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Intermittency in free vibration of a cylinder
beyond the laminar regime
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Vortex-induced vibration of a circular cylinder that is free to move in the transverse
(Y) and streamwise (X) directions is investigated at subcritical Reynolds numbers
(1500 . Re . 9000) via three-dimensional (3-D) numerical simulations. The mass
ratio of the system for all the simulations is m∗ = 10. It is observed that while
some of the characteristics associated with the XY-oscillation are similar to those of
the Y-only oscillation (in line with the observations made by Jauvtis & Williamson
(J. Fluid Mech., vol. 509, 2004, pp. 23–62)), notable differences exist between the
two systems with respect to the transition between the branches of the cylinder
response in the lock-in regime. The flow regime between the initial and lower branch
is characterized by intermittent switching in the cylinder response, aerodynamic
coefficients and modes of vortex shedding. Similar to the regime of laminar flow, the
system exhibits a hysteretic response near the lower- and higher-Re end of the lock-in
regime. The frequency spectrum of time history of the cylinder response shows that
the most dominant frequency in the streamwise oscillation on the initial branch is the
same as that of the transverse oscillation.

Key words: flow–structure interactions, vortex shedding, wakes

1. Introduction

Vortex shedding in the wake of an elastically mounted bluff body may result
in its vibration. This phenomenon is referred to as vortex-induced vibration (VIV).
A circular cylinder is typically used as a canonical shape for the bluff body in most
VIV studies. More often than not, the elastic support is modelled as a linear spring
and the cylinder is constrained to move in the transverse direction only (henceforth
referred to as Y-only oscillation). For a comprehensive review on the various aspects
of VIV, the interested reader is referred to articles by Sarpkaya (2004), Williamson
& Govardhan (2004) and Bearman (2011).
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The response of the fluid–structure system during VIV depends on several flow and
structural parameters that are usually expressed in non-dimensional form: for example,
Reynolds number, mass ratio and reduced speed. The Reynolds number (Re) is based
on the free-stream speed (U) and diameter of the circular cylinder (D). The mass ratio
(m∗) is the ratio between the mass of the oscillating structure and the mass of the
fluid displaced by it. The reduced speed (U∗) is defined as U/fnD, where fn is the
natural frequency of the oscillator. If the natural frequency of the structure is close to
the vortex shedding frequency then synchronization/lock-in/resonance can occur in the
fluid–structure system, wherein the structure experiences a relatively large amplitude
of oscillation (Khalak & Williamson 1999). Typically, lock-in occurs over a range
of U∗. Outside this range, the fluid and structure are desynchronized. For moderate
mass-ratio systems and at low Re, the response curve within the lock-in has two
branches: the initial and the lower (Singh & Mittal 2005). In the large-Re regime, an
additional branch called the upper branch is observed (Khalak & Williamson 1999;
Govardhan & Williamson 2000; Navrose & Mittal 2013; Zhao et al. 2014). The peak
amplitude of transverse oscillation in the large-Re regime is higher than that in the
low-Re regime (Williamson & Govardhan 2004). With a decrease in m∗, the width of
the lock-in regime increases, and below a critical m∗ the regime of synchronization
extends to infinite reduced speed (Govardhan & Williamson 2002; Ryan, Thompson
& Hourigan 2005; Navrose & Mittal 2017).

Compared to Y-only oscillation, the VIV set-up where the cylinder is free to
oscillate in both streamwise and transverse directions (XY-oscillation) has been
relatively less explored, especially beyond the laminar flow regime. Jauvtis &
Williamson (2004) carried out experiments with XY-oscillation for different values
of m∗. The natural frequencies of the oscillator in the transverse and streamwise
directions in their work were kept the same. They observed that for m∗& 6.0, Y-only
and XY-oscillation are similar in terms of the number of response branches, peak
amplitude of transverse oscillation and vortex shedding modes. In the present work,
we investigate the transition between the various branches of the cylinder response
and desynchronization regimes for a cylinder undergoing XY-oscillation. The results
are compared to those from earlier studies for Y-only oscillation to bring out the
effect of XY-oscillation over the Y-only vibration in modifying the transition.

2. Problem description, numerical details and mesh convergence

The flow is modelled using the incompressible Navier–Stokes equations in primitive
variable form. The cylinder is mounted on an elastic support that is modelled by two
identical springs, one each in the streamwise (X) and transverse (Y) directions. To
encourage large-amplitude oscillation, the structural damping coefficient is set to
zero. The details of the equations as well as their finite-element formulation can be
found in the article by Prasanth & Mittal (2008). The oscillator has been designed
such that Re varies linearly with the reduced speed as Re = 678U∗. This approach
is akin to that usually employed in experiments and has been used for low-Re VIV
computations (Prasanth & Mittal 2008; Navrose et al. 2014). The design of the
oscillator ensures that the peak amplitude of cylinder oscillation in the transverse
direction occurs for similar combinations of Re and U∗ as in the experiments by
Govardhan & Williamson (2006). The span of the cylinder is 4D. The mass ratio for
all the simulations is m∗ = 10.0.

The computational domain and finite-element mesh are the same as that in our
earlier work (Navrose & Mittal 2013). The cylinder spans the entire extent of the
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Mesh Nodes Elements
Xrms

D
Yrms

D
X/D CDrms CLrms CD

M1 2 169 234 2 098 600 0.0046 0.3577 0.1694 0.0483 0.1021 1.0508
M2 5 089 693 10 033 000 0.0046 0.3686 0.1686 0.0530 0.1076 1.0420

TABLE 1. U∗ = 10 (Re= 6780) flow past a freely vibrating cylinder: mesh
convergence study.

hexahedral computational domain along the z-axis. The upstream and downstream
boundaries are located at 10D and 25.5D, respectively, from the axis of the cylinder
and the blockage is 5 %. The adequacy of the extent of the domain was demonstrated
by Prasanth & Mittal (2008). The 3-D finite element mesh is generated by stacking
51 slices of a two-dimensional (2-D) mesh along the span. A special mesh moving
scheme is utilized to account for the motion of the cylinder. The mesh near the
cylinder moves along with it like a rigid body, while the outer boundary remains
fixed (Prasanth & Mittal 2008; Navrose & Mittal 2013, 2017).

A no-slip condition is applied to the velocity on the surface of the cylinder.
Free-stream values are assigned for the velocity at the upstream boundary. The stress
vector is set to zero at the downstream boundary. On the other boundaries, the normal
component of the velocity and tangential component of the stress vector in the two
directions are prescribed a zero value. The location of the cylinder, its velocity and
the boundary conditions are updated at each nonlinear iteration of the time marching
solution process.

Details of the mesh-M1 used for the computations are listed in table 1. A finer
mesh (M2) is used to check the adequacy of the spatial resolution of mesh M1. The
test is carried out for U∗= 10.0 (Re= 6780). Table 1 summarizes the response of the
cylinder and aerodynamic coefficients obtained with the two meshes. The solutions
from the two meshes are in good agreement and confirm the adequacy of mesh M1.

3. Results

3.1. Overview of cylinder response
Figure 1(a) shows the variation of peak amplitude of transverse oscillation of the
cylinder (A∗y) with U∗ (and Re). In the regime where intermittency is observed
between two states, A∗y for each state is obtained separately by segregating the
time history corresponding to the respective states. Hence, for each U∗ within the
intermittent regime, two data points are shown in figure 1(a). It is observed that the
fluid–structure system is in the state of lock-in/synchronization for 4.0 6 U∗ 6 10.4
(2700 . Re . 7050), wherein the cylinder exhibits a relatively large amplitude of
oscillation. The regime of desynchronization in terms of U∗, prior to and beyond the
lock-in regime, is denoted respectively by DS(I) and DS(II) in the figure. Within the
lock-in region, three regimes are identified: initial excitation branch (IB), intermittent
regime and lower branch (LB). The two branches – IB and LB are named based
on the similarity of the transverse cylinder response in the present work and earlier
Y-only vibration studies (Khalak & Williamson 1999; Govardhan & Williamson 2000;
Williamson & Govardhan 2004; Zhao et al. 2014).

Khalak & Williamson (1999), in their experiments, observed that the fluid–structure
system exhibits a hysteretic response near the lower-U∗ end of the lock-in regime:
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FIGURE 1. Flow past a freely vibrating cylinder: (a) variation of the amplitude of the
cylinder oscillation in the transverse direction with U∗ (and Re) and (b) superimposition
of free-vibration data on the map of vortex shedding regimes derived by Williamson &
Roshko (1988). The data points in the regime of intermittency are shown using hollow
(red) circles. Other data points are shown via filled (blue) circles. The different branches of
the cylinder response, intermittent states and desynchronization regimes are marked in (a).
The broken lines, with arrow heads, show hysteresis in the cylinder response with respect
to increasing and decreasing U∗. The inset of (a) shows a close-up view of the cylinder
response near the transition between IB and the intermittent regime.

A∗y obtained via the increasing-U∗ approach in the hysteretic regime is lower than
that obtained via the decreasing-U∗ approach. In the increasing-U∗ approach, U∗ was
increased in small increments starting from regime DS(I) up to regime DS(II). In the
decreasing-U∗ approach, U∗ was decreased in small decrements starting from regime
DS(II) up to DS(I). We have adopted the same two approaches in the present work.
In the increasing (decreasing)-U∗ approach, the increment (decrement) in U∗ is carried
out by using the fully developed solution for lower (higher) U∗ as the initial condition
for the next reduced speed. After the initial transient stage, the simulation for each U∗
is run for at least 100 cycles of cylinder oscillation in the transverse direction. It is
observed that with the increasing-U∗ approach, the response of the system first shifts
from DS(I) to IB, and then jumps at U∗= 4.9 to intermittent switching between high-
(UB∗) and low-amplitude state (LB∗) in the transverse response of the cylinder (see
the inset of figure 1a). The asterisk is used in the names to distinguish them from the
upper branch (UB) and lower branch (LB) response reported in experiments (Khalak
& Williamson 1999; Govardhan & Williamson 2000; Williamson & Govardhan
2004). The UB and LB response, as observed in experiments, can exist either in
isolation, or there can be intermittent switching between the two. The UB∗ and LB∗
response, on the other hand, exist only via intermittent switching between the two.
The experiments show that the response first jumps from IB to the upper branch (UB),
and is followed by intermittent switching between UB and LB at a later U∗ (Khalak
& Williamson 1999; Govardhan & Williamson 2000; Williamson & Govardhan 2004).
We attribute this difference between computational and experimental results to the fact
that experiments have been carried out for Y-only oscillation, while in the present
study, the cylinder is free to undergo both transverse and streamwise oscillations.
The intermittent behaviour in XY-oscillation is observed up to U∗ = 5.8 (inset of
figure 1a). Thereafter, only the LB response is observed up to U∗= 10.4, and beyond
that the response jumps to DS(II). The peak amplitude of cylinder oscillation occurs
within the intermittent regime at U∗ = 5.3. The peak value is in good agreement
with experimental results of Y-only oscillation for low-m∗ζ and a similar range of Re
(Govardhan & Williamson 2000, 2006).
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FIGURE 2. Flow past a freely vibrating cylinder: variation of (a) the root mean square
of the streamwise oscillation and (b) the time-averaged streamwise location with reduced
speed. The data points for the intermittent regime are shown using hollow (red) circles,
and are enclosed within a broken closed curve in the two plots.

With the decreasing-U∗ approach, hysteresis is observed in the cylinder response
near the higher-U∗ end of the lock-in regime; the jump from DS(II) to LB occurs at
U∗= 10.2, in contrast to the jump from LB to DS(II) which takes place at U∗= 10.4.
A hysteretic response is also observed near the lower-U∗ end of the lock-in regime,
where the intermittent switching between UB∗ and LB∗ with the decreasing-U∗
approach extends up to U∗ = 4.7. Singh & Mittal (2005) showed that in the laminar
flow regime, the hysteretic response occurs near both the ends of the lock-in regime.
It can, therefore, be concluded that the hysteretic response at the two ends of the
lock-in regime in free vibration of a circular cylinder is common to both the low-
and subcritical-Re flow regimes. Following the nomenclature used for the low-Re
flow regime, we refer to hysteresis near the lower- and higher-U∗ end of the lock-in
regime as primary and secondary hysteresis, respectively. The widths of the primary
and secondary hystereses in the present work are found to be the same and are equal
to 1U∗ = 0.2. This is larger than the corresponding widths reported in the laminar
regime (Singh & Mittal 2005). Below U∗ = 4.7, the response moves to IB, and with
further decrease in U∗, the fluid–structure system reaches a desynchronized state.

Figure 1(a) brings out an interesting feature of free vibration that is possibly
being reported for the first time. For 4.7 6 U∗ 6 4.9, the response may belong to
either IB or intermittently switch between high- and low-amplitude states. With the
increasing-U∗ approach, the response belongs to IB, while it switches intermittently
between UB∗ and LB∗ for the decreasing-U∗ approach. Figure 2(a) shows the variation
of the root mean square (r.m.s.) of the streamwise displacement with U∗. The
streamwise fluctuation within the lock-in regime is found to be higher than in the
desynchronization regime. The peak r.m.s. value is nearly three times that in the
laminar flow regime (Singh & Mittal 2005). Further, unlike the laminar regime,
where the peak r.m.s. value occurs near the higher-U∗ end of the lock-in regime, it
occurs in the intermittent regime towards the lower-U∗ end of the lock-in regime
for subcritical-Re. The time-averaged streamwise displacement (figure 2b) increases
with U∗ in the lock-in regime, with a discernible jump near the two ends of the
intermittent regime.

3.2. Initial branch: 4.0 6 U∗ 6 4.9
Figure 3 shows the time histories of cylinder displacement and aerodynamic
coefficients for a typical IB response. The corresponding frequency spectra are shown
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FIGURE 3. Flow past a freely vibrating cylinder for U∗= 4.7 obtained via the increasing-
U∗ approach: time history of (a) cylinder displacement in the transverse direction, (b) lift
coefficient, (c) cylinder displacement in the streamwise direction and (d) drag coefficient.
The corresponding frequency spectrum is shown alongside the time histories (PSD: power
spectral density).

alongside the time histories. It is observed that the time signal for the transverse
displacement and the lift coefficient is strongly modulated. This is in agreement
with earlier experimental findings for Y-only oscillation (Khalak & Williamson 1999;
Govardhan & Williamson 2000). The most dominant frequency in the two signals,
identified as the frequency with the highest power in the corresponding frequency
spectrum, is the same and equal to the vortex shedding frequency. The fluid–structure
system, therefore, is in a state of lock-in/synchronization. We denote the common
fluid–structure frequency as Fy. It is close to the natural frequency of the oscillator.
For the flow past a non-oscillating cylinder, the frequency of the drag coefficient is
twice the vortex shedding frequency. This is because of the spatio(transverse)-temporal
symmetry of the flow past the cylinder (Blackburn, Marques & Lopez 2005). Since the
VIV set-up in the present work is symmetric in the transverse direction, it is expected
that the spatio-temporal symmetry of the flow will be preserved. Consequently, the
frequency of the drag coefficient and the streamwise oscillation is expected to be 2Fy.
The frequency spectrum of CD shows that the most dominant frequency is indeed 2Fy.
On the other hand, the frequency spectrum of the streamwise displacement shows two
peaks. One at 2Fy, and the other, which is the dominant of the two, at a frequency
close to Fy. Hence, the most dominant frequency for streamwise and transverse
oscillation is nearly the same. This is also evident in figure 4(a), which shows the
streamwise and transverse displacements during three cycles of transverse oscillation
of the cylinder. Further, as figure 3(c) shows, the motion of the cylinder in the
streamwise direction is not symmetric about the mean streamwise position. These
observations suggest that, compared to Y-only, there is a loss in the spatio-temporal
symmetry of the XY-oscillating system. If the cylinder is constrained to move only in
the streamwise direction, the frequency of streamwise oscillation is twice the vortex
shedding frequency (Bourguet & Lo Jacono 2015), and the spatio-temporal symmetry
is maintained. Therefore, the matching of the dominant frequency of streamwise and
transverse oscillations on IB is attributed to the coupling between the motion in the
two directions.

Williamson & Roshko (1988) studied forced transverse (Y-only) vibration of a
circular cylinder in uniform flow and presented a map showing the co-relation between
the vortex shedding pattern, and amplitude and frequency of cylinder oscillation.
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FIGURE 4. Flow past a freely vibrating cylinder: comparison of time histories of
streamwise and transverse displacement of the cylinder for (a) U∗= 4.7 and (b) U∗= 8.0.

The free-vibration data obtained from the present computations superimposed on the
Williamson–Roshko map is shown in figure 1(b). In the original map, the frequency
of cylinder oscillation is non-dimensionalized with the frequency of vortex shedding
associated with a stationary cylinder. In the present work, the non-dimensionalization
is carried out using the free-stream speed and diameter of the cylinder. It is observed
that the data points for IB lie in the region of the 2S mode on the Williamson–Roshko
map. In the 2S mode, two counter-rotating vortices of similar strength are shed per
cycle of cylinder oscillation. We study the flow field to compare the results from
the XY free oscillation with the Williamson–Roshko map. Figure 5(a) shows the
span-averaged flow, in terms of spanwise vorticity, at three time instants during the
motion of the cylinder from the highest to lowest transverse position. Also tracked in
the figure is the release and convection of the counterclockwise (CCW) vortex from
the lower surface of the cylinder. A similar activity, with respect to the clockwise
(CW) vortex released from the upper surface, occurs in the next half of the cycle of
cylinder motion. Hence, in each cycle of cylinder motion, one CCW and a CW vortex
is shed in the wake. The vortex shedding mode, therefore, is 2S and in excellent
agreement with the Williamson–Roshko map.

3.3. Intermittency between UB∗ and LB∗: 4.7 6 U∗ 6 5.8
Figure 6 shows the time histories of the cylinder displacement and aerodynamic
coefficients for three values of reduced speed: U∗ = 4.7 (obtained via the decreasing-
U∗ approach) and 5.5 are, respectively, near the lower- and higher-U∗ end of the
intermittent regime, while U∗ = 5.1 is in the middle of it. In Y-only oscillation,
the UB and LB response for a given U∗ differ in the amplitude of cylinder
oscillation; compared to LB, UB is associated with higher amplitude (Khalak &
Williamson 1999; Govardhan & Williamson 2000; Williamson & Govardhan 2004).
In XY-oscillation, though the UB∗ and LB∗ responses are generally well separated
in terms of the transverse amplitude of the cylinder oscillation, they have similar
values near the lower-U∗ end of the intermittent regime (inset of figure 1a). In this
situation, intermittent behaviour is more apparent in the aerodynamic coefficients and
streamwise response. Khalak & Williamson (1999) observed in their experiments
that, during intermittency, the higher amplitude response (UB) is associated with
a higher value of mean drag. We use their finding to separate the UB∗ and LB∗
responses in the time histories for U∗ = 4.7. To this end, the average value of drag
coefficient over each cycle of cylinder oscillation in the transverse direction (C̃D)
is calculated. Its variation with time is shown by the thick red line atop the time
history of CD in figure 6(c). The intermittent switching between UB∗ and LB∗ is
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FIGURE 5. Flow past a freely vibrating cylinder for (a) U∗= 4.7 (IB response), (b) U∗=
5.3 (UB∗ response during intermittency), (c) U∗= 5.3 (LB∗ response during intermittency)
and (d) U∗ = 8.0 (LB response). The line plot shows the time histories of the cylinder
transverse displacement, CL and CLvortex as the cylinder descends from its highest to lowest
transverse location, while the remaining columns show the instantaneous span-averaged
spanwise vorticity near the highest (H), mean (M) and lowest (L) transverse position of
the cylinder. These locations as well as the corresponding time instants are marked on the
curve for transverse displacement in the line plot. For each case, a certain flow structure
is tracked via a rectangular frame.

evident in the relatively large decrease/increase in C̃D. The time intervals during
which the response is associated with UB∗ is shaded in figure 6. It is observed that
the amplitude of the streamwise displacement and cycle-averaged mean value of the
streamwise displacement is higher for UB∗ than LB∗. For U∗ = 4.7, the amplitude of
the lift coefficient for UB∗ is found to be lower than for LB∗.

With an increase in U∗, the difference in the amplitude of the transverse oscillation
between UB∗ and LB∗ increases, thereby making the switching apparent in the
transverse response of the cylinder (see U∗=5.1 and 5.5 in figure 6a). The streamwise
amplitude of the cylinder oscillation as well as C̃D for UB∗ is higher than that for
LB∗. This is in line with the method adopted by us for separating the UB∗ and LB∗

responses for U∗ = 4.7. For U∗ = 5.1 and 5.5, the amplitude of CL associated with
UB∗ is higher than for LB∗.
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of (a) transverse cylinder displacement, (b) streamwise cylinder displacement, (c) drag
coefficient, (d) lift coefficient, (e) φtotal and ( f ) φvortex. The variation of cycle-averaged
value for X/D and CD is shown using a thick red line in (b) and (c), respectively. The
time histories from left to right are for U∗ = 4.7 (decreasing U∗), U∗ = 5.1 and U∗ = 5.5,
respectively. In each subfigure, the UB∗ response is shaded in green.

Near the higher-U∗ end of intermittent regime, the system exhibits the LB∗ response
for most of the time (U∗ = 5.5 in figure 6), and the time interval between the
successive appearance of the UB∗ response becomes relatively large. It is, therefore,
plausible that intermittent switching between UB∗ and LB∗ exists beyond U∗ = 5.8
as well. However, due to constraints of the computational resources available to us
at present, the computation could not be carried out for long enough to ascertain
intermittent behaviour of the system beyond U∗ = 5.8.

Figure 7 shows the variation of intermittency factor (IF) with U∗ in the intermittent
flow regime. IF is defined as the fraction of time during which the response of the
fluid–structure system is associated with the UB∗ response. It is observed that for U∗.
5.3, the system has a preference for the UB∗ response, as is evident from the value
of IF being greater than 0.5. On the other hand, for U∗ & 5.3, the system is biased
towards the LB∗ response. The variation of IF with U∗ is non-monotonic; IF increases
with U∗ up to U∗=5.1, and thereafter decreases. This is in line with the time histories
shown in figure 6, where the fraction of the shaded region (that corresponds to UB∗

response) in the time history for U∗ = 5.1 is higher than that for U∗ = 4.7 and 5.5.
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FIGURE 7. Flow past a freely vibrating cylinder: variation of intermittency factor (IF)
with reduced speed in the intermittent flow regime shown as filled (red) circles. The least-
squares curve fit for the IF data points is shown using a solid (red) line. Also shown
using broken lines is the amplitude response curve for UB∗ (blue) and LB∗ (green) from
figure 1(a). The modes of vortex shedding at various U∗ while the flow switches between
LB∗ and UB∗ are marked on the response curves.

The Williamson–Roshko map shown in figure 1(b) predicts three modes of vortex
shedding in the intermittent regime: 2S, 2P and 2Po. In the 2P and 2Po mode of vortex
shedding, two pairs of counter-rotating vortices are shed in one cycle of transverse
oscillation of the cylinder. While the strength of the counter-rotating vortices in each
pair is equal in the 2P mode, they are different in the 2Po mode. According to the
map, the UB∗ response can be associated with either the 2S or 2Po mode, while the
LB∗ response can be associated with any of the three modes. During intermittency,
the flow switches between different modes of vortex shedding. Figure 5(b) shows the
spanwise vorticity for U∗ = 5.3 (UB∗) at different time instants during the motion
of the cylinder from the highest to the lowest transverse position. The same for
U∗ = 5.3 (LB∗) is shown in figure 5(c). In the UB∗ response, one CW (blue) vortex
is shed in the wake as the cylinder reaches the lowest position. In addition to the
CW vortex, we also observe a relatively smaller patch of positive vorticity (red)
getting detached from the cylinder surface (see the region within the rectangle in the
L position of figure 5b). For U∗ = 5.3 (LB∗), a pair of counter-rotating vortices is
shed when the cylinder has reached the lowest position (see the region within the
rectangle in the L position of figure 5c). The strength of the CW vortex (blue) in the
pair appears to be higher than that of the CCW vortex (red). This mode of vortex
shedding is reminiscent of the 2Po mode. The relative strength of the weaker vortex
varies from one cycle of the cylinder oscillation to the other. In some situations, the
weaker vortex is imperceptible, and the vortex shedding pattern resembles the 2S
mode. It is, therefore, difficult to associate a definite vortex shedding pattern to either
the UB∗ or the LB∗ response from flow visualization. We circumvent this difficulty
by utilizing the co-relation between the mode of vortex shedding and the phase
difference between the transverse displacement of the cylinder and lift coefficient that
has been established in earlier VIV studies. In general, the lift coefficient can be split
in two parts: CLvortex and CLpotential . The former is attributed to vortex force and the latter
is associated with the potential force (Lighthill 1986; Govardhan & Williamson 2000).
We denote the phase difference between Y/D and total CL by φtotal and that between
Y/D and CLvortex by φvortex. The following co-relations have been reported between the
vortex shedding modes and the two phase angles (Govardhan & Williamson 2000;
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Navrose & Mittal 2013; Zhao et al. 2014) –

2S : φtotal ∼ 0◦, φvortex ∼ 0◦,
2Po : φtotal ∼ 0◦, φvortex ∼ 180◦,

2P : φtotal ∼ 180◦, φvortex ∼ 180◦.

 (3.1)

To demonstrate the co-relation, we consider the U∗ = 4.7 flow (obtained via the
increasing-U∗ approach). The response is on IB and the mode of vortex shedding
in 2S (figure 5a). In this situation, both φtotal and φvortex are expected to be close
to zero. This indeed is the case, as evident from the line plot in figure 5(a), which
shows the time history of Y/D, CL and CLvortex over a half-cycle of cylinder transverse
oscillation.

We explore the co-relation between the two phase angles and mode of vortex
shedding for three values of U∗ (= 4.7, 5.1 and 5.5) in the intermittent regime. In
the intermittent regime, since the vortex shedding flips between different modes, we
cannot use a plot similar to figure 5(a) to estimate φtotal and φvortex. Instead, we use
the Hilbert transform to obtain the time variation of φtotal and φvortex. The method is
the same as that used by Zhao et al. (2014) for Y-only oscillation. In the first step,
the Hilbert transform of the time signals of CL, CLvortex and Y/D is carried out to
estimate the time variation of the phase associated with the three signals. Thereafter,
at each time instant, the phase of CL and CLvortex is subtracted from the phase of
Y/D to obtain instantaneous values of φtotal and φvortex, respectively. Figures 6(e)
and 6( f ) shows, respectively, the variation of φtotal and φvortex with time for U∗ = 4.7
(decreasing U∗), 5.1 and 5.5. For U∗ = 4.7, φtotal is close to zero at all times. On
the other hand, φvortex is mostly close to zero for the LB∗ response (occasionally, the
value of φvortex for the LB∗ response jumps close to 180◦, as is evident in figure 6f at
t∼ 550), and is either close to zero or 180◦ for the UB∗ response. Therefore, based on
the aforementioned co-relations, the mode of vortex shedding for the U∗ = 4.7 LB∗
response is largely 2S, with the occasional appearance of the 2Po mode, and it
regularly switches between the 2S and 2Po modes for the UB∗ response. A similar
mix of the 2S and 2Po modes is observed for the UB∗ response of the U∗= 5.1 flow.
The LB∗ response for the U∗= 5.1 flow is found to be associated with either the 2Po
or 2P mode. For U∗ = 5.5, the mode of vortex shedding for the LB∗ and the UB∗
response is largely 2P and 2Po, respectively, with occasional signatures of the 2Po
mode in the former response and the 2S mode in the latter response.

The occurrence of different modes of vortex shedding during the intermittent regime
in XY-oscillation has been reported for Y-only vibration as well (Zhao et al. 2014).
Zhao et al. (2014) used the maximum amplitude of transverse oscillation in the entire
time history to plot the response curve in the intermittent regime, and referred to it as
the UB response. They found that near the lower-U∗ end of the intermittent regime,
the flow switches between the 2S and 2Po modes of vortex shedding, while it switches
between the 2Po and 2P modes near the higher-U∗ end of the intermittent regime.
For the XY-oscillation, we observe that for the entire UB∗, the vortex shedding mode
switches between 2S and 2Po. The system appears to have a higher preference for the
2Po mode than the 2S mode, as is evident from the combination of φtotal and φvortex
during the UB∗ response for U∗ = 4.7, 5.1 and 5.5 (shaded part of figure 6e, f ). For
the LB∗ response, the results of the XY-oscillation suggest that the mode of vortex
shedding could be 2S, 2Po and 2P. Near the lower-U∗ end of the intermittent regime,
the mode of vortex shedding for LB∗ is mostly 2S. In the middle and higher-U∗ end
of the intermittent regime, the wake is a mix of the 2Po and 2P modes. Therefore, in
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FIGURE 8. Flow past a freely vibrating cylinder for U∗= 8.0: time history of (a) cylinder
displacement in the transverse direction, (b) lift coefficient, (c) cylinder displacement in
the in-line direction and (d) drag coefficient. The corresponding frequency spectrum is
shown alongside the time histories (PSD: power spectral density).

both XY- and Y-only oscillation, the intermittent regime consists of a mixture of 2S,
2Po and 2P modes of vortex shedding. The present study further brings out the flow
characteristics during intermittency. The modes of vortex shedding, during intermittent
switch between the LB∗ and UB∗ response, at various U∗ are marked in figure 7.

3.4. Lower branch: 5.9 6 U∗ 6 10.4
Figure 8 shows the time histories of cylinder displacement and aerodynamic
coefficients for U∗ = 8.0. The corresponding frequency spectrum is shown alongside
the time histories. The most dominant frequency for the transverse oscillation and
the lift coefficient is the same. As earlier, we refer to the common fluid–structure
frequency by Fy. Compared to IB and intermittent regime, the level of fluctuation in
the lift coefficient for LB is lower. The most dominant frequency for the streamwise
oscillation and the drag coefficient is the same, and is equal to 2Fy. Similar to
the IB response, the frequency spectrum of the streamwise response for LB shows
that the Fy component is comparable in strength to the most dominant frequency.
Figure 4(b) shows a close-up view of the time histories of the transverse and
streamwise oscillations. Within one cycle of transverse oscillation, two peaks, one
large and the other small, are observed in the streamwise response. The successive
peaks occur at a frequency of 2Fy, while the pattern of a large peak followed by a
small peak occurs at frequency Fy.

Figure 5(d) shows the spanwise vorticity for LB. Compared to IB and the
intermittent regime, the transverse width of the wake for LB is larger. Two pairs
of counter-rotating vortices are shed in one cycle of cylinder transverse oscillation.
The two vortices in each vortex pair are of equal strength. Further, both φtotal and
φvortex are close to 180◦, as seen from the line plot in figure 5(d). The mode of
vortex shedding, therefore, is 2P. This matches with the results of Y-only oscillation
(Govardhan & Williamson 2000; Zhao et al. 2014).

4. Conclusions

A two-degree-of-freedom VIV system has been investigated via numerical
simulation in the subcritical-Re flow regime (1500 . Re . 9000) for moderate mass
ratio (m∗ = 10). The range of the lock-in regime spans IB, LB and a regime where
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intermittent switching occurs between a high- (UB∗) and a low-amplitude response
(LB∗). The mode of vortex shedding for the UB∗ response is found to be a mix of 2S
or 2Po, while it is can be either 2S, 2Po or 2P for the LB∗ response. It is observed
that while the transverse force and oscillation are synchronized with respect to the
most dominant frequency in the corresponding frequency spectra for the entire lock-in
regime, it is not the same for in-line force and oscillation. For example, for the IB
response, the most dominant frequency in the streamwise and transverse oscillations
is the same, and is half the value of the most dominant frequency in CD. On the other
hand, for the LB response, the most dominant frequency in the streamwise oscillation
and CD is the same, and is twice that of transverse oscillation. In XY-oscillation,
the system exhibits hysteresis near the higher-U∗ end of the lock-in regime that has
not been reported in earlier experimental studies on Y-only oscillation. The present
work shows that the transition between various branches of cylinder response and
desynchronization regimes is sensitive to streamwise oscillation even for systems with
moderate mass ratios.
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