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Long frontal waves and dynamic scaling in
freely evolving equivalent barotropic flow
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We present a scaling theory that links the frequency of long frontal waves to the
kinetic energy decay rate and inverse transfer of potential energy in freely evolving
equivalent barotropic turbulence. The flow energy is predominantly potential, and
the streamfunction makes the dominant contribution to potential vorticity (PV) over
most of the domain, except near PV fronts of width O(LD), where LD is the Rossby
deformation length. These fronts bound large vortices within which PV is well-mixed
and arranged into a staircase structure. The jets collocated with the fronts support
long-wave undulations, which facilitate collisions and mergers between the mixed
regions, implicating the frontal dynamics in the growth of potential-energy-containing
flow features. Assuming the mixed regions grow self-similarly in time and using the
dispersion relation for long frontal waves (Nycander et al., Phys. Fluids A, vol. 5,
1993, pp. 1089–1091) we predict that the total frontal length and kinetic energy
decay like t−1/3, while the length scale of the staircase vortices grows like t1/3.
High-resolution simulations confirm our predictions.
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1. Introduction

Jets and long-lived eddies are prominent features of planetary oceans and
atmospheres, and their existence is linked to the tendency of geophysical flows
to concentrate potential vorticity (PV) gradients in narrow bands, or fronts, around
regions of well-mixed PV (McIntyre 1982; Dritschel & McIntyre 2008; Dunkerton
& Scott 2008; Dritschel & Scott 2011; Scott & Dritschel 2018). In this paper we
study how the interlinked dynamics of PV fronts and inhomogeneous mixing shape
the late-time scaling behaviour of freely evolving turbulence in a rapidly rotating
shallow fluid layer with a deformable free surface. The system is alternately known
as equivalent barotropic or quasi-geostrophic shallow water flow, and is governed by
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the Charney–Hasegawa–Mima equation (Pedlosky 1987)

∂q
∂t
+ J(ψ, q)= 0, (1.1)

which describes material advection of PV q = (1 − λ2)ψ , where 1 is the two-
dimensional (2D) Laplacian, ψ is the streamfunction, 1ψ is the vorticity, and J(·, ·)
is the 2D Jacobian. The deformation wavenumber λ=L−1

D is the inverse of the Rossby
deformation length LD =

√
gH/f , where g is the gravitational acceleration, H is the

mean layer depth, and f is the Coriolis parameter; LD measures the relative tendencies
of gravity to relax the free surface and of background planetary rotation to maintain
free surface height anomalies. Equation (1.1) also governs quasi-2D fluctuations of
the electrostatic potential ψ for a plasma in a uniform strong magnetic field, where
λ−1 is the ion Larmor radius (Hasegawa & Mima 1978).

The inviscid quadratic invariants of (1.1) are the total energy

E≡ 1
2 〈−ψq〉 = 1

2 [〈|∇ψ |
2
〉 + λ2

〈ψ2
〉], (1.2)

where K ≡ 〈|∇ψ |2〉/2 is the kinetic energy and P≡ λ2
〈ψ2
〉/2 is the potential energy,

and the potential enstrophy

Q≡ 1
2 〈1ψq〉 = 1

2 [〈|1ψ |
2
〉 + λ2

〈|∇ψ |2〉], (1.3)

which is the sum of the barotropic enstrophy Z ≡ 〈|1ψ |2〉/2 and the rescaled kinetic
energy λ2K ≡ λ2

〈|∇ψ |2〉/2. Here the angle brackets 〈·〉 denote an average over the
domain. The inviscid dynamics also conserve an infinite hierarchy of PV norms,
including the L2 norm C≡ 〈q2

〉/2.
The dynamics of (1.1) have been extensively studied in both the limits L � LD

and L� LD, where L is the characteristic length scale of the flow. In the first limit,
λL�1, deformations of the free surface are negligible and the turbulence is effectively
governed by the 2D Euler equation for material advection of vorticity 1ψ . In this case
the quadratic invariants are kinetic energy K, which undergoes an inverse cascade, and
enstrophy Z, which cascades to small scales.

Conversely, when λL� 1 and the characteristic length scale of the flow is much
larger than LD, the streamfunction dominates the PV and the turbulent evolution slows
down (Larichev & McWilliams 1991; Iwayama, Shepherd & Watanabe 2002). The
limit λL→∞ yields the asymptotic model (AM),

∂ψ

∂τ
+ J(1ψ, ψ)= 0, (1.4)

which describes material advection of the streamfunction ψ by the vorticity 1ψ on a
rescaled slow time τ = t/λ2 (Larichev & McWilliams 1991). The quadratic invariants
in this regime are the kinetic energy K and the rescaled potential energy P/λ2, which
are expected to undergo forward and inverse cascades, respectively. As λL → ∞
the slow time τ → 0, consistent with the frozen vortical quasi-crystals observed in
simulations of smooth PV fields with length scale L� LD (Larichev & McWilliams
1991; Boffetta, De Lillo & Musacchio 2002; Iwayama et al. 2002), and with the
analytical results of Tran & Dritschel (2006), which indicate that smooth vortices
much larger than LD are inactive, prevented from merging, and thus from transferring
potential energy to larger scales. The AM regime may not be self-consistent, however,
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Long frontal waves and dynamic scaling

since forward cascades of kinetic energy may generate flow features with scales O(LD)

(Larichev & McWilliams 1991).
Large-scale geophysical flows generically form steep PV gradients, or fronts,

separating regions in which PV is well-mixed (McIntyre 1982; Dritschel & McIntyre
2008; Dunkerton & Scott 2008; Dritschel & Scott 2011; Scott & Dritschel 2018), so
theories for perfectly smooth PV distributions are of limited relevance to the dynamics
observed in real oceanic and atmospheric flows. For equivalent barotropic turbulence
in particular, the above numerical and analytical results pertaining to smooth PV
distributions cannot be generalised to flows containing steep gradients, even if L� LD
and the flow is dominated by potential energy. With these observations in mind,
this paper presents a combined numerical and analytical study of freely evolving
equivalent barotropic turbulence in a flow regime dominated by potential energy,
but with small length scales O(LD) present in the form of PV fronts. The flow is
initialised with a PV field whose length scale is O(LD), so we are not addressing
the self-consistency of the AM regime, which requires L � LD initially, but rather
studying the effect PV fronts have on the evolution of an otherwise large-scale flow.
We focus in particular on how these fronts facilitate the inverse transfer of potential
energy and decay of kinetic energy, inhibiting the formation of a vortical quasi-crystal.

In the flow studied here the longest fronts form the outer boundaries of large
vortices inside of which PV is well-mixed and arranged in a staircase structure, with
each step bounded by a shorter subsidiary front. As a consequence of the inversion
relationship providing ψ from q, the flow’s kinetic energy is strongly concentrated
in thin jets collocated with the fronts. These jets support long waves having fast
time scales not present in flows with smooth PV fields, and play a crucial role
in facilitating collisions and mergers between the vortices, resulting in an inverse
cascade of potential energy to large scales. Mergers also create small disturbances
on the jets, which subsequently shed kinetic energy and smooth out. We assume
self-similar growth in time, i.e. dynamic scaling, and use the dispersion relation for
long frontal waves (Nycander, Dritschel & Sutyrin 1993) to successfully predict the
kinetic energy decay rate and the growth rate of the staircase vortices, which are the
potential-energy-containing structures in the flow.

The paper proceeds as follows. In § 2 we describe our numerical method and set
the context for our study by characterising the flow regime. Section 3 describes the
flow evolution and the scaling theory linking the long frontal wave frequency to the
observed decay rates. In § 4 we discuss our findings and outlook for future research.

2. Model set-up

2.1. Numerical method and flow initialisation
We solve (1.1) using contour advection performed by the combined Lagrangian
advection method (Dritschel & Fontane 2010) on a 10242 basic inversion grid with
effective resolution (16 · 1024)2 = 16 3842 and 80 contour levels used to represent
PV. The domain side length is 2π and the deformation wavenumber is set to λ= 40,
corresponding to LD = 1/40, or 65/16 384th the domain width. Contour surgery
removes PV filaments at 1/16 384th the domain width, but preserves sharp gradients
indefinitely, so is ideally suited to investigating dynamics associated with PV fronts.

We initialise the simulation with the spatially random smooth PV field pictured in
figure 1(a). Concentrations of PV are present in this initial field: positive maxima are
red and negative minima are blue. These concentrations merge and evolve into small
vortices, much as coherent vortices evolve from extrema of the initial vorticity field
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FIGURE 1. (a) Initial PV field and (b) spectrum C(k) as defined in (2.1).

in freely evolving barotropic turbulence (see Burgess, Dritschel & Scott 2017, and
references therein).

We denote the power spectrum of C≡ 〈q2
〉/2 as C(k). The initial spectrum, shown

in figure 1(b), takes the form

C(k)= c(k2
d + k2)k2p−3e−(p−1)(k/k0)

2
, (2.1)

where we choose p= 3 and k0 = 40, so that the initial spectrum is peaked at k0 = λ,
and the characteristic length scale of the initial PV field is the deformation length
LD= 1/40. The constant c is chosen so that |q|max= 4π, giving a unit rotation period
for a circular vortex of size L�LD. Note that while this is the relevant time scale for
vortices much smaller than LD, it is not the relevant time scale for flow features much
larger than LD, such as the large mixed PV patches and bounding jets we study below.
The simulation was carried out until t= 640 000, though PV gradient sharpening and
the emergence of fronts occurs relatively early, by t∼ 10 000.

2.2. Flow regime
Figure 2 shows how the quadratic invariants energy E=K+P and potential enstrophy
Q = Z + λ2K are each partitioned between their two terms. In panel (a) are plotted
the potential enstrophy Q (dash-dot line), which decays in time, and the energy E
(solid line), which is conserved. As shown in panel (b), at t = 100, K/P ≈ 0.3 and
decreases steadily thereafter (solid line), while P/E approaches 1 at late times (dash-
dot line), showing the dominance of the potential energy in the flow. Panel (c) shows
that the rescaled kinetic energy λ2K makes the dominant contribution to the potential
enstrophy, with λ2K/Q≈ 0.75 at late times (dash-dot line). The ratio between the two
terms Z and λ2K in the potential enstrophy Q show no systematic growth or decay,
with Z/λ2K ≈ 0.3 at late times (solid line) – this is because the two terms decay
roughly the same way, as will be discussed below.

The spectra of total, kinetic, and potential energy are, respectively,

E(k)=
C(k)

k2 + λ2
, K(k)=

k2C(k)
(k2 + λ2)2

, P(k)=
λ2C(k)
(k2 + λ2)2

, (2.2a−c)

and are shown in figure 3 at (a) t= 10 000 and (b) t=400 000. For k>λ, E(k)≈K(k),
while for k < λ, E(k) ≈ P(k). The large-scale flow is thus strongly dominated by
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FIGURE 2. (a) Potential enstrophy Q and energy E as functions of t, (b) ratios P/E of
potential to total energy and K/P of kinetic to potential energy, and (c) ratios λ2K/Q of
rescaled kinetic energy to potential enstrophy and Z/λ2K of enstrophy to rescaled kinetic
energy.
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FIGURE 3. Spectra E(k), K(k), and P(k) at (a) t= 10 000 and (b) t= 400 000.

potential energy. As can be seen by comparing panels (a) and (b), the peak of the
potential energy spectrum moves to larger scales as time proceeds, indicating an
inverse cascade of potential energy. Meanwhile the kinetic energy is depleted at
scales L > LD, evident from comparing log10[K(k)] (red dash-dot curve) at large
scales in panels (a) and (b). Hence, though the flow is in the potential energy regime
it remains dynamically active, with an ongoing inverse cascade of potential energy
and dissipation of kinetic energy.

3. Flow evolution

3.1. Emergence of PV jumps and mixed regions
As early as t = 10 000 the PV field begins to develop sharp jumps, which emerge
along with regions in which PV is nearly homogenised, while the length scale of
the flow increases. Figure 4 shows the PV field at three times in panels (a–c),
with the corresponding kinetic energy fields directly below in panels (d–f ). The
times are equally spaced in t1/3 for reasons that will become clear below. As is
evident, the spatially random initial PV field evolves into a collection of vortices,
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FIGURE 4. (a–c) PV fields and (d–f ) corresponding kinetic energy density fields. (a) PV
field at t= 27 000, (b) PV field at t= 125 000, (c) PV field at t= 343 000, (d) KE field
at t= 27 000, (e) KE field at t= 125 000, ( f ) KE field at t= 343 000.

the largest having a wedding cake structure, with layers formed by plateaus of
mixed PV whose value increases in a step-like fashion towards the central core. This
structure is consistent with that observed in previous simulations of freely evolving
equivalent barotropic flow (Arbic & Flierl 2003). The well-mixed regions are visible
in figure 4(a–c) as green and yellow (positive) and light-dark blue (negative) patches
around the more intense vortex cores. The sharp PV jumps bounding the plateaus of
the staircase vortices are collocated with strong jets, visible as cyan and dark blue
‘ropes’ in figure 4(d–f ), which become more well defined as time proceeds.

The movies in the supplementary materials, available at https://doi.org/10.1017/jfm.
2019.133, show the flow in motion: Movie 1 shows the kinetic energy field, while
Movie 2 shows the PV field over the same range of times. The flow actually consists
of two subpopulations of vortices, which are dynamically distinct: there are large
active vortices with wavy boundaries, which drift slowly, interacting with each other
and occasionally colliding. During these collisions their surrounding jets split and
reconnect, ejecting tendrils of kinetic energy and forming disturbances with radius
of curvature O(LD), which then propagate along the jets, continuing to shed kinetic
energy as they smooth out and the jets regain their integrity. There are also relatively
small, circular vortices whose boundaries do not support waves, and which display
AM-regime-type behaviour, sitting in one location for extended periods of time, until
a large active vortex sweeps them up or propels them into another vortex. These
small dynamically inactive vortices resemble a remnant of the vortical quasi-crystal
observed in prior studies.

Figure 5 shows the development of the staircase structure. We plot the total area
A(q> qthr) of the regions on which the PV exceeds a threshold qthr at times t= 1000,
27 000, 125 000, and 664 000. The value of qthr is not fixed, but rather is varied
as indicated on the horizontal axis to generate the staircase plot. By t = 27 000
(dotted blue line) a clear staircase structure has already developed, indicating the
emergence of sharp fronts. There are two primary non-zero values of mixed PV for
both q < 0 and q > 0. A similar plot for the streamfunction (not shown) has the
same primary steps, reflecting the dominance of the streamfunction in the large-scale

866 R3-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

13
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.133
https://doi.org/10.1017/jfm.2019.133
https://doi.org/10.1017/jfm.2019.133


Long frontal waves and dynamic scaling

-10 -5 0 5 10

40
35
30
25
20
15
10
5
0

t = 1000
t = 27 000

t = 125 000
t = 343 000
t = 664 000

qthr

A(
q 

≥
 q

th
r)

FIGURE 5. Area A(q > qthr) on which q > qthr.

PV distribution. The PV staircase is sharper than the ψ staircase due to small-scale
structure (the non-negligible vorticity field in the shear layers on the jet flanks) in
the vicinity of the fronts and the effect of PV inversion in ψ = (1− λ2)−1q.

In the absence of contour surgery the A(q > qthr) curve would be invariant: the
emergence of the staircase depends crucially on filament shedding and coarse-graining
of PV through surgery. We note that if a small viscous term were used instead of
contour surgery, dissipation would occur evenly along the fronts. In contrast, surgery
only occurs when there are events such as reconnections that disrupt the integrity of
the jets and generate small-scale features that actually lead to filament shedding. These
disruptive events and the resulting small-scale structures should be distinguished from
the O(LD) cross-section of the front itself, which is a long-lived coherent structure
resistant to filamentation. In other words, contour surgery dissipates the correct
small-scale structures, allowing us to represent destructive events while simulating the
inviscid dynamics of the fronts as faithfully as possible.

In figure 6, we plot the total circulation of regions with a given value of PV. In this
plot the PV intervals reflect the contour levels used, and the well-mixed regions show
up as large spikes at q≈±3 and q≈±5.5. These spikes grow in time, while the area
at adjacent values of q is depleted, reflecting the net growth of mixed regions through
entrainment and mixing of surrounding PV. The spikes at q≈±3 are the largest, so
these values of mixed PV, which lie in the lowest levels of the staircase vortices, i.e.
the green and light blue regions in figure 4(a–c), are associated with the largest total
circulation. The tertiary spikes at q ≈ ±5.5 correspond to the second mixed levels
within the vortices, i.e. the dark blue and yellow regions in figure 4(a–c).

3.2. Scaling theory
PV gradient sharpening, mixing, and vortex merger occur through the interaction
of the wavy, undulating vortex boundaries. These interlinked dynamical processes
drive the growth of the flow’s characteristic length scale and the decay of quantities
supported on and in the vicinity of the PV fronts, which occurs when frontal length
is lost as a result of vortex mergers. Potential enstrophy Q, rescaled kinetic energy
λ2K, and enstrophy Z are plotted as functions of time in figure 7(a). Both λ2K and
Q decay as t−1/3, as does Z, though more roughly and at comparatively later times.

We now show that the decay rates of these quantities can be deduced using a
scaling argument. We consider N vortices with characteristic radius R supporting long
frontal waves of wavelength Λ on their boundaries. We identify the frequency ω of
the long waves with an inverse time, ω ∼ 1/t. In essence we are assuming that the
long-wave period is the relevant time scale for the large-scale dynamics. We also
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FIGURE 6. Total circulation Γ (q) of regions on which PV takes the value q. Times t=
10 000, t= 200 000 and t= 600 000 are indicated for reference.
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non-dimensionalised typical vortex radius Rtyp/LD, average vortex radius Rav/LD with
best-fit line t0.32, and characteristic area (ls/LD)

2 with best-fit line t0.34.

require Λ∼ R, which amounts to assuming self-similar growth in time: if the vortex
radius R is rescaled by some factor, then so is the wavelength Λ of the long waves.
This assumption is also consistent with previous work, which has found that both
steady and unsteady evolving vortex patches exhibit boundary waves with length
scales comparable to the vortex perimeter, and therefore R (Płotka & Dritschel 2012).
Using the relationship ω ∼ (LD/Λ)

3 for long waves in the thin-jet limit (Nycander
et al. 1993) together with Λ∼ R then yields

R∼ t1/3. (3.1)

Since PV is materially conserved, we expect the total area enclosed within the vortices
to be constant, NA∼NR2

= const.; this implies

N ∼ R−2
∼ t−2/3. (3.2)
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Finally, the total perimeter of the vortices scales as LF ∼NR, so

LF ∼ t−1/3. (3.3)

Kinetic energy K is concentrated in the jets, while potential enstrophy Q and enstrophy
Z are concentrated in shear layers of width O(LD) on the jet flanks, so it follows that

K ∼ t−1/3, Q∼ t−1/3, Z ∼ t−1/3. (3.4a−c)

These are indeed the decay laws observed in figure 7(a).
The scaling theory also predicts in (3.1) above that the typical staircase vortex

radius R grows like R∼ t1/3 and that the number of vortices decays like N(t)∼ t−2/3.
To check these predictions we first identify vortices using a threshold of qrms on PV,
which due to the staircase structure extracts vortices cleanly and with no ambiguity.
As discussed above in § 3.1, the flow consists of two subpopulations of vortices: large
drifting vortices with wavy boundaries, and small circular vortices that remain almost
stationary for long periods of time and whose boundaries do not support waves. Since
our theoretical considerations above apply to the active vortices with wavy boundaries,
we must exclude the relatively inactive circular vortices from the average. It is easy
to exclude the relatively inactive circular vortices because they are comparatively
small, not having undergone as many mergers as the large vortices. Note that using
a cutoff of O(LD) would contaminate the scaling behaviour with O(LD) effects. One
would only expect structures sufficiently large compared to the characteristic scale LD
to exhibit self-similarity. We thus impose a lower bound of half a typical vortex area
Atyp on vortices included in the average, where Atyp is defined as

Atyp ≡

Ntot(t)∑
i=1

A2
i q2

i

Ntot(t)∑
i=1

Aiq2
i

. (3.5)

Here Ai is the area of vortex i, qi is the PV averaged over vortex i and Ntot(t) is the
total number of vortices, with small vortices included in this initial sum. The choice of
this definition for Atyp is motivated by the findings of Burgess et al. (2017). We also
tried a lower bound of half the average vortex area (where the initial average includes
the small vortices): both choices of lower bound yield equivalent results. The average
vortex area Aav is then defined as the sum of all vortex areas having Ai >Atyp divided
by the number of such vortices.

Figure 7(b) shows Rtyp/LD, where Rtyp =
√

Atyp, and Rav/LD, which grows like
t0.32 (dotted magenta least squares best-fit line), very close to the predicted t1/3.
Moreover Rtyp almost coincides with Rav. The difference is greatest at earlier times,
and decreases as the active vortices with undulating boundaries grow ever larger and
increasingly dominate both quantities. Also shown is (`s/LD)

2, where

`s =
√

E/Q (3.6)

is a characteristic length scale that was identified with the potential enstrophy centroid
by Tran & Dritschel (2006), who assumed it to be conserved for flows with smooth
PV fields. Figure 7(b) shows that when sharp gradients and small length scales are
present in the PV field, `s is not conserved; rather (`s/LD)

2
∼ t0.34 as indicated by the

dotted cyan least squares best-fit line.
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FIGURE 8. Number of vortices N(t) exceeding the cutoff Atyp/2 as a function of time,
with best-fit line t−0.64.

Figure 8 shows the number of vortices N(t) (solid black line) with areas exceeding
the cutoff area Atyp/2 as a function of time. At late times the curve becomes noisy
because the flow is dominated by a few large vortices. As shown by the least squares
best-fit line (dotted magenta) the number of vortices N(t) decays as t−0.64, close to the
predicted t−2/3.

To gain more physical insight into the area `2
s , we rewrite `s as

`s =

√
〈−ψq〉
〈1ψq〉

=

√
〈|∇ψ |2〉 + λ2〈ψ2〉

〈|1ψ |2〉 + λ2〈|∇ψ |2〉
(3.7)

and then make approximations appropriate to the potential-energy-dominated regime,
neglecting kinetic energy in the numerator and enstrophy in the denominator, such that

`s ≈

√
〈ψ2〉

〈|∇ψ |2〉
. (3.8)

We again consider N vortex patches with typical radius R and values of mixed PV q≈
±λ2Ψ0, where the vortices can be positive or negative and Ψ0 is the typical magnitude
of the streamfunction on the patches. (Note that inside the vortices away from the
boundaries, PV is dominated by the streamfunction, q≈−λ2ψ). This is actually a very
good approximation, as can be seen by examining figure 6, which shows that most of
the flow’s circulation is concentrated at q≈±3. The support of the potential energy
is then proportional to NR2, while that of the kinetic energy, which is concentrated
in jets of width LD and typical length R on the boundaries, is proportional to NRLD.
Hence

`2
s ≈

〈ψ2
〉

〈|∇ψ |2〉
∼

NR2
·Ψ 2

0

NRLD · L−2
D Ψ

2
0

= RLD. (3.9)

This shows that `2
s is proportional to the area RLD to be consistent with equation (3.9)

occupied by a typical PV front.
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4. Conclusions

In this paper, we have investigated the late-time dynamics of a quasi-geostrophic
shallow water turbulent flow having an initial characteristic length scale equal to the
Rossby deformation length LD. As the flow evolves, vortices with a staircase structure
and characteristic radius R� LD grow in a self-similar way through vortex mergers
and filament shedding from their boundaries. These processes lead to inhomogeneous
PV mixing, whereby ever sharper PV gradients develop between expanding regions
of well-mixed PV, similar to what occurs in the presence of a large-scale background
gradient of PV (see Scott & Dritschel 2018, and references therein). These sharp
gradients or fronts coincide with relatively fast currents (jets) which maintain a
characteristic width of O(LD) throughout the evolution, and contain nearly all of the
kinetic energy.

Further, we developed a scaling theory that explains the observed decay rates
of kinetic energy and potential enstrophy, K, Q ∼ t−1/3, and predicts the growth
rate of the typical vortex radius R ∼ t1/3, which is the length scale of the potential-
energy-containing flow structures. This theory assumes self-similar growth in time, i.e.
dynamic scaling, and uses the known frequency of long frontal waves ω∼ (LD/R)3�1
(Nycander et al. 1993) together with conservation of total vortex area. Remarkably,
potential enstrophy Q ∼ t−1/3 decays at the same rate as enstrophy Z ∼ t−1/3

in the very different system of freely evolving barotropic turbulence for which
LD/R→∞ (Dritschel et al. 2008; Burgess et al. 2017). Moreover, a characteristic
area `2

s = E/Q ∼ t1/3 also grows in the same way in the two systems, though it
corresponds to different physical objects: in the quasi-geostrophic shallow water
system, `2

s is the region of width O(LD) around a front bounding a vortex with
R� LD; in the barotropic system, `2

s is a typical vortex area.
These results have been deduced from a high-resolution numerical simulation

using contour advection, capable of preserving sharp PV gradients indefinitely. The
simulation was carried out over a particularly long integration time (during which a
fluid particle on a front would have travelled across the entire domain roughly 16 000
times), enabling accurate statistical estimates of temporal scaling exponents.

The present work emphasises the key role played by fronts in the evolution of
quasi-geostrophic shallow water turbulence. We have focused on the case when the
flow is initially characterised by a length scale of O(LD). In this case, fronts readily
emerge and vortices grow in size, leading to the self-similar evolution at late times.
The question remains, however – what happens when the flow starts at a scale �LD?
Previous work suggests a frozen-in state, a ‘quasi-crystal’ (Larichev & McWilliams
1991; Boffetta et al. 2002; Iwayama et al. 2002; Tran & Dritschel 2006), with no
front formation. However, one cannot rule out the eventual emergence of fronts
on exceedingly long time scales based on asymptotic theories or moderate-duration
numerical simulations alone. This is a challenging problem, and we hope to report
on our findings in the near future.
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