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Effects of base flow modifications on noise
amplifications: flow past a backward-facing step
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Amplifications of flow past a backward-facing step with respect to optimal inflow
and initial perturbations are investigated at Reynolds number 500. Two mechanisms
of receptivity to inflow noise are identified: the bubble-induced inflectional point
instability and the misalignment effect downstream of the secondary bubble. Further
development of the misalignment results in decay of perturbations from x = 28
onwards (the step is located at x= 0), as has been observed in previous non-normality
studies (Blackburn et al., J. Fluid Mech., vol. 603, 2008, pp. 271–304), and eventually
limits the receptivity. The receptivity is found to be maximized at an inflow
perturbation frequency of ω= 0.50 and a spanwise wavenumber of β = 0, where the
inflow noise takes full advantage of both mechanisms and is amplified over two orders
of magnitude in terms of the velocity magnitude. In direct numerical simulations
(DNS) of the flow perturbed by optimal or random inflow noise, vortex shedding,
flapping of bubbles, three-dimensionality and turbulence are observed in succession as
the magnitude of the inflow noise increases. Similar features of linear and nonlinear
receptivity are observed at higher Reynolds numbers. The Strouhal number of the
bubble flapping is 0.08, at which the receptivity to inflow noise reaches a maximum.
This Strouhal number is close to reported values extracted from DNS or large eddy
simulations (LES) at larger Reynolds numbers (Le et al., J. Fluid Mech., vol. 330,
1997, pp. 349–374; Kaiktsis et al., J. Fluid Mech., vol. 321, 1996, pp. 157–187;
Métais, New Trends in Turbulence, 2001, Springer; Wee et al., Phys. Fluids, vol. 16,
2004, pp. 3361–3373). Methods to further clarify the mechanisms of receptivity and
to suppress the noise amplifications by modifying the base flow using a linearly
optimal body force are proposed. It is observed that the mechanisms of optimal noise
amplification are fully revealed by the distribution of the base flow modification,
which weakens the bubble instabilities and misalignment effects and subsequently
reduces the receptivity significantly. Comparing the base flow modifications with
respect to amplifications of inflow and initial perturbations, it is found that the
maximum receptivity to initial perturbations is highly correlated with the receptivity
to inflow noise at the optimal frequency ω= 0.50, and the correlation reduces as the
inflow frequency deviates from this optimal value.
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1. Introduction
The flow past a backward-facing step is a canonical amplifier of noise originating

from either the inflow boundary or the initial conditions. This noise amplification can
be related to flow oscillations, such as vortex shedding (Kaiktsis & Monkewitz
2003), flapping of separated shear layers (Schäfer, Breuer & Durst 2009) and
three-dimensionality (Barkley, Gomes & Henderson 2002), and subsequently leads
to laminar–turbulence transition or structure fatigue (Mcgregor & White 1970). The
noise amplification can be suppressed by modifying the base flow to be less sensitive
to perturbations. The technique of base flow modification is introduced in § 1.1, and
the flow past a backward-facing step is reviewed in § 1.2.

1.1. Base flow modifications
Many basic flows, such as boundary layer flow, channel flow, flow past bluff bodies
and vortex flow, act as either oscillators or noise amplifiers (Huerre & Monkewitz
1990). For oscillators that are asymptotically unstable to initial perturbations, it
is possible to modify the base flow by a small magnitude so as to change the
asymptotic instability characteristics. Investigations of such base flow modifications
began with localized studies of incompressible flow, e.g. sensitivity analyses of
eigenvalues of the Orr–Sommerfeld operator with respect to modifications of the base
flow (Bottaro, Corbett & Luchini 2003) and optimal distortion of a base flow with a
Hagen–Poiseuille profile to stabilize the most unstable modes of the locally defined
linearized Navier–Stokes (NS) operator (Gavarini, Bottaro & Nieuwstadt 2004). These
localized studies of variation of base flow velocity profiles in incompressible flow
were extended to variation of velocity and density profiles in compressible flow
by Lesshafft & Marquet (2010). The global counterpart of the effects of base flow
variation on instabilities, i.e. the sensitivity of the most unstable global mode to
variation of the base flow, has been investigated in the context of flow past a circular
cylinder by Marquet, Sipp & Jacquin (2008b).

For amplifiers, which are usually asymptotically stable but exhibit strong transient
energy growth, base flow variation with respect to the transient energy growth
(amplification of the optimal initial perturbation) is more meaningful than with
respect to stabilities (amplification of the most unstable mode). Such base flow
modifications to minimize or maximize the transient growth of the optimal initial
perturbations have been conducted in the context of a flat-plate boundary layer flow,
and it was found that a very weak modification of the base flow has a significant
impact on amplification of Tollmien–Schlichting (TS) waves (Brandt et al. 2011).

Modification of the base flow can be achieved by a direct modification (Marquet
et al. 2008b), by blowing/suction imposed on the boundary (Lashgari et al. 2014), by
adding a body force to the governing equations (Brandt et al. 2011) and so forth.
The body force can be, among others, a Lorenz force generated by electrodes and
magnets mounted in a solid body (Zhang, Fan & Chen 2010) or a hydrodynamic force
generated by a small cylinder introduced into the domain. This ‘small control cylinder’
exerts a force on the base flow which is opposite to its drag, and has been shown to be
effective in suppressing vortex shedding downstream of a cylinder, as experimentally
investigated by Strykowski & Sreenivasan (1990) and numerically studied by Giannetti
& Luchini (2007).

Most of these previous studies on base flow modifications concentrated on the
evolution of initial perturbations in the form of either the most unstable modes or
the optimal initial perturbations. However, for base flows acting as noise amplifiers,
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Optimal inflow perturbations 231

the initial perturbations will be convected out of the domain after a sufficiently long
time interval, and therefore the receptivity to temporally continuous inflow/free-stream
noise may be more appropriate than initial perturbations for describing the dynamics
of this type of base flow. Most existing studies on receptivity to boundary noise
have focused on the response of the base flow to prescribed boundary disturbances
in the form of free-stream noise or wall roughness and the connection between
free-stream noise and instabilities or laminar–turbulence transition (Schrader, Brandt
& Henningson 2009; Zaki et al. 2010). The optimal boundary perturbation, or the
most energetic perturbation over a given time horizon, has been calculated in the
form of wall-normal disturbances in a locally defined swept Hiemenz flow (Guégan,
Schmid & Huerre 2006) and in a boundary layer flow (Cathalifaud & Luchini 2000).
These local studies on optimal boundary perturbations have been extended to the
global scope to calculate the global optimal inflow perturbation to stenotic flow (Mao,
Blackburn & Sherwin 2012) and vortex flow (Mao, Blackburn & Sherwin 2013).

In the present work, the technique of base flow modification and the concept
of global optimal receptivity to boundary perturbations are combined to calculate
the variation of a base flow that maximizes or minimizes its optimal receptivity to
boundary noise, referring to the maximum gain stemming from the most energized
boundary perturbation, rather than the gain of an empirically prescribed boundary
perturbation or random noise. The base flow modification with respect to receptivity
to initial perturbations will be also calculated for comparison. Besides shedding light
on the control of noise amplifications, this base flow modification study will also
help to clarify noise amplification mechanisms.

1.2. Flow past a backward-facing step
The flow past a backward-facing step has been extensively studied and established as a
benchmark in computational fluid dynamics. In stability analyses, the two-dimensional
flow was reported to be absolutely stable up to a Reynolds number of at least
Re = 600 and convectively unstable for at least Re > 525 (Kaiktsis, Karniadakis
& Orszag 1996). The dependence of instabilities on the expansion ratio has been
studied, and centrifugal instability, elliptic instability and lift-up mechanisms have
been identified when the expansion ratio is reduced from 0.972 to 0.25 (Lanzerstorfer
& Kuhlmann 2012). In the present work, the Reynolds number is defined using the
upstream centreline velocity and the step height, and all cited results are converted
to this definition. For Re > 748, the flow loses stability to steady perturbations
with spanwise wavenumber 0.91, owing to the centrifugal instability mechanism,
and becomes three-dimensional (Barkley et al. 2002). The three-dimensionality of
flow past a backward-facing step has also been attributed to sidewall effects, shear
layer instabilities or inflow noise (Armaly et al. 1983; Kaiktsis et al. 1996; Yanase,
Kawahara & Kiyama 2001; Barkley et al. 2002). In this work, the periodic boundary
condition implemented in the spanwise direction excludes the influence of the sidewall,
and it will be shown that the three-dimensionality can be activated by the receptivity
to inflow perturbations.

Apart from asymptotic instabilities, the transient energy growth of initial perturba-
tions has been thoroughly investigated in the asymptotically stable situation at Re=
500 (Blackburn, Barkley & Sherwin 2008). The transient growth has been found to
be responsible for the laminar–turbulent transition (Boiko, Dovgal & Sorokin 2012);
in the current investigation, it is observed that the laminar–turbulent transition can be
triggered by receptivity to inflow noise, the mechanism for which is similar to that
for non-modal transient growth.
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232 X. Mao

For flow oscillations in the region downstream of the step, e.g. vortex shedding and
flapping of bubbles, acoustic radiations have been suggested as a possible mechanism
in compressible flow (Yokoyama et al. 2007). For incompressible flow, Wee et al.
(2004) found that at Re = 5550, the Strouhal number of the self-sustained vortex
shedding is St = O(0.1), which matches the frequency of the linearly most unstable
mode, indicating a correlation between linear instabilities and vortex shedding. By
perturbing the inlet velocity profile, Le, Moin & Kim (1997) observed a quasi-periodic
oscillation of the recirculation length with St ≈ 0.06 at Re = 7650. In large eddy
simulations (LES) of the full turbulent flow, Métais (2001) obtained a Strouhal
number of St = 0.07 for the oscillation of the primary reattachment length. These
reported Strouhal numbers are close to that of the most amplified inflow perturbation
calculated here at a relatively low Reynolds number, Re = 500. In another study
of the correlation between the frequency of the inflow noise and the oscillation
of the flow, Kaiktsis et al. (1996) observed that the flow unsteadiness depends
strongly on selective sustained external excitation with even small amplitudes at
525 6 Re 6 1875. In DNS at Re= 4500, Schäfer et al. (2009) found that the vortical
structures associated with vortex shedding are responsible for the flapping of the
separation lines and reattachment lines of the primary and secondary bubbles. In the
current work, the generation of vortical structures between the main stream and the
bubbles is investigated so as to identify the source of vortex shedding and flapping.

Receptivity of the flow past a backward-facing step to inflow noise has been widely
observed. High sensitivity of the flow downstream of the step with respect to the type
of inflow boundary condition has been reported (Kaltenbach & Janke 2000; Schäfer
et al. 2009), and strong correlations between the frequency of the inflow noise and the
oscillation of the shear layers downstream of the step have been observed (Kaiktsis
et al. 1996). It has been argued that the combination of inflow disturbances and shear
layer instabilities, e.g. Kelvin–Helmholtz instabilities, triggers the three-dimensional
vortical structures (Yanase et al. 2001). However, in all these works, the distribution
of the inflow noise is either empirically prescribed or random, whereas in the current
work, the optimal (most energetic) inflow perturbation will be calculated and its
relation to vortex shedding, flapping of the bubbles and three-dimensionality will be
explored.

Control of the flow past a backward-facing step using blowing/suction or geometry
variations, which can be interpreted as base flow modifications, has been discussed
mostly in the context of attempting to enhance noise amplifications. A combination
of suction on the step face and blowing downstream of the step has been used to
destabilize the flow and enhance mixing in the channel (Kaiktsis & Monkewitz 2003).
It has also been suggested that the destabilized two-dimensional flow is subject to
three-dimensional secondary instabilities. Similar destabilization and enhancement of
mixing was obtained by modulating the flow using spanwise-distributed roughness
elements upstream of the step (Boiko et al. 2012) or tabs on the edges of the step
(Park et al. 2007). These previous control or base flow modification studies all aim
at activating instabilities and turbulence, whereas in the current work, the base flow
modification generated by the linearly optimal body force can either suppress or
enhance the noise amplifications, depending on the choice of a scale factor that
measures the size and sign of the body force.

The remainder of this paper is organized as follows. In § 2, the method used
to calculate the optimal base flow modification induced by the body force is
demonstrated. Then, after a convergence test in § 3, the receptivity of flow past
a backward-facing step to inflow noise is presented in § 4. The optimal modification
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Optimal inflow perturbations 233

of the base flow with respect to the receptivity is further studied in § 5, and the
correlation between the receptivities to inflow and initial perturbations is discussed in
§ 6. Finally, conclusions are drawn in § 7.

2. Methodology
In this section, we present the method used to calculate the body force that

(in the linear regime) optimally modifies the base flow. The perturbations and their
development are modelled in § 2.1; the definitions of noise amplifications are presented
in § 2.2; a Lagrangian functional is defined in § 2.3, and based on this Lagrangian,
the formulation of the optimal body force is derived in § 2.4; finally, the calculation
procedure is summarized in § 2.5.

2.1. Governing equations
For flow past a backward-facing step, assuming the fluid to be incompressible, the
governing equations, i.e. the incompressible NS equations, can be written as

∂tû+ û · ∇û+∇p̂− Re−1∇2û= f with ∇ · û= 0, (2.1)

where Re is the Reynolds number defined using the maximum inflow velocity and
the step height (we use Re= 500 throughout this work if not otherwise stated), û is
the velocity vector, p̂ is the kinematic pressure and f denotes the body force. On
the inflow boundary, appropriate Dirichlet velocity conditions (a perturbed parabolic
profile in this work) are imposed, as will be described in detail below; on the wall
boundary, no-slip velocity conditions are adopted; and on the outflow boundary, zero
Dirichlet and zero Neumann conditions are implemented for the velocity and pressure
terms, respectively. A computed Neumann pressure condition is applied if the velocity
boundary condition is of Dirichlet type (Karniadakis, Israeli & Orszag 1991). These
equations are compactly written as

∂tû+Dû= f (2.2)

in the following, where D is a nonlinear operator whose linear counterpart has been
much used in hydrodynamic stability analyses, as will be presented below.

At Re = 500, the flow past a backward-facing step is a strong noise amplifier
(Blackburn et al. 2008), and therefore the solution of the NS equations can be
unsteady if perturbations (e.g. initial perturbations, boundary perturbations or external
forcing) are introduced into the computational domain. However, by integrating the
NS equations over a long enough time period to ‘wash out’ the initial perturbations
and specifying a zero body force and an appropriate steady inflow boundary condition
(e.g. a parabolic velocity profile), a steady solution can be obtained. Such a steady
solution, referred to as the base flow, is subject to perturbations such as boundary
perturbations and initial perturbations. Therefore, the ‘real’ flow can be decomposed
as the sum of the base flow and the perturbation flow, i.e. (û, p̂) = (U, P) + (u, p),
where (U, P) denote the base flow velocity and pressure, respectively, and (u, p)
represent the perturbation velocity and pressure, respectively.

If the magnitude of the perturbation is small relative to the base flow, the
development of perturbations is governed by the linearized NS equations

∂tu+U · ∇u+ (∇U)T · u+∇p− Re−1∇2u= 0 with ∇ · u= 0 (2.3)
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or, more compactly,
∂tu− L(U)u= 0, (2.4)

where L(U) is the linearized operator of D, which depends on the base flow and
acts on the perturbation. This operator has been extensively used in stability and
non-normality studies (Trefethen et al. 1993; Chomaz 2005; Schmid 2007). The
boundary conditions for the linearized NS equations are the same as those for the NS
equations (2.2), except that on the inflow boundary a velocity perturbation is imposed
after decoupling the unperturbed parabolic profile from the perturbed inflow velocity
condition.

The perturbations may stem from either boundary perturbations or initial perturba-
tions. An initial perturbation can be modelled as an initial condition of the linearized
NS equations, denoted by u0. Correspondingly, a boundary perturbation can be
modelled as a boundary condition of the linearized NS equations, denoted by ub(x, t),
where x represents the coordinate of the perturbation boundary. To reduce the
dimension of ub(x, t) after temporal–spatial discretization, decompose the temporal
and spatial dependence as

ub(x, t)= ũb(x)T(t, ω), (2.5)

where ũb(x) is the spatial dependence and T(t,ω) is a prescribed temporal-dependence
function,

T(t, ω)= (1− e−σ t2)[1− e−σ(τ−t)2]eiωt, (2.6)

with τ being the final time and σ a positive relaxation factor. The first two factors in
(2.6) ensure that ub(x, 0)= 0 and ub(x, τ )= 0, in order to eliminate the temporal and
spatial discontinuity at the beginning of the integration of the linearized NS equations
and the adjoint equation (which will be introduced later in (2.12)), and the last factor
specifies the frequency of the inflow perturbation to be ω as the final time tends
to infinity. It is seen that for increasing σ , T(t, ω)→ eiωt. However, a large value
of σ induces a high gradient of T(t, ω) or ub(x, t) with respect to t at t = 0, and
therefore leads to numerical discontinuity. The choice of this relaxation factor will
be discussed in detail in § 3. In the present work, the inflow boundary is considered
as the perturbation boundary in order to model the upstream noise. Under the linear
assumption that the perturbations are small enough, the developments of the boundary
and initial perturbations are decoupled and hence can be considered separately.

To simplify notation, introduce the scalar products

(a, b)=
∫
Ω

a · b dV, 〈a, b〉 = τ−1
∫ τ

0
(a, b) dt, [c, d] =

∫
∂Ωb

c · d dS, (2.7a−c)

where Ω represents the spatial domain, ∂Ωb denotes the perturbation boundary, which
refers to the inflow boundary in this work, a and b are defined on the domain Ω and
c and d are defined on the perturbation boundary ∂Ωb.

2.2. Receptivity to inflow and initial perturbations
The receptivity of the base flow to inflow perturbations can be quantified as the gain

K ≡maxũb

(uτ , uτ )
[ũb, ũb] , (2.8)
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where uτ denotes the perturbation velocity at the final time. From the definition, the
gain K represents the largest amplification of the base flow to all possible inflow
boundary perturbations for a given final time and inflow frequency. The boundary
perturbation at which K is obtained is referred to as the optimal boundary perturbation.
In this definition, the initial perturbation is set to zero. The method for calculating K
and the associated optimal boundary perturbation has been presented in Mao et al.
(2013).

Correspondingly, the receptivity to initial perturbations or transient energy growth
can be quantified by the gain

G≡maxu0

(uτ , uτ )
(u0, u0)

, (2.9)

where G represents the maximum ratio of the final energy to the initial energy over
the time period considered. The initial perturbation at which the gain G is obtained
is the optimal initial perturbation. In this definition, the boundary perturbations are
set to zero. The method for calculating G and the optimal initial perturbation is well
established (Barkley, Blackburn & Sherwin 2008) and has been applied to flow past
a backward-facing step by Blackburn et al. (2008).

2.3. Lagrangian functional for base flow modifications
To investigate the effects of base flow modifications on noise amplification, variational
techniques are employed (Bottaro et al. 2003; Schmid 2007; Marquet et al. 2008b;
Brandt et al. 2011). Define the Lagrangian functional as

L = gain− 〈u∗, ∂tu− L(U)u〉 + (λ,DU − f ), (2.10)

where the gain is K for boundary perturbation studies and G for initial perturbation
studies, as defined in (2.8) and (2.9), respectively; the second term, with u∗ being
the adjoint velocity, is a constraint specifying that the perturbation should satisfy
the linearized NS equations; the third term, with λ being a Lagrange multiplier, is a
constraint specifying that the base flow should satisfy the steady NS equations. It is
worth noting that the last term involves the nonlinear NS equations, which will be
linearized when calculating the linear sensitivity of the Lagrangian functional with
respect to the base flow. This nonlinear form is adopted to facilitate the identification
of nonlinear saturation of the body force effects, which involves solving the nonlinear
forced NS equations. From the definitions of the nonlinear operator D (see (2.2))
and the linear operator L (see (2.4)), note that the divergence-free conditions for the
base flow U and perturbation u have been imposed as constraints in this Lagrangian
functional. For boundary perturbation studies the initial perturbation is set to zero,
while for initial perturbation studies the boundary perturbation is set to zero.

One may integrate the second term of (2.10) by parts to obtain

L = gain+ 〈u, ∂tu∗ + L∗(U)u∗〉 − (uτ , u∗τ )+ (u0, u∗0)+ [g(u∗), ũb] + (λ,DU − f ),
(2.11)

where L∗ is the adjoint operator of L and

∂tu∗ + L∗(U)u∗ = 0 (2.12)

represents the adjoint equation, which is used extensively in non-normality studies and
can be expanded as

∂tu∗ +U · ∇u∗ −∇U · u∗ −∇p∗ + Re−1∇2u∗ = 0 with ∇ · u∗ = 0. (2.13)
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We remark that this adjoint equation is integrated backwards in time (Barkley et al.
2008). In (2.11), u∗τ and uτ denote the adjoint velocity at t= τ and t= 0 respectively,
and g(u∗) can be calculated by integrating the adjoint equation:

g(u∗)= τ−1
∫ τ

0
(p∗n− Re−1∇nu∗)T(t,−ω) dt, (2.14)

where ∇n = n · ∇, with n denoting the unit outward normal on the boundary. In this
derivation, the inflow and wall boundary conditions for the adjoint velocity are set
to zero; on the outflow, Robin velocity and zero Dirichlet pressure conditions are
implemented (Mao et al. 2013).

2.4. Linearly optimal body force
The base flow can be modified directly or by adding a body force to the NS equations
(Brandt et al. 2011). A directly modified flow may violate the divergence-free
condition, whereas the body-forced modification, obtained by integrating the forced
NS equations, preserves the divergence-free condition. Therefore in this work the base
flow modification will be generated by the body force, whose optimal distribution
(i.e. the distribution which is most effective in modifying the base flow and its noise
amplification characteristics) can be calculated through evaluating the gradient of the
Lagrangian with respect to the body force.

Setting to zero the first variations of L with respect to u∗, u and λ, we obtain
that the perturbation, adjoint and base flow variables satisfy the linearized NS, adjoint
and NS equations, respectively. Since the adjoint equation is integrated backwards, its
initial condition is u∗τ , which can be obtained by setting to zero the first variation of
L with respect to uτ :

u∗τ =
2uτ
[ũb, ũb] or u∗τ =

2uτ
(u0, u0)

(2.15)

for the boundary perturbation or initial perturbation problem, respectively.
At the equilibrium state, where the Lagrangian reaches a maximum, for receptivity

to inflow boundary perturbations, u0 is zero and ũb is the optimal boundary
perturbation and parallel to g(u∗) (Mao et al. 2012), as can be seen by setting
the variation with respect to ũb to zero. Correspondingly, for receptivity to initial
perturbations, ũb is zero and u0 is parallel to u∗0, as can be obtained by setting the
variation with respect to u0 to zero.

Considering the Gâteaux differential as in Guégan et al. (2006), the gradient of the
Lagrangian with respect to the body force is ∇ f L = λ. Since the original body force
used to calculate the base flow is zero (unforced), a linearly optimal body force that
is most effective in modifying the receptivity is

f = 0+ r
∇ f L

(∇ f L ,∇ f L )1/2
= r

λ

(λ, λ)1/2
, (2.16)

where r is a scale factor for the body force and r2 represents the square integral
of the body force in the computational domain. Therefore, the modified base flow
obtained by driving the NS equations with the optimal body force can be considered
as a function of r.
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By setting the variation of the Lagrangian with respect to the base flow U to zero,
it is seen that λ satisfies

L∗(U)λ= F (2.17)

where

F= τ−1
∫ τ

0
(−∇u · u∗ + u · ∇u∗) dt/[ũb, ũb]. (2.18)

In this derivation, a term in F involving integration over all the boundaries,
i.e. −∫ u∗u · n dS, is dropped. This term is zero on the wall boundaries and inflow
boundaries, but may not vanish on the outflow boundaries. Since F can be interpreted
as the gradient of the Lagrangian with respect to the base flow (without the constraint
of satisfying the NS equations), by further restricting the base flow modification to
be inside the domain, this term becomes zero. As will be seen in the following
sections, the base flow modification concentrates around the bubbles and is zero on
the outflow boundary, confirming that this term can be dropped. If we adopt another,
more complex, form of the Lagrangian functional (see appendix A), this term also
vanishes, and the same result for the body force can be obtained.

Since the base flow is constrained to be steady, the body force f , and consequently
λ, should also be steady. Therefore λ can be calculated as the steady solution of the
forced adjoint equation

∂tλ+ L∗(U)λ= F. (2.19)

2.5. Calculation procedure
The procedure to calculate the optimal base flow modification with respect to
receptivity to inflow noise can be summarized as follows.

(a) Calculate the unforced base flow U from the NS equations (2.2) with f = 0.
(b) Compute the optimal boundary perturbation with respect to the unforced base

flow (Mao et al. 2013).
(c) Integrate the linearized NS equations (2.4) and adjoint equation (2.12) to obtain

u(t) and u∗(t), and calculate the force F using (2.18).
(d) Integrate the forced adjoint equation (2.19) backwards over a long enough time

until a steady solution for λ is obtained.
(e) Substitute λ into (2.16) and choose a scale factor r for the body force to obtain

a linearly optimal body force f .
(f ) Substitute the optimal body force f into the NS equations (2.2) and integrate

over a long enough time until a steady forced solution is reached.

For initial perturbation problems, step (b) should be replaced with computing the
optimal initial perturbations; all the subsequent steps remain the same.

The difference between the forced base flow and the unforced base flow can be
interpreted as the base flow modification due to the linearly optimal body force.
Then the effects of optimal base flow modifications on receptivity can be verified by
comparing the gain K (or G) based on the forced and unforced base flows.

3. Discretization and validation
Spectral elements employing nodal-based polynomial expansions within quadrilateral

elemental subdomains are used for the two-dimensional spatial discretization,
combined with a Fourier decomposition in the spanwise direction. Time integration
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FIGURE 1. Spectral elements in the computational domain: (a) overall domain; (b) domain
close to the inflow boundary and the step.

is carried out using a velocity-correction scheme. Details of the discretization and
its convergence properties (exponential in spatial variables, second-order in time) are
given in Blackburn & Sherwin (2004). The same numerical procedures are used to
solve the NS, linearized NS and adjoint equations.

The computational domain and grid consisting of 992 spectral elements are shown
in figure 1. The step is located at x= 0, and the outflow length (measured from the
step to the outflow boundary) is 50, identical to the configuration used in a previous
non-normality study (Blackburn et al. 2008). The inflow boundary is located at x =
−5, which results in a shorter inflow length (measured from the inflow boundary to
the step) than that used in Blackburn et al. (2008), in order to isolate the step-induced
dynamics from the upstream channel-induced dynamics. The inflow boundary is taken
to be the perturbation boundary, without the uppermost and lowermost edges since
these two edges are connected to the upper and lower walls, where no inflow noise
should be introduced. Therefore the perturbation boundary is at x = −5 and 0.06 6
y 6 0.94.

In all the convergence investigations conducted in this section, we choose a large
final time τ = 150 to eliminate transient effects. The frequency and the spanwise
wavenumber of the boundary perturbation are set to ω = 0.5 and β = 0, where the
gain K reaches a maximum, as will be discussed later in figure 4.

Convergence of the discretization is tested with respect to the spectral element
decomposition and the polynomial order P used in nodal expansions in each spectral
element. Two grids are studied: grid A, as illustrated in figure 1, and grid B, which
has the same domain but 2317 spectral elements. The relaxation factor σ defined in
(2.6) is set to 1 in these convergence tests, and it has been observed that a further
increase in σ changes the magnitude of noise amplifications slightly for final times
τ < 70, at which the transient growth is evident, and has negligible effects for τ > 70.
As most of the following work focuses on a large final time at which transient effects
vanish (i.e. τ = 150), σ = 1 is used throughout this work. As shown in table 1, the
gain K converges to a relative error of less than 0.4 % at P = 5 for grid A with
further refinements of the spatial discretization. It is also seen in table 1 that when
the time step 1t is halved from 0.004 to 0.002, the relative change in K is less

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

17
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.175


Optimal inflow perturbations 239

K

0 0.5 1.0 1.5 2.0
100

101

103

104

105

106
Inflow 5, outflow 45

Inflow 25, outflow 45

Inflow 5, outflow 100

102

FIGURE 2. Convergence of the gain with respect to the domain size.

P Grid 1t K

3 A 0.004 6.407× 105

4 A 0.004 6.147× 105

5 A 0.004 6.090× 105

6 A 0.004 6.112× 105

7 A 0.004 6.113× 105

5 B 0.004 6.113× 105

5 A 0.002 6.095× 105

TABLE 1. Convergence of the optimal gain K with respect to the polynomial order P in
the spectral element method, the grid (A or B) and the time step 1t. The parameters are
the Reynolds number Re= 500, the final time τ = 150, the spanwise wavenumber β = 0
and the temporal frequency ω = 0.5 for inflow perturbation, as will be used in all the
following convergence tests unless stated otherwise.

than 0.3 %. Therefore, in all the following integrations of the NS, linearized NS
and adjoint equations, we use grid A with polynomial order P = 5 and time step
1t= 0.004.

Computational grids with longer inflow and outflow sections are generated to
check the dependence of the gain on the domain size, as shown in figure 2. It is
observed that the gain converges well with respect to the outflow length, and does
not vary significantly with respect to the inflow length around the optimal frequency,
i.e. ω = 0.5. At higher frequencies, the inflow perturbation is more diffused in the
inflow channel and therefore a longer inflow section reduces the gain K.

The convergence of the optimal body force and the outcome of the optimal inflow
perturbation are presented in table 2; the distribution of the optimal inflow perturbation
will be discussed later in figure 5. The body force for extended domains, denoted
by f i, is projected to that for the default domain (with inflow length 5 and outflow
length 50), represented by f 1; so the convergence of ( f i, f 1)/

√
( f 1, f 1)( f i, f i) to 1

can be used as an indication of the similarity of the two body forces. It is seen that
this indicator deviates from 1 within the discretization error for the four extended
domains considered, suggesting that the optimal body force, which is the main
focus of this work, is independent of further extensions of the domain. Similarly,
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FIGURE 3. (Colour online) Contours of the streamwise velocity component of the base
flow. The thick black lines represent the border streamlines of recirculation bubbles. The
Reynolds number is fixed at Re = 500 for this and all subsequent plots unless stated
otherwise.

Case Inflow length Outflow length ( f i, f 1)/
√
( f 1, f 1)( f i, f i) (uτ i, uτ1)/

√
(uτ1, uτ1)(uτ i, uτ i)

1 5 50 1 1
2 15 50 0.99911 0.98049
3 25 50 0.99908 0.98024
4 5 80 0.99910 0.98994
5 5 100 0.99918 0.98976

TABLE 2. Convergence of the optimal body force f and the optimal outcome uτ with
respect to the inflow and outflow lengths. The subscript i denotes the ith case, e.g. f 1 is
the optimal body force for case 1.

it can be observed that a longer outflow or inflow section does not significantly
change the distribution of the optimal outcome uτ , as indicated by the value of
(uτ i,uτ1)/

√
(uτ1, uτ1)(uτ i, uτ i), where uτ i and uτ1 denote the outcomes at the extended

and default domains, respectively.

4. Receptivity to inflow perturbations
The receptivity of the flow past a backward-facing step is studied first, before we

address base flow modifications. Since the receptivity to initial perturbations in the
backward-facing step flow has been thoroughly investigated but receptivity to inflow
noise has received limited attention, in this section we focus on the receptivity to
inflow perturbations. In § 4.1, the optimal gain and the corresponding optimal inflow
perturbation are presented; in § 4.2, the mechanisms of receptivity are revealed; in
§ 4.3, the nonlinear development of the optimal inflow perturbation is studied; in § 4.4,
random inflow noise is used to identify the role of optimal inflow perturbations in real
conditions; finally, in § 4.5, the dependence of receptivity on the Reynolds number is
examined.

4.1. Optimal inflow perturbation and its outcome
The unforced base flow ( f = 0) is illustrated in figure 3. Two recirculation bubbles,
characterized by negative streamwise velocity, can be observed downstream of the
step. The primary bubble is associated with the lower wall and reattaches around
x= 11, while the secondary bubble is associated with the upper wall, separates around
x = 8 and reattaches around x = 17. It can be seen that the flow is almost parallel
downstream of the secondary bubble, which supports local, or streamwise-periodic,
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FIGURE 4. Contours of the gain K at (a) β = 0 and (b) τ = 150.

perturbation developments. This base flow is asymptotically stable but acts as an
amplifier of upstream noise and exhibits strong transient energy growth (Blackburn
et al. 2008; Marquet et al. 2008b).

The receptivity of this base flow to upstream noise, measured by the gain K,
at various spanwise wavenumbers β, final times τ and frequencies ω is plotted in
figure 4. It is seen that inflow perturbations with ω= 0.50 are the most amplified, and
the global maximum gain over the parameters considered occurs at τ = 150, β = 0
and ω = 0.50. From the transient receptivity at β = 0, as shown in figure 4(a), it is
observed that the transient effects vanish at τ = 150 (the gain becomes constant with
respect to τ ). Since the transient noise amplification can be more clearly illustrated
by the receptivity to initial perturbations, in all the following studies of receptivity to
inflow noise we will use τ = 150 unless stated otherwise, in order to exclude transient
effects. In figure 4(b), one can see that the receptivity is maximized at β = 0 and
decreases almost monotonically with increasing β, except that at small ω the optimal
value of β is around 1.

In figure 5, the spatial distributions of the optimal inflow perturbation obtained
at β = 0, τ = 150 and three typical frequencies ω are displayed. It shows that the
vertical wavenumber of the perturbation increases while the oscillation magnitude
decreases with increasing ω. For the global optimal inflow perturbation (ω = 0.5),
the vertical component is significantly smaller than the streamwise component, and
so this global optimal perturbation can be interpreted as a streamwise gust. It is also
worth noting that the distribution of the optimal inflow noise is independent of further
extensions of the outflow section, whereas for a longer inflow section, it tends to
be a uniform streamwise perturbation. Such uniform inflow noise becomes optimal
because it induces perturbations around the step with the same magnitude (considering
the continuity and streamwise momentum equations), without being diffused in the
elongated channel flow upstream of the step.

Figure 6 displays the outcomes of the optimal inflow perturbations presented in
figure 5. Since the distribution of the outcomes is independent of the domain size
as shown in table 2, the optimal outcomes at various domain sizes are not reported
here. The wavenumber of the perturbation in the streamwise direction roughly reflects
the frequency of the inflow noise. It is worth noting that the outcome of the most
energetic inflow perturbation at ω = 0.5 is concentrated in the region downstream of
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FIGURE 5. Distribution of the optimal inflow velocity ũb at τ = 150 and β = 0:
(a) streamwise velocity component; (b) vertical velocity component. The magnitude is
normalized to satisfy [ũb, ũb] = 1. The default inflow and outflow lengths are 5 and 50,
respectively.

the secondary bubble, with the magnitude of the inflow perturbation velocity being
amplified over two orders of magnitude, while the outcomes at ω = 0 and 1.5 are
associated with the primary bubble and the fore part of the secondary bubble. For
the three outcomes, the structures upstream of the end of the secondary bubble are
dominated by strings of vorticity, whose sign changes around the bubble borders,
thus manifesting the inflectional point instability associated with shear layers in
recirculation bubbles (Marquet et al. 2008a). For the two non-zero-frequency cases,
induced perturbations with smaller magnitudes around the upper and lower walls are
also observed.

4.2. Mechanisms of receptivity
To illustrate the mechanisms underlying receptivity, consider as an example the case
where β= 0, τ = 150 and ω= 0.5, at which the receptivity reaches a maximum. From
the momentum equation of perturbations, we have

∂t
u · u

2
+∇ ·

(
U

u · u
2

)
+ u · ∇U · u+∇ · (up)= 0. (4.1)

In this derivation, the viscous diffusion is neglected and the divergence-free conditions
on both the perturbation flow and the base flow are used.

In the region downstream of the secondary bubble, the base flow is almost parallel
(see figure 3). Neglecting the vertical component of the base velocity and the
streamwise gradient of the streamwise base velocity, we obtain

u · ∇U · u= uv
dU
dy
, (4.2)
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FIGURE 6. (Colour online) Contours of spanwise vorticity for the outcomes of the optimal
inflow boundary perturbations at t = 150, β = 0, τ = 150 and (a) ω = 0, (b) ω = 0.5 or
(c) ω = 1.5. The inflow perturbation is normalized so that [ũb, ũb] = 1. The thick black
lines represent the borders of recirculation bubbles.

where u, v and U are the streamwise perturbation velocity, vertical perturbation
velocity and streamwise base velocity, respectively.

Note that in the region downstream of the secondary bubble, the perturbations are
approximately periodic in the streamwise direction (see figure 6b), manifesting the
local dynamics. Therefore the integrals of the second and fourth terms in (4.1) over
a section of the domain covering a period of the perturbations vanish:∫

∇ ·
(

U
u · u

2
+ up

)
dV =

∫
n ·
(

U
u · u

2
+ up

)
dS= 0, (4.3)

since the velocities are zero on the wall boundary and are the same on the inflow and
outflow boundaries of the selected domain, whose surface normal n is opposite.

Combining (4.1)–(4.3), we obtain the energy equation of the perturbations,

dE/dt=−
∫

uv
dU
dy

dV, (4.4)

in a similar way to the derivation for a vortex flow in a cylindrical frame (Pradeep &
Hussain 2006). Here E= ∫ u · u/2 dV is the perturbation energy in this region, whose
streamwise extension covers one period of the perturbations.

On the upper part of the channel, dU/dy < 0, and on the lower part dU/dy > 0.
Therefore, as shown in figure 7, a perturbation with left-headed streamlines (bending
to the left) results in uv(dU/dy) < 0, with energy growing according to (4.4); a
perturbation with right-headed streamlines (bending to the right) corresponds to
uv(dU/dy) > 0 and decays in time; a rectangular streamline is neutral (i.e. neither
grows nor decays, provided that viscous diffusion is neglected).

From figure 6(b) it is seen that in the region around x = 10, where the primary
bubble and the secondary bubble coexist, the perturbation vortex structures can be
viewed as a combination of five vortex strings, as schematically plotted in figure 8.
The main vortex string is between the two bubbles; owing to the bubble-induced
inflectional point instabilities, another two strings with opposite sign, referred to
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FIGURE 7. Perturbation streamlines that result in energy growth and decay in a parallel
base flow. The solid lines with arrows represent the base flow streamwise velocity, and the
dashed lines with arrows represent streamlines of the perturbation. The dotted horizontal
line is the centreline of the channel, and the solid horizontal and vertical lines delineate
the border of a segment of the domain under consideration.

Lower boundary

Upper boundary

Wall vortex

Wall vortex

Main vortex

Bubble vortex

Bubble vortex

FIGURE 8. Sketch of vortex structures in the outcome of the optimal inflow perturbation
at β = 0, τ = 150 and ω= 0.5 (see figure 6b).

as bubble vortices, are generated around the bubble borders; the interaction of the
dominant string of vortices with the wall boundary layer induces another two vortex
strings around the upper and lower walls, referred to as wall vortices. In this region,
the vortex structures are associated with instability mechanisms and so the five vortex
strings are well aligned in the direction normal to the bubble border (shown as
vertically distributed in figure 8 to facilitate comparison with downstream structures).

However, in the region downstream of the secondary bubble, where the bubble
instability vanishes, the bubble vortices are no longer aligned with the dominant
vortices. In this region, when whole vortex structures are convected downstream by
the base flow, the dominant vortices move faster than the bubble vortices, since the
dominant vortices are located in the middle of the channel where the base flow
streamwise velocity is maximal. Therefore the dominant vortices and bubble vortices
form left-headed structures or streamlines at around x= 20, approximately rectangular
profiles at x= 28 and, finally, right-headed structures at around x= 40, as shown in
figures 8 and 6(b). However, the wall vortices always align with the main vortices,
since they are induced by the dominant vortices and are not affected by the convection.
This transformation of streamline patterns from left-headed to rectangular and then to
right-headed structures was also observed in previous non-normality studies, with the
neutral rectangular profile appearing also at around x= 28 (Blackburn et al. 2008).
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Combining figures 6(b), 7 and 8, it can be summarized that the inflow perturbation
is first amplified by the bubble-induced inflectional point instabilities, further
strengthened by the convection effects, which generate perturbations with left-headed
(energy growth) streamlines, and then self-limited by the base flow convection,
which eventually converts the perturbations to right-headed structures (energy decay).
Therefore the perturbation magnitude grows upstream of the (neutral) rectangular
streamlines, which are located at around x=28, and decay downstream of this location.
This threshold point for perturbation development is not obvious in figure 6(b) because
of the choice of contour levels, but it can be seen more clearly in a later discussion
about development of the optimal initial perturbation in figure 23. This amplification
effect associated with base flow convection will be referred to as the misalignment
mechanism in the following.

This mechanism also explains the receptivity at other frequencies. For the ω = 0
case, there is no alternative vorticity and the misalignment mechanism does not
appear, suggesting that the receptivity depends only on the bubble instabilities as
shown in figure 6(a). At higher frequencies, e.g. ω = 1.5, only the primary bubble
induces instabilities and the secondary bubble instability is not activated, as shown
in figure 6(c). Therefore the misalignment effects start downstream of the primary
bubble and, owing to the relatively short streamwise wavelength of the perturbation,
the right-headed streamlines can be generated faster and appear even upstream of
the end of the secondary bubble. Therefore neither the bubble instability nor the
misalignment mechanism is fully exploited in this case.

4.3. Nonlinear development of the optimal inflow perturbations
The receptivity presented above concerns the linearized development of perturbations.
In this subsection, the linear assumption is discarded and the magnitude of the
boundary perturbation is introduced to study the development of the perturbed flow
(which can be interpreted as the nonlinear evolution of the perturbations) through
direct numerical simulations (DNS). The numerical set-up is the same as for the
calculation of the base flow, except that the inflow velocity is perturbed by the
optimal inflow perturbation:

ûin =U in + s
[ũb, ũb]1/2 ũbT(t, ω), (4.5)

where the subscript ‘in’ stands for the inflow boundary, U in represents the parabolic
steady velocity condition used to calculate the base flow, T is a temporal function
as defined in (2.6), ũb is the global optimal inflow boundary perturbation obtained at
ω = 0.5, τ = 150 and β = 0 and s denotes the magnitude of the inflow perturbation.
To capture the complex fluid dynamics in the nonlinear development of the optimal
inflow perturbation, a denser grid consisting of 2317 spectral elements is used in this
subsection.

In the spanwise direction, periodic boundary conditions are implemented. The
flow past a backward-facing step was reported to lose stability at Re = 748 to
three-dimensional waves with spanwise wavenumber β = 0.91 (Barkley et al.
2002), while reaching maximum three-dimensional transient energy growth at
β = 0.645 (Blackburn et al. 2008). Therefore, to roughly accommodate both the
three-dimensional instabilities and optimal transient energy growth, the spanwise
domain length is set to L= 20.9 and 64 Fourier modes are calculated with spanwise
wavenumbers 0, 0.3, 0.6, 0.9, . . . , 18.9.
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FIGURE 9. (Colour online) Contours of spanwise vorticity for flow perturbed by the
optimal inflow perturbation at β = 0, ω = 0.5 and τ = 150, with the magnitude s of the
inflow perturbation being (a) 0.0002, (b) 0.001 or (c) 0.005.

Five typical values of s are tested: 0.0002, 0.001, 0.005, 0.01 and 0.02. The
perturbed flow is stable to three-dimensional perturbations for the first three s values
and becomes three-dimensional for the last two. For the first three s values, the
two-dimensional perturbed flow is illustrated in figure 9. It is seen that as s increases,
the vortex-shedding point moves upstream, since the perturbation is gradually
amplified and reaches a maximum at around x = 28 when convected downstream.
At s= 0.0002, where the inflow velocity perturbation is less than 0.3 % of the inflow
velocity in the base flow, vortex shedding occurs downstream of the bubbles where the
perturbations are mostly amplified while the separation and reattachment of the two
bubbles are almost intact. At s = 0.001, oscillation, or flapping, of the reattachment
point of the secondary bubble is observed. At s= 0.005, the flapping extends to the
reattachment point of the primary bubble and the separation point of the secondary
bubble. It is worth noting that for the s = 0.001 and 0.005 cases, vortex shedding
is not maximized at x = 28 as in the linear simulations, owing to the nonlinear
interaction of the perturbations, which limits the linearly predicted amplifications.

The three-dimensional perturbed flow at s= 0.01 and s= 0.02 is shown in figure 10.
It is seen that at s = 0.01, six periods can be identified in the spanwise direction,
corresponding to the dominant wavenumber β = 1.8. This wavenumber is much
higher than the reported wavenumbers of the most unstable three-dimensional waves
(β = 0.91 in Barkley et al. 2002) and the optimal initial perturbations (β = 0.645
in Blackburn et al. 2008), since this three-dimensionality is developed based on a
two-dimensional vortex-shedding flow rather than an unperturbed steady flow, where
the reported most energetic three-dimensional modes are calculated. For s= 0.02, the
flow becomes more turbulent and no dominant wavenumbers can be identified. As s
increases, the secondary bubble moves upstream and its spanwise oscillation can be
clearly observed at s= 0.02.

The flapping of the bubbles, or the oscillation of the separation and reattachment
points, can be studied in a more quantitative manner by calculating the point on
the wall where the shear stress changes sign. For three-dimensional flow, the shear
stress is averaged across the spanwise direction. The temporal development of the
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FIGURE 10. (Colour online) Iso-surfaces of spanwise vorticity −0.7 (coloured by
streamline velocity) in the flow perturbed by the optimal inflow perturbation at β = 0,
ω= 0.5, τ = 150 and (a) s= 0.01 or (b) s= 0.02.

separation and reattachment points is displayed in figure 11. The perturbed flow has
been evolved for 150 time units to wash out the transient effects before collecting the
separation/reattachment points for another 150 time units. To focus on the flapping
of the primary bubble, only the lower wall is considered.

At s = 0.001, the reattachment point of the primary bubble oscillates with small
magnitude, while three or four smaller bubbles can be observed at a given time,
as shown in figure 11(a). These smaller bubbles are associated with the string of
wall vortices induced by the main vortices (see figure 8) downstream of the primary
bubble. As discussed above, the nonlinear interaction of the perturbations limits
vortex shedding downstream of the bubbles, and so these smaller bubbles shrink and
eventually vanish at around x= 28. Both the primary bubble and the smaller bubbles
oscillate at the frequency of the inflow perturbation, i.e. ω = 0.5, corresponding to
Strouhal number St = 0.08. The Strouhal number of bubble flapping in flow past a
backward-facing step has been observed to be 0.06 (Le et al. 1997), 0.07 (Métais
2001) and O(0.1) (Wee et al. 2004) in fully turbulent regimes. This close agreement
of the Strouhal number between current and previous work indicates that the flapping
can result from receptivity to the energetic inflow noise.

At s=0.005, the small bubbles become stronger and move upstream until they reach
the reattachment point of the primary bubble, as can be seen in figure 11(b). The
reattachment curve consists of two connected segments, one with smaller slope at 10<
x< 13, corresponding to the primary bubble, and the other with greater slope at 13<
x< 28, corresponding to the smaller bubbles. Owing to the upstream extension of the
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FIGURE 11. (Colour online) Oscillation of separation and reattachment points on the
lower wall when the flow is perturbed by the optimal inflow perturbation at β= 0, ω= 0.5
and τ = 150, with the magnitude s of the inflow perturbation being (a) 0.001, (b) 0.005,
(c) 0.01 or (d) 0.02.

smaller bubbles compared with the s = 0.001 case, four or five smaller bubbles can
be identified at a given time.

At s = 0.01, where the maximum inflow velocity perturbation reaches 0.014 (non-
dimensionalized by the maximum inflow velocity of the unperturbed flow), another
string of bubbles appears inside the primary bubble and vanishes before reaching the
primary reattachment point, as shown in figure 11(c). The smaller bubbles downstream
of the primary bubble vanish at around x = 25, owing to the nonlinear interaction
of perturbations, which enhances mixing and prevents the generation of separation
bubbles. At a given time, four or five smaller bubbles can be identified, with one
upstream and the others downstream of the primary reattachment point.

At s = 0.02, where the maximum inflow perturbation reaches 0.028 (2.8 % of the
maximum inflow velocity of the unperturbed flow), the flow becomes turbulent, which
further prevents separation. Therefore, as can be seen in figure 11(d), only one or two
smaller bubbles can be identified downstream of the primary reattachment point, and
it vanishes at around x= 15. However, two smaller bubbles appear inside the primary
bubble and extend upstream until the step. For all the s values studied, the bubble
flapping frequency is associated with the frequency of the inflow perturbations.
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FIGURE 12. Flapping of the reattachment point of the primary bubble at β = 0, ω= 0.5
and τ = 150.

The flapping of the reattachment point of the primary bubble is extracted from
figure 11 by taking the shortest distance in the range 8 < x < 28 (to exclude the
smaller bubbles inside the primary bubble) into consideration (Schäfer et al. 2009).
As shown in figure 12, the unperturbed (s= 0) reattachment is steady. At small values
of s, e.g. s= 0.001 or 0.005, the reattachment point oscillates periodically around the
unperturbed point, while the magnitude of the oscillation increases with s. When the
flow becomes three-dimensional at s = 0.01, the enhanced mixing reduces the size
of the primary bubble. At s = 0.02, the flow is turbulent and the primary bubble
reduces further in size but is still flapping significantly. The flapping frequency of
the primary bubble is not clearly altered by the nonlinear development, and even in
three-dimensional and turbulent conditions the flapping frequency is still associated
with that of the inflow perturbation.

4.4. Nonlinear development of random inflow noise
In physical experiments, the inflow boundary condition is perturbed by random
noise. Using the notation introduced in appendix A, a random inflow noise can
be decomposed as a linear combination of the eigenvectors of a joint operator
M ∗(τ )M (τ ). Since the optimal inflow perturbation is the leading eigenvector of
this operator, it can be considered a component of the random noise. Therefore the
development of the optimal inflow perturbation is expected to be observed in the
flow perturbed by random inflow noise. Kaiktsis et al. (1996) used inflow noise with
random spatial distributions but a prescribed frequency to perturb the backward-facing
step flow and observed that the flow response reaches a maximum with respect to
inflow noise at Strouhal number 0.05–0.104. In this subsection, we use spatially and
temporally random inflow noise to explore the footprint of the optimal boundary
perturbation in a real flow.

The randomly perturbed flow at two typical values of the inflow turbulent intensity,
namely 0.01, where vortex shedding is clearly observed, and 0.05, where the
flow becomes three-dimensional, is shown in figure 13. It is seen that the vortex
shedding downstream of the secondary bubble observed in the optimally perturbed
flow in figure 9 is also present in the randomly perturbed flow. However, since
only a fraction of the random inflow noise is in the form of the optimal inflow
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FIGURE 13. (Colour online) Outcome of the random inflow perturbation at β= 0, ω= 0.5
and τ = 150: (a) contours of spanwise vorticity for the two-dimensional outcome at inflow
turbulent intensity 0.01; (b) iso-surface of spanwise vorticity −0.7 (coloured by streamline
velocity) in the three-dimensional outcome at inflow turbulent intensity 0.05.

perturbation, the random noise perturbs the flow and activates vortex shedding much
less efficiently than the optimal perturbations. In the three-dimensional flow induced
by random inflow noise illustrated in figure 13(b), six periods can be identified in
the spanwise direction, similar to what was observed in the optimally perturbed case
(see figure 10a).

To further illustrate the role of optimal inflow perturbations in the randomly
perturbed flow, the oscillation of separation and reattachment points on the lower
wall due to the random noise is plotted in figure 14. It can be observed that there
are approximately 12 periods for the small bubbles downstream of the main bubble
contained in a time interval of length 150, similar to what is seen in figure 11.
This indicates that the bubbles oscillate at a frequency around ω = 0.5, at which
the receptivity is maximized, and therefore amplifications of the optimal inflow
perturbations are manifested in this randomly perturbed flow.

4.5. Receptivity at higher Reynolds number
In this subsection, the Reynolds number dependence of the receptivity to inflow noise
is studied. Since the recirculation bubble in the base flow extends downstream at
higher Reynolds numbers and the perturbation is expected to reach a maximum at
further downstream locations, the outflow section is extended to 100 in this subsection.
The spanwise wavenumber and final time are fixed at β = 0 and τ = 150, respectively.

From figure 15 it can be seen that the gain increases dramatically as the Reynolds
number is increased from 500 to 1000, while the maximum appears at ω = 0.5 for
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FIGURE 14. (Colour online) Oscillation of separation and reattachment points on the
lower wall when the flow is perturbed by the random inflow perturbation at turbulent
intensities (a) 0.01 and (b) 0.05.
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FIGURE 15. The Reynolds number dependence of the gain to optimal inflow noise at
τ = 150 and β = 0.

all the cases considered. The linear outcomes of the optimal inflow perturbations
at different Reynolds numbers are presented in figure 16, where the borders of the
recirculation bubbles in the base flow are plotted together. It is seen that at a higher
Reynolds number, the upper bubble extends downstream, inducing a longer ‘growth’
section associated with the inflectional point instability, and the rectangular structure
appears further downstream. These observations suggest that the mechanism of noise
amplification at higher Reynolds numbers is similar to that discussed in § 4.2, where
the Reynolds number was fixed at 500.

The nonlinear evolution of the optimal perturbation is further investigated through
DNS of the base flow perturbed by the inflow noise at Re = 1000, β = 0, τ = 150
and ω = 0.5. Owing to the large magnitude of noise amplifications, as shown in
figure 15, even at a perturbation magnitude of s = 0.001 the flow develops into a
three-dimensional and turbulent pattern before reaching the end of the upper bubble,
as displayed in figure 17. This observation confirms that the flow at Re=1000 is much
more sensitive to inflow noise than that at Re= 500, and indicates that the ‘growth’
section is not fully exploited at this magnitude of inflow noise.
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FIGURE 16. (Colour online) Contours of spanwise vorticity for the outcome of the optimal
inflow boundary perturbation at β= 0, τ = t= 150, ω= 0.5 and (a) Re= 600, (b) Re= 800
or (c) Re= 1000. Different contour levels are chosen in each plot to highlight structures.
The thick black lines represent the borders of recirculation bubbles.
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FIGURE 17. (Colour online) Iso-surfaces of spanwise vorticity −0.7 (coloured according
to the streamline velocity) in the flow perturbed by the optimal inflow perturbation at
β = 0, ω= 0.5, τ = 150, s= 0.001 and Re= 1000.

5. Base flow modification with respect to receptivity to inflow noise
To further illustrate the mechanism of receptivity to inflow noise and explore the

control of receptivity, an optimal body force is calculated to modify the base flow. As
presented above in (2.16), the magnitude of the gradient of the Lagrangian functional
with respect to the body force, measured as the square integral across the domain,
(∇ f L ,∇ f L ), evaluates the effectiveness of the optimal body force in modifying the
base flow and its receptivity. It is seen in figure 18 that the magnitude of this gradient
is maximal at ω= 0.50, indicating that the strongest receptivity, which also occurs at
ω= 0.50, is most liable to be controlled by the body force.

Because of the linearization of the governing equations, the body force calculated in
(2.16) optimally modifies the base flow and its receptivity only when the body force is
small enough. In figure 19, a scale factor of r=−10−5, which is in the linear regime
as will be shown in figure 20, is adopted to illustrate the modification of the base
flow due to the optimal body force. This negative scale factor is expected to reduce
the receptivity of the base flow to inflow noise. At ω = 0 and ω = 1.5, the change
in the base flow is concentrated around the fore segment of the secondary bubble
and the rear part of the primary bubble, both of which tend to suppress the bubble
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FIGURE 18. Square integral of the gradient of the Lagrangian with respect to the body
force, i.e. (∇ f L ,∇ f L ), at τ = 150 and β = 0.

instabilities and consequently the receptivity. At ω= 0.5, the modification is extended
downstream of the bubbles and tends to flatten the vertical distribution of the base
flow velocity (reducing |dU/dy|), decelerate the generation of left-headed perturbation
streamlines and subsequently reduce the perturbation growth. Physically these base
flow modifications can be achieved by, for instance, boundary blowing around the
separation point of the secondary bubble along the border streamline of the bubble,
which injects momentum into the separating flow, or blowing around the reattachment
line of the primary bubble in the direction along the border streamline of the bubble.

The receptivity of the optimally modified base flow is shown in figure 20(a). Over
the range of r considered, i.e. −0.01 6 r 6 0.01, a steady solution of the base flow
was obtained, indicating that the forced base flow is asymptotically stable at least with
respect to two-dimensional perturbations. As expected from (2.16), it is observed that
a positive scale factor r increases the gain K, while a negative r reduces the gain. To
verify the linearly predicted effects of the body force on receptivity, define an indicator

I =1K/(∇ f L , f )=1K/(∇ f L , r∇ f L ), (5.1)

where 1K is the difference of the gain between using forced and unforced base flows.
If |r| is small enough, the body force works in the linear range and the indicator I
is expected to be 1. At the smallest levels of |r| considered, i.e. r = 10−5, we have
K = 1.0026; and for increasing |r|, I deviates from 1 significantly as the nonlinear
effects become non-negligible, as shown in figure 20(b). It can also be seen that I< 1
for negative r, due to the restriction that the gain has to be positive, and therefore
1K has a lower bound.

Effects of the base flow modification on the distributions of the optimal inflow
perturbation are revealed in figure 21. For the scale factors considered, the change
in the optimal inflow perturbation is trivial, indicating that the body force acts
to weaken/strengthen the existing mechanism of receptivity, but does not modify the
base flow or the receptivity mechanism fundamentally. It is calculated that the relative
change in the base flow, measured as (U(−0.01),U(−0.01))/(U(0),U(0)) where the
base flow is considered as a function of the scale factor r, is less than 0.05 %.

The optimal base flow modification presented in figure 19 is calculated at τ = 150,
β = 0 and ω = 0.5, and has the expected effects on receptivity at the ‘design’
parameters, as displayed in figure 20. The control effects of this modification to
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FIGURE 19. (Colour online) Contours of the streamwise velocity of the base flow
modification (difference between the forced and unforced base flow) with r=−10−5. The
body force is obtained at τ = 150, β = 0 and (a) ω= 0, (b) ω= 0.5 or (c) ω= 1.5. The
thick black lines delineate the border of unforced recirculation bubbles.

receptivity at out-of-design conditions are illustrated in figure 22. It is observed that
the gain at the out-of-design final time and spanwise wavenumbers is also suppressed
at the negative scale factor r = −0.01. However, the receptivity at out-of-design
frequencies is much less suppressed, since the optimal base flow modifications
at these frequencies are dramatically different from that at ω = 0.5, as has been
discussed in figure 19. For the modified base flow, the maximum gain still occurs
at around ω = 0.5, τ = 150 and β = 0, confirming that the mechanism of receptivity
is weakened but not fundamentally altered. It is also worth noting that the transient
effects are significantly suppressed: the contour levels become flatter with increasing
τ , suggesting that the long-term amplification of inflow noise and the transient energy
growth are highly correlated.

6. Correlation between amplifications of initial and boundary perturbations
In this section, the correlation between receptivity to inflow noise and receptivity

to initial perturbations is explored by comparing the body forces that optimally
modify amplifications of initial and boundary perturbations. The receptivity to
initial perturbations and the associated transient energy growth in flow past a
backward-facing step have been well studied. The optimal initial perturbation and
its outcome are reproduced in the current work for further studies of base flow
modifications, as shown in figure 23. As presented in § 5, the receptivity to inflow
noise reaches a maximum at β = 0, while the receptivity to initial perturbations was
reported to become maximal at β = 0.645, with a slight increment from that at β = 0
(Blackburn et al. 2008). Therefore, to compare the mechanisms of amplification of
inflow and initial perturbations, we take β = 0 in the initial perturbation calculations.

The final time at which the transient energy growth of the optimal initial
perturbation reaches a maximum is τ = 58.1, which agrees well with the value
reported by Blackburn et al. (2008). It is seen in figure 23(a) that the optimal initial
perturbation is located around the step and tilts backwards against the shear of the
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FIGURE 20. Plots of (a) the gain K for forced base flow and (b) the indicator I of the
linear dynamics at ω= 0.5, τ = 150 and β = 0.

(a)

Streamwise velocity

y

0.6 0.8 1.0 1.2 1.4
0

0.2

0.4

0.6

0.8

1.0 (b)

Vertical velocity
–0.2 0 0.2 0.4

0

0.2

0.4

0.6

0.8

1.0

FIGURE 21. Comparison of the optimal inflow perturbations ũb with the forced and
unforced base flow at τ = 150, ω = 0.5 and β = 0: (a) streamwise velocity component;
(b) vertical velocity component. The magnitude is normalized so that [ũb, ũb] = 1.

base flow. When this initial perturbation is convected downstream, it is compressed
and amplified by the Orr mechanism (Vanneste 1999; Guégan et al. 2006), as
shown in figure 23(b). Further downstream, in the region around the bubbles, the
inflectional point instability manifests itself, as displayed in figure 23(c). In the
region downstream of the secondary bubble, the misalignment mechanism can be
observed in figure 23(d): the perturbation consists of left-headed, rectangular and
right-headed structures, with the rectangular profile appearing around x= 28, similar
to what is seen in figure 6(b). As mentioned before, the choice of contour levels in
figure 23(d) shows in a clearer way that the magnitude of the perturbation grows
upstream of the rectangular structure and decays downstream of it, which validates
the theoretical results derived from (4.4). Therefore, the receptivities to both inflow
and initial noise rely on the bubble instabilities and the misalignment mechanism
for perturbation amplification. However, in the case of receptivity to inflow noise,
the perturbation cannot take advantage of the Orr mechanism, since the inflow noise
would be convected by the base flow to decline forwards instead of backwards.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

17
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.175


256 X. Mao

(a)

10

10

10

10

10
0

100

100 100

100
1000

1000

1000 1000

3000

3000

3000

50 100 1500

0.5

1.0

1.5

2.0 (b)

1010

100

100

1000
1000

1000

1000

0.5 1.0 1.5 2.00

0.5

1.0

1.5

2.0

FIGURE 22. Contours of the gain K of the modified base flow at (a) β = 0 and
(b) τ = 150. The base flow modification is obtained at τ = 150, β = 0.5, ω = 0 and
r=−0.01.

Following the procedure presented in § 2.5, the body force that optimally modifies
the base flow’s amplification with respect to initial perturbations can be calculated. To
illustrate the relation between the receptivities to initial and boundary perturbations,
the correlation between the forces that optimally modify the amplifications of initial
and boundary perturbations can be computed as

ρ = ( f bp, f ip)/
√
( f ip, f ip)( f bp, f bp), (6.1)

where f bp refers to the body force that optimally modifies amplifications of
boundary perturbations (inflow noise) at a large enough final time τ = 150, so
as to eliminate transient energy growth, and f ip is the body force that optimally
modifies amplifications of initial perturbations at τ = 58.1, at which the transient
growth is maximized over the parameters considered.

As revealed in figure 24, the correlation ρ is approximately zero at ω=0, indicating
that the receptivities to steady inflow noise and the optimal initial perturbation
are almost decoupled. At ω ≈ 0.5, where the receptivity to inflow noise attains a
maximum, the correlation between the receptivities to inflow and initial perturbations
also becomes maximal and reaches 0.973, indicating that the two body forces almost
overlap. This observation suggests that the most dramatic amplifications of inflow
perturbations and initial perturbations rely on the same mechanisms (the bubble
instabilities and the misalignment mechanism) and can be controlled simultaneously
by a body force. Also notice that as ω becomes larger, this correlation drops,
in agreement with the previous discussion that the receptivity to inflow noise at
high frequencies depends on the primary bubble instability, and the misalignment
mechanism downstream of the secondary bubble is almost irrelevant.

It is worth mentioning that there is another, more intuitive way of illustrating
the correlation between receptivities to boundary and initial perturbations, i.e. to
compare the outcomes of the optimal initial perturbation and the optimal inflow
perturbation. However, as can be seen in figure 6(b), the outcome of the optimal
boundary perturbation spreads over the region downstream of the step, while, as
shown in figure 23(d), the outcome of the optimal initial perturbation is located
downstream of the bubbles and the contribution of the bubble instabilities to the
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FIGURE 23. (Colour online) Contours of spanwise vorticity in the development of the
optimal initial perturbation at τ = 58.1, β = 0 and (a) t = 0, (b) t = 4, (c) t = 20 and
(d) t= 58.1. Different contour levels are chosen in each plot to highlight structures. The
thick solid lines delineate the borders of recirculation bubbles.

energy growth is not directly evident because of the convection effects. Therefore the
profile of the perturbation outcome does not cover all the amplification mechanisms,
and the correlation between the outcomes of the initial and boundary perturbations is
physically less meaningful than the correlation of the optimal body forces.

The receptivity to initial perturbations, measured by the transient energy growth G,
which is calculated using the unforced and optimally forced base flow, is shown in
figure 25. It is seen that at a scale factor of |r| = 10−5, the maximum transient growth
can be enhanced or suppressed by an order of magnitude. As the transient growth
is suppressed (respectively, enhanced), the optimal final time decreases (respectively,
increases), because in the modified flow the rectangular streamlines appear earlier
(respectively, later), further confirming the role of the misalignment mechanism in
noise amplification.

7. Conclusion
Noise amplification of the flow past a backward-facing step with an expansion ratio

of 0.5 is investigated. As in previous work by Blackburn et al. (2008), in most of
this work the Reynolds number is fixed at Re= 500, at which the unperturbed base
flow is steady and two-dimensional, featuring a primary bubble attached to the lower
wall and a secondary bubble attached to the upper wall. Depending on the source of
the perturbations, the amplification effects can be classified into receptivity to initial
perturbations and receptivity to inflow boundary perturbations.

Since the receptivity to initial perturbations (transient growth of the initial
perturbation) in flow past a backward-facing step has been well studied, the present
work focuses on the receptivity to inflow noise. A large enough final time τ = 150
is used to isolate the receptivity from transient energy growth. It is found that
the receptivity to inflow noise is maximized at spanwise wavenumber β = 0 and
frequency ω = 0.5, at which the magnitude of the inflow velocity perturbation is
amplified over two orders of magnitude. The receptivity can be explained by a
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FIGURE 24. Correlation between the body force that optimally modifies amplifications
of inflow noise at β = 0 and τ = 150 and the body force that optimally modifies
amplifications of the initial perturbation at β = 0 and τ = 58.1, plotted for various
frequencies ω.
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FIGURE 25. Transient growth of the controlled and uncontrolled flow at β = 0. The
maximum growth point on each curve is highlighted by dotted lines.

combination of bubble-induced inflectional point instabilities and a misalignment
mechanism, which transfers perturbations downstream of the secondary bubble to
left-headed, rectangular and right-headed structures. The magnitude of the perturbation
grows in the left-headed region until it reaches the rectangular profile, downstream
of which, in the right-headed region, the magnitude decays. In the region further
downstream, the base flow stretches the perturbation and the structure becomes more
sharply right-headed. Therefore the perturbation growth induced by the misalignment
mechanism is self-limiting. The most amplified inflow perturbation, i.e. the one with
ω= 0.5, takes full advantage of the bubble instabilities and misalignment mechanisms,
whereas perturbations of higher or lower frequencies are amplified only around the
primary bubble and the fore segment of the secondary bubble. Similar optimal
frequency and receptivity mechanisms are observed at higher Reynolds numbers, up
to Re= 1000.

The nonlinear development of the optimal boundary perturbation is studied through
DNS. It is observed that at low magnitudes of inflow perturbations, vortex shedding
occurs downstream of the secondary bubble. As the magnitude of perturbations
increases, flapping of the separation and reattachment points of the bubbles is
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observed, and smaller bubbles are induced along the wall. When the maximum
inflow perturbation reaches 1.4 % of the free-stream velocity, the flow becomes
three-dimensional. It is also observed that the three-dimensional and turbulent
developments of the perturbed flow enhance mixing and significantly reduce the
size of the recirculation zones. The Strouhal number of bubble flapping in the flow
perturbed by both optimal and random inflow noise is 0.08, which agrees with the
frequency of the globally optimal inflow perturbation. This Strouhal number has been
reported to be 0.06 (Le et al. 1997), 0.07 (Métais 2001), 0.05–0.1 (Kaiktsis et al.
1996) and O(0.1) (Wee et al. 2004) at larger Reynolds numbers or in fully turbulent
regimes. Even though these previous results were obtained at larger Reynolds numbers,
the close agreement with the current work suggests that bubble flapping can be a
consequence of receptivity to inflow noise.

Further investigations of base flow modifications are conducted to reveal the
mechanism of noise amplification and to explore the control of receptivities. To
preserve the divergence-free condition, the base flow is modified by a body force.
It is worth noting that boundary suction/blowing can be physically more useful
for modifying or controlling the base flow, but the body force is more effective in
changing the flow even in regions far from boundaries, and therefore it is a suitable
tool for studying the mechanisms of noise amplification. A numerical method is
developed to calculate the linearly optimal body force; this method accommodates
both initial and boundary perturbation problems. The distribution of the base flow
modification due to the linearly optimal body force is found to be strongly correlated
with the outcome of the inflow noise. At ω = 0.5, the modification is located
around the bubbles and the shear layers downstream of the bubble, which modifies
the bubble-induced instabilities and the misalignment mechanism. At lower and
higher frequencies, the modification concentrates around the primary bubble and
the fore part of the secondary bubble, reflecting the irrelevance in these cases of
the misalignment mechanism in the region downstream of the secondary bubble.
However, the distribution of the optimal inflow perturbation is insensitive to the base
flow modifications, indicating that the modifications do not alter the fundamental
features of the flow. A modification with a relative energy change of 0.05 % is
found to reduce the maximum receptivity by around two orders of magnitude. The
modification effects on receptivity are preserved for out-of-design final times and
spanwise wavenumbers, but do not work well for out-of-design noise frequencies,
owing to the variation of mechanisms at different frequencies.

In optimal initial perturbation studies, it is confirmed that the transient energy
growth of the initial perturbation also stems from the bubble instability and the
misalignment mechanism. From the correlation between the body forces that optimally
modify receptivities to inflow and initial perturbations, it is found that the base
flow modification that suppresses receptivity to initial perturbations also suppresses
receptivity to inflow perturbations at the most amplified frequency. However, at higher
or lower frequencies, the correlation drops, confirming that high- and low-frequency
receptivity to inflow noise relies on different mechanisms than the transient energy
growth of initial perturbations. The base flow modification study also suggests that
the optimal body force or optimal modification can reveal the complete mechanisms
of noise amplification, which cannot be fully identified from the outcome of the
optimal initial or boundary perturbations.
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Appendix A. Lagrangian functional
Similar to (2.10), a ‘symmetric’ Lagrangian functional can be defined as

L = K + 〈λ1, ∂tu− L(U)u〉 + 〈λ2, ∂tu∗ + L∗(U)u∗〉
+ [λ3, g(u∗)−Kũb] + (λ4, u(τ )− u∗(τ ))+ (λ5,DU − f ), (A 1)

where the λi (1 6 i 6 5) are Lagrange multipliers: λ1 and λ2 are time-dependent
variables defined on the domain Ω and time interval [0, τ ], λ3 is a time-independent
variable defined on the perturbation boundary ∂Ωb, and λ4 and λ5 are time-
independent variables on Ω . The first term on the right-hand side is the optimal
gain over all possible boundary perturbations; the second, third, fourth and fifth terms
constitute the constraint that ũb is the optimal boundary perturbation; and the final
term is the constraint specifying that the base flow U is a steady solution of the
forced NS equations (2.2).

One may integrate the second and third terms in (A 1) by parts to obtain

L = K − 〈u, ∂tλ1 + L∗(U)λ1〉 + (u(τ ), λ1(τ ))− [g(λ1), ũb] − 〈u∗, ∂tλ2 − L(U)λ2〉
+ (u∗(τ ), λ2(τ ))− [g(u∗), λ2b] + [λ3, g(u∗)−Kũb]
+ (λ4, u(τ )− u∗(τ ))+ (λ5,DU − f ), (A 2)

where λ2b is defined on the perturbation boundary and satisfies λ2(τ )=M (τ )λ2b, with
M (τ ) being an operator that evolves a boundary perturbation to a final outcome,
whose action corresponds to integration of the linearized NS equations.

Setting to zero the first variations of L with respect to λi (1 6 i 6 5) recovers the
constraint that ũb is the optimal boundary perturbation leading to the largest gain K
to the base flow U, which is a steady solution of the NS equations (2.2). Setting to
zero the first variations of L with respect to u∗(τ ), u(τ ), ũb, g(u∗) and K, we obtain
the following equations:

δL

δu∗(τ )
= 0 ⇒ λ2(τ )= λ4, (A 3)

δL

δu(τ )
= 0 ⇒ λ1(τ )=−λ4, (A 4)

δL

δũb
= 0 ⇒ −g(λ1)=Kλ3, (A 5)

δL

δg(u∗)
= 0 ⇒ λ2b = λ3, (A 6)

δL

δK
= 0 ⇒ [λ3, ũb] = 1. (A 7)

Upon eliminating λ3 and λ4, we have

[λ2b, ũb] = 1, −g(λ1)=Kλ2b and λ1(τ )=−λ2(τ ). (A 8a−c)
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Substituting into (A 8) the operator M and its adjoint M ∗, whose action
corresponds to integration of the adjoint equation, yields

M ∗(τ )M (τ )λ2b =Kλ2b. (A 9)

Clearly, λ2b is the eigenvector of the joint operator M ∗(τ )M (τ ) corresponding
to the largest eigenvalue K. Therefore λ2b is parallel to ũb. By standard algebraic
manipulations, one obtains

λ2b= ũb/[ũb, ũb], λ2(τ )= u(τ )/[ũb, ũb] and λ1(τ )=−u∗(τ )/[ũb, ũb], (A 10a−c)

and hence
λ1 =−u∗/[ũb, ũb] and λ2 = u/[ũb, ũb]. (A 11a,b)

In (A 1), the variation of the second and third terms on the right-hand side with
respect to the base flow U can be formulated as

δ〈λ1, ∂tu− L(U)u〉 + δ〈λ2, ∂tu∗ + L∗(U)u∗〉
= 〈δU,∇u · λ1〉 − 〈δU, u · ∇λ1〉 + 〈δU,∇u∗ · λ2〉 + 〈δU, λ2 · ∇u∗〉. (A 12)

In deriving this equation, (A 11) has been used to eliminate the terms involving surface
integrations over the outflow boundary. Similarly, the variation of the last term with
respect to the base flow U can be written as

δ(λ5,DU − f )(δU)=−(δU, L∗(U)λ5). (A 13)

By combining (A 12) and (A 13), the variation of the Lagrangian functional with
respect to the base flow can be obtained:

δL (δU)= (δU, Fs − L∗(U)λ5), (A 14)

where
Fs = τ−1

∫ τ

0
(∇u · λ1 − u · ∇λ1 +∇u∗ · λ2 + λ2 · ∇u∗) dt (A 15)

denotes the gradient of the Lagrangian functional with respect to the base flow,
without the constraint that the base flow satisfies the NS equations (the last term in
(A 1)). Substituting (A 11) into (A 15) gives

Fs = τ−1
∫ τ

0
(−∇u · u∗ + 2u · ∇u∗ +∇u∗ · u) dt/[ũb, ũb]. (A 16)

Owing to the form of the Lagrangian functional, no further assumptions are
introduced in the derivation of (A 16). Therefore the assumption that the base flow
variation is zero on the boundaries, as used in (2.18), can be released. Replacing
F in (2.19) by Fs and following the procedures in § 2.5, the same results for the
linearly optimal body force can be obtained.
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