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DEMOGRAPHY AND GROWTH:
A UNIFIED TREATMENT OF
OVERLAPPING GENERATIONS

NEIL BRUCE AND STEPHEN J. TURNOVSKY
University of Washington

We construct a unified overlapping-generations framework of equilibrium growth that
includes the Blanchard “perpetual youth” model, the Samuelson model, and the infinitely
lived–agent model as limit specifications for a “realistic” two-parameter survivorship
function. We assess how the limit specifications compare with the general survival
function, and analyze how exogenous changes in demographic conditions affect
equilibrium growth and savings rates. Predicted effects are consistent with some
cross-country correlations between demographic conditions and growth rates.
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1. INTRODUCTION

Most economists would agree that the demography of an economy is an impor-
tant determinant of its growth potential and performance. This concern is often
expressed in the context of “aging economies” and the financing of the impending
retirement of the “baby boom” generation. Yet despite the acknowledged im-
portance of demographic issues, contemporary economic growth theory has not
addressed them in a unified way. The standard benchmark growth models remain
based on infinitely lived representative–agent models, which lack the structure
necessary to address demographic issues.1

Two workhorse models that do incorporate demographic features (overlapping
generations, OLG) are the Samuelson (1958) and Blanchard (1985) models, both
of which provide deep insights and have had profound impact.2 However, both
are highly stylized, which limits their ability to incorporate demographic factors
in a comprehensive way. The basic Samuelson model usually adopts a two-period
framework—period one for working and period two for retirement—although
extensions to an initial third period, for education, also exist.3 Although the
discrete-time Samuelson model can be used to analyze many intergenerational
policy issues, the usual formulation is overly inflexible with regard to its choice of
time units. For example, as typically specified, the Samuelson model (implicitly)
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assumes that an agent’s working and retirement periods are fixed and of equal
length (one time unit each). It therefore does not allow for the changing length
of the retirement period relative to the working period, an important policy issue
in many economies, and a factor that turns out to be an important determinant
of the long-run growth rate. Also, identifying time units with generations renders
the model cumbersome for policy analysis. As a result, Auerbach and Kotlikoff
(1987), in their comprehensive study of fiscal policy, introduced 55 periods in
order to accommodate several generations while employing a plausible time unit.

The Blanchard model is simpler and more amenable to a growth framework,
but this comes at a price. This formulation assumes an exponential survivorship
function that has a single parameter—a mortality hazard rate that is independent
of the household’s age. Although this “perpetual youth” assumption is convenient
for analytical tractability, it is at odds with the facts of human mortality, which
exhibit senescence (a mortality hazard rate that increases with age).4

We develop a unified treatment of OLG and economic growth that allows more
general, and more plausible, mortality assumptions and therefore a richer demo-
graphic framework. To do this we utilize a two-parameter survivorship function
due to de Moivre (1725). The de Moivre survivorship function is tractable, yet
fits the main characteristics of modern human mortality quite well, except at the
old-age tail of its distribution.5 Moreover, it includes both the Samuelson and
Blanchard OLG models as limiting cases. This enables us to nest the two classic
OLG models, along with the conventional representative-agent growth model,
as particular parameter specifications of a more general demographic structure.
Nesting the OLG models within a unified framework, rather than presenting them
(as is typically done) as alternative approaches, enhances our understanding of
how demographic conditions affect the economic growth rate.6

To develop a tractable model with general demographic assumptions, we main-
tain a simplified production-side economy, and assume that output is produced
according to an “AK” production function for which the return to capital is constant
and the equilibrium economy is always on its balanced-growth path.7 After char-
acterizing the equilibrium for a general survivorship function, we parameterize
the model using the de Moivre function and solve explicitly for the equilibrium
growth rates under different demographic conditions. Except for the Samuelson
and Blanchard specifications, we are unable to express closed-form analytical
solutions for the equilibrium growth rate, but we can numerically solve for the
equilibrium growth rates, given parameter values that represent the different de-
mographic conditions.

Using comparable calibrations, we compute equilibrium growth rates for the
Blanchard and Samuelson specifications, as well as for intermediate specifica-
tions. Household mortality alone leads to lower equilibrium growth rates than
those generated by the infinitely lived representative–agent model. Indeed, with-
out retirement, in the Samuelson specification growth is eliminated entirely for
realistic life expectations. In contrast, when household mortality is combined with
a realistic, but exogenous, retirement duration, economic growth rates exceed those
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predicted by the representative-agent model.8 Using our model, we assume widely
varying demographic conditions and compute the effects of these demographic
changes on the equilibrium growth rate. These exogenous changes include varying
the life expectancy, the population growth and birth rates, and the retirement du-
ration. An increase in the population growth rate, whether from higher fertility or
reduced mortality, reduces the economic growth rate. However, economic growth
is increased when longer life expectancy results in longer retirement. With the pop-
ulation growth rate held constant, an increase in life expectancy has nonmonotonic
effects on the economic growth rate, yielding an inverted U-shaped relationship
between growth and aging that has been found in some cross-country studies. We
also show that economies with high fertility rates, short life expectancy, and no
retirement have low or negative economic growth rates. This suggests that the
demographic conditions prevailing in some less developed economies may create
a “Malthusian trap” of low or negative growth rates.

A key role in our analysis is played by the shape of the survivorship function
in terms of its concavity/convexity property. Increased concavity of this func-
tion, which corresponds to greater certainty of reaching old age, has significant
impacts on the growth rate. From this standpoint, the crucial difference between
the Blanchard and Samuelson specifications is that the former specifies a convex
survivorship function, whereas the latter adopts an extreme form of concavity.

The remainder of the paper is structured as follows. Section 2 lays out the basic
analytical framework for consumption–saving decisions by households that are
subject to aging. Section 3 describes the corresponding demographic structure,
derives descriptive expressions for the aggregate economy, and explains the so-
lution methods. Section 4 parameterizes the demographic functions using the de
Moivre functional form and recapitulates the equations of the model. Section 5
performs numerical simulations. These involve computing the equilibrium growth
and savings rates for various specifications of the de Moivre function, including
the Samuelson and Blanchard models as limiting cases. Section 6 concludes. The
Appendix explicitly solves the model for the Samuelson and Blanchard models
and shows that both converge to the representative-agent model as lives (and
working lives) become arbitrarily long.

2. THE ANALYTICAL FRAMEWORK

In an OLG framework, it is necessary to distinguish clearly between household age
and calendar time.9 To avoid potential confusion between these two time concepts,
we adopt a particular notational convention. Specifically, household variables
are indexed in parentheses by age (indices may be x, y,or z). Where a variable
depends on calendar time, the variable is indexed by means of subscripts. Thus, for
example, vt (x) denotes the value of variable vat time t for a household of age x.
When household indices are absent, the time subscript denotes an economywide
value of the variable at the subscripted time. The current time is denoted t , so,
for example, wt denotes the value of the variable w prevailing in the economy at
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the current time. The absence of an age index always indicates that the variable
is independent of age. Aggregate variables, obtained by summing over cohorts,
depend on calendar time only.

In this section, we develop the consumption–saving behavior of a household
with a general survivorship function. Let S (z) denote the probability at birth of
the household surviving to age z and ω the maximum attainable age. Because
survivorship declines with age, S ′(z) < 0, 0 < z < ω, with S(z) = 0, for z � ω.
With this notation, S (z)/S (x) is the probability of surviving to age z conditional
on surviving to age x, whereas −S ′(z)/S(z) is the mortality hazard rate at age z.

We focus initially on a household of age x, at time t , and assume that this unit
maximizes its expected utility over the remainder of its life; that is,

Ut (x) =
z=ω∫

z=x

S (z)

S (x)
· e−ρ·(z−x) · u [ct (z)] · dz, (1a)

where ρ is the pure time discount rate, and ct (z) is the household’s planned
consumption at age z. The household’s flow budget constraint at age z is

dft (z)

dz
≡ f ′

t (z) = it (z) · ft (z) + wt (z) · L (z) − ct (z), (1b)

where wt (z) is the market wage facing the household at age z, ft (z) is the
household’s financial wealth, it (z)is the interest rate on financial wealth facing
the household at age z, and L (z) � 1 is the fraction of the household’s unit time
endowment supplied as labor at age z. Typically, households reduce the fraction
of time spent working as they age, thus L′ (z) � 0.10 We denote the maximum age
at which the household participates in the labor force as l � ω, so L (z) = 0 for
z � l.

Under production conditions introduced later in the paper, the interest rates
facing households are independent of time, so it (z) = i (z). The budget constraint
(1b) can be expressed equivalently as

d

dz
[R (z, x) · ft (z)] = R (z, x) · [wt (z) · L (z) − ct (z)] , (1b′)

where

R (z, x) ≡ e
−

y=z∫
y=x

i(y)·dy

is the discount factor for a flow at age z to a household at age x.
Defining the present value Hamiltonian

Ht (z) ≡ e−ρ·(z−x) S (z)

S (x)
{u [ct (z)] +φt (z) · [wt (z) · L (z)+i (z) · ft (z)−ct (z)]}

(2)

https://doi.org/10.1017/S1365100512000235 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100512000235


DEMOGRAPHY AND GROWTH 1609

and optimizing with respect to ct (z) and ft (z), we obtain the first-order conditions

u′ [ct (z)] = φt (z) (3a)

ρ − φ′
t (z)

φt (z)
− S ′ (z)

S (z)
= i(z). (3b)

Equation (3a) equates the marginal utility of consumption to the shadow value of
financial wealth, whereas (3b) equates the rate of return on consumption, modified
by the mortality hazard rate, to the rate of return on financial assets. In addition,
the agent must satisfy the transversality condition, which for the agent having a
maximum lifespan of ω is11

R(ω, x).ft (ω) = 0. (3c)

Following much of the growth literature, we assume an isoelastic utility function
of the form u [ct (z)] = ct (z)

ε/ε (ε � 1), where 1/(1 − ε) is the intertemporal
elasticity of substitution, enabling us to rewrite (3b) as

c′
t (z)

ct (z)
= 1

(1 − ε)
·
[
i (z) − ρ + S ′ (z)

S (z)

]
. (4)

We follow Yaari (1965) and Blanchard (1985) in assuming that when a mortality
hazard is present, households invest wholly in actuarially fair life annuities, so that

−∂R (z, x)/∂z

R (z, x)
= i (z) = r − S ′ (z)

S (z)
, (5)

where r is the risk-free rate of return on capital, and −S ′ (z)/S (z) is the mortality
hazard premium for a household at age z. We assume that r is constant, an assump-
tion that is duly validated under the assumption of a Romer (1986) endogenous
growth technology. Combining (4) and (5) yields

c′
t (z)

ct (z)
= 1

(1 − ε)
· (r − ρ) . (6)

Equation (6) expresses how household consumption changes with a household’s
age. Along with the marginal product of capital, this expression will be recognized
as determining the equilibrium growth rate in the infinitely lived representative–
agent growth model.12 As we show and emphasize later, this expression does not
represent the aggregate equilibrium growth rate in an economy with heterogeneous
cohorts. In that case, the equilibrium growth rate can be either higher or lower
than the rate at which household consumption changes with age, depending upon
the economy’s demographic structure.
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Integrating equation (6), we express the agent’s consumption level at age
z(relative to that at age x) in the form

ct (z) = ct−(z−x) (x) · e
r−ρ
1−ε

·(z−x). (7)

To express this in terms of the agent’s financial resources, we proceed as follows.
First, we integrate equation (5) to obtain

R (z, x) = e−r(z−x) · S (z)

S(x)
. (5′)

Second, we integrate (1b’) forward at age z and use the transversality condition,
(3c), to obtain the agent’s intertemporal budget constraint applicable from age x

as

z=ω∫
z=x

R (z, x) · ct (z) dz = ft (x) +
z=ω∫

z=x

R (z, x) · wt (z) · L (z) · dz. (8)

Finally, by substituting for (7) and (5′) into (8), the agent’s consumption at age x

can be expressed as

ct (x) = m (x) · vt (x), (9a)

where vt (x) is the “all-inclusive” wealth of a household of age x at time t , defined
as

vt (x) ≡ ft (x) + ht (x) = ft (x) +
∫ z=ω

z=x

e−r·(z−x) ·
[

S (z)

S (x)

]
· wt (z) · L (z) · dz,

(9b)
and m (x) denotes the household marginal (and average) propensity to consume
out of current all-inclusive wealth at age x, defined by13

m (x) =
{∫ z=ω

z=x

e
ε·r−ρ
1−ε

·(z−x) ·
[

S (z)

S (x)

]
· dz

}−1

. (9c)

That is, at time t a household of age x spends a fraction m(x) of its all-inclusive
wealth vt (x), which is equal to its financial assets, ft (x), plus its human wealth,
ht (x), where human wealth is equal to the present value of the household’s
expected future labor income. Note that both wealth vt (x) and the marginal
propensity to spend out of wealth depend on the agent’s age and expected mor-
tality. Henceforth, we will refer to a household’s all-inclusive wealth simply as
its “wealth,” with ft (x) distinguished as financial wealth where this is needed for
clarification.
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We assume that the productivity of labor increases over calendar time at a
constant rate g (to be determined in equilibrium as the “economic growth rate”).
This market wage is economywide and common to all households, regardless
of their birth dates. Thus the market wage at time t can be expressed as wt =
wt−x · eg·x , where wt−x is the wage rate prevailing in the economy at the time a
household of age x is born. Substituting into ht (x), defined in (9b), the human
wealth of a household of age x at time t is given by

ht (x) = wt · p (x), (10a)

where

p (x) =
∫ z=ω

z=x

e−(r−g)·(z−x) ·
[

S (z)

S (x)

]
· L (z) · dz. (10b)

Written in this way, we see that the human wealth of an agent equals the current
wage rate scaled by a present value factor p(x) (which is independent of t), which
reflects the discounted future labor supply, adjusted for the rate of productivity
growth and the agent’s probability of survival. From equation (10), the initial
human wealth of a household of age x at time t is ht−x (0) = wt−x · p (0), where
p (0) is found by setting x = 0 in equation (10b).

If every household begins with no financial wealth (no inheritance), the overall
wealth at the birth of a household currently aged x consists entirely of its initial
human wealth, or vt−x(0) = ht−x(0) = wt−x · p(0). With no initial financial
wealth, (9a) further implies that for this cohort ct−x(0) = m(0) · p(0) · wt−x =
m (0) · p (0) · e−g·x · wt . where m(0), the household’s marginal propensity to
consume wealth at birth, is obtained by setting x = 0 in equation (9c). Substituting
(7), we obtain

ct (x) = m (0) · p (0) · wt · e(
r−ρ
1−ε

−g)·x. (11)

3. THE AGGREGATE ECONOMY

To derive the aggregate economy we need to describe its demographic structure.
Let Bt−x denote the size of the population cohort born at time t − x. Given
the survivorship function, S(x), the size of that cohort (now of age x) at time t is
Nt (x) = Bt−x ·S (x). We restrict our analysis to economies for which birth cohorts
and population grow at a constant rate over time. Assuming that birth cohorts grow
at rate n over time, Bt = Bt−x · en·x and we may express Nt(x) in terms of the
size of the current birth cohort as Nt (x) = Bt · e−n·x · S (x). Aggregating over
all cohorts, the total population size at time t is Nt = ∫ x=ω

x=0 Nt (x) · dx = Bt ·∫ x=ω

x=0 e−n·x · S (x) ·dx. Given the time invariance of the survivorship function, the
total population also grows at rate n.

The number of deaths at time t of persons of age x is Dt (x) = −[S ′ (x)/S (x)] ·
Nt (x) so that the total number of deaths equals Dt = − ∫ x=ω

x=0 S ′ (x) · Bt−x · dx.
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Let b(x) denote the fertility or birth rate for individuals of age x, so the number
of births at time t to persons of age x is b (x) · Nt (x). Then the total number of
births equals Bt = ∫ x=ω

x=0 b (x) · S (x) · Bt−x · dx. Because n · Nt = Bt − Dt and
Bt−x = Bt · e−n·x , we can substitute, rearrange, and integrate by parts to obtain
the following constraint on the chosen demographic functions:∫ x=ω

x=0
b (x) · S (x) · e−n·xdx = 1. (12)

Equation (12) represents a demographic “adding-up” constraint on our choices of
the population growth rate and the survivorship and fertility functions.14 Whenever
we compute the effects of demographic changes on the macroeconomic equilib-
rium,(as in Section 5 where we compute the impact on the growth rate), this
constraint must be taken into account.

3.1. The Aggregate Household Sector

We now use the demographic structure to obtain the key aggregate economic
variables: the aggregate labor supply, labor income, consumption, and financial
wealth.

(i) Aggregate labor supply, Lt , at time t is obtained by summing the labor
supply across all cohorts. That is,

Lt =
∫ x=ω

x=0
Nt (x) L(x)dx = Bt

∫ x=ω

x=0
e−n·x · S (x) L(x)dx = Bt · �L, (13a)

where

�L ≡
∫ x=ω

x=0
e−n·x · S (x) · L (x) · dx. (13b)

In equation (13a), the time-independent coefficient, �L, is equal to the ratio of
the labor supply to the size of the birth cohort at any time t .15

(ii) Aggregate labor income earned at time t is obtained by aggregating over
all cohorts (and taking account of their respective survival rates) to get YL

t =∫ x=ω

x=0 Nt (x) · L (x) · w (x) · dx. Because all agents are paid the same prevailing
wage at time t , w (x) = wt , we can write

YL
t = wt · Lt = wt · Bt · �L. (13c)

From (13c) we see that aggregate labor income YL
t grows at a rate n + g, the sum

of the growth rates of the labor supply Lt and labor productivity, as reflected in
the growth rate of the wage rate.

(iii) Aggregate consumption at time t is Ct = ∫ x=ω

x=0 Nt (x) · ct (x) · dx. Substi-
tuting equation (11), we obtain
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Ct = YL
t · �C

�L
, (14a)

where

�C = m (0) · p (0) ·
∫ x=ω

x=0
e(

r−ρ
1−ε

−g−n)·xS (x) · dx. (14b)

In equation (14a), the time-independent coefficient �C/�L is the ratio of aggregate
consumption to aggregate labor income.

(iv) Aggregate financial wealth at time t is Ft ≡ ∫ x=ω

x=0 Nt (x) · f (x) · dx.
Aggregate financial wealth is also equal to aggregate all-inclusive wealth Vt

minus aggregate human wealth Ht , where

Vt ≡
∫ x=ω

x=0
Nt (x) ·vt (x) · dx

= Bt · wt · p (0) · m (0)·
∫ x=ω

x=0
e(

r−ρ
1−ε

−g−n)·x · S (x) · m (x)−1 · dx

and

Ht ≡
∫ x=ω

x=0
Nt (x) · ht (x) · dx = wtBt

∫ x=ω

x=0
e−n·x · S (x) · p(x) · dx.

Substituting equation (9c) for m(x)−1 and equation 10(b) for p (x), we can carry
out the integration to obtain16

Ft = Vt − Ht =
[

�C − �L

�L · (r − g − n)

]
· YL

t . (15)

In equation (15), the time-independent coefficient [(�C − �L)/�L·
(r − g − n)] is the ratio of aggregate financial capital to aggregate labor income.
We assume that financial wealth in the economy is positive, so we assume that
this coefficient is positive.17 Combining (14a) with (15), we see that

Ct =
[
�C · (r − g − n)

�C − �L

]
· Ft . (16)

In equation (16), the time-independent coefficient [�C · (r − g − n)/

(�C − �L)] measures the aggregate marginal and average propensity to consume
out of financial wealth.

The coefficients [m(0), p(0),�C,�L,] in equations (11) through (16) depend
upon (i) the taste parameters ε and ρ, (ii) the (constant) values for the population
growth rate n, the productivity growth rate g, and the rate of return on capital
r , and (iii) the forms of the demographic functions. Consequently, the aggregate
variables [Ct, Ft , Y L

t ] grow at the sum of the growth rates of the labor supply and
labor productivity n + g.
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3.2. The Aggregate Production Sector

In deriving the behavior of the household, we have assumed that the rate of return
on capital and the growth rate of labor productivity are constant over time, and
along with the prevailing wage rate, are exogenous to the household. To complete
the model and determine the equilibrium, the values of wt, r, and g are derived.
These values depend on the underlying production technology. In the case of
the Romer production function, with its implied constant–productivity of capital
(AK) technology, r and gwill indeed be constant, consistent with our maintained
assumptions.18

We assume that there are Lt identical firms, and each hires one unit of la-
bor and kt units of capital. Firm output net of capital replacement, qt , is
produced in accordance with a Romer-type (1986) Cobb–Douglas production
function,19

qt = A · ka
t ·
(

Kt

Lt

)1−a

− δ · kt , (17)

where A is the total factor productivity term, kt denotes the firm’s capital stock,
δ is the depreciation rate, and Kt/Lt is the economywide capital–labor ratio. This
last term provides the production externality that ensures that the equilibrium
productivity of capital remains constant, thereby enabling the economy to sustain
a constant equilibrium growth rate.

Assuming each firm is small enough to ignore its own impact on the econ-
omywide values of Kt and Lt , and because firms are identical, at equilibrium
kt = Kt/Lt and the equilibrium rate of return on capital is given by its marginal
product,

r = α · A − δ, (18a)

which is constant over time. Further, aggregate output Qt = Lt ·qt = (A − δ) ·Kt ,
whereas the equilibrium wage at time t is given by

wt = qt − (α · A − δ) · kt = (1 − α) · A · Kt

Lt

. (18b)

Financial capital is the claim on physical capital in the economy, so Ft = Kt ,
which grows at a rate g + n, whereas Lt grows at the population growth rate
n. Thus, the wage rate wt grows at the constant rate g over time, validating the
assumption we imposed in the household sector. The ratio of the factor income
shares in production is equal to

r · Kt

wt · Lt

= α · A − δ

(1 − α) · A
. (18c)

Using dKt/dt ≡ YL
t + r · Kt − Ct , we can express the aggregate goods
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market–clearing condition in the economy as

dKt

dt
= (A − δ)Kt − Ct . (19)

The production side of the economy is fully described by equations (17)–(19).

3.3. Closing the System

The final step in determining the equilibrium growth rate g is to require that the
aggregate household variables be consistent with the aggregate production vari-
ables. In the conventional Romer model, the equilibrium growth rate is obtained
directly from the goods-market equilibrium condition

K̇t

Kt

= Qt − Ct

Kt

= r + (1 − α) · A − Ct

Kt

, (19′)

and by substituting for Ct/Kt . The same procedure is performed here, although
the resulting equation is nonlinear in the growth rate, raising the issue of multiple
solutions. Substituting Ft = Kt , K̇t/Kt = g +n and using equation (16), we write
(19′) as20

g = r − n + A(1 − α)

(
1 − �C

�L

)
. (20)

Also, the saving rate, σ ≡ Yt−Ct

Yt
can be expressed as σ = 1 − [ (1−α)·A

A−δ
] · �C

�L ; thus
we can write

g = (A − δ) · σ − n. (20′)

Equation (20) can be expressed in terms of the underlying demographic charac-
teristics as

g = r − n + A(1 − α)

×
{

1 −
[∫ x=ω

x=0 e−(r−g)·x · S (x) · L (x) · dx∫ x=ω

x=0 e−n·x · S (x) · L (x) · dx

]

×
[∫ x=ω

x=0 e(
r−ρ
1−ε

−g−n)·xS (x) · dx∫ x=ω

x=0 e
ε·r−ρ
1−ε

·x · S (x) · dx

]}
. (20′′)

From (20′′), it is apparent that g = r −n is a solution for any arbitrary functions
S(x) and L(x). In the Appendix we show that this solution is incompatible with
the household’s intertemporal budget constraint because it violates the transver-
sality conditions. Therefore, we rule out this degenerate solution. In Section 5 we
numerically solve (20′′) for its proper solutions given different specifications of
the demographic functions.
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3.4. Underlying Dynamics

The equilibrium we have been describing assumes that the economy is always on
its balanced growth path. Given the fact that the underlying technology is based
on the one-sector Romer technology, for which the infinitely lived representative–
agent economy has this property, this is a natural assumption. Nevertheless, it
requires further discussion and justification in the context of this more general
demographic structure.

In a recent paper, Mierau and Turnovsky (2011) have embedded a general demo-
graphic structure in a conventional Ramsey growth model. They show that, as in the
standard model, the aggregate macroeconomic equilibrium can be summarized by
two dynamic equations in (i) per capita capital stock and (ii) per capita consump-
tion. The first equation is the usual product market–clearing condition, whereas
the second is the Euler equation, determining the consumption growth rate, which
now is modified by the inclusion of what they call the “demographic turnover
term” and denote by�(t). This term summarizes the demographic structure and
is the channel whereby all demographic structures impinge on the dynamics. In
the case of the Blanchard model, the dynamics of �(t)is very straightforward and
the neoclassical production function preserves the saddlepoint structure associated
with the standard Ramsey technology. However, for more realistic demographic
structures,�(t) is very complex, reflecting variations in the marginal propensity
to consume over the life cycle and therefore across cohorts. The finite lifes-
pan typically means that the overall equilibrium involves the analysis of mixed
differential–difference equations, which present a huge computational challenge.
Indeed, as d’Albis and Augeraud-Véron (2009) emphasize, the characterization of
the dynamics in terms of a mixed differential–difference equation is an essential
generic feature of continuous–time OLG models, with the Blanchard model being
one of the few exceptions.21

4. PARAMETERIZING THE DEMOGRAPHIC FUNCTIONS

In order to evaluate the coefficients [m(0), p (0) ,�C, �L] appearing in the ex-
pressions that determine the equilibrium economic growth rate, we parameterize
the demographic functions b (x), S (x), and L (x) that describe how fertility,
survivorship, and labor supply vary with a household’s age. We assume that these
functions are exogenous, although in reality they may reflect household choices,
particularly the labor supply and fertility functions. In general, a household’s
fertility, survivorship, and labor supply decline with age.

Although we take the demographic structure to be exogenous, there is a grow-
ing literature endogenizing this aspect, and in the process appealing to different
mechanisms. For example, using the model of Barro and Becker (1989), Manuelli
and Seshadri (2009) show how fertility and mortality differences across countries
can be accounted for by differences in productivity and in labor income tax rates.
Because of the contrasting ways these two variables are related to the growth rate,
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this enables them to show how the relationship between demographic changes
and growth depends upon the source of the demographic change.22 In contrast,
Soares (2005) studies how declining mortality rates at birth lead to reductions in
fertility, followed by increases in the rate of human capital accumulation. Another
approach is taken by Doepke (2004), who emphasizes the importance of laws
regulating child labor in accounting for the demographic transition from high to
low fertility that accompanies the process of industrialization.

Arguably the most important element is the survivorship function. The standard
infinitely lived–agent growth model has no mortality, of course, whereas the
Blanchard model assumes that survivorship declines exponentially. Although this
is tractable and easy to pair with exponential growth models, the assumption of
a constant mortality hazard rate (so-called “perpetual youth”) is at odds with the
facts of human mortality. Some authors have analyzed OLG using more realistic
survivorship functions. For example, Boucekkine et al. (2002) develop a growth
model using an interesting two-parameter exponential survivorship function that
exhibits a mortality hazard rate that increases with age.23 However, growth in their
model is based on human capital accumulation and the model assumes linear utility,
which makes it difficult to compare to standard growth models. Heijdra and Romp
(2008) use the Gompertz (1825) exponential mortality hazard function in a small
open-economy OLG model. Faruqee (2003) approximates the Gompertz function
with an estimated hyperbolic function, which he introduces into the Blanchard
(1985) model to examine the effect of a more plausible demographic structure on
issues pertaining to the financing of government debt and Ricardian equivalence.
Neither of these studies includes a production sector, and both therefore abstract
from capital accumulation and economic growth. The Gompertz survivorship
function, although tracking human mortality well, is intractable for our purposes.24

One hundred years before Gompertz, de Moivre (1725) observed about life
expectancy that “the number of lives existing at any age is proportional to the
number of years intercepted between the age given and the extremity of old age.”
This suggests a simple two-parameter survivorship function that can be written in
the form

S (x) =
(

1 − x

ω

)θ ·ω−1
, (21)

where ω is the maximum age to which a household can live and 1 � ω · θ

(that is, 1/.θ � ω).25 The de Moivre function is reasonably tractable, yet fits the
main features of modern human mortality quite well. Most importantly, from our
standpoint, the Blanchard “perpetual youth” and the Samuelson “one-hoss shay”
models emerge as limiting specifications of a more general model. In particular, the
limit of expression (21) as ω → ∞ is Blanchard’s single-parameter exponential
survivorship function S (z) = e−θ ·x .26 The Samuelson specification is obtained by
setting θ · ω = 1. In this case, the household survives with certainty until age ω,
at which time it dies with certainty. Both specifications converge smoothly to the
representative (infinitely lived)–agent case, common in the growth literature, by
letting either θ → 0 or ω → ∞.
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FIGURE 1. The De Moivre survival function.

More generally, if θ · ω < (>) 2, the survivorship function is strictly concave
(convex), as shown in Figure 1. This figure illustrates the two polar specifica-
tions, Samuelson and Blanchard, together with two particular intermediate cases.
In the first intermediate case, we assume that life expectancy at birth is equal
to half the longest possible life span, which implies that survivorship declines
linearly. We denote this specification as “Intermediate L.” In the second inter-
mediate case, we assume that life expectancy at birth is equal to 2/3 of the
longest possible life span,27 so the survivorship function takes a square-root form.
We denote this specification as “Intermediate SQ.” In this case, the survivorship
function is strictly concave, like the actual survivorship function for a developed
economy.28

Similarly, we parameterize the household labor supply using the de Moivre
function

L (x) =
(

1 − x

l

)λ·l−1
. (22)

This labor supply function, which describes how a household reduces its labor
supply as it ages, has the same possible shapes as the survivorship function in
Figure 1. Again, there are two limiting cases: (i) an exponentially declining labor
supply function when liml→∞ L (x) = e−λ·x and (ii) a one-hoss shay labor supply
function as the limit as λ · l → 1, which implies that L (x) = 1for 0 � x < l and
L (x) = 0 otherwise.29 The first limiting case is similar to the generalization of the
Blanchard model developed by Blanchard and Fischer (1989).30 The household
retires “gradually,” reducing its labor supply at a rate λ ·e−λ·x at age x. The second
limiting case is similar to the Samuelson assumption that a household supplies
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one unit of labor until it reaches a given retirement age l � ω, at which time it
fully retires and provides zero units thereafter. In our Samuelson specification,
the household lives and works for an interval of length l and then retires and
supplies no labor over the remaining time interval ω − l.31 The actual labor
participation longevity function displays the same concave shape as does the
survivorship function [for example, see Hazan (2009, Figure 5, p. 1845)], so we
set the parameters in (22) to obtain a similar shape.32

Equations (23) summarize the aggregate economy in its parameterized form:

K̇

K
= g + n = r + A · (1 − α)

[
1 − �C

�L

]
, (23a)

�L =
∫ x=l

x=0
e−n·x ·

(
1 − x

ω

)θ ·ω−1
·
(

1 − x

l

)λ·l−1
· dx, (23b)

�C = m (0) · p (0) ·
∫ x=ω

x=0
e(

r−ρ
1−ε

−g−n)·x ·
(

1 − x

ω

)θ ·ω−1
· dx, (23c)

m (0) =
(∫ x=ω

x=0
e

ε·r−ρ
1−ε

·x ·
(

1 − x

ω

)θ ·ω−1
· dx

)−1

, (23d)

p (0) =
∫ x=l

x=0
e(g−r)·x ·

(
1 − x

ω

)θ ·ω−1
·
(

1 − x

l

)λ·l−1
· dx, (23e)

r = α · A − δ, (23f)

σ ≡ Yt − Ct

Yt

= 1 −
[
(1 − α) · A

A − δ

]
· �C

�L
. (23g)

The aggregate equilibrium growth rate, g, can be obtained by substituting (23b)–
(23f) into the goods market–clearing condition, (23a), and solving for g, whereas
the aggregate savings rate in the economy, denoted by σ , is obtained from
(23g). Using the equilibrium g, the values of the aggregate economic variables
(YL

t , Ct , Ft = Kt,wt) are determined using the parameterized versions of equa-
tions (13c), (14a), (15), and (18b), respectively.

In general, we are unable to obtain closed-form solutions for the macroeconomic
equilibrium described by (23), except for the polar cases of the Blanchard “per-
petual youth” and the Samuelson “one-hoss shay” specifications. The solutions
for these two classic models are found in Appendix A.2. There we also show that
if the population is constant (n = 0) and households are infinitely lived [that is,
(λ, θ) → 0 in the Blanchard specification and (l, ω) → ∞ in the Samuelson
specification], the equilibrium growth rate reduces to the standard Romer result,
g = (r − ρ)/(1 − ε).
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5. NUMERICAL COMPUTATION OF EQUILIBRIUM ECONOMIC
GROWTH RATES

To proceed further, we compute equilibrium growth rates for specified values of
the parameters.33 We begin by establishing a benchmark specification, which we
use to compare the growth rates in the Blanchard, Intermediate, and Samuelson
specifications of the general OLG model, and we compare these OLG growth
rates with that of the standard representative-agent growth model. Because the
production and preference characteristics of the economy are standard and well
documented in the literature, we maintain the following values throughout our
analysis. On the production side we assume that A = 0.35, α = 1/3, δ = 0.05,
which implies a return to capital of r = 0.067. For preference parameters, we
assume ρ = 0.03 and ε = −1.5 (that is, an intertemporal elasticity of substitution
equal to 0.4).34 From equation (6), this implies a growth rate for the standard
infinitely lived representative–agent model of 1.47%.

In contrast, we vary the demographic assumptions extensively, and compute
the growth rate for four specifications of the de Moivre survivorship function:
the Blanchard (exponential) case, the linear case (Intermediate L), the concave
case (Intermediate SQ), and the Samuelson one-hoss shay case. The shape of the
survivorship function in each case is shown in Figure 1. Except when we specify
“no retirement,” we assume a shape for the labor supply function that corresponds
to that of the survivorship function. We allow the population growth rate n to
vary between 0 (stationary population) and 3%, which we characterize as a high
population growth rate, with a benchmark value for population growth equal to
1.5%. We also vary life expectancy in the economy. A household’s life expectancy
at the time it enters the economy, denoted χ , is given by

χ =
∫ x=ω

x=0
S (x) · dx =

∫ x=ω

x=0

(
1 − x

ω

)θ ·ω−1
· dx. (24)

Our benchmark life expectancy is 60 years, but we vary life expectancy in our
simulations between 40 years and 90 years.35

We mentioned earlier that in, any economy, fertility, survivorship, and the pop-
ulation growth rate must satisfy the demographic “adding up” constraint specified
in equation (12). In our simulations, we assume (unrealistically) that the birth rate
does not depend on age, so b (x) = b.36 Assuming an age-independent birth rate
and a de Moivre survivorship function, we can write equation (12) in parameterized
form as

b =
[∫ x=ω

x=0

(
1 − x

ω

)θ ·ω−1
· e−n·x · dx

]−1

. (25)

Equation (25) constrains our choice of the four demographic parameters
(b, n, θ, ω) in the numerical comparisons to follow. In some cases, we vary the
population growth rate and/or life expectancy, assuming that the birth rate adjusts
residually to satisfy equation (25). In other cases, we hold the birth rate constant so
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TABLE 1. Effects of mortality and retirement on saving and economic growth with
stationary population

Romer Blanchard Intermediate L Intermediate SQ Samuelson
b = 0 b = 1.67% b = 1.67% b = 1.67% b = 1.67%

No retirement g = 1.47% g = 1.07% g = 0.67% g = 0.48% g ∼ 0
L (x) = 1 σ = 4.89 σ = 3.57 σ = 2.22 σ = 1.60 σ ∼ 0

ψ = 2/3
g = 1.69% g = 1.77% g = 1.88% g = 2.55%
σ = 5.65 σ = 5.89 σ = 6.27 σ = 8.51

Notes: Calibration:A = 0.35, α = 1/3, ρ = 0.03, δ = 0.05, ε = −1.5; population growth (n) = 0; in mortality
cases life expectancy (χ) equals 60.

that, for example, a change in life expectancy results in a change in the population
growth rate.

Finally, we vary the fraction of its expected life that the household expects to
work. This requires us to vary the parameters of the household’s survivorship and
labor supply functions to satisfy

ψ =
∫ x=l

x=0

(
1 − x

l

)λ·l−1
·
(

1 − x

ω

)θ ·ω−1
· dx ·

[∫ x=ω

x=0

(
1 − x

ω

)θ ·ω−1
· dx

]−1

,

(26)

where ψ denotes the ratio of the expected number of years a household works to
its life expectancy.37 Our benchmark value for ψ is 2/3 (the expected working life
of a household is equal to two-thirds of its expected life), and we vary the value
between one-half and three-fourths. For example, in the Samuelson specification,
our benchmark simply requires that we set l = 40, ω = 60, whereas in the
Blanchard specification, it requires that we set θ = 1/60 and λ = θ/2 = 1/120.
The values must be computed in the intermediate cases.

5.1. The Overall Effect of Demographic Model Structure

Table 1 shows the overall effect of introducing demographic features into the
Romer (1986) economy with constant population. The first row shows the case
where households have life expectancy equal to 60 and work their entire lives.
In this case, the introduction of mortality reduces the equilibrium saving and
economic growth rates, and the reduction is greater if the survivorship function
is more concave. Our standard production and preference parameters imply that
households increase their consumption as they age by 1.47% per year. In the
infinitely lived representative–agent model (designated the “Romer case” in the
table), this is the equilibrium growth rate for the aggregate economy and for
household consumption, saving, and wealth. However, with mortality, desired
household wealth does not increase at this rate because of the household’s finite
horizon, so the equilibrium growth rate for the economy (and the household’s
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labor income) must be less than the rate at which household consumption rises
with age. The more concave the survivorship function (the more certain the house-
hold is to reach old age), the lower is the equilibrium growth rate. When the
survivorship function is sufficiently concave, households dis-save in the latter part
of their lives despite a desire for rising consumption. With life expectancy equal to
60 years in Table 1, the equilibrium growth rate is driven to zero in the Samuelson
polar case. However, the equilibrium growth rate is positive in the Samuelson case
if life expectancy is enough longer. Indeed, when households do not retire, the
equilibrium growth rates in all of the mortality cases approach that of the Romer
model (1.47%) as life expectancy increases without bound. (This is proved for the
Blanchard and Samuelson specifications in the Appendix, and can be confirmed
numerically.) The important implication of this analysis is that, holding life ex-
pectancy constant and without retirement, the greater certainty of reaching old
age (more concave survivorship functions) found in developed economies would
reduce equilibrium growth rates.38

Another important demographic phenomenon, at least in developed economies,
is the fact that households reduce their labor supply as they age, a phenomenon we
call retirement.39 Retirement introduces an additional incentive for households to
save when they are young and dis-save when they are old. In the second row of
Table 1, we assume that households expect to work two-thirds of their expected
lives (that is, we set ψ equal to 2/3). This exogenously introduced retirement
increases the aggregate saving and growth rates in all mortality cases, and the
increase is greater the more concave the survivorship function. As mentioned, a
more concave survivorship function means that households have greater certainty
about time of death. When households do not retire, their incentive to save is
reduced if they are more certain of receiving growing labor income as they age.
The lower saving, in turn, would eliminate the source of growth, so the equilib-
rium growth rate is reduced. However, when households retire, a more concave
survivorship function implies greater certainty of reaching old age with higher
consumption and no earnings. Because the households exit the labor force as they
age, anticipated wage growth does not reduce their incentive to save as it does in
the no-retirement case, so higher equilibrium growth rates exist.

As seen in Table 1, the growth rate is 1.08 percentage points higher in
the Samuelson specification (the most concave survivorship function) than in
the Romer case, whereas the saving rate is 3.62 percentage points higher. In
comparison, the Blanchard rates are only modestly different from the Romer case,
whereas with infinitely lived households, retirement has no effect. Not surprisingly,
the saving and growth rates for the intermediate specifications of the survivorship
function lie between those of the Blanchard and Samuelson specifications. Perhaps
the most realistic case is the Intermediate SQ specification, where we assume that
the maximum possible age a household can live (ω) is 50% higher than life
expectancy, which approximates observations found in developed economies. In
this case, the economy grows at 1.88% and the aggregate saving rate is 6.27% for
our benchmark specification.
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FIGURE 2. U.S. Survival Functions, 1900 and 2003. Source: National Vital Statistics
Reports, Vol. 56, No. 9, December 28. 2007.

To summarize, mortality hazard and OLG reduce saving and growth rates rel-
ative to those of the representative-agent model of growth, but mortality hazard
coupled with a realistic retirement assumption increases saving and growth rates,
particularly when the survivorship function is concave. The concavity of the
survivorship function has increased significantly for developed economies over
the past hundred years (see Figure 2 for the United States), because mortal-
ity hazard rates for young and middle-aged persons have dropped significantly.
This trend toward reaching old age with greater certainty, when coupled with
saving for retirement, increases the equilibrium growth rate in our benchmark
economy.

5.2. The Effects of Population Growth and Demographic Transition

Ever since Malthus’s “Essay on the Principle of Population,” there has been
concern that high population growth rates may impoverish a nation. Indeed, the
fall in fertility over the past two centuries in what are now developed economies
has coincided with these nations growing rich.40 Today, a similar but faster “de-
mographic transition” is taking place in some developing economies [Bongaarts
(2009)]. On the other hand, cross-country studies of fertility and growth have
not consistently found a statistically significant association between economic
growth and population growth, although correlations are typically negative for
less developed economies and positive for developed economies [Kelley (1988)].
The effect of population growth has also been found to depend on the source of
population growth, with negative effects from higher fertility and positive effects
from reduced mortality [Kelley and Schmidt (1995)].

Table 2 shows the effects on saving and economic growth rates of higher
population growth rates due to higher birth rates. Saving and economic growth
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TABLE 2. Effects of population growth from increased fertility on saving and
economic growth

Population growth rate Blanchard Intermediate L Intermediate SQ Samuelson

n = 0, b = 1.67%
g = 1.69% g = 1.77% g = 1.88% g = 2.55%
σ = 5.65 σ = 5.89 σ = 6.27 σ = 8.51

n = 1.5%
g = 1.29% g = 1.44% g = 1.51% g = 2.00%
σ = 9.30 σ = 9.49 σ = 10.02 σ = 11.66
b = 3.17 b = 2.80 b = 2.19 b = 2.53

n = 3%
g = 0.86% g = 1.06% g = 1.11% g = 1.45%
σ = 12.85 σ = 13.54 σ = 13.69 σ = 14.83
b = 4.67 b = 4.11 b = 3.93 b = 3.59

Notes: Calibration:A = 0.35, α = 1/3, ρ = 0.03, δ = 0.05, ε = −1.5; life expectancy (χ) equals 60; expected
working time ratio (ψ) equals 2/3.

rates are computed for economies where the population is stable, growing at
1.5%, and growing at 3%. In these economies, we assume that life expectancy is
60 years and households expect to work 2/3 of their expected lives. The birth rates
required to support these population growth rates, as calculated from demographic
constraint given by equation (25), are also reported.

As seen in the table, the effect of population growth is similar in all specifi-
cations, with the economic growth rate cut almost in half when the population
growth rate is increased from zero to 3% through a rise in the birth rate. The fall in
the saving and economic growth rates is proportionally greater in the Blanchard
specification than in the Samuelson specification, although the differences between
the four specifications are modest. In the Intermediate SQ specification, which we
describe as the “most realistic,” the growth rate drops from 1.88% for a stable
population to 1.11% for a population growing at 3%, whereas the saving rate rises
from 6.27% to 13.69%. Although higher population growth decreases economic
growth, it increases the saving rate in all specifications, because the proportion of
younger (saving) households is increased. Although we might expect that higher
saving should lead to higher growth, the economic growth rate falls because the
higher rate of capital formation is insufficient to offset the effect of the higher
population growth on the labor supply and labor productivity.

In Table 3, we hold the birth rate constant at 3% and consider population
growth rate changes that result from reduced mortality (increased life expectancy).
We vary the parameters of the survivorship function to obtain the desired life
expectancies using equation (24), and the population growth rates, reported in the
table, are calculated using the demographic constraint (25). At our benchmark life
expectancy of 60 years, and assuming a household expects to work two-thirds of
its expected life, the economic growth rate ranges from 1.34% in the Blanchard
specification to 1.74% in the Samuelson specification. As we vary life expectancy
from 40 years to 90 years, holding the working time ratio constant, the economic
growth rate is reduced modestly in all specifications. However, the variation in
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TABLE 3. Effects of population growth from increased life expectancy on
saving and economic growth

Life expectancy Blanchard Intermediate L Intermediate SQ Samuelson

χ = 40 g = 1.55% g = 1.44% g = 1.47% g = 2.04%
σ = 6.82 σ = 7.2 σ = 7.54 σ = 9.95
n = 0.50 n = 0.72 n = 0.79 n = 0.94

χ = 60 g = 1.34% g = 1.38% g = 1.41% g = 1.74%
σ = 8.9 σ = 10.4 σ = 10.99 σ = 13.14
n = 1.33 n = 1.74 n = 0.019 n = 0.022

χ = 90 g = 1.19% g = 1.25% g = 1.26% g = 1.34%
σ = 10.26 σ = 11.78 σ = 12.28 σ = 13.64
n = 1.89 n = 2.28 n = 2.43 n = 2.75

Notes: Calibration:A = 0.35, α = 1/3, ρ = 0.03, δ = 0.05, ε = −1.5; birth rate (b) equals 3%; expected
working time ratio (ψ) equals 2/3.

TABLE 4. Effects of life expectancy on saving and economic growth with constant
birth rate and working life

Life expectancy Blanchard Intermediate L Intermediate SQ Samuelson

χ = 40 g = 2.40% g = (0.13)% g = (0.54)%
No viable equilibriumσ = 9.68 σ = 1.95 σ = 0.84

n = 0.5 n = 0.72 n = 0.79
χ = 60 g = 2.52% g = 1.38% g = 1.41% g = 1.74%

σ = 12.84 σ = 10.40 σ = 10.99 σ = 13.14
n = 1.33 n = 1.74 n = 1.89 n = 2.20

χ = 90 g = 2.61% g = 2.04% g = 2.25% g = 2.92%
σ = 14.98 σ = 14.41 σ = 15.39 σ = 18.89
n = 1.89 n = 2.28 n = 2.37 n = 2.75

Notes: Calibration:A = 0.35, α = 1/3, ρ = 0.03, δ = 0.05, ε = −1.5; birth rate (b) equals 3%; expected working
life equals 40 years.

population growth rates is smaller in Table 3 than in Table 2. The decline in the
economic growth rate per percentage point increase in the population growth rate
is somewhat greater when population growth is induced by higher fertility than by
reduced mortality. In the Intermediate SQ specification, the economic growth rate
is reduced 0.26 percentage points by a fertility-induced population growth rate
increase of one percentage point, whereas it is reduced 0.13 percentage points by
a mortality-induced population growth rate change.

In Table 3 we assumed that households expect to work 2/3 of their expected
lives, so when life expectancy increases, working life expectancy increases pro-
portionately. However, in most developed countries, working life expectancy has
not increased in proportion to life expectancy, with retirement ages remaining
constant or even decreasing. In Table 4, we assume the same increases in life
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TABLE 5. Effects of life expectancy on saving and economic growth with
constant population growth rate and working life equal to 2/3

Life expectancy Blanchard Intermediate L Intermediate SQ Samuelson

χ = 40 g = 1.23% g = 1.24% g = 1.27% g = 1.81%
σ = 9.11 σ = 9.13 σ = 9.22 σ = 11.04
b = 4.0 b = 3.59 b = 3.49 b = 3.32

χ = 60 g = 1.29% g = 1.44% g = 1.51% g = 2.0%
σ = 9.30 σ = 9.79 σ = 10.02 σ = 11.66
b = 3.17 b = 2.80 b = 2.69 b = 2.53

χ = 90
g = 1.29% g = 1.43% g = 1.48% g = 1.75%
σ = 9.29 σ = 9.78 σ = 9.93 σ = 10.82
b = 2.61 b = 2.29 b = 2.19 b = 2.02

Notes: Calibration:A = 0.35, α = 1/3, ρ = 0.03, δ = 0.05, ε = −1.5; population growth rate (n) equals
1.5%; expected working time ratio (ψ) equals 2/3.

expectancy, but hold constant both the birth rate (at 3%) and the expected working
life (at 40 years). Now increases in life expectancy imply longer retirement periods.
When life expectancy is equal to 40 years (the same as working life expectancy),
growth rates are near zero or negative in all specifications except the Blanchard
specification.41 Increased life expectancy (reduced mortality) increases saving and
economic growth rates, along with population growth rates, in all specifications. In
the Intermediate SQ specification, when life expectancy is increased from 40 years
to 90 years (with a corresponding rise in retirement time), the economic growth
rate increases by 2.79 percentage points, from−0.54 to 2.25%. The population
growth rate is increased from 0.79% to 2.37% by the increase in life expectancy.
This analysis suggests that the differences between the observed cross-section
correlations between economic and population growth rates in less developed
(higher fertility, negative correlation) and developed (lower mortality, positive
correlation) countries may reflect the longer retirement periods associated with
reduced mortality, rather than some intrinsic difference between population growth
rates fueled by higher fertility versus reduced mortality rates.

5.3. The Effect of Increased Longevity

Life expectancy continues to increase in most developed economies.42 In
Table 5, we isolate the effect of an increase in life expectancy on saving and
economic growth rates by holding constant the population growth rate at our
benchmark value of 1.5% and assuming that households expect to work 2/3 of
their expected lives. Birth rates are reduced to satisfy the demographic constraint
(25) and reported in the table. Initially, increases in life expectancy from a low
value of 40 years increase saving and economic growth rates, but further in-
creases above a critical value cause saving and economic growth rates to decrease.
Interestingly, such an inverted U-shaped relationship between economic growth
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TABLE 6. Effects of working time ratio (ψ)on saving and economic growth

Expected working Blanchard Intermediate L Intermediate SQ Samuelson
time ratio b = 3.17% b = 2.80% b = 2.69% b = 2.53%

ψ = 1/2 g = 1.89% g = 2.40% g = 2.78% g = 4.02%
σ = 11.29 σ = 13.00 σ = 14.25 σ = 18.41

ψ = 2/3 g = 1.29% g = 1.44% g = 1.51% g = 2.00%
σ = 9.30 σ = 9.79 σ = 10.02 σ = 11.66

ψ = 3/4 g = 1.09% g = 1.07% g = 1.10% g = 1.29%
σ = 8.63 σ = 8.56 σ = 8.68 σ = 9.31

No retirement g = 0.68% g = 0.46% g = 0.31% g = (0.12%)
L (x) = 1 σ = 7.28 σ = 6.52 σ = 6.00 σ = 4.60

Notes: Calibration:A = 0.35, α = 1/3, ρ = 0.03, δ = 0.05, ε = −1.5; population growth rate (n) equals 1.5%; life
expectancy (χ) equals 60.

rates and aging was found in a cross-country study by An and Jeon (2006).43 In
Table 5, the inverted U-shaped relationship is most pronounced in the Samuelson
specification, where an increase in life expectancy from 40 to 60 years increases
the economic growth rate from 1.81% to 2%, whereas a further increase to 90
years decreases the economic growth rate to 1.75%. Saving rates follow a similar
inverted U-shaped pattern. We find that this pattern is present in all specifications,
although it is not apparent in the Blanchard specification in Table 5.

A plausible explanation for this observed inverted U-shaped relationship be-
tween economic growth and longevity is as follows. With a short enough working
period, increased longevity increases required saving rates because households
choose rising consumption levels over their lives. The higher saving rate of young
households increases saving and growth rates. However, if the working period
increases proportionately with longevity, at some critical value the longer working
period, coupled with rising labor productivity over calendar time, would allow
younger households to finance retirement and higher future consumption levels
with a lower saving rate, thereby decreasing the aggregate saving and economic
growth rates.

5.4. The Effect of Lengthening the Retirement Time

As we saw in the discussion of Table 4, longer retirement times may explain
positive correlations between economic and population growth rates found for
developed economies. In Table 6 we isolate the effect of longer retirement by
changing the ratio of expected working life to life expectancy. We calibrate the
model using our benchmark values of 1.5% for the population growth rate and
60 years for life expectancy. Using equation (26), we find the demographic param-
eters required for the expected working time ratio ψ . We also consider the case of
no retirement by setting L (x) = 1 at every age.
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TABLE 7. A Malthusian growth trap

Blanchard Intermediate L Intermediate SQ Samuelson

n = 3% g = (0.1%) g = (0.56%) g = (0.89%) g = (1.87%)
χ = 40 σ = 9.68 σ = 8.15 σ = 7.05 σ = 3.78
No retirement b = 5.50 b = 4.83 b = 4.63 b = 4.29

Notes: Calibration: A = 0.35, α = 1/3, ρ = 0.03, δ = 0.05, ε = −1.5.

From Table 6, we see that longer retirement has a dramatic effect on saving
and economic growth rates. With no retirement, economic growth rates are very
low for all specifications. At the other extreme, where households expect to spend
fully half of their lives retired, economic growth rates range from just under 2% in
the Blanchard specification to over 4% in the Samuelson specification. Increased
retirement time has the greatest impact on growth rates when the survivorship
function is concave, as it is in developed countries. If the survivorship function is
linear (Intermediate L) or convex (Blanchard), longer retirement time increases the
saving and growth rates, but to a lesser degree. The reason for this is that surviving
to retirement is less certain with such survivorship functions. By comparison, under
the Samuelson specification the household is certain of surviving to retirement.
In the Intermediate SQ specification, the economic growth rate is 0.31% when
households work all of their lives, but rises to 2.78% if households expect to work
only half of their lives. Savings rates rise from 6% to 14.25%. The results in
Table 6 suggest that the retirement savings motive may be an important growth
driver in developed economies.44

5.5. A Malthusian Growth Trap

The preceding computations show that a country’s demography can have a sig-
nificant impact on its economic growth rate, particularly when the survivorship
function is concave. Taken together, we find that the demographic effects can cause
a demographic or Malthusian growth trap for economies where life expectancy is
short, population growth rates are high because of high birth rates, and households
spend little or no time in retirement. These are demographic characteristics found
in many less developed economies.

In Table 7, we compute saving and economic growth rates for an economy
where the population grows at 3%, life expectancy is 40 years (that is, 60 years
at birth), and households do not retire. In all specifications, the economic growth
rate is negative even though savings rates are positive, ranging from about 4%
to nearly 10%.45 Again we find the most pronounced results in the Samuelson
specification, where the aggregate saving rate is 3.78% and the economic growth
rate is −1.87%. In the Blanchard specification, the saving rate is much higher,
nearly 10%, and the economic growth rate is just negative. In all cases, the birth
rates calculated from the demographic constraint (25) exceed 4%.
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As mentioned earlier, a concave survivorship function is a characteristic of
developed economies, where mortality hazard rates remain low until households
reach old age. In less developed economies, survivorship functions are likely to
be less concave because of moderate mortality hazard rates for the nonelderly. For
a less developed economy, the Intermediate L, rather than the Intermediate SQ,
survivorship function may be the best approximation.46 For this specification, we
compute an economic growth rate of −0.56% and a saving rate of 8.15%.

6. CONCLUSIONS

We have developed a tractable, yet realistic, framework of equilibrium growth
in which overlapping generations of households are born, work and save, and
retire and die. We have computed economic growth rates using standard produc-
tion and taste parameters under a variety of demographic assumptions. Although
the model’s demography is quite general, it includes the “classic” Blanchard and
Samuelson OLG models, as well as the infinitely lived representative–agent growth
model, as particular, limiting specifications of a two-parameter survivorship
function.

We find that demographic conditions, including the concavity of the survivor-
ship function, have significant effects on the saving and growth rates prevailing in
an economy. As compared to the infinitely lived–agent model, the introduction of
mortality per se reduces the aggregate saving and economic growth rates—more
so if the survivorship function is more concave. However, mortality coupled with
retirement increases both saving and growth rates. A higher population growth
rate, whether from higher fertility or longer life expectancy (reduced mortality),
decreases the economic growth rate but increases the saving rate. However, a higher
population growth rate caused by longer life expectancy increases the economic
growth rate if longer life expectancy leads to longer retirements. These observa-
tions can explain differences between developed and less developed economies
in some cross-country correlations of population and economic growth rates. We
also find an inverted U-shaped relationship between life expectancy and economic
growth rates, consistent with some cross-country evidence. Finally, we identify
a potential Malthusian trap, in which economies with high fertility, short life
expectancy, and no retirement may suffer low or negative economic growth rates
despite having positive, and in some cases high, saving rates.

NOTES

1. We have in mind the Ramsey model or some form of the Romer (1986) model, depending upon
the underlying production structure.

2. The Samuelson model is often coupled with Diamond (1965), whereas Blanchard is sometimes
linked with Yaari (1965) and Weil (1985). A comprehensive treatment of the Samuelson and Blanchard
models and their application to issues in economic growth is provided by de la Croix and Michel (2002).

3. See, e.g., Docquier and Michel (1999).
4. Because of its tractability, there is a substantial literature introducing the Blanchard mortality

structure into growth models; see, e.g., Saint Paul (1992), Heijdra and Ligthart (2006), and most
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recently, Tamai (2009). Bommier and Lee (2003) derive a number of propositions for overlapping
generations models with “realistic demography” in exchange economies and in economies without
technical progress. Boucekkine et al. (2002) also develop a human capital growth model that utilizes
a mortality function that exhibits increasing mortality hazard with age.

5. Demographers commonly use the two-parameter Gompertz (1825) mortality hazard function,
which fits human mortality data well. However, the Gompertz survivorship function is intractable
for analytical purposes. Neither the Gompertz nor the de Moivre survivorship function exhibits high
infant mortality rates. However, this phenomenon has largely been eliminated in advanced economies.
Moreover, infant mortality can easily be modeled as a lower birth rate.

6. For example, in motivating the perpetual youth model as an alternative approach, Blanchard and
Fischer (1989, p. 115) argue that “overlapping generations models with more than two generations
are analytically intractable.” More recently, in introducing the OLG model, Acemoglu (2009, p. 327)
characterizes the Blanchard perpetual youth model as “a tractable alternative to the basic OLG model.”
We should note also that there is a literature analyzing continuous-time overlapping generations
economies with finite horizons, which originated with Cass and Yaari (1967). This literature tends
to focus on issues related to the existence of equilibrium and its characterization in a more abstract
context than we have in mind here; see, e.g., Burke (1996), d’Albis (2007), Edmond (2008), and Gan
and Lau (2010).

7. Deriving the transitional dynamics for growth models having more realistic demographic
structures is extremely challenging and, except for very special cases, intractable; see d’Albis and
Augeraud-Véron (2009). For this reason, we note that Heijdra and Mierau (2010) also employ the
Romer technology in their analysis of consumption and labor income taxation, in which their economy
is also always on its balanced growth path. Furthermore, d’Albis (2007), who introduces a general
demographic structure into a neoclassical growth model, is restricted to characterizing its steady state
behavior.

8. Note that the standard formulation of the discrete-time Samuelson model assumes that each
generation is retired for half of its life span; see, e.g., Blanchard and Fischer (1989).

9. In the infinitely lived representative–agent framework these concepts coincide, so that the
distinction is irrelevant.

10. We assume that L(x) is specified exogenously. Although the function can be quite general,
allowing either abrupt or gradual “retirement,” we assume that it does not vary with (calendar) time.

11. As ω → ∞, the transversality condition converges to the conventional expression
lim

ω→∞ R(ω, x).ft (ω) = 0.

12. See, e.g., Romer (1986). But it also describes the equilibrium consumption growth rate in the
two-sector Lucas (1988) model, as developed by Bond et al. (1996).

13. Note that for the infinitely lived household with logarithmic utility (ω → ∞, ε → 0), the
marginal propensity to consume wealth in (9c) is just the familiar constant ρ.

14. For example, if b is independent of age and S (x) is exponentially declining (a constant mortality
hazard rate of θ), equation (12) implies that b = θ + n. In general, the demographic constraint is more
complicated.

15. Whenever an aggregate variable is obtained by summing over households of all ages in the
population, we denote the resulting age and time-independent coefficient by � superscripted by the
corresponding variable.

16. Substituting (9c) and (10b) yields double integrals that can be rearranged using the equality∫ x=ω
x=0

∫ z=ω
z=x f (x, z) · dz · dx = ∫ z=ω

z=0

∫ x=z
x=0 f (x, z) · dx · dz. This equality obtains because the inte-

grand f (x, y) is integrated over the same triangular area domain. Also, we assume that r �= g + n,
which is proved to be the case in the Appendix.

17. Technically, an individual household could hold negative annuity wealth. This would be equiva-
lent to borrowing and buying life insurance to retire the debt in case of death. We assume that aggregate
household annuity wealth is positive.

18. If the underlying production function is neoclassical, these quantities will be time–varying and
this will need to be taken into account by the household sector in its decision-making process.
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19. Although Romer (1986) specified the production function as Cobb–Douglas, the crucial prop-
erties we obtain apply to any linearly homogeneous production function of the form f (kt , Kt /Lt ).

20. Equation (20) can also be obtained by setting the ratio of factor income shares in the aggregate
household sector equal to the relative factor income shares on the production side. That is, r · Ft/Y

L
t =

(α · A − δ) (1 −α)−1 ·A−1 and substitute equation (15) into the left-hand side to obtain equation (20)
directly.

21. Mierau and Turnovsky (2011) lay out the equilibrium dynamics for the Boucekkine et al. (2002)
demographic structure. It is a fifth-order mixed differential–difference system and is almost certainly
intractable.

22. We deal with this issue partially in Tables 2 and 3, where we contrast the effects of population
growth due to exogenous changes in fertility with those due to exogenous changes in longevity on the
growth rate and savings.

23. Boucekkine et al. specify S (x) = (e−β·x − α)/(1 − α) for 0 � x � −log (α)/β.
24. The Gompertz log linear mortality hazard function implies a two-parameter survivorship function

of the Gumbel extreme value form. Specifically, S (x) = eα(1−eβx )/β
, where α, β > 0 are parameters.

The exponential survivorship function is a limiting case of the Gompertz survivorship function when
β → 0.

25. Originally, de Moivre proposed a linear function, where θω = 2, which is one of the spe-
cial cases we shall compute numerically in Section 5. The de Moivre and Gompertz survivorship
functions are nested in the function S (x) = exp{((θω − 1)/(1 − βω)) · [(1 − x/ω)1−βω − 1]}, which
converges to the de Moivre as βω → 1 and the Gompertz as ω → ∞ [see Kohler and Kohler
(2000).]

26. The limiting cases as ω → ∞ can be evaluated using lim
ω→∞ (1 − x/ω)θ ·ω = e−θ ·x

.

27. Life expectancy at birth is about 80 years in developed economies, and the longest documented
life is 122 years, so we treat this as the most realistic case.

28. Actual survivorship functions are concave except at extreme old age. The best fit of the de
Moivre survivorship function to U.S. life table data is ω = 72 and θ = 0.0167, which is more
concave than the intermediate SQ survivorship function used in our computations in Section 5. With
life expectancy 60, population growth rate 1.5%, working time ratio equal to 2/3, and fixed retirement
age (λ= 0), the best fit survivorship function produces a growth rate of 2% and a saving rate of 11.5%.
In comparison, the less concave intermediate SQ survivorship function produces a growth rate of
2.3% and a saving rate of 12.8%. Because computation time is reduced, we use the intermediate SQ
survivorship function in our computations, because our purpose is to simulate how the concavity of the
survivorship function affects growth under alternative demographic assumptions. It should be noted
that growth and savings rates for this function are slightly higher than would be computed for more
realistic survivorship parameters.

29. A useful extension would be to derive the labor supply function from underlying behavioral
considerations.

30. In his original paper, Blanchard assumed that labor earnings are constant over time, while
Blanchard and Fischer (1989) assumed that they declined with age. Because labor productivity grows
at rate g with time, labor earnings change with age at rate g-λ.

31. However, we do not require that the working and retirement periods be of equal length, as is the
case in some discrete-time Samuelson models.

32. Of course, our labor supply function represents declining labor hours as a single household ages,
whereas the labor participation longevity function represents the declining participation with age of a
population of workers. It is not possible to model the latter in our framework.

33. We use the FindRoot utility in Mathematica to solve equations (23) simultaneously. The Math-
ematica code is available from the authors on request. In the Blanchard and Samuelson cases, the
program finds the roots of explicit equations shown in Appendix 2. In the intermediate cases,
the program finds roots of integral equations, which proves to be quite challenging. Although multiple
roots are possible, we can eliminate roots with negative financial wealth. In all cases, only a single
root is found in the relevant range.
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34. The only point to note is that ρ, being a pure rate of time preference, is somewhat smaller
than the conventional value for the representative agent model (ρ = 0.04). This is because the latter
implicitly discounts for mortality factors, which we are explicitly incorporating in our analysis.

35. We assume the household enters the economy as an adult of 20 years, so that life expectancy at
birth is approximately 80 years. Because childhood is ignored in this model, we refer to the time the
household enters the economy and the time of its birth interchangeably.

36. In comparing b to actual values, it should be kept in mind that measured birth rates are expressed
as a percentage of the whole population. In this paper we consider only households over age 20, which
are about 2/3 of the total population, so b is about 50% higher than measured birth rates. Also, more
generally, we can specify a fertility function of a de Moivre form, so that fertility declines with age. In
addition to being more realistic, varying the parameters of the function would allow us to examine the
effect of delayed fertility on the economic growth rate.

37. Where mortality is uncertain, the calculation of expected working life includes the fact that the
household may die while working.

38. Of course, greater certainty of reaching old age has been accompanied by increased life ex-
pectancy and longer retirements in developed economies.

39. In this paper, we assume households must finance their own retirement and ignore social security.
40. Of course, causality can go either or both ways between population growth and per capita income

growth.
41. Computed growth and saving rates are negative in the Samuelson specification, indicating no

viable equilibrium.
42. In the United States, life expectancy at birth is currently increasing at about one and one-half

years per decade.
43. From a historical perspective, Nicolini (2004) argued that the decline of adult mortality at the

end of the seventeenth century was the cause of an increase in investment in preindustrial England.
44. This, in turn, suggests that pay-as-you-go Social Security may have important effects on growth

to the extent that it reduces private retirement saving. We do not analyze such government policies in
this paper.

45. Saving rates are positive, and in some cases substantial, because a high population growth rate
implies a larger proportion of young (saving) households in the population.

46. There are numerous caveats in applying the demographic growth model of this paper to less
developed economies. First, assuming technologies are the same, the AK model implies the same return
on capital in developed and less developed economies. Because of capital scarcity, less developed
economies may have higher rates of return on capital (although it is not clear that the higher return to
capital in less developed economies is not simply a higher risk premium.) Second, the model presumes
highly developed capital markets, including perfect life annuities markets. This too seems unlikely for
less developed economies.

47. We use lim
n→0

n
1−e−nω = 1/ω.
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APPENDIX

A.1. ELIMINATION OF THE SOLUTION g = r − n

Summing over surviving members of each cohort, aggregate consumption is

Ct =
∫ x=ω

x=0
N(x)c(x)dx =

∫ x=ω

x=0
N(x)

[
wtL(x) + i(x)f (x) − df (x)

dx

]
dx

= wtLt +
∫ x=ω

x=0
N(x)

[
i(x)f (x) − df (x)

dx

]
dx. (A.1)

From (21′′), if g = r − n, then Ct = wtLt , so that (A.1) reduces to

∫ x=ω

x=0
N(x)

[
i(x)f (x) − df (x)

dx

]
dx = 0. (A.2)

Substituting (12) yields

∫ x=ω

x=0
S(x)e−nx

[
i(x)f (x) − df (x)

dx

]
dx = 0. (A.3)
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Integrating an individual agent’s budget constraint (1b) over his lifetime, recognizing that
his initial financial wealth is zero, and taking account of the transversality condition (3c)
yields the intertemporal constraint (8), which we may rewrite as

∫ x=ω

x=0
S(x)e−rx [w(x)L(x) − c(x)] dx = 0, (A.4)

so that the agent’s present value of consumption equals the present value of his labor
income. Substituting (1b) into (A.4) implies that

∫ x=ω

x=0
S(x)e−rx

[
i(x)f (x) − df (x)

dx

]
dx = 0. (A.5)

Equations (A.3) and (A.5) can hold simultaneously if and only if r = n. But because for
the present AK technology these are independently set parameters, there is no reason for
this constraint to hold, and hence g = r − n is not a viable equilibrium.

A.2. SPECIAL CASES

In this Appendix, we present the equations for the two polar limiting cases of the general
model and demonstrate that both models converge to the standard Romer growth model as
lifetimes become infinite.

The Blanchard perpetual youth OLG model: Taking the limit as ω, l → ∞ in equations
(23a)–(23e) and carrying out the integration yields

g + n = r + A · (1 − α) ·
(

1 − �C

�L

)
, (A.6a)

�L = 1

n + θ + λ
, (A.6b)

�C = m(0) · p (0)

g + n − ( r−ρ

1−ε

) , (A.6c)

m(0) = ρ − ε · r

1 − ε
+ θ, (A.6d)

p (0) = 1

r + θ + λ − g
, (A.6e)

r = α · A − δ. (A.6f)

Substituting (A.6b)–(A.6e) into (A.6a), we obtain

g + n − r = A · (1 − α) ·
{

(g + n − r) · [(λ + θ + n) − ( ρ−ε·r
1−ε

+ θ
)− (g + n − r)

]
[(λ + θ + n) − (g + n − r)] · [(g + n − r) − ( ρ−ε·r

1−ε
+ θ
)]
}

.

(A.6a′)
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Because g + n − r �= 0, we can divide (A.6a′) by g + n − r to obtain a quadratic equation

[1 − A · (1 − α)] ·
[
(g + n − r)2 −

(
λ + n − ρ − ε · r

1 − ε

)
· (g + n − r)

]

− (λ + θ + n) ·
(

ρ − ε · r

1 − ε
+ θ

)
= 0. (A.7)

We can rewrite g + n − r as ĝ + (n − ρ−ε·r
1−ε

), where ĝ = g − r−ρ

1−ε
is the deviation of the

growth rate from the representative-agent rate, and rewrite (A.7) as

ĝ2 +
(

n − λ − ρ − ε · r

1 − ε

)
·ĝ −

[
λ ·
(

n − ρ − ε · r

1 − ε

)
+
(

ρ−ε·r
1−ε

+ θ
) · (λ + θ + n)

1 − A · (1 − α)

]
= 0.

(A.7′)

Solving (A.7′), we obtain

ĝ =
⎡
⎣1

2
·
(

ρ − ε · r

1 − ε
− λ − n

)
±
√(

ρ−ε·r
1−ε

− λ − n
)2

4
− (λ + θ + n) · ( ρ−ε·r

1−ε
+ θ
)

1 − A · (1 − α)

⎤
⎦ .

(A.8)

From (A.8) we see that ĝ → 0 as λ + θ + n → 0 (infinitely lived representative–agent
model).

The Samuelson one-hoss shay model: In this case, λ · l = 1, so (1 − x
l
)λ·l−1 = 1 for

x ∈ [0, l] and zero for x > l. Similarly, (1 − x
ω
)θ ·ω−1 = 1 for x ∈ [0, ω] and zero for

x > θ . Integrating, we obtain

�L = 1 − e−n·l

n
, (A.6b′)

�C = m(0) · p (0) · 1 − e−( r−ρ
1−ε −g−n)ω

g + n − r−ρ

1−ε

, (A.6c′)

m(0) = ρ − ε · r

(1 − ε) ·
[
1 − e−( ρ−ε·r

1−ε )·ω
] , (A.6d′)

p (0) = 1 − e−(r−g)·l

r − g
. (A.6e′)

For simplicity, assume no retirement, so that l = ω. Substituting into (A.6a) and rearranging,
we can write the solution as

ĝ + n = ρ − ε · r

1 − ε
+ A · (1 − α) ·

⎧⎨
⎩1 −

n · ( ρ−εr

1−ε

) ·
[
1 − e−(

ρ−εr
1−ε −ĝ)·ω

]
· [1 − e(ĝ+n]ω

]
(1 − e−nω) ·

[
1 − e−( ρ−εr

1−ε )·ω
] (

ρ−εr

1−ε
− ĝ
) · (ĝ + n)

⎫⎬
⎭ . (A.8′)
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If we let n → 0 (stable population), we can write47

ĝ2 =
[

ρ − ε · r

1 − ε
+ A · (1 − α)

]
· ĝ + A ·

(1 − α) ·
⎧⎨
⎩
(

ρ−εr

1−ε

) ·
[
1 − e−(

ρ−εr
1−ε −ĝ)·ω

]
· (1 − eĝω

)
ω ·
[
1 − e−( ρ−εr

1−ε )·ω
] (

ρ−εr

1−ε
− ĝ
)

⎫⎬
⎭ . (A.8′′)

As we let ω → ∞, the last term on the RHS of (A.8′′) vanishes, and the root of the
remaining equation is ĝ = 0. That is, the Samuelson model growth rate converges to that
of the representative-agent model as we increase the lifetime of the agent.
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