the form
k∧
j=1

vj = tj[vj+1] (13)
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with k � 1 and (i) v1 �∈ X, (ii) for all j ∈ {1, . . . , k} the variable vj+1 occurs in

the term tj[vj+1], (iii) vk is the variable v, (iv) vk+1 is the variable y and tk[vk+1]

is the term t[y].

According to the first point of Remark 4.2.8 and Definition 4.2.6, we have the

following property:

Property 4.2.9

Let α be a solved basic formula. If the formula ∃x̄ α has no free variables and if all

the variables of x̄ are reachable in ∃x̄ α then x̄ is the empty vector ε and α is the

formula true.

According to the axioms [1] and [2] of T , we have the following property:

Property 4.2.10

Let α be a basic formula. If all the variables of x̄ are reachable in ∃x̄ α then

T |= ∃?x̄ α.

Property 4.2.11

Let x̄ be a vector of variables and α a solved basic formula. We have:

T |= (∃x̄ α)↔ (∃x̄′ α′),

where

• x̄′ is the vector of the variable of x̄ which are reachable in ∃x̄ α, and

• α′ is the conjunction of the equations and the formulas of the form finite(x)

which are reachable in ∃x̄ α.

Proof

Let us decompose x̄ into three vectors x̄′, x̄′′ and x̄′′′ such that

• x̄′ is the vector of the variables of x̄ which are reachable in ∃x̄ α;
• x̄′′ is the vector of the variables of x̄ which are non-reachable in ∃x̄ α and do

not occur in the left-hand sides of equations of α; and

• x̄′′′ is the vector of the variables of x̄ which are non-reachable in ∃x̄ α and

occur in a left-hand side of an equation of α.

Let us now decompose α into three formulas α′, α′′ and α′′′ such that

• α′ is the conjunction of the equations and the formulas of the form finite(x)

which are reachable in ∃x̄ α;
• α′′ is the conjunction of the formulas of the form finite(x) which are non-

reachable in ∃x̄ α; and

• α′′′ is the conjunction of the equations which are non-reachable in ∃x̄ α.

According to Definition 4.2.6, all the variables of x̄′′ and x̄′′′ do not occur in α′

(otherwise, they will be reachable) and since α is solved then x̄′′′ is the vector of the

left-hand sides of the equations of α′′′ and its variables do not occur in α′′. Thus the

formula ∃x̄ α is equivalent in T to

(∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧ (∃x̄′′′ α′′′))).
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According to Property 4.2.3 we have T |= ∃!x̄′′′ α′′′. According to Corollary 3.3.3 we

have T |= ∃x̄′′ α′′. Thus, the preceding formula is equivalent in T to (∃x̄′ α′). �

Example 4.2.12

The formula ∃xyzw v = f(x, x) ∧ w = g(y, z, x) ∧ finite(x) ∧ finite(y) is equivalent in

T to

∃x v = f(x, x) ∧ finite(x) ∧ (∃yz finite(y) ∧ (∃w w = g(y, z, x))),

which, since T |= ∃!w w = g(y, z, x) and T |= ∃yz finite(y), is equivalent in T to

∃x v = f(x, x) ∧ finite(x).

Property 4.2.11 confirms the fact that the theory T does not accept full elimination

of quantifiers and shows that we can eliminate only non-reachable quantified

variables. On the other hand, reachable variables cannot be removed since their

values depend on the instantiations of the free variables. In fact, the formula

∃x v = f(x, x)∧ finite(x) is neither true nor false in T since for each model M
of T there exist instantiations of the free variable v which make it false in M
and others which make it true in M, and thus the reachable quantified variable x

cannot be eliminated and the formula ∃x v = f(x, x) ∧ finite(x) cannot be simplified

anymore. On the other hand, the formula ∃w w = g(y, z, x) is true in any model of

T and for any instantiation of z. The quantified non-reachable variable w can then

be eliminated and the formula is replaced by true. As we will see in section 4.6,

reachability, has a crucial role while solving first-order constraints in T . It shows

which quantifications can be eliminated and enables to simplify complex quantified

basic formulas.

According to the axioms [1] and [2] and since the set F is infinite, we have the

following property:

Property 4.2.13

Let I = {1, . . . , n} be a finite (possibly empty) set and x̄ and x̄′ two disjoint vectors of

variables. Let ȳ1, . . . ,ȳn be vectors of variables and α1,. . . ,αn solved basic formulas

such that for all i ∈ I all the variables of ȳi are reachable in ∃ȳi αi. If each conjunction

αi contains at least (1) one sub-formula of the form finite(x) with x ∈ X, or (2) one

equation which contains at least one occurrence of a variable x ∈ X ∪X ′, then:

T |= ∃x̄x̄′
( ∧
x∈X ′

finite(x)

)
∧

(∧
i∈I
¬(∃ȳi αi)

)
. (14)

Proof

LetM =< M, (fM)f∈F , finiteM > be a model of T . To show the validity of (14) it is

enough to show that

M |= ∃x̄x̄′
( ∧
x∈X ′

finiteM(x)

)
∧

(∧
i∈I
¬(∃ȳi αi)

)
. (15)

Since the basic formulas αi are solved, they do not contain equations of the form

x = x. Suppose now that one of the αi contains one equation of the form x = v with

x ∈ X ∪X ′ and v ∈ Yi. Since αi is solved then x � v but according to the discipline
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of the formulas in T we have v � x.11 Since the order � is strict then x = v cannot

be a sub-formula of αi. Thus, according to the conditions of Property 4.2.13, each

conjunction αi contains at least (1) one sub-formula of the form finite(x) with x ∈ X,

or (2) one equation of the one of the following forms:

• (*) x = f(v1, . . . , vn) with x ∈ X ∪X ′,
• (**) x = v with x and v two distinct variables such that x ∈ X ∪X ′ and v �∈ Y ,

• (***) v = t[x] where x is a variable of X ∪ X ′ which occurs in the term t[x].

According to the first point of Remark 4.2.8 and since for all i ∈ {1, . . . , n} the

variables of ȳi are reachable in ∃ȳi αi, then the equation v = t[x] is reachable in

∃ȳi αi and thus according to the second point of Remark 4.2.8 the conjunction

αi contains a sub-formula of the form (
∧k
j=1 vj = tj[vj+1]) with v1 �∈ Yi, for

all j ∈ {1, . . . , k} the variable vj+1 occurs in the term tj[vj+1] and vk+1 is

the variable x. But, since the case v1 ∈ X ∪ X ′ is already treated in (*) and

(**), then we can restrict ourself without losing generality to the case where

v1 �∈ Yi ∪X ∪X ′, i.e. v1 is free in (15).

Let

∃x̄x̄′
( ∧
x∈X ′

finiteM(x)

)
∧

(∧
i∈I
¬(∃ȳi α∗i )

)
(16)

be an any instantiation of ∃x̄x̄′(
∧
x∈X ′ finiteM(x)) ∧ (

∧
i∈I ¬(∃ȳi αi)) by individuals of

M. Let us show that there exists an instantiation for the variables of X and X ′

which satisfies the preceding formula. For that, let us choose an instantiation that

respects the following conditions:

• (i) For each x ∈ X ′, the instantiation x∗ of x satisfies M |= finiteM(x∗).

• (ii) If a conjunction α∗i contains a sub-formula of the form finiteM(x) with

x ∈ X then the instantiation x∗ of x satisfies M |= x∗ = fM(x∗, . . . , x∗) with

f an n-ary function symbol of strictly positive arity which does not occur in

any αi with i ∈ I .
• (iii) If a conjunction α∗i contains a sub-formula of the form x = fM(v1, . . . vn)

with x ∈ X ∪ X ′, then the instantiation of x starts with a function symbol

different from f.

• (iv) If a conjunction α∗i contains a sub-formula of the form x = v with x and v

two distinct variables such that x ∈ X ∪ X ′ and v �∈ Y , then the instantiation

of x is different from those of v.

• (v) If a conjunction α∗i contains a sub-formula of the form (
∧k
j=1 vj = tj[vj+1])

with v1 �∈ (X ∪ X ′ ∪ Y ), for all j ∈ {1, . . . , k} the variable vj+1 occurs in the

term tj[vj+1], and vk+1 ∈ X∪X ′, then the instantiation of vk+1 is different from

v∗, where v∗ is the instantiation of vk+1 obtained from those of v1 in12 (16) so

that M |=
∧k
j=1 vj = tj[vj+1].

11 In fact, the variable x has a free occurrence in ∃ȳi αi and the variable v has a bound occurrence in
∃ȳi αi (because v is a quantified reachable variable in ∃ȳi αi) and thus according to the discipline of
our formulas we have v � x.

12 Recall that v1 �∈ (X ∪ X ′ ∪ Y ) and thus v1 is a free variable in (15). As a consequence, it is already
instantiated in (16).
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A such instantiation of the variables of X and X ′ is always possible since (1) there

exists an infinity of function symbols in F which are not constants and (2) the set

of the individuals i ofM such thatM |= finiteM(i) is infinite (see Property 3.3.2). As

a consequence, according to axioms [1] and [4], this instantiation implies a conflict

inside each sub-instantiated-formula ∃ȳi α∗i , with i ∈ {1, . . . , n} and thus

M |= ∃x̄x̄′
(∧
i∈I
¬(∃ȳi α∗i )

)
.

Since this instantiation satisfies the first condition (i) of the preceding list of

conditions then (16) holds and thus (15) holds. �

We emphasize strongly that this property holds only if the formula (14) satisfies

the discipline of the formulas in T . This property is vital for solving first-order

constraint over finite or infinite trees. In fact, since the variables of each ȳi with i ∈
{1, . . . , n} are reachable in ∃ȳi αi then we cannot eliminate or remove the quantification

∃ȳi form ∃ȳi αi, and thus solving a constraint containing such formulas is not

evident. Property 4.2.13 enables us to surmount this problem by reducing to true

particular formulas containing sub-formulas which does not accept full elimination

of quantifiers.

Example 4.2.14

Let x, y, z and v be variables such that y � x � z � w. Let us consider the following

formula ϕ:

∃x

⎡
⎣¬(∃y z = f(y) ∧ y = g(x))∧
¬(∃ε x = w)∧
¬(∃ε x = g(x))

⎤
⎦ . (17)

This formula satisfies the discipline of the formulas in T . Let M =< M, (fM)f∈F ,

finiteM > be a model of T . Note that we cannot eliminate the quantifier ∃y in

the sub-formula ∃y z = f(y) ∧ y = g(x). In fact, this sub-formula is neither true

nor false in T because there exist instantiations of the free variable z in M which

satisfy this sub-formula inM and others which do not satisfy it. On the other hand,

Property 4.2.13 states that formula (17) is true in T for all instantiations of z even if

the sub-formula ∃y z = f(y)∧y = g(x) is neither true nor false in T . Let us check this

strange result. For that, let us show that for each instantiation of the free variables

z and w by two individuals z∗ and w∗ of M, there exists an instantiation x∗ of x

which makes false the three M-formulas (∃y z∗ = fM(y) ∧ y = g(x∗)), (∃ε x∗ = w∗)

and (∃ε x∗ = g(x∗)). We have the following:

• In the formula (∃y z = f(y) ∧ y = g(x)), the variable x is reachable. Thus, its

value is determined by the value of z (because z = f(g(x))). Two cases arise:

– If z∗ is of the form f(g(i)) with i ∈ M then it is enough to instantiate x

by an individual x∗ ∈M which is different from13 i, in order to make false

(∃y z∗ = fM(y) ∧ y = gM(x∗)) in M.

13 For example, we can take x∗ = fM (i).
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– if z∗ is not of the form f(g(i)) with i ∈ M then the M-formula (∃y z∗ =

fM(y) ∧ y = gM(x)) is false in M for all the instantiations of x.

• In the M-formula (∃ε x = w∗), it is enough to instantiate x by an element

x∗ of M which is different from w∗ in order to make false the M-formula

(∃ε x∗ = w∗).

• In theM-formula (∃ε x = gM(x)), it is enough to instantiate x by an individual

which starts by a distinct function symbol than g in order to make false

(∃ε x = gM(x)) in M.

Since the set of the functions symbols which are not constants is infinite, then

there exists an infinity of instantiations of x which satisfy the three preceding

conditions. Each of these instantiations x∗ makes false the threeM-formulas (∃y z∗ =

fM(y)∧ y = gM(x∗)), (∃ε x∗ = w∗) and (∃ε x∗ = gM(x∗)), and thus (17) holds.

4.3 Normalized formula

Definition 4.3.1

A normalized formula ϕ of depth d � 1 is a formula of the form

¬
(
∃x̄ α ∧

∧
i∈I
ϕi

)
, (18)

with I a finite (possibly empty) set, α a basic formula and the ϕ′is are normalized

formulas of depth di with d = 1 + max{0, d1, . . . , dn}.

Example 4.3.2

Let f and g be two 1-ary function symbols which belong to F . The formula

¬
[
∃ε finite(u) ∧

[
¬(∃x y = f(x) ∧ x = g(y) ∧ ¬(∃ε y = g(x) ∧ finite(x)))∧
¬(∃ε x = f(z) ∧ finite(z))

]]

is a normalized formula of depth equals to 3. The formula ¬(∃ε true) is a normalized

formula of depth 1. The smallest value of a depth of a normalized formula is 1.

Normalized formulas of depth 0 are not defined and do not exist.

We will use now the abbreviation wnfv for without new free variables. A formula

ϕ is equivalent to a wnfv formula ψ in T means that T |= ϕ ↔ ψ and ψ does not

contain other free variables than those of ϕ.

Property 4.3.3

Every formula ϕ is equivalent in T to a wnfv normalized formula of depth d � 1.

Proof

It is easy to transform any formula into a normalized formula, it is enough, for

example, to follow the followings steps:

1. Introduce a supplement of equations and existentially quantified variables

to transform the conjunctions of atomic formulas into conjunctions of flat

formulas.
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2. Replace each sub-formula of the form false by ¬true then express all the

quantifiers and logical connectors using only the logical symbols ¬, ∧ and ∃.
This can be done using the following transformations14 of sub-formulas:

(ϕ ∨ φ) =⇒ ¬(¬ϕ ∧ ¬φ),

(ϕ→ φ) =⇒ ¬(ϕ ∧ ¬φ),

(ϕ↔ φ) =⇒ (¬(ϕ ∧ ¬φ) ∧ ¬(φ ∧ ¬ϕ)),

(∀xϕ) =⇒ ¬(∃x¬ϕ).

3. If the formula ϕ obtained does not start with the logical symbol ¬, then replace

it by ¬(∃ε true ∧ ¬ϕ).

4. Rename the quantified variables so that the obtained formula satisfies the

imposed discipline in T (see Section 4.1).

5. Lift the quantifier before the conjunction, i.e. ϕ∧ (∃x̄ ψ) or (∃x̄ ψ)∧ϕ, becomes

∃x̄ ϕ ∧ ψ because the free variables of ϕ are distinct from those of x̄.

6. Group the quantified variables into a vectorial quantifier, i.e. ∃x̄(∃ȳ ϕ) or ∃x̄∃ȳ ϕ
becomes ∃xy ϕ.

7. Insert empty vectors and formulas of the form true to get the normalized form

using the following transformations of sub-formulas:

¬
(∧
i∈I
¬ϕi

)
=⇒ ¬

(
∃ε true ∧

∧
i∈I
¬ϕi

)
, (19)

¬
(
α ∧

∧
i∈I
¬ϕi

)
=⇒ ¬

(
∃ε α ∧

∧
i∈I
¬ϕi

)
, (20)

¬

⎛
⎝∃x̄ ∧

j∈J
¬ϕj

⎞
⎠ =⇒ ¬

⎛
⎝∃x̄ true ∧

∧
j∈J
¬ϕj

⎞
⎠ . (21)

with α a conjunction of elementary equations, I a finite (possibly empty) set

and J a finite non-empty set.

8. Rename the quantified variables so that the obtained normalized formula

satisfies the discipline of the formulas in T .

If the starting formula does not contain the logical symbol ↔ then this transfor-

mation will be linear, i.e. there exists a constant k such that n2 � kn1, where n1 is

the size of the starting formula and n2 the size of the normalized formula. We show

easily by contradiction that the final formula obtained after application of these

steps is normalized. �

Example 4.3.4

Let x, v, w, u be variables such that x � v � w � u. Let f be a 2-ary function symbol

which belongs to F . Let us apply the preceding steps to transform the following

formula into a normalized formula:

(f(u, v) = f(w, u) ∧ (∃x u = x)) ∨ (∃u ∀w u = f(v, w)).

14 These equivalences are true in the empty theory and thus in any theory T .
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Note that the formula does not start with ¬ and the variables u and w are free in

f(u, v) = f(w, u) ∧ (∃x u = x) and bound in ∃u ∀w u = f(v, w). Note also that this

formula does not respect the discipline of the formulas in T .

Step 1: Let us first transform the equations into flat equations. The preceding

formula is equivalent in T to

(∃u1 u1 = f(u, v) ∧ u1 = f(w, u) ∧ (∃x u = x)) ∨ (∃u ∀w u = f(v, w)), (22)

where u1 is a variable of V such that u1 � x � v � w � u.
Step 2: Let us now express the quantifier ∀ using ¬, ∧ and ∃. Thus, the formula (22)

is equivalent in T to

(∃u1 u1 = f(u, v) ∧ u1 = f(w, u) ∧ (∃x u = x)) ∨ (∃u¬(∃w¬(u = f(v, w)))).

Let us also express the logical symbol ∨ using ¬, ∧ and ∃. Thus, the preceding

formula is equivalent in T to

¬(¬(∃u1 u1 = f(u, v) ∧ u1 = f(w, u) ∧ (∃x u = x)) ∧ ¬(∃u¬(∃w¬(u = f(v, w))))). (23)

Step 3: As the formula starts with ¬, we move to Step 4.

Step 4: The occurrences of the quantified variables u and w in (∃u¬(∃w¬(u =

f(v, w)))) must be renamed. Thus, the formula (23) is equivalent in T to

¬(¬(∃u1 u1 = f(u, v) ∧ u1 = f(w, u) ∧ (∃x u = x)) ∧ ¬(∃u2 ¬(∃w1 ¬(u2 = f(v, w1))))),

where u2 and w1 are variables of V such that w1 � u2 � u1 � x � v � w � u.
Step 5: By lifting the existential quantifier ∃x, the preceding formula is equivalent

in T to

¬(¬(∃u1 ∃x u1 = f(u, v) ∧ u1 = f(w, u) ∧ u = x) ∧ ¬(∃u2 ¬(∃w1 ¬(u2 = f(v, w1))))).

Step 6: Let us group the two quantified variables x and u1 into a vectorial quantifier.

Thus, the preceding formula is equivalent in T to

¬(¬(∃u1x u1 = f(u, v) ∧ u1 = f(w, u) ∧ u = x) ∧ ¬(∃u2 ¬(∃w1 ¬(u2 = f(v, w1))))).

Step 7: Let us introduce empty vectors of variables and formulas of the form true

to get the normalized formula. According to the rule (19), the preceding formula is

equivalent in T to

¬
[
∃ε true ∧

[
¬(∃u1x u1 = f(u, v) ∧ u1 = f(w, u) ∧ u = x)∧
¬(∃u2 ¬(∃w1 ¬(u2 = f(v, w1))))

]]
,

which using the rule (20) with I = ∅ is equivalent in T to

¬
[
∃ε true ∧

[
¬(∃u1x u1 = f(u, v) ∧ u1 = f(w, u) ∧ u = x)∧
¬(∃u2 ¬(∃w1 ¬(∃ε u2 = f(v, w1))))

]]
,

which using the rule (21) is equivalent in T to

¬
[
∃ε true ∧

[
¬(∃u1x u1 = f(u, v) ∧ u1 = f(w, u) ∧ u = x)∧
¬(∃u2 true ∧ ¬(∃w1 true ∧ ¬(∃ε u2 = f(v, w1))))

]]
.

Step 8: This is a normalized formula of depth 4, which respects the discipline of the

formulas in T since w1 � u2 � u1 � x � v � w � u.
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4.4 General solved formula

Definition 4.4.1

A general solved formula is a normalized formula of the form

¬
(
∃x̄ α ∧

n∧
i=1

¬(∃ȳi βi)
)
,

with n � 0 and such that

1. α and all the βi, with i ∈ {1, . . . , n}, are solved basic formulas;

2. if α′ is the conjunction of the equations of α then all the conjunctions α′ ∧ βi,
with i ∈ {1, . . . , n}, are solved basic formulas;

3. all the variables of x̄ are reachable in ∃x̄ α;
4. for all i ∈ {1, . . . , n}, all the variables of ȳi are reachable in ∃ȳi βi;
5. If finite(u) is a sub-formula of α then for all i ∈ {1, . . . , n}, the formula βi

contains either finite(u), or finite(v) where v is a reachable variable from u in

α ∧ βi and does not occur in a left-hand side of an equation of α ∧ βi; and

6. For all i ∈ {1, . . . , n}, the formula βi contains at least one atomic formula which

does not occur in α.

Example 4.4.2

Let w, v, u1, u2, u3 be variables such that w � v � u1 � u2 � u3. The following

formula is not a general solved formula:

¬(∃ε finite(w) ∧ ¬(∃v w = v ∧ finite(v))). (24)

This formula satisfies all the conditions of Definition 4.4.1 but it does not satisfy the

discipline of the formulas in T . In fact, the variable v is bound in (∃v w = v∧finite(v))

and the variable w is free in (∃v w = v ∧ finite(v)) and thus we should have v � w

and not w � v. Let u4 be a variable such that u4 � w � v � u1 � u2 � u3. The

formula (24) is equivalent in T to

¬(∃ε finite(w) ∧ ¬(∃u4 w = u4 ∧ finite(v))).

This formula respects the discipline of the formulas of T but is not a general solved

formula since it does not satisfy the first condition of Definition 4.4.1. In fact,

w = u4 ∧ finite(v) is not a solved basic formula since we have u4 � w.

The following formula is a general solved formula

¬(∃v u1 = f(v) ∧ v = u2 ∧ finite(u2) ∧ ¬(∃w u2 = f(w) ∧ finite(w) ∧ finite(u3))).

Property 4.4.3

Let ϕ be a general solved formula. If ϕ has no free variables then ϕ is the formula

¬(∃ε true) else neither T |= ¬ϕ nor T |= ϕ.

Proof

Let ϕ be a general solved formula of the form

¬
(
∃x̄ α ∧

∧
i∈I
¬(∃ȳi βi)

)
, (25)
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two cases arise:

(1) If ϕ does not contain free variables, then according to the first and third

conditions of Definition 4.4.1 and using Property 4.2.9 we get x̄ = ε and α = true.

As a consequence, the formula (25) is equivalent in T to

¬
(
∃ε true ∧

∧
i∈I
¬(∃ȳi βi)

)
, (26)

Since (26) has no free variables then each ∃ȳi βi has no free variables. According

to the first and fourth conditions of Definition 4.4.1, and using Property 4.2.9 we

get: for all i ∈ I: ȳi = ε and βi = true. But according to the last condition of

Definition 4.4.1 all the formulas βi should be different from true (since we do not

distinguish between α and α∧true). Thus, the set I must be empty. As a consequence,

ϕ is the formula ¬(∃ε true).

(2) If ϕ contains free variables then it is enough to show that there exist two

distinct instantiations ϕ′ and ϕ′′ of ϕ by individuals of Tr15 such that

Tr |= ϕ′ and Tr |= ¬ϕ′′.

Note first that if I �= ∅ then each (∃ȳi βi), with i ∈ I , should contain at least

one free variable. In fact, if (∃ȳi βi), with i ∈ I , does not contain free variables

then this formula is of the form (∃ε true) according to the first and fourth points

of Definition 4.4.1 and Property 4.2.9, which contradicts the last condition of

Definition 4.4.1 (since we do not distinguish between α and α ∧ true). Thus each

(∃ȳi βi), with i ∈ I , contains at least one free variable that can be instantiated. On

the other hand,

Case 1 : If ∃x̄ α contains free variables then we can easily find an instantiation of

the free variables of ∃x̄ α which contradicts the constraints of α. In fact, let z be a

free variable. Four cases arise:

• If z = w is a sub-formula of α then according to Definition 4.4.1 α is a solved

basic formula and thus z � w. As a consequence, w cannot be a quantified

variable otherwise the formula ϕ does not respect the discipline of the formulas

in T . Thus is enough to instantiate z and w by two distinct values.

• If z = f(w̄) is a sub-formula of α then it is enough to instantiate z by a tree

which starts by a function symbol which is different from f.

• If w = z or w = t[z] is a sub-formula of α then according to Definition 4.4.1

all the variables of x̄ are reachable in ∃x̄ α and thus according to the first point

of Remark 4.2.8 the equations w = z and w = t[z] are reachable. According

to the second point of Remark 4.2.8 the value of z is linked to another free

variable v which occurs in a left-hand side of an equation of α. This case is

already treated in two preceding cases.

• If finite(z) is a sub-formula of α then it is enough to instantiate z by an infinite

tree.

15 Recall that Tr is the model of finite or infinite trees.
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As a consequence, the instantiated formula of ∃x̄ α will be false in Tr and thus

Tr |= ϕ′. On the other hand, by following the same preceding steps and since:

(i) the set F contains an infinity of function symbols which are not constants,

(ii)Tr contains an infinity of individuals u ofTr such thatTr |= finiteTr(u), and

(iii) ϕ is a general solved formula,

then we show that there exists at least one instantiation which satisfies all the

constraints of α and contradicts the constraints of each βi, with i ∈ I . In fact,

(iv) in order to contradict each constraint βi, it is enough to follow the preceding

discussion (by replacing α by βi ) and use (i) and (ii). On the other hand, according

to Definition 4.4.1 all the variables of x̄ are reachable in ∃x̄ α, thus according to

the first point of remark 4.2.8 all the equations and relations of α are reachable in

∃x̄ α. According to the second point of remark 4.2.8, the values of the free variables

which occur in these formulas are mainly linked to those of free variables which

occur in left-hand side of equations of α. According to the two first conditions of

Definition 4.4.1, the variables of Lhs(α) are distinct and do not occur in FINI(α),

Lhs(βi) and FINI(βi) for all i ∈ {1, . . . , n}. As a consequence, from (iv) and using (i),

(ii) and (iii) there exists at least one instantiation which satisfies ∃x̄ α and contradicts

each ∃ȳi βi in Tr, with i ∈ I and thus Tr |= ¬ϕ′′. Note that if I = ∅ then we have

also Tr |= ¬ϕ′′ and Tr |= ϕ′ using the preceding instantiations.

Case 2 : If ∃x̄ α does not contain free variables then according to the first and

third conditions of Definition 4.4.1 and Property 4.2.9 we have x̄ = ε and α = true.

Since ϕ contains at least one free variable then I �= ∅. Let k ∈ I . Since

(i) the set F contains an infinity of function symbols which are not constants,

(ii)Tr contains an infinity of individuals u ofTr such thatTr |= finiteTr(u), and

(iii) ϕ is a general solved formula,

then we can easily find an instantiation of the free variables of ∃ȳk βk which satisfies

the constraints of βk (similar to the second part of Case 1 by replacing α by βk).

Such an instantiation makes false the instantiated formula ¬(∃ȳk βk) inTr and thus

Tr |= ϕ′. On the other hand, according to (i), (ii) and (iii), we show that there exists

at least one instantiation which contradicts the constraints of each βi, with i ∈ I
(similar to the second part of Case 1 with α = true and x̄ = ε). As a consequence,

this instantiation satisfies all the ¬(∃ȳi βi) in Tr, with i ∈ I and thus Tr |= ¬ϕ′′.
From Case 1 and Case 2, we have Tr |= ϕ′ and Tr |= ¬ϕ′′, and thus neither

T |= ϕ nor T |= ¬ϕ.

�

Example 4.4.4

Let v1, v2, v, u and w be variables such that v1 � v2 � v � u � w. Let ϕ be the

following general solved formula

¬(∃v u = g(v, w)∧¬(∃v1 v = g(v, v1)∧v1 = f(v))∧¬(∃v2 w = g(w, v2)∧v2 = f(w)) (27)

Let us consider, for example, the modelTr of finite or infinite trees. If we instantiate

the free variable u by the finite tree 1 where 1 is a constant in F which is distinct from

g then according to axiom [1] of conflict of symbols, the instantiated formula of (27)

is true in Tr. On the other hand, if u is instantiated by a tree of the form g(v∗, w∗)
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with v∗ �= g(v∗, f(v∗)) (for example, v∗ = 1) and w∗ �= g(w∗, f(w∗)) (for example,

w∗ = 1) then the instantiated formula of (27) is false in Tr. As a consequence (27)

is neither true nor false in the theory T . The reader should not think that the fact

that we have neither T |= ¬ϕ nor T |= ϕ means that ϕ is unsatisfiable in T . This is,

of course, false. In fact, since neither T |= ¬ϕ nor T |= ϕ then ϕ has in each model

M of T a set of solutions which make it true inM and another set of non-solutions

which make it false inM. We also remind the reader that all the properties given after

Section 4.1 hold only for formulas that respect the discipline of the formulas of T .

A similar property has been shown for the finite trees of Lassez and Marriott

(1987) and the rational trees of Maher and Stuckey (1995). (Maher and Stuckey

1995) has also shown that if the set F is finite and contains at least one n-ary function

symbol with n � 2, then the problem of deciding if a formula containing equations

and the logical symbols ∧, ∨, ¬ is equivalent to a disjunction of conjunctions of

equations is a co-NP-complete problem, and the problem of deciding if an expression

represents a nonempty set of rational trees is NP-complete. Note also that in all our

proofs we have not used the famous independence of inequations (Colmerauer 1984;

Lassez et al. 1986; Comon 1988; Lassez and McAloon 1986) but only the condition

that the signature of T is infinite and contains an infinity of function symbols which

are not constants and at least one symbol which is a constant, which implies in this

case the independence of the inequations.

Property 4.4.5

Every general solved formula of the form ¬(∃x̄ α∧
∧n
i=1 ¬(∃ȳi βi)) is equivalent in T

to the following Boolean combination of existentially quantified basic formulas:

(¬(∃x̄ α)) ∨
n∨
i=1

(∃x̄ȳi α ∧ βi).

Proof

Let

¬
(
∃x̄ α ∧

n∧
i=1

¬(∃ȳi βi)
)
, (28)

be a general solved formula. According to the third point of Definition 4.4.1, all the

variables of x̄ are reachable in ∃x̄ α. Thus, according to Property 4.2.10, we have

T |= ∃?x̄ α. According to Property 3.1.10, the formula (28) is equivalent in T to

¬
(

(∃x̄ α) ∧
n∧
i=1

¬(∃x̄ α ∧ (∃ȳi βi))
)
,

i.e. to

(¬(∃x̄ α)) ∨
n∨
i=1

(∃x̄ α ∧ (∃ȳi βi)),

which, since the quantified variables have distinct names and different from those

of the free variables, is equivalent in T to

(¬(∃x̄ α)) ∨
n∨
i=1

(∃x̄ȳ α ∧ βi),

which is a Boolean combination of existentially quantified basic formulas. �
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Definition 4.4.6

Let ϕ be a formula of the form

∃x̄ α ∧
n∧
i=1

¬(∃ȳi βi), (29)

with x̄ and ȳ two vectors of variables, n � 0 and α and the βi, with i ∈ {1, . . . , n},
basic formulas. We say that ϕ is written in an explicit solved form if and only if the

formula ¬ϕ, i.e.

¬
(
∃x̄ α ∧

n∧
i=1

¬(∃ȳi βi)
)
, (30)

is a general solved formula.

This definition shows how to easily extract from a general solved formula, a simple

formula ϕ which has only one level of negation and where the solutions of the free

variables are given in a clear and explicit way, i.e. for each modelM of T , it is easy

to find all the possible instantiations of the free variables of ϕ which make it true in

M. In fact, according to Definition 4.4.1, we warrant among other things that the

left-hand sides of equations of α are distinct and do not occur in those of each βi,

the left-hand sides of the equations of each βi are distinct and we cannot eliminate

any quantification since all the variables are reachable.

Example 4.4.7

Let w, v, u1, u2, u3 be variables such that w � v � u1 � u2 � u3. Let ϕ be the

following general solved formula

¬(∃v u1 = f(v) ∧ v = u2 ∧ finite(u2) ∧ ¬(∃w u2 = f(w) ∧ finite(w) ∧ finite(u3))).

According to Definition 4.4.6, the following formula φ is written in an explicit solved

form:

∃v u1 = f(v) ∧ v = u2 ∧ finite(u2) ∧ ¬(∃w u2 = f(w) ∧ finite(w) ∧ finite(u3)). (31)

Let us choose the model Tr of finite or infinite trees and let us give all the possible

instantiations u∗1, u
∗
2, u
∗
3 of the free variables u1, u2, u3 so that the instantiated formula

of φ is true in the model Tr. From (31) it is clear that we have two possibilities:

• Solution 1:

— u∗3 is any infinite tree.

— u∗2 is any finite tree.

— u∗1 is the tree f(u∗2).

• Solution 2:

— u∗3 is any finite tree.

— u∗2 is any finite tree which starts by a function symbol which is different

from f.

— u∗1 is the tree f(u∗2).
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4.5 Working formula

Definition 4.5.1

A working formula is a normalized formula in which all the occurrences of ¬ are

replaced by ¬k with k ∈ {0, . . . , 5} and such that each occurrence of a sub-formula

of the form

p = ¬k(∃x̄ α ∧ q), with k > 0, (32)

satisfies the k first conditions of the condition list bellow. In (32) α is a basic formula,

q is a conjunction of working formulas of the form
∧n
i=1 ¬ki (∃ȳi βi ∧ qi), with n � 0,

βi a basic formula, qi a conjunction of working formulas, and in the below condition

list α′ is the basic formula of the immediate top-working formula16 p′ of p if it exists.

1. If p′ exists then T |= α → α′ and T |= αeq → α′eq where αeq and α′eq are the

conjunctions of the equations of α respectively α′. Moreover, the set of the

variables of Lhs(α′) ∪ FINI(α′) is included in those of Lhs(α) ∪ FINI(α).
2. The left-hand sides of the equations of α are distinct and for all equations of

the form u = v we have u � v.
3. α is a basic solved formula.

4. If p′ exists then the set of the equations of α′ is included in those of α.

5. The variables of x̄, the equations of α and the constraints of the form finite(x)

of α are reachable in ∃x̄ α. Moreover, if n > 0 then for all i ∈ {1, . . . , n} the

conjunction βi contains at least one atomic formula which does not occur in α.

The intuitions behind these working formulas come from an aim to have a full

control on the execution of our rewriting rules by adding semantic information on

a syntactic form of formulas. We emphasize strongly that ¬k does not mean that

the normalized formula satisfies only the kth condition but all the conditions i with

1 � i � k.

Example 4.5.2

Let w1, w2, w3, v1, u be variables such that w1 � w2 � w3 � v1 � u. This is a working

formula of depth 2:

¬2

⎡
⎣∃v1 u = f(v1) ∧ finite(u) ∧

⎡
⎣¬2(∃w1 u = f(w1) ∧ w1 = v1 ∧ finite(u))∧
¬3(∃w2 u = f(v1) ∧ w2 = f(v1) ∧ finite(v1))∧
¬4(∃w3 u = f(v1) ∧ v1 = f(w3) ∧ finite(w3))

⎤
⎦

⎤
⎦

Definition 4.5.3

An initial working formula is a working formula which begins with ¬4 and such

that k = 0 for all the other occurrences of ¬k . A final working formula is a working

formula of depth less or equal to 2 with k = 5 for all the occurrences of ¬k .

The relation between the final working formulas and the general solved formulas

is expressed in the following property:

16 In other words, p′ is of the form ¬k′ (∃x̄′ α′ ∧ p∗ ∧ p), where p∗ is a conjunction of working formulas
and p is the formula (32).
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Property 4.5.4

Let p be the following final working formula ¬5(∃x̄ α∧
∧n
i=1 ¬5(∃ȳi βi)). The formula

¬(∃x̄ α ∧
∧n
i=1 ¬(∃ȳi β∗i )), is a general solved formula equivalent to p in T where β∗i

is the basic formula βi from which we have removed all the equations which occur

also in α.

Example 4.5.5

Let w2, v, u and u1 be variables such that w2 � v � u � u1. Let ϕ be the following

final working formula:

¬5

⎡
⎣∃ε v = u ∧ finite(u)∧
¬5(∃ε v = u ∧ u = u1 ∧ finite(u1))∧
¬5(∃w2 v = u ∧ u = s(w2) ∧ finite(w2))

⎤
⎦ .

The formula

¬

⎡
⎣∃ε v = u ∧ finite(u)∧
¬(∃ε u = u1 ∧ finite(u1))∧
¬(∃w2 u = s(w2) ∧ finite(w2))

⎤
⎦ .

is a general solved formula equivalent to ϕ in T .

4.6 Rewriting rules

We now present the rewriting rules which transform an initial working formula of
any depth d into an equivalent conjunction of final working formulas. To apply the
rule p1 =⇒ p2 to the working formula p means to replace in p a sub-formula p1 by
the formula p2, by considering that the connector ∧ is associative and commutative.
In the following, the letters u, v and w represent variables, the letters x̄, ȳ and z̄
represent vectors of variables, the letters a, b and c represent basic formulas, the
letter q represents a conjunction of working formulas, and the letter r represents a
conjunction of flat equations, formulas of the form finite(x) and working formulas.
All these letters can be subscripted or have primes.

(1) ¬1(∃x̄ u = u ∧ r) =⇒ ¬1(∃x̄ r)
(2) ¬1(∃x̄ v = u ∧ r) =⇒ ¬1(∃x̄ u = v ∧ r)
(3) ¬1(∃x̄ u = v ∧ u = t ∧ r) =⇒ ¬1(∃x̄ u = v ∧ v = t ∧ r)
(4) ¬1(∃x̄ u = fv1, . . . , vn ∧ u = gw1, . . . , wm ∧ r) =⇒ true

(5) ¬1(∃x̄ u = fv1, . . . , vn ∧ u = fw1, . . . , wn ∧ r) =⇒ ¬1(∃x̄ u = fv1, . . . , vn ∧
∧n
i=1 vi = wi ∧ r)

(6) ¬1(∃x̄ a ∧ q) =⇒ ¬2(∃x̄ a ∧ q)
(7) ¬2(∃x̄ finite(u) ∧ finite(u) ∧ r) =⇒ ¬2(∃x̄ finite(u) ∧ r)
(8) ¬2(∃x̄ u = v ∧ finite(u) ∧ r) =⇒ ¬2(∃x̄ u = v ∧ finite(v) ∧ r)
(9) ¬2(∃x̄ finite(u) ∧ a ∧ q) =⇒ true

(10) ¬2(∃x̄ u = f(v1, . . . , vn) ∧ finite(u) ∧ r) =⇒ ¬2(∃x̄ u = f(v1, . . . , vn)∧
∧n
i=1 finite(vi)∧ r)

(11) ¬2(∃x̄ a ∧ q) =⇒ ¬3(∃x̄ a ∧ q)
(12) ¬4(∃x̄ a ∧ q ∧ ¬0(∃ȳ r)) =⇒ ¬4(∃x̄ a ∧ q ∧ ¬1(∃ȳ a ∧ r))
(13) ¬4(∃x̄ a ∧ a′ ∧ q ∧ ¬3(∃ȳ a′′ ∧ r)) =⇒ ¬4(∃x̄ a ∧ a′ ∧ q ∧ ¬4(∃ȳ a ∧ r))
(14) ¬4(∃x̄ a ∧ q ∧ ¬5(∃ȳ a)) =⇒ true
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(15) ¬4(∃x̄ a ∧
∧n
i=1 ¬5(∃ȳi bi)) =⇒ ¬5(∃x̄′ a′ ∧

∧
i∈K ¬5(∃ȳ′i b′i)∗)

(16) ¬4

⎡
⎢⎢⎣
∃x̄ a ∧ q∧

¬5

[
∃ȳ b∧∧n
i=1 ¬5(∃z̄i ci)

]
⎤
⎥⎥⎦ =⇒

[
¬4(∃x̄ a ∧ q ∧ ¬5(∃ȳ b))∧∧n
i=1 ¬4(∃x̄ȳz̄i ci ∧ q0)

∗

]

with u � v, f and g two distinct function symbols taken from F . In rule (3), t is a

flat term, i.e. either a variable or a term of the form f(x1, . . . , xn) with f an n-ary

function symbol taken from F . In rule (6), the equations of a have distinct left-hand

sides and for each equation of the form u = v we have u � v. In rule (9), the variable

u is reachable from u in a. In rule (10), the variable u is non-reachable from u in

a. Moreover, if f is a constant then n = 0. In rule (11), a is a solved basic formula.

In rule (13), a and a′′ are conjunctions of equations having the same left-hand sides

and a′ is a conjunction of formulas of the form finite(u). In rule (15), n � 0 and for

all i ∈ {1, . . . , n} the formula bi is different from the formula a. The pairs (x̄′, a′) and

(ȳ′i , b
′
i) are obtained by a decomposition of x̄ and a into x̄′x̄′′x̄′′′ and a′ ∧ a′′ ∧ a′′′ as

follows:

• a′ is the conjunction of the equations and the formulas of the form finite(x)

which are reachable in ∃x̄ a.
• x̄′ is the vector the variables of x̄ which are reachable in ∃x̄ a.
• a′′ is the conjunction of the formulas of the form finite(x) which are non-

reachable in ∃x̄ a.
• x̄′′ is the vector the variables of x̄ which are non-reachable in ∃x̄ a and do not

occur in the left-hand sides of the equations of a.

• a′′′ is the conjunction of the equations which are non-reachable in ∃x̄ a.
• x̄′′′ is the vector the variables of x̄ which are non-reachable in ∃x̄ a and occur

in the left-hand sides of the equations of a.

• b∗i is the formula obtained by removing from bi the formulas of the form

finite(u) which occur also in a′′

• ȳ′i is the vector of the variables of ȳix̄
′′′ which are reachable in ∃ȳix̄′′′ b∗i .

• b′i is the conjunction of the equations and the formulas of the form finite(x)

which are reachable in ∃ȳix̄′′′ b∗i .
• K ⊆ {1, . . . , n} is the set of the indices i such that i ∈ K if and only if no

variable of x̄′′ occurs in b′i.

• The formula
∧
i∈K ¬5(∃ȳ′i b′i)∗ is the formula

∧
i∈K ¬5(∃ȳ′i b′i) in which we have

renamed the quantified variables so that they satisfy the discipline of the

formulas in T .

In rule (16), n > 0 and q0 is the formula q in which all the occurrences of

¬k have been replaced by ¬0. The formula
∧n
i=1 ¬4(∃x̄ȳz̄i ci ∧ q0)

∗ is the formula∧n
i=1 ¬4(∃x̄ȳz̄i ci∧q0) in which we have renamed the quantified variables so that they

satisfy the discipline of the formulas of T .

The use of indices on the negations of the working formulas enables us to force

the application of the rules to follow a clear strategy until reaching a conjunction of

final working formulas. In fact, the algorithm follows two main steps while solving

any first-order constraint in T :
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• (i) A top-down propagation of basic formulas following the tree structure

of the working formulas and using the rules (1), . . . , (13). In this step, basic

formulas are solved and copied in all sub-working formulas. Finiteness is also

check and inconsistent basic formulas are removed by rules (4) and (9).

• (ii) A bottom-up elimination of quantifiers and depth reducing of the working

formulas using the rules (14), . . . , (16). Inconsistent working formulas are also

removed in this step.

More precisely, starting from an initial working formula ϕ of the form ¬4(∃x̄ a ∧∧
i∈I qi), where all the qi are working formulas whose negations are of the form ¬0,

rule (12) propagates the atomic formulas of a into a sub-formula qi, with i ∈ I , and

changes the first negation of qi into ¬1. The rules (1), . . . , (5) can now be applied until

the equations of a have distinct left-hand sides and for each equation of the form

u = v we have u � v. Rule (6) is then applied and changes the first negation of qi into

¬2. The algorithm starts now a new phase which consists in solving the basic formulas

using the rules (7), . . . , (10). In particular finiteness is checked by rule (9). When a

solved basic formula is obtained, rule (11) is applied and changes the negation into

¬3. Note that if a working formula starts by ¬3 then its top working formula starts by

¬4. Rule (13) is then applied. It restores some equations and changes the first negation

into ¬4. Rule (12) can now be applied again since all the nested negations are of the

form ¬0 and so on. This is the first step of our algorithm. Once the sub-working

formulas of depth 1 are of the form ¬4(∃ȳi bi), the second step starts using rule

(15) with n = 0 on all these sub-working formulas of depth 1 and transforms their

negations into ¬5. Inconsistent working formulas of the form ¬4(∃x̄ α∧¬5(∃ȳ α)∧ q)
are then removed by rule (14). When all the inconsistent working formulas have

been removed, rule (15) with n �= 0 can be applied on the sub-working formulas

of depth 2 of the form ¬4(∃x̄ a ∧
∧
i∈I ¬5(∃ȳi bi)) and produces working formulas of

the form ¬5(∃x̄ a ∧
∧
i∈I ¬5(∃ȳi bi)). Rule (16) can now be applied on the working

formulas of depth d > 2 of the form ¬4(∃x̄ a ∧ q ∧ ¬5(∃ȳ b ∧
∧n
i=1 ¬5(∃z̄i ci))). After

each application of this rule, new working formulas containing negations of the

form ¬0 are created which implies the execution of the rules of the first step of our

algorithm, starting by rule (12) and so on. After several applications of our rules,

we get a conjunction of working formulas whose depth is less or equal to 2. The

rules are then applied again until all the negations of these working formulas are of

the form ¬5. It is a conjunction of final working formulas.

Example 4.6.1

Let f and g be two function symbols taken from F of respective arities 2, 1. Let w1,

w2, v1, u1, u2, u3 be variables such that w1 � w2 � v1 � u1 � u2 � u3. Let us run our

rules on the following initial working formula:

¬4

⎡
⎣∃v1 v1 = f(u1, u2) ∧ u2 = g(u1)∧
¬0(∃w1 v1 = g(w1))∧
¬0(∃w2 u2 = g(w2) ∧ w2 = g(u3) ∧ finite(w2))

⎤
⎦ . (33)
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According to rule (12), the preceding formula is equivalent in T to

¬4

⎡
⎣∃v1 v1 = f(u1, u2) ∧ u2 = g(u1)∧
¬1(∃w1 v1 = g(w1) ∧ v1 = f(u1, u2) ∧ u2 = g(u1))∧
¬0(∃w2 u2 = g(w2) ∧ w2 = g(u3) ∧ finite(w2))

⎤
⎦ .

The application of rule (4) on the sub-formula ¬1(∃w1 v1 = g(w1) ∧ v1 = f(u1, u2) ∧
u2 = g(u1) ∧ finite(w2)) simplifies this sub-formula into the formula true. Thus, the

preceding formula is equivalent in T to

¬4

[
∃v1 v1 = f(u1, u2) ∧ u2 = g(u1)∧
¬0(∃w2 u2 = g(w2) ∧ w2 = g(u3) ∧ finite(w2))

]
,

which according to rule (12) is equivalent in T to

¬4

[
∃v1 v1 = f(u1, u2) ∧ u2 = g(u1)∧
¬0(∃w2 v1 = f(u1, u2) ∧ u2 = g(u1) ∧ u2 = g(w2) ∧ w2 = g(u3) ∧ finite(w2))

]
.

Rule (5) can now be applied. Thus, the preceding formula is equivalent in T to

¬4

[
∃v1 v1 = f(u1, u2) ∧ u2 = g(u1)∧
¬1(∃w2 v1 = f(u1, u2) ∧ u2 = g(w2) ∧ w2 = u1 ∧ w2 = g(u3) ∧ finite(w2))

]
,

which according to rule (3) is equivalent in T to

¬4

[
∃v1 v1 = f(u1, u2) ∧ u2 = g(u1)∧
¬1(∃w2 v1 = f(u1, u2) ∧ u2 = g(w2) ∧ w2 = u1 ∧ u1 = g(u3) ∧ finite(w2))

]
.

Since the conjunction of equations of the sub-formula which starts by ¬1 has distinct

left-hand sides and w2 � u1, then rule (6) can be applied. Thus, the preceding formula

is equivalent in T to

¬4

[
∃v1 v1 = f(u1, u2) ∧ u2 = g(u1)∧
¬2(∃w2 v1 = f(u1, u2) ∧ u2 = g(w2) ∧ w2 = u1 ∧ u1 = g(u3) ∧ finite(w2))

]
,

which according to rule (8) is equivalent in T to

¬4

[
∃v1 v1 = f(u1, u2) ∧ u2 = g(u1)∧
¬2(∃w2 v1 = f(u1, u2) ∧ u2 = g(w2) ∧ w2 = u1 ∧ u1 = g(u3) ∧ finite(u1))

]
,

which according to rule (10) is equivalent in T to

¬4

[
∃v1 v1 = f(u1, u2) ∧ u2 = g(u1)∧
¬2(∃w2 v1 = f(u1, u2) ∧ u2 = g(w2) ∧ w2 = u1 ∧ u1 = g(u3) ∧ finite(u3))

]
.

Since the basic formulas are solved then rule (11) can be applied. Thus, the preceding

formula is equivalent in T to

¬4

[
∃v1 v1 = f(u1, u2) ∧ u2 = g(u1)∧
¬3(∃w2 v1 = f(u1, u2) ∧ u2 = g(w2) ∧ w2 = u1 ∧ u1 = g(u3) ∧ finite(u3))

]
,

which according to rule (13) is equivalent in T to

¬4

[
∃v1 v1 = f(u1, u2) ∧ u2 = g(u1)∧
¬4(∃w2 v1 = f(u1, u2) ∧ u2 = g(u1) ∧ w2 = u1 ∧ u1 = g(u3) ∧ finite(u3))

]
.
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Rule (15) can now be applied with n = 0. Thus, the preceding formula is equivalent

in T to

¬4

[
∃v1 v1 = f(u1, u2) ∧ u2 = g(u1)∧
¬5(∃ε v1 = f(u1, u2) ∧ u2 = g(u1) ∧ u1 = g(u3) ∧ finite(u3))

]
.

Once again rule (15) can be applied, with n �= 0 and we get the following final

working formula

¬5

[
∃ε u2 = g(u1)∧
¬5(∃ε u2 = g(u1) ∧ u1 = g(u3) ∧ finite(u3))

]
,

which according to Property 4.5.4 is equivalent in T to the following general solved

formula

¬
[
u2 = g(u1)∧
¬(u1 = g(u3) ∧ finite(u3))

]
.

We have seen in the preceding example how the rules (1), . . . , (15) can be applied.

Let us now see how rule (16) is applied.

Example 4.6.2

Let s and 0 be two function symbols taken from F of respective arities 1, 0. Let

w1, w2, u, v be variables such that w1 � w2 � v � u. Let us apply our rules on the

following working formula of depth 3:

¬4

⎡
⎣∃ε true ∧

⎡
⎣¬5(∃ε u = s(v))∧
¬5(∃w1 u = s(w1) ∧ w1 = s(v))∧
¬5(∃ε v = u ∧ ¬5(∃ε v = u ∧ u = 0) ∧ ¬5(∃w2 v = u ∧ u = s(w2)))

⎤
⎦

⎤
⎦ .

By considering that

• (∃x̄ a) = (∃εtrue)

• q =

[
¬5(∃ε u = s(v))∧
¬5(∃w1 u = s(w1) ∧ w1 = s(v))

]
• (∃ȳ b) = (∃ε v = u)

•
∧n
i=1 ¬5(∃z̄i ci) =

[
¬5(∃ε v = u ∧ u = 0)∧
¬5(∃w2 v = u ∧ u = s(w2))

]

rule (16) can be applied and produces the following formula⎡
⎣¬4(∃ε true ∧ ¬5(∃ε u = s(v)) ∧ ¬5(∃w1 u = s(w1) ∧ w1 = s(v)) ∧ ¬5(∃ε v = u))∧
¬4(∃ε v = u ∧ u = 0 ∧ ¬0(u = s(v)) ∧ ¬0(∃w11 u = s(w11) ∧ w11 = s(v)))∧
¬4(∃w2 v = u ∧ u = s(w2) ∧ ¬0(∃ε u = s(v)) ∧ ¬0(∃w12 u = s(w12) ∧ w12 = s(v)))

⎤
⎦ ,

where w11 and w12 are variables such that w11 � w12 � w1 � w2 � v � u. Now,

only the rules (1), . . . , (15) will be applied until all the negations are of the form ¬5.

Rule (16) will not be applied anymore since there exists no working formulas of

depth greater or equal to 3 and the rules (1), . . . , (15) never increase the depth of the

working formulas.
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Property 4.6.3

Every repeated application of the preceding rewriting rules on an initial working

formula p is terminating and producing a wnfv conjunction of final working formulas

equivalent to p in T .

Proof

Proof, first part: The application of the rewriting rules terminates. Let us introduce

the function α : q → n, where q is a conjunction of working formulas, n an integer

and such that

• α(true) = 0,

• α(¬(∃x̄ a ∧ ϕ)) = 2α(ϕ), and

• α(
∧
i∈I ϕi) =

∑
i∈I α(ϕi),

with a a basic formula, ϕ a conjunction of working formulas and the ϕi’s working

formulas. Note that if α(p2) < α(p1) then α(p[p2]) < α(p) where p[p2] is the formula

obtained from p when we replace the occurrence of the formula p1 in p by p2. This

function has been introduced by Vorobyov (1996) and Colmerauer and Dao (2003)

to show the non-elementary complexity of all algorithms solving propositions in the

theory of finite or infinite trees. It has also the property to decrease if the depth of

the working formula decreases after application of distributions as it is done in our

rule (16).

Let us introduce also the function λ : (u, a) → n, where u is a variable, a a basic

formula, n an integer and such that

λ(u, a) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0, if the conjunction of the equations of a has

not distinct left-hand sides or contains a

sub-formula of the form x = y with y � x, else
1, if u does not occur in a left-hand side of an equation

of a, or u is reachable from u in a, else

1 + λ(v, a), if the equation u = v is in a, else

2 +
∑n

i=1 λ(vi, a), if the equation u = f(v1, . . . , vn) is in a.

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Since the variables which occur in our formulas are ordered by the order relation

“ � ”, we can number them by positive integers such that

x � y ↔ no(x) > no(y),

where no(x) is the number associated to the variable x. Let us consider the 10-tuple

(n1, n2, n3, n4, n5, n6, n7, n8, n9, n10) where the ni’s are the following positive integers:

• n1 = α(p),

• n2 is the number of ¬0,

• n3 is the number of ¬1,

• n4 is the number of occurrences of function symbols in sub-formulas of

the form ¬1(. . .). For example, if we have ¬1(∃x x = f(y) ∧ y = f(x) ∧ x =

g(x, w) ∧ y = f(y)) then n4 = 4.
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• n5 is the sum of all the no(x) for each occurrence of a variable x in a

basic formula of a sub-formula of the form ¬1(. . .). For example, if we have

¬1(∃w x = f(x, z) ∧ y = x ∧ finite(z) ∧ . . .) then n5 = no(x) + no(x) + no(z) +

no(y) + no(x) + no(z) + · · ·.
• n6 is the number of formulas of the form v = u with u � v in sub-formulas of

the form ¬1(. . .),

• n7 is the number of ¬2,

• n8 is the sum of all the λ(u, a) for each occurrence of a sub-formula finite(u) in

a basic formula a of a working formula of the form ¬2(∃x̄ a∧ q). For example,

if we have ¬2(∃z x = f(x, z) ∧ z = f(y, y) ∧ finite(x) ∧ finite(x) ∧ finite(z)) then

n8 = λ(x, a)+ λ(x, a)+ λ(z, a) = 1+1+ (2+1+1) where a is the basic formula

x = f(x, z) ∧ z = f(y, y) ∧ finite(x) ∧ finite(x) ∧ finite(z).

• n9 is the number of ¬3

• n10 is the number of ¬4.

For each rule, there exists a positive integer i such that the application of this rule

decreases or does not change the values of the nj ’s, with 1 � j < i, and decreases

the value of ni. These i are equal to 1 for the rules (4), (9), (14) and (16), 2 for rule

(12), 3 for rule (6), 4 for rule (5), 5 for the rules (1), (3), (7) and (8), 6 for rule (2), 7

for rule (11), 8 for rule (10), 9 for rule (13), and 10 for rule (15). To each sequence

of formulas obtained by a finite application of the preceding rewriting rules, we

can associate a series of 10-tuples (n1, n2, n3, n4, n5, n6, n7, n8, n9, n10) which is strictly

decreasing in the lexicographic order. Since the ni’s are positive integers, they cannot

be negative, thus; this series of 10-tuples is a finite series and the application of the

rewriting rules terminates.

Proof, second part: Let us now show that for each rule of the form p =⇒ p′ we have

T |= p↔ p′ and the formula p′ remains a conjunction of working formula.

Correctness of the rules (1), . . . , (14)

The rules (1), . . . , (5) are correct according to the axioms [1] and [2] of T . Rules (6)

and (11) are evident. The rules (7) and (8) are true in the empty theory and thus true

in T . In rule (9), the variable u is reachable from itself in a, i.e. the basic formula a

contains a sub-formula of the form

u = t1 ∧ u2 = t2 ∧ . . . ∧ un = tn (34)

where ui occurs in the term ti−1 for all i ∈ {2, . . . , n} and u occurs in tn. According to

Definition 4.5.1, since our working formula starts with ¬2 then all the equations of

a have distinct lef-hand sides and for all equations of the form x = y we have x � y.
Thus, there exists at least one equation in (34) which contains a function symbol

which is not a constant, otherwise (34) is of the form u = u2 ∧ u2 = u3 ∧ . . . ∧ un = u

which implies u � u2 � . . . � u, i.e. u � u which is false since the order � is

strict. Thus, according to the fourth axiom of T we have T |= a→ ¬finite(u). As a

consequence, rule (9) is correct in T . Rule (10) is correct according to the last axiom

of T . Rule (13) is correct according to Property 4.2.4 and Definition 4.5.1. The rules
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(12) and (14) are true in the empty theory and thus true in T . Note that according to

Property 4.2.5, two solved basic formulas having the same equations are equivalent

if and only if they have the same relations finite(x). This is why in Definition 4.5.1

of the working formulas (more precisely in condition 4) we force only the equations

to be included in the sub-forworking formulas and use the elementary rule (14) to

remove inconsistent working formulas of depth 2.

Correctness of rule (15)

¬4

(
∃x̄ a ∧

n∧
i=1

¬5(∃ȳi bi)
)

=⇒ ¬5

(
∃x̄′ a′ ∧

∧
i∈K
¬5(∃ȳ′i b′i)∗

)

with n � 0, and for all i ∈ {1, . . . , n} the formula bi is different from the formula a.

The pairs (x̄′, a′) and (ȳ′i , b
′
i) are obtained by a decomposition of x̄ and a into x̄′x̄′′x̄′′′

and a′ ∧ a′′ ∧ a′′′ as follows:

• a′ is the conjunction of the equations and the formulas of the form finite(x)

which are reachable in ∃x̄ a;
• x̄′ is the vector the variables of x̄ which are reachable in ∃x̄ a;
• a′′ is the conjunction of the formulas of the form finite(x) which are non-

reachable in ∃x̄ a;
• x̄′′ is the vector the variables of x̄ which are non-reachable in ∃x̄ a and do not

occur in the left-hand sides of the equations of a;

• a′′′ is the conjunction of the equations which are non-reachable in ∃x̄ a;
• x̄′′′ is the vector the variables of x̄ which are non-reachable in ∃x̄ a and occur

in the left-hand sides of the equations of a;

• b∗i is the formula obtained by removing from bi the formulas of the form

finite(u) which occur also in a′′;

• ȳ′i is the vector of the variables of ȳix̄
′′′ which are reachable in ∃ȳix̄′′′ b∗i ;

• b′i is the conjunction of the equations and the formulas of the form finite(x)

which are reachable in ∃ȳix̄′′′ b∗i ;
• K ⊆ {1, . . . , n} is the set of the indices i such that i ∈ K if and only if no

variable of x̄′′ occurs in b′i; and

• The formula
∧
i∈K ¬5(∃ȳ′i b′i)∗ is the formula

∧
i∈K ¬5(∃ȳ′i b′i) in which we have

renamed the quantified variables so that they satisfy the discipline of the

formulas in T .

Let x̄′, x̄′′, x̄′′′, ȳ′ and a′, a′′, a′′′, b∗i , b
′
i be the vector of variables and the basic

formulas defined above. According to Definition 4.2.6, (i) all the variables of x̄′′ and

x̄′′′ do not occur in a′, otherwise they are reachable in ∃x̄ a. On the other hand, since

the first negation in the left-hand side of rule (15) is of the form ¬4 then according

to Definition 4.5.1 (ii) a is a solved basic formula and thus x̄′′′ is the vector of the

left-hand sides of the equations of a′′′ and its variables do not occur in a′′. Thus,

according to (i) and (ii) the left-hand side of rule (15) is equivalent in T to

¬
(
∃x̄′ a′ ∧

(
∃x̄′′ a′′ ∧

(
∃x̄′′′ a′′′ ∧

n∧
i=1

¬(∃ȳi bi)
)))

.
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Since a is a solved basic formula then a′′′ is a solved basic formula which contains

only equations and thus according to Property 4.2.3 we have T |= ∃!x̄′′′ a′′′. Thus,

according to Property 3.1.11 the preceding formula is equivalent in T to

¬
(
∃x̄′ a′ ∧

(
∃x̄′′ a′′ ∧

n∧
i=1

¬(∃x̄′′′ a′′′ ∧ (∃ȳi bi))
))

,

which, according to the discipline of the formulas in T (the quantified variables

have distinct names and different from those of the free variables ), is equivalent in

T to

¬
(
∃x̄′ a′ ∧

(
∃x̄′′ a′′ ∧

n∧
i=1

¬(∃x̄′′′ȳi a′′′ ∧ bi)
))

. (35)

Since all the nested negations in the left-hand side of rule (15) are of the form ¬5

then according to Definition 4.5.1, for all i ∈ {1, . . . , n}, the set of the equations of a

is included in those of bi. As a consequence, the formula (35) is equivalent in T to

¬
(
∃x̄′ a′ ∧

(
∃x̄′′ a′′ ∧

n∧
i=1

¬(∃x̄′′′ȳi bi)
))

,

i.e. to

¬
(
∃x̄′ a′ ∧

(
∃x̄′′ a′′ ∧

n∧
i=1

¬(∃x̄′′′ȳi b∗i )
))

.

Since all the nested negations in the left-hand side of rule (15) are of the form ¬5,

then according to Definition 4.5.1, for all i ∈ {1, . . . , n}, b∗i is a solved basic formula.

Thus, according to Property 4.2.11, the preceding formula is equivalent in T to

¬
(
∃x̄′ a′ ∧

(
∃x̄′′ a′′ ∧

n∧
i=1

¬(∃ȳ′i b′i)
))

,

which is equivalent in T to

¬

⎛
⎝∃x̄′ a′ ∧

(∧
i∈K
¬(∃ȳ′i b′i)

)
∧

⎛
⎝∃x̄′′ a′′ ∧ ∧

i∈{1,...,n}−K

¬(∃ȳ′i b′i)

⎞
⎠

⎞
⎠ ,

where K ⊆ {1, . . . , n} is the set of the indices i such that i ∈ K if and only if

no variable of x̄′′ occurs in b′i. Since all the nested negations in the left-hand

side of rule (15) are of the form ¬5 then according to Definition 4.5.1, for all

i ∈ {1, . . . , n} − K , the variables of ȳ′i are reachable in ∃ȳ′i b′i and the formula b′i
is a solved basic formula. Moreover, since each b′i does not contain sub-formulas

of the form finite(x) which occur also in a′′ (see the construction of b∗i ), then the

formula ∃x̄′′ a′′ ∧
∧
i∈{1,...,n}−K ¬(∃ȳ′ b′i) satisfies the conditions of Property 4.2.13. As

a consequence, according to Property 4.2.13, the preceding formula is equivalent in

T to

¬
(
∃x̄′ a′ ∧

∧
i∈K
¬(∃ȳ′i b′i)

)
,
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i.e. to

¬
(
∃x̄′ a′ ∧

∧
i∈K
¬(∃ȳ′i b′i)∗

)
,

where
∧
i∈K ¬5(∃ȳ′i b′i)∗ is the formula

∧
i∈K ¬5(∃ȳ′i b′i) in which we have renamed the

quantified variables so that they satisfy the discipline of the formulas in T . According

to the conditions of application of rule (15) and the form of the negations in the

left-hand side of this rule, we check easily that we can fix the negations of the

preceding formula as follows:

¬5

(
∃x̄′ a′ ∧

∧
i∈K
¬5(∃ȳ′i b′i)∗

)
.

Thus, rule (15) is correct in T .

Correctness of rule (16)

¬4

⎡
⎢⎢⎣
∃x̄ a ∧ q∧

¬5

[
∃ȳ b∧∧n
i=1 ¬5(∃z̄i ci)

]
⎤
⎥⎥⎦ =⇒

[
¬4(∃x̄ a ∧ q ∧ ¬5(∃ȳ b))∧∧n
i=1 ¬4(∃x̄ȳz̄i ci ∧ q0)

∗

]

with n > 0, and q0 is the formula q in which all the occurrences of ¬k have been

replaced by ¬0. The formula
∧n
i=1 ¬4(∃x̄ȳz̄i ci∧q0)

∗ is the formula
∧n
i=1 ¬4(∃x̄ȳz̄i ci∧q0)

in which we have renamed the quantified variables so that they satisfy the discipline

of the formulas of T .

The left-hand side of rule (16) is equivalent in T to

¬
(
∃x̄ a ∧ q ∧ ¬

(
∃ȳ b ∧ ¬

n∨
i=1

(∃z̄i ci)
))

.

Since the first negation of ¬(∃ȳ b . . . in the left-hand side of rule (16) is of the form

¬5 then according to Definition 4.5.1, all the variables of ȳ are reachable in ∃ȳ b, and

thus according to Property 4.2.10 we have T |= ∃?ȳ b. According to Property 3.1.10,

the precedent formula is equivalent in T to

¬
(
∃x̄ a ∧ q ∧ ¬

(
(∃ȳ b) ∧ ¬

(
∃ȳ b ∧

n∨
i=1

(∃z̄i ci)
)))

.

By distributing the ∧ on the ∨ and the ∃ on the ∨ and since the quantified variables

have distinct names and different from those of the free variables then the preceding

formula is equivalent in T to

¬
(
∃x̄ a ∧ q ∧ ¬

(
(∃ȳ b) ∧ ¬

n∨
i=1

(∃z̄iȳ b ∧ ci)
))

,

i.e. to

¬
(
∃x̄ a ∧ q ∧

(
(¬(∃ȳ b)) ∨

n∨
i=1

(∃z̄iȳ b ∧ ci)
))

,
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i.e. to

¬
(
∃x̄ (a ∧ q ∧ ¬(∃ȳ b)) ∨

n∨
i=1

(a ∧ q ∧ (∃z̄iȳ b ∧ ci))
)
,

which, according to the discipline of the formulas in T (the quantified variables

have distinct names and different from those of the free variables), is equivalent in

T to

¬
(
∃x̄ (a ∧ q ∧ ¬(∃ȳ b)) ∨

n∨
i=1

(∃z̄iȳ a ∧ q ∧ b ∧ ci)
)
,

i.e. to

¬
(

(∃x̄ a ∧ q ∧ ¬(∃ȳ b)) ∨
n∨
i=1

(∃x̄z̄iȳ a ∧ q ∧ b ∧ ci)
)
,

i.e. to

¬(∃x̄ a ∧ q ∧ ¬(∃ȳ b)) ∧
n∧
i=1

¬(∃x̄ȳz̄i a ∧ q ∧ b ∧ ci).

Since we have ¬5(∃ȳ b . . . in the left-hand side of rule (16) then according to

Definition 4.5.1, we have (i) T |= b → a. But since we have also ¬5(∃z̄i ci) for all

i ∈ {1, . . . , n}, then according to Definition 4.5.1 we have (ii) T |= ci → b. From

(i) and (ii) we have T |= ci → (a∧ b). Thus the preceding formula is equivalent in T

to

¬(∃x̄ a ∧ q ∧ ¬(∃ȳ b)) ∧
n∧
i=1

¬(∃x̄ȳz̄i ci ∧ q),

i.e. to

¬(∃x̄ a ∧ q ∧ ¬(∃ȳ b)) ∧
n∧
i=1

¬(∃x̄ȳz̄i ci ∧ q)∗,

where
∧n
i=1 ¬4(∃x̄ȳz̄i ci ∧ q)∗ is the formula

∧n
i=1 ¬4(∃x̄ȳz̄i ci ∧ q) in which we have

renamed the quantified variables so that they satisfy the discipline of the formulas

of T . According to the conditions of application of rule (16) and the form of the

negations in the left-hand side of this rule, we check easily that we can fix the

negations of the preceding formula as follows

¬4(∃x̄ a ∧ q ∧ ¬5(∃ȳ b)) ∧
n∧
i=1

¬4(∃x̄ȳz̄i ci ∧ q0)
∗,

where q0 is the formula q in which all the occurrences of ¬k have been replaced by

¬0. Thus rule (16) is correct in T .

Proof, third part: Every repeated application until termination of the rewriting rules

on an initial working formula produces a conjunction of final working formulas.

Recall that we write
∧
i∈I ϕi, and call conjunction each formula of the form ϕi1 ∧

ϕi2 ∧ . . . ∧ ϕin ∧ true. In particular, for I = ∅, the conjunction
∧
i∈I ϕi is reduced to

true. Moreover, we do not distinguish two formulas which can be made equal using

https://doi.org/10.1017/S1471068407003171 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003171


476 K. Djelloul et al.

the following transformations of sub-formulas:

ϕ ∧ ϕ =⇒ ϕ, ϕ ∧ ψ =⇒ ψ ∧ ϕ, (ϕ ∧ ψ) ∧ φ =⇒ ϕ ∧ (ψ ∧ φ),

ϕ ∧ true =⇒ ϕ, ϕ ∨ false =⇒ ϕ.

Let us show first that every substitution of a sub-working formula of a conjunction

of working formulas by a conjunction of working formulas produces a conjunction

of working formulas. Let
∧
i∈I ϕi be a conjunction of working formulas. Let ϕk with

k ∈ I be an element of this conjunction of depth dk . Two cases arise:

1. We replace ϕk by a conjunction of working formulas. Thus, let
∧
j∈Jk φj

be a conjunction of working formulas which is equivalent to ϕk in T . The

conjunction of working formulas
∧
i∈I ϕi is equivalent in T to⎛

⎝ ∧
i∈I−{k}

ϕi

⎞
⎠ ∧

⎛
⎝∧
j∈Jk

φj

⎞
⎠

which is clearly a conjunction of working formulas.

2. We replace a strict sub-working formula of ϕk by a conjunction of working

formulas. Thus, let φ be a sub-working formula of ϕk of depth dφ < dk (thus

φ is different from ϕk). Thus, ϕk has a sub-working formula17 of the form

¬
(
∃x̄α ∧

(∧
l∈L
ψl

)
∧ φ

)
,

where L is a finite (possibly empty) set and all the ψl are working formulas.

Let
∧
j∈J φj be a conjunction of working formulas which is equivalent to φ in

T . Thus the preceding sub-working formula of ϕk is equivalent in T to

¬

⎛
⎝∃x̄α ∧

(∧
l∈L
ψl

)
∧

⎛
⎝∧
j∈J

φj

⎞
⎠

⎞
⎠ ,

which is clearly a sub-working formula and thus ϕk is equivalent to a working

formula and thus
∧
i∈I ϕi is equivalent to a conjunction of working formulas.

From 1 and 2 we deduce that (i) every substitution of a sub-working formula of a

conjunction of working formulas by a conjunction of working formulas produces a

conjunction of working formulas.

Since each rule transforms a working formula into a conjunction of working

formulas, then according to the sub-section proof: first part and (i) we deduce that

every repeated application of the rewriting rules on an initial working formula

terminates and produces a conjunction of working formulas. Thus, since an initial

working formula starts by ¬4 and all its other negations are of the form ¬0 then all

a long the application of our rules and by going down along the nested negations

of any working formula ϕ obtained after any finite application of our rules, we can

build many series of negations which represent the paths that we should follow from

17 By considering that the set of the sub-formulas of any formula ϕ contains also the whole formula ϕ.
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the top negation of ϕ to reach one of the sub-working formulas of ϕ of depth equal

to one. Each of these series is of the one of the following forms:

• a series of ¬4 followed by a possibly series of ¬0,

• a series of ¬4 followed by one ¬1, followed by a possibly series of ¬0,

• a series of ¬4 followed by one ¬2, followed by a possibly series of ¬0,

• a series of ¬4 followed by one ¬3, followed by a possibly series of ¬0,

• a series of ¬4 followed by one or two ¬5, and

• one or two ¬5.

While all the negations of these series are not of the form ¬5 or their length is greater

than 2 then one of the rules (1), . . . , (16) can still be applied. As a consequence, when

no rule can be applied, we obtain a conjunction of formulas of depth less or equal to

2 in which all the negations are of the form ¬5. It is a conjunction of final working

formulas. Since all the rules do not introduce new free variables then Property 4.6.3

holds. �

4.7 The Solving Algorithm

Let p be a formula. Solving p in T proceeds as follows:

(1) Transform the formula ¬p (the negation of p) into a wnfv normalized formula

p1 equivalent to ¬p in T .

(2) Transform p1 into the following initial working formula p2

p2 = ¬4(∃ε true ∧ ¬0(∃ε true ∧ p1)),

where all the occurrences of ¬ in p1 are replaced by ¬0.

(3) Apply the preceding rewriting rules on p2 as many time as possible. According

to Property 4.6.3 we obtain at the end a wnfv conjunction p3 of final working

formulas of the form

n∧
i=1

¬5

⎛
⎝∃x̄i αi ∧ ni∧

j=1

¬5(∃ȳij βij)

⎞
⎠ .

According to Property 4.5.4, the formula p3 is equivalent in T to the following wnfv

conjunction p4 of general solved formulas

n∧
i=1

¬

⎛
⎝∃x̄i αi ∧ ni∧

j=1

¬(∃ȳij β∗ij)

⎞
⎠ ,

where β∗ij is the formula βij from which we have removed all the equations which

occur also in αi. Since p4 is equivalent to ¬p in T , then p is equivalent in T to

¬
n∧
i=1

¬

⎛
⎝∃x̄i αi ∧ ni∧

j=1

¬(∃ȳij β∗ij)

⎞
⎠ ,
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which is equivalent to the following disjunction p5

n∨
i=1

⎛
⎝∃x̄i αi ∧ ni∧

j=1

¬(∃ȳij β∗ij)

⎞
⎠ .

This is the final answer of our solver to the initial constraint p. Note that the

negations which were at the beginning of each general solved formula of p4 have

been removed and the top conjunction of p4 has been replaced by a disjunction. As

a consequence, the set of the solutions of the free variables of p5 is nothing other

than the union of the solutions of each formula of the form ∃x̄i αi ∧
∧ni
j=1 ¬(∃ȳij β∗ij).

According to Definition 4.4.6, each of these formulas is written in an explicit solved

form which enables us to easily extract the solutions of its free variables. On the

other hand, two cases arise:

• If p4 does not contain free variables then according to Property 4.4.3 the

formula p4 is of the form
∧n
i=1 ¬(∃ε true) and thus p5 is of the form

∨n
i=1 ∃ε true.

Two cases arise: if n = 0 then p5 is the empty disjunction (i.e. the formula

false). Else, if n �= 0 then since we do not distinguish between ϕ∧ϕ and ϕ, p5

is the formula ∃ε true.

• If p4 contains at least one free variable then according to Property 4.4.3 neither

T |= p4 nor T |= ¬p4 and thus neither T |= ¬p5 nor T |= p5.

Since T has at least one model and since p5 is equivalent to p in T and does not

contain news free variables then we have the following theorem:

Theorem 4.7.1

Every formula is equivalent in T either to true, or to false, or to a wnfv formula

which has at least one free variable, which is equivalent neither to true nor to false,

and where the solutions of the free variables are expressed in a clear and explicit

way.

The fact that T accepts at least one model is vital in this theorem. In fact, if T does

not have models then the formula true can be equivalent to false in T . In other

words, a formula can be equivalent to true in T using a finite application of our

rules and equivalent to false using another different finite application of our rules.

Theorem 3.3.1 prevents these kinds of conflicts and shows that T has at least three

models D, Tr and Ra and thus T |= ¬(true ↔ false).

Corollary 4.7.2

T is a complete theory.

Note that using Theorem 4.7.1 and the properties 4.4.5 and 4.2.11, we get Maher’s

decision procedure (Maher 1988) for the basic theory of finite or infinite trees.

5 Implementation of our algorithm

We have implemented our algorithm in C++ and CHR (Constraint Handling

Rules) (Fruehwirth 1998; Fruehwirth and Abdennadher 2003; Schrijvers and Frue-

hwirth 2006). The C++ implementation is a straightforward extension of those
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given in Djelloul and Dao (2006b). It uses records and pointers and releases

unused pointers after each rule application. The CHR implementation was done

using Christian Holzbaur’s CHR library of Sicstus Prolog 3.11.0. It consists of

18 CHR constraints and 73 CHR rules – most of them are needed for the

complicated rules (15) and (16) of our algorithm. Even if our C++ implementation

has given better performances, we think that it is interesting to show how we

can translate our rules into CHR rules. We will be able to quickly prototype

optimizations and variations of our algorithm and to parallelize it. For CHR,

the implementation of this complex solver helps understand what programming

patterns and language features can be useful. The CHR code without comments

and examples, but pretty-printed, is about 250 lines, which is one seventh of the

size of our C++ implementation. Indeed for code size and degree of abstraction

it seems only possible and interesting to describe the CHR implementation, and

we do so in the following. The reader can find our full CHR implementation at

http://khalil.djelloul.free.fr/solver.txt and can experiment with it online

using webchr at http://chr.informatik.uni-ulm.de/ webchr/.

5.1 Constraint Handling Rules implementation

Constraint Handling Rules (CHR) manipulates conjunctions of constraints that

reside in a constraint store. Let H , C and B denote conjunctions of constraints. A

simplification rule H ⇔ C B replaces instances of the CHR constraints H by B

provided the guard test C holds. A propagation rule H ⇒ C B instead just adds

B to H without removing anything. The hybrid simpagation rules will come handy

in the implementation: H1\H2 ⇔ C B removes matched constraints H2 but keeps

constraints H1.

The constraints of the store comprise the state of an execution. Starting from

an arbitrary initial store (called query), CHR rules are applied exhaustively until

a fixpoint is reached. Trivial non-termination of a propagation rule application is

avoided by applying it at most once to the same constraints.

Almost all CHR implementations execute queries from left to right and apply

rules top-down in the textual order of the program Duck et al. (2004). A CHR

constraint in a query can be understood as a procedure that goes efficiently through

the rules of the program. When it matches a head constraint of a rule, it will look

for the other constraints of the head in the constraint store and check the guard.

On success, it will apply the rule. The rule application cannot be undone. If the

initial constraint has not been removed after trying all rules, it will be put into

the constraint store. Constraints from the store will be reconsidered if newly added

constraints constrain its variables.

5.1.1 CHR constraints

The implementation consists of 18 constraints: two main constraints that encode the

tree data structure of the working formulas (nf/4) and the atomic formulas (of/2),
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9 auxiliary constraints that perform reachability analysis, variable renaming and

copying of formulas, and 7 constraints that encode execution control information,

mainly for rules (15) and (16).

In more detail, nf(ParentId,Id,K,ExVars) describes a negated quantified basic

formula with the identifier of its parent node, its own identifier Id, the level K from

¬k and the list of existentially quantified variables. Var=FlatTerm of Id denotes

an equation between a variable and a flat term (a variable or a function symbol

applied to variables) that belongs to the negated sub-formula with the identifier Id.

finite(U) of Id denotes the relation finite(U).

It is easy to represent any working formula ϕ using conjunctions of nf/4 and

of/2 constraints. It is enough to create one nf/4 constraint for each quantified basic

formula of ϕ and to use a conjunction of of/2 constraints to enumerate the atomic

formulas linked to each quantified basic formula.

Example 5.1.2

Let ϕ be the following working formula:

¬4

⎡
⎢⎢⎢⎢⎣
∃u u = 1∧⎡
⎢⎢⎣
¬0(∃ε u = s(v))∧
¬0(∃w1 u = s(w1) ∧ w1 = s(v))∧

¬5(∃ε v = s(u) ∧ u = 1 ∧
[
¬5(∃ε v = s(u) ∧ u = 1 ∧ finite(w1))∧
¬5(∃w3 v = s(u) ∧ u = 1 ∧ w2 = s(w3) ∧ finite(w3))

]
)

⎤
⎥⎥⎦

⎤
⎥⎥⎥⎥⎦.

ϕ can be expressed using the following conjunction of constraints:

nf(Q, P1, 4, [U]), U = 1 of P1,

nf(P1, P2, 0, [ ]), U = S(V) of P2,

nf(P1, P3, 0, [W1]), U = S(W1) of P3, W1 = S(V) of P3,

nf(P1, P4, 5, [ ]), V = S(U) of P4, U = 1 of P4

nf(P4, P5, 5, [ ]), V = S(U) of P5, U = 1 of P5, finite(W1) of P5

nf(P4, P6, 5, [W3]), V = S(U) of P6, U = 1 of P6, W2 = S(W3) of P6, finite(W3) of P6

5.1.2 CHR rules

The rules (1) to (14) have a rather direct translation into CHR rules. It seems hard
to come up with a more concise implementation.

% 1 Locally simplify equations

(1) @ nf(Q,P,1,Xs) \ U=U of P <=> true.

(2) @ nf(Q,P,1,Xs) \ V=U of P <=> gt(U,V) | U=V of P.

(3) @ nf(Q,P,1,Xs), U=V of P \ U=G of P <=> gt(U,V) | V=G of P.

(4) @ nf(Q,P,1,Xs), U=F of P, U=G of P <=> notsamefunctor(F,G) | true(P).

(5) @ nf(Q,P,1,Xs), U=F of P \ U=G of P <=> samefunctor(F,G) |

same_args(F,G,P).

(6) @ nf(Q,P,1,Xs) <=> nf(Q,P,2,Xs).

% 2 finiteness check

(7) @ nf(P0,P,2,Xs), finite(U) of P \ finite(U) of P <=> true.

(8) @ nf(P0,P,2,Xs), U=V of P \ finite(U) of P <=> var(V) | finite(V) of P.
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(9+10)@nf(P0,P,2,Xs),U=T of P \ finite(U) of P <=> nonvar(T) |

reach_args(U,T,P), finite_args(U,T,P).

(11) @ nf(Q,P,2,Xs) <=> nf(Q,P,3,Xs).

% 4/0-4/1 copy down before solving

(12) @ nf(Q,P,4,Xs), A of P, nf(P,P1,0,Ys) ==> A of P1.

nf(Q,P,4,Xs) \ nf(P,P1,0,Ys) <=> nf(P,P1,1,Ys).

% 4/3-4/4 replace down after solving

(13) @ nf(Q,P,4,Xs),U=V of P, nf(P,P1,3,Ys)\ U=G of P1 <=> V\==G | U=V of P1.

nf(Q,P,4,Xs) \ nf(P,P1,3,Ys) <=> nf(P,P1,4,Ys).

% 4/5-true trivial satisfaction - each A of P1 also occurs as A of P

(14) @ nf(Q,P,4,Xs), nf(P,P1,5,Ys) <=>

\+(findconstraint(P1,(A of P1),_), \+findconstraint(P,(A of P),_)) |

true(P).

Note that rules (1) to (5) are similar to the classical CHR equation solver for flat

rational trees (Fruehwirth and Abdennadher 2003; Meister and Fruehwirth 2006).

By applying results of Meister and Fruehwirth (2006), we can show that the worst-

case time complexity of these rules of the algorithm is quadratic in the size of the

equations.

In the rules (2) and (3), the predicate gt(U,V) checks if U � V. Note that the

constraint true(P) used in rule (4) removes all constraints associated with P using

an auxiliary rule not shown.

In rule (9+10) reach args(U,T,P) checks reachability of U from itself in P. If

so, true(P) will be executed and thus P will be removed, implementing rule (9).

Otherwise, the subsequent finite args(U,T,P) will propagate down the finite

relation from U to its arguments, implementing rule (10).

In the rules (12) and (13) we handle equations one by one (due to the chosen

granularity of the constraints), and thus we need auxiliary second CHR rules that

perform the update of the level K afterwards.

For rule (14) the implementation is easy when nested negation-as-absence (Van

Weert et al. 2006) is used to verify that there is no constraint in the sub-formula that

is not in the main formula. Negation-as-absence can be directly encoded in CHR, but

then it requires two additional rules per negation. Instead, we have chosen to use in

the guard of the rule the CHR library built-in findconstraint(Var,Pattern,Match)

that returns on backtracking all constraints Match that match Pattern and that are

indexed on variable Var together with negation-as-failure provided by the Prolog

built-in \+.

The translation of the complex rules (15) and (16) of the algorithm require 40 CHR

rules, because several non-trivial new expressions have to be computed. Simpagation

rules and auxiliary constraints collect the nested nf/4 constraints, compute the

reachable variables and atomic formulas, rename the quantified variables and

produce updated nf/4 and of/2 constraints. Not to overburden the reader with

technical details, we omit the description of those 40 rules.
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5.2 Benchmarks: Two partner game

Let us consider the following two partner game: An ordered pair (i, j) is given, with

i a non-negative (possibly null) integer and j ∈ {0, 1}. One after another, each player

changes the values of i and j according to the following rules:

• If j = 0 then the actual player should replace i by i− 1 in the pair (i, j).

• If j = 1 and i is odd then the actual player can either replace i by i + 1 or

replace j by j − 1, in the pair (i, j).

• If j = 1 and i is even then the actual player can either replace i by i+ 1 and j

by j − 1 in the pair (i, j) or replace only i by i+ 1 in the pair let (i, j)

The first player who cannot keep i non-negative has lost. This game can be

represented by the following directed infinite graph:

It is clear that the player which is at the position (0, 0) and should play has lost.

Suppose that it is the turn of player A to play. A position (n, m) is called k-winning

if, no matter the way the other player B plays, it is always possible for A to win,

after having made at most k moves. It is easy to show that

where move(x, y) means: “starting from the position x we play one time and reach

the position y”. By moving down the negations, we get an embedding of 2k alternated

quantifiers.

Suppose that F contains the function symbols 0, 1, f, g, c of respective arities 0,

0, 1, 1, 2. We code the vertices (i, j) of the game graph by the trees c(̄i, 0) and c(̄i, 1)

with ī = (fg)i/2(0) if i is even, and ī = g(i− 1) if i is odd.18 The relation move(x, y)

is then defined as follows:

move(x, y)
def↔ transition(x, y) ∨ (¬(∃uv x = c(u, v)) ∧ x = y)

18 (fg)0(x) = x and (fg)i+1(x) = f(g((fg)i(x))).
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with

transition(x, y)
def↔

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∃u1v1u2v2
x = c(u1, v1) ∧ y = c(u2, v2)∧⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(v1 = 0 ∧ v2 = v1 ∧ pred(u1, u2))

∨

(v1 = 1 ∧

⎡
⎣(∃w u1 = g(w) ∧

[
(u2 = f(u1) ∧ v2 = v1)∨
(u2 = u1 ∧ v2 = 0)

]
)∨

(¬(∃w u1 = g(w)) ∧ u2 = g(u1) ∧ (v2 = v1 ∨ v2 = 0))

⎤
⎦

∨
(¬(v1 = 0) ∧ ¬(v1 = 1) ∧ u2 = u1 ∧ v2 = v1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

pred(u1, u2)
def↔

⎡
⎢⎢⎢⎢⎣

(∃j u1 = f(j) ∧
[
(∃k j = g(k) ∧ u2 = j)∨
(¬(∃k j = g(k)) ∧ u2 = u1)

]
)∨

(∃j u1 = g(j) ∧
[
(∃k j = g(k) ∧ u2 = u1)∨
(¬(∃k j = g(k)) ∧ u2 = j)

]
)∨

(¬(∃j u1 = f(j)) ∧ ¬(∃j u1 = g(j)) ∧ ¬(u1 = 0) ∧ u2 = u1)

⎤
⎥⎥⎥⎥⎦

If we take as input of our solver the formula winningk(x) then we will get as

output a disjunction of simple formulas where the solutions of the free variable x

represent all the k-winning positions.

For winning1(x) our algorithm gives the following formula:

∃u1u2 x = c(u1, u2) ∧ u1 = g(u2) ∧ u2 = 0,

which corresponds to the solution x = c(g(0), 0). For winning2(x) our algorithm gives

the following disjunction of simple formulas

⎡
⎣(∃u1u2 x = c(u1, u2) ∧ u1 = g(u2) ∧ u2 = 0)

∨
(∃u3u4u5u6 x = c(u3, u6) ∧ u3 = g(u4) ∧ u4 = f(u5) ∧ u5 = g(u6) ∧ u6 = 0)

⎤
⎦ ,

which corresponds to the solution x = c(g(0), 0)∨ x = c(g(f(g(0))), 0). Note that x is

the only free variable in the two preceding disjunctions and its solutions represent

the positions which are k-winning.

The times of execution (CPU time in milliseconds) of the formulas winningk(x)

are given in the following table as well as a comparison with those obtained using a

decision procedure for decomposable theories Djelloul (2006a) (even though the later

does not produce comprehensible results, i.e. explicit solved forms). The benchmarks

are performed on a 2.5Ghz Pentium IV processor, with 1024Mb of RAM. The

symbol “−” bellow means exhausting memory.
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k (winningk(x)) 1 2 4 5 7 10 20 40

CHR (our 16 rules) 320 690 1750 2745 5390 − − −

C++ Djelloul (2006a) 28 50 115 150 245 430 2115 −

C++ (our 16 rules) 25 40 90 115 175 315 1490 15910

This decision procedure takes from 10% to 40% more time, comparing with

our C++ implementation to solve the winningk(x) formulas of our game and

overflows the memory for k > 20, i.e. 40 nested alternated quantifiers. Our C++

implementation has better performance and is able to give all the winningk strategies

in a clear and explicit way until k = 40, i.e. 80 nested alternated quantifiers.

The execution times of winningk(x) using our CHR implementation are 12–30 times

slower than those obtained using our C++ implementation and the maximal depth

of working formula that can be solved is 14 (k = 7). These results are in line with

the experience that the overhead of using declarative CHR without optimizations

induces an overhead of about an order of magnitude over implementations in

procedural languages. As discussed in the conclusions, switching to a more recent

optimizing CHR compiler may close the gap to a small constant factor.

The algorithm given in Djelloul (2006a) is a decision procedure in the form

of five rewriting rules which for every decomposable theory T transforms a first-

order formula ϕ into a conjunction φ of final formulas easily transformable into

a Boolean combination of existentially quantified conjunctions of atomic formulas.

This decision procedure does not warrant that the solutions of the free variables are

expressed in a clear and explicit way and can even produce formulas having free

variables but being always true or false in T . In fact, for our two-player game, we

got conjunctions of final formulas where the solutions of the free variable x was

incomprehensible, especially from k = 5.

We also tried to use Remark 4.4.2 of Djelloul (2006a) which gives a way to get a

disjunction of the form

∨
i∈I

⎛
⎝∃x̄′i α′i ∧∧

j∈Ji

¬(∃ȳ′ij β′ij)

⎞
⎠ (36)

as output of the decision procedure. As Djelloul (2006a) wrote: it is more easy to

understand the solutions of the free variables of this disjunction of solved formulas than

those of a conjunction of solved formulas. That is of course true, but this does not

mean that the solutions of the free variables of this formula are expressed in a clear

and explicit way. In fact, we got a disjunction of the form (36) where many variables

which occurred in left-hand sides of equations of α′i occurred also in left-hand sides

of equations of some β′ij . Moreover, many formulas of the preceding disjunction

contained occurrences of the free variable x but after a hard and complex manual

checking we found them equivalent to false. As a consequence, the solutions of

x was completely not evident to understand and we could not extract clear and
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understandable winningk(x) strategies for all k � 5. To simplify the formula (36), we

finally used our solving algorithm on it and have got a disjunction of simple formulas

equivalent to (36) in T in which: (1) all the formulas having free occurrences of x

but being always false in T have been removed, (2) the solutions of the free variable

x were expressed in a clear and explicit way.

We now discuss why our solver is faster than the decision procedure of K. Djelloul.

The latter uses many times a particular distribution (rule (5) in Djelloul 2006a) which

decreases the depth of the working formulas but increases exponentially the number

of conjunctions of the working formulas until overflowing the memory. Our solving

algorithm uses a similar distribution (rule (16)) but only after a necessary propagation

step which copies the basic formulas into the sub-working formulas and checks if

there exists no working formulas which contradict their top-working formula. This

step enables us to remove the inconsistent working formulas and to not lose time

with solving a huge working formulas (i.e. of big depth) which contradicts their

top-working formulas. It also prevents us from making exponential distributions

between huge inconsistent working formulas which finally are all equivalent to false.

Unfortunately, we cannot add this propagation step to the decision procedure of

Djelloul (2006a) since it uses many properties which hold only for the theory of

finite or infinite trees and not for any decomposable theory T .

The game introduced in this paper was inspired from those given in Djelloul

(2006a) but is different. Solving a winningk(x) formula in this game generates

many huge working formulas which contradict their top-working formulas. Our

algorithm removes directly these huge working formulas after the first propagation

step (rules (1), . . . , (13)). The decision procedure cannot detect this inconsistency and

is obliged to apply a costly rule (rule (5) in Djelloul (2006a)) to decrease the size

of these inconsistent working formulas until finding basic inconsistent formulas of

the form ¬(a ∧ ¬(∃ε true)) or ¬(∃ε false ∧ ϕ). At each application of this rule, the

depth of the working formulas decreases but the number of conjunctions increases

exponentially until overflowing the memory. This explains why for this game the

decision procedure overflows the memory for k > 20 while our solver can compute

the winningk(x) strategies until k = 40.

5.3 Benchmarks: Random normalized formulas

We have also tested our 16 rules on randomly generated normalized formulas such

that in each sub-normalized formula of the form ¬(∃x̄ α ∧
∧n
i=1 ϕi), with the ϕi’s

normalized formulas and n � 0, we have the following:

• n is a positive integer randomly chosen between 0 and 4.

• The number of the atomic formulas in the basic formula α is randomly chosen

between 1 and 8. Moreover, the atomic formula true occurs at most once in α.

• The vector of variables and the atomic formulas of ∃x̄ α are randomly generated

starting from a set containing 10 variables, the relation finite and 6 function

symbols: f0, f1, f2, g0, g1, g2. Each function symbol fj or gj is of arity j with

0 � j � 2.
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The benchmarks were realized on a 2.5 Ghz Pentium IV processor with 1024Mb of

RAM as follows: For each integer 1 � d � 42 we generated 10 random normalized

formulas19 of depth d, we solved them and computed the average execution time

(CPU time in milliseconds). Once again, the performances (time and space) of

our 16 rules are impressive comparing with those of the decision procedure for

decomposable theories.

d 4 8 12 22 26 41

CHR (our 16 rules) 1526 4212 16104 − − −

C++ Djelloul (2006a) 108 375 1486 18973 − −

C++ (our 16 rules) 88 202 504 3552 11664 2142824

Note that for d = 42, all the normalized formulas could not be solved and

overflowed the memory.

6 Discussion and conclusion

We gave in this paper a first-order axiomatization of an extended theory T of finite

or infinite trees, built on a signature containing not only an infinite set of function

symbols but also a relation finite(t) which enables to distinguish between finite and

infinite trees. We showed that T has at least one model and proved its completeness

by giving not only a decision procedure but a full first-order constraint solver which

transforms any first-order constraint ϕ into an equivalent disjunction φ of simple

formulas such that φ is either the formula true, or the formula false, or a formula

having at least one free variable, being equivalent neither to true nor to false and

where the solutions of the free variables are expressed in a clear and explicit way.

This algorithm detects easily formulas that have free variables but are always true or

always false in T and is able to solve any first-order constraint satisfaction problem

in T . Its correctness implies the completeness of T .

On the other hand, Vorobyov (1996) has shown that the problem of deciding if a

proposition is true or not in the theory of finite and infinite trees is non-elementary,

i.e. the complexity of all algorithms solving propositions is not bounded by a tower

of powers of 2′s (top-down evaluation) with a fixed height. Colmerauer and Dao

(2003) have also given a proof of non-elementary complexity of solving constraints

in this theory. As a consequence, our algorithm does not escape this huge complexity

and the function α(ϕ) used to show the termination of our rules illustrates this result.

We implemented our algorithm in C++ and CHR and compared both per-

formances with those obtained using a recent decision procedure for decomposable

theories (Djelloul 2006a). This decision procedure is not able to present the solutions

19 We, of course, renamed the quantified variables of each randomly generated normalized formula so
that it respects the discipline of the formulas in T
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of the free variables in a clear and explicit way and overflows the memory while

solving normalized formulas with depth d > 40. Our C++ implementation is faster

than this decision procedure and can solve normalized formulas of depth d = 80.

This is mainly due to the fact that our algorithm uses two steps: (1) a top-down

propagation of constraints and (2) a bottom-up elimination of quantifiers and depth

reduction of the working formulas. In particular, the first step enables to minimize

the number of application of costly distributions and avoids to lose time with solving

huge formulas which contradict their top formulas.

Future implementation work will focus on our CHR implementation, since from

previous experience we are confident that we can get the performance overhead

down to a small constant factor while gaining the possibility to prototype variations

of our algorithm in a very high level language. Switching to a more recent optimizing

CHR compiler from K.U. Leuven would most likely improve performance. We also

think that we can minimize the use of the debated negation-as-absence (Van Weert

et al. 2006) by introducing reference counters for the two main constraints. This

should also give us the possibility to obtain a parallel implementation that is derived

from the existing one with little modification, similar to what has been done for

parallelizing the union-find algorithm in CHR (Fruehwirth 2005).
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