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Abstract
Bathymetric simultaneous localisation and mapping (SLAM) methods yield accurate navigation results for
autonomous underwater vehicles (AUVs) and can construct consistent seabed terrain maps. Multiple independently
working vehicles can complete tasks like surveying and mapping efficiently, which means cooperative bathymetric
SLAM using multiple AUVs is suitable for large-scale seabed mapping. However, the transmission of bathymetric
measurements collected using a multi-beam echo sounder over a low bandwidth, noisy, and unreliable acoustic
channel is difficult, making cooperative bathymetric SLAM very challenging. This paper develops a graph-based
cooperative bathymetric SLAM system that can compress many bathymetric measurements into small-scale acous-
tic packets and yield accurate navigation results with a 10% loss of acoustic packets caused by unreliable acoustic
communication. According to the simulation conducted using the field data, the new algorithm is shown to be
robust and capable of providing accurate location and mapping results over a low bandwidth, noisy, and unreliable
acoustic channel.

1. Introduction

In recent years, autonomous underwater vehicles (AUVs) have become important tools for ocean
exploration and seabed topography mapping, but the consistency of the built seabed map is dependent
on the errors associated with AUV navigation systems. Navigation methods such as dead reckoning
(DR), long baseline (LBL) acoustic positioning, and ultrashort baseline (USBL) acoustic positioning
all provide accurate estimates for the vehicle’s positions (Paull et al., 2013). However, the resulting
navigational error of a DR system will grow over time even with the supplement of a Doppler velocity
log, thus rendering it unsuitable for achieving prolonged autonomy at sea. Locating sea-floor mounted
baseline transponders of LBL positioning systems on deep seas can be a particularly complex process
and may involve costly undertakings (Casalino et al., 2014). Baseline transponders in USBL positioning
systems are mounted on the ship instead of the seabed, but the positioning accuracy achieved by USBL
positioning systems is dependent on the working depth of the vehicle and an error of approximately
0·5% of the range between the baseline transponders and the vehicle makes them unsuitable for deep-sea
navigation (Mandić et al., 2016).
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Figure 1. Cooperative bathymetric SLAM system with two vehicles.

Bathymetric simultaneous localisation and mapping (SLAM) methods have shown the potential to
yield accurate navigation results for vehicles and construct consistent seabed maps in unknown areas
(Barkby et al., 2012). In most bathymetric SLAM methods, a vehicle measures the seabed terrain using
a multi-beam echo sounder (MBES) while estimating its location with a DR system simultaneously.
Loop closures are then detected according to the similarity between current and historical bathymetric
measurements. With these loop closures, the trajectory that includes all states of the vehicle will be
estimated. In Ma et al. ( 2020b), the bathymetric SLAM method was proved to be an accurate and robust
navigation method in long endurance underwater navigation. However, due to the limited endurance of
a single vehicle, mapping a large-scale seabed terrain using a single vehicle is quite time-consuming.

Multiple working vehicles can complete complex tasks, like surveying targets over a large-scale
area, more quickly (Ouyang et al., 2020). Many breakthroughs have been made in cooperative SLAM.
However, most of the research on cooperative SLAM was conducted using underwater camera (Bonin-
Font and Burguera, 2020) or side-scan sonar (Brown et al., 2008; Paull et al., 2015). Underwater visual
SLAM can only work when the AUV operates in clear water and near the seabed (Kim and Eustice,
2013), and the accuracy of cooperative side-scan sonar SLAM is highly dependent on the richness of
underwater features, such as manganese nodules. Compared with the techniques listed above, cooperative
bathymetric SLAM is more suitable for underwater navigation and mapping.

Figure 1 illustrates a cooperative bathymetric SLAM for a two-vehicle system that includes a leading
vehicle and a follower. Both vehicles in the cooperative bathymetric SLAM system measure the seabed
terrain using MBES. The follower regularly broadcasts acoustic packets which consist of its historical
state estimates and bathymetric measurements through the acoustic channel, while the leading vehicle
will estimate the trajectories of both vehicles and broadcast the estimated trajectory of the follower.

The performance of the cooperative SLAM system is contingent on the quality of the communications
channel. Communication using the acoustic channel is low bandwidth (≈1 Kb/s), high latency (signals
travel at speed of sound ≈1,500 m/s), and even unreliable (about 10% packet loss), making transmitting
a substantial amount of bathymetric data over an acoustic channel very challenging. Meanwhile, unlike
both visual and side-scan sonar SLAM methods, bathymetric SLAM is featureless, which leads to
difficulties in compressing the bathymetric measurements by extracting landmarks from them. Octree
algorithms are usually applied to compress the bathymetric data (Palomer et al., 2014), but the octree is
a complex structure composed of many highly structured nodes, which means that the entire structure
may drop out catastrophically when transmitting over the noisy and unreliable channel.

The contribution of this paper is to propose a communication-constrained cooperative bathymetric
SLAM framework. To broadcast a large number of bathymetric points using minimal communication,
the proposed cooperative SLAM method applies a simple and efficient bathymetric data transmission
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method, that relies on a three-stage architecture, namely, the compression, transmission, and recon-
struction stages. Using the proposed bathymetric data transmission method, vehicles can use acoustic
packets containing several pseudo points to share a large sub-map in real time, and the size of acoustic
packets generated by this method is completely an artificial constant to meet the bandwidth constraints
of different acoustic communication devices. Thus, the proposed communication-constrained coopera-
tive bathymetric SLAM algorithm can locate vehicles accurately and construct consistent bathymetric
maps over the low bandwidth, high latency, and unreliable acoustic communication.

2. Related work

Most of the research on bathymetric SLAM was conducted using the filtering theory or the graph
method. Barkby et al. (2012), Massot-Campos et al. (2019), Norgren and Skjetne (2018), and Kim and
Jung (2011) all provide filtering bathymetric SLAM methods, in which the first three methods are based
on particle filters and the last one is achieved using the extended Kalman filter (EKF). To deal with
the incorrect measurement update caused by the incorrect panel assignment in Kim and Jung (2011),
Jang and Kim (2019) proposed a dynamic grid adaptation method that selected panels by calculating
the confidence interval of the vehicle’s position. Palomer et al. (2016) proposed a probabilistic iterative
closest point (ICP) method to estimate uncertainties of measured points in loop closure detection and
tested its performance in an EKF implementation. López et al. (2017) applied an EKF module to
fuse state estimates yielded by both visual SLAM and scan matching methods. Yuan et al. (2017)
proposed an augmented EKF (AEKF) SLAM method in which state parameters are estimated using
a recursive and iterative estimation-update process. Marchel et al. (2020a) has proved that the range-
bearing SLAM method can yield accurate navigation results, but the proposed algorithm relayed on the
aid of beacons. The nearly flat seabed terrain may lead to invalid loop closures in bathymetric SLAM,
making identifying all invalid loop closures crucial. Filtering bathymetric SLAM methods cannot update
or remove historical loop closures, which means a loop closure will have a lifetime impact on the map
constructed once it has been detected, whether the loop closure is valid or not.

The graph method proposed by Lu and Milios (1997) is a flexible way for the robust bathymetric
SLAM method to consider invalid loop closure identification. Torroba et al. (2019) applied the graph-
based bathymetric SLAM method to maximise the geometric consistency of overlapping regions in
industrial-scale bathymetric surveys. Ma et al. (2020a) designed a graph-based bathymetric SLAM
framework that can identify invalid loop closures according to the consistency of the built seabed
map. On the basis of traditional graph-based bathymetric SLAM, Torroba et al. (2020) modelled the
uncertainty of the generalised ICP (GICP) registration result of a pair of sub-maps in bathymetric SLAM.
They trained PointNetKL, an artificial neural network, using the KL divergence between the learned
uncertainty distribution and one computed by the Monte Carlo method as the loss, and performance of
their method has been tested using field data collected in two long-term AUV missions. Similar to the
graph method, Deschaud (2018) proposed an implicit moving least-squares (IMLS) SLAM framework
in which IMLS scan-to-model framework replaced the classical ICP to detect loop closures.

Some breakthroughs have also been made in cooperative SLAM methods. Demim et al. (2018)
proposed the ASVSF-DCSLAM method that solved the decentralised cooperative SLAM (DCSLAM)
problems using an adaptive smooth variable structure filter (ASVSF) algorithm. To improve the consis-
tency of the cooperative SLAM system, they implemented the adaptive covariance intersection method
for the evaluation of the estimates on shared features’ positions. Trujillo et al. (2018) designed an
EKF-based cooperative SLAM system for the multi-UAV system with monocular cameras. The main
contribution of this research is that they analysed the observability of the aerial multi-robot system and
proved that the proposed system considerably reduces the unobservable modes.

As for communication-constrained cooperative SLAM, Choudhary et al. (2017) devise a distributed
algorithm, named ‘two-stage pose graph optimisation’, in which globally optimal trajectories of multiple
vehicles can be estimated using minimal communication. They also extracted several objects from the
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raw RGB (red, green, and blue) data and constructed an object-based model to decrease the sizes of
communication packets. Mangelson et al. (2018) aligned trajectories of vehicles using low-dimensional
feature vectors instead of image feature descriptors, which decreases the amount of communication
data between vehicles. Paull et al. (2015) designed a cooperative SLAM system using side-scan sonar
and proposed a marginalisation method of intermediate poses to reduce the size of acoustic packets.
Most of the research listed above compressed the raw data by extracting objects or visual features. As
a featureless method, it is difficult to extract any objects, lines, or surfaces from the seabed terrain in
the bathymetric SLAM methods, making real-time broadcast of bathymetric measurements between
vehicles quite challenging.

3. System definition

The cooperative bathymetric SLAM system is defined by considering the scenario shown in Figure 2.
The cooperative bathymetric SLAM system includes two vehicles: the leading vehicle (vehicle 1) and
a follower (vehicle 2). Both navigate at the same depth which can achieve optimal mapping accuracy
and coverage for the vehicles. 𝑋1

𝑖 (𝑖 = 1, 2, . . . , 𝑁1) and 𝑋2
𝑖 (𝑖 = 1, 2, . . . , 𝑁2) are states of vehicles 1

and 2 at successive instants of time i, respectively, in which 𝑁1 and 𝑁2 represent the numbers of
states of both vehicles during a complete mission. DR systems are used to yield navigation data
(including control vectors 𝑢1

𝑖 (𝑖 = 1, 2, . . . , 𝑁1 − 1) and 𝑢2
𝑖 (𝑖 = 1, 2, . . . , 𝑁2 − 1) for vehicles 1 and 2,

respectively) for both vehicles. Bathymetric data collected by MBES includes distances 𝛽 𝑗 and angles 𝛼 𝑗

( 𝑗 = 1, 2, . . . , 𝑁𝑏 , where 𝑁𝑏 denotes the number of beams transmitted by MBES) from the MBES head
to the terrain, and the locations where the beams hit the terrain are named as measured points. With the
bathymetric measurements obtained with the MBES and corresponding navigation data, the horizonal
positions 𝑋𝑀𝑃

𝑖 [ 𝑗] ( 𝑗 = 1, 2, . . . , 𝑁𝑏) and terrain depths ℎ𝑀𝑃
𝑖 [ 𝑗] ( 𝑗 = 1, 2, . . . , 𝑁𝑏) of measured points

at successive instants of time i can be computed. Details of computation methods of both 𝑋𝑀𝑃
𝑖 [ 𝑗] and

ℎ𝑀𝑃
𝑖 [ 𝑗] have been reported in Marchel et al. (2020a).

Bathymetric data and vehicle states are stored as various sub-maps in the bathymetric SLAM method.
A sub-map in the bathymetric SLAM system usually consists of a local trajectory of the vehicle and a set
of swaths, while a swath includes a large number of measured points. Here the k-th sub-maps constructed
by the leading vehicle or vehicle 2 are denoted as 𝑚1

𝑘 (𝑘 = 1, 2, . . . , 𝑀1) or 𝑚2
𝑘 (𝑘 = 1, 2, . . . , 𝑀2),

respectively, where 𝑀1 or 𝑀2 are numbers of sub-maps built by these two vehicles during a complete
mission. When vehicle 2 constructs a new sub-map, this sub-map will be broadcast using some acoustic
packets, and the leading vehicle will detect loop closures between this sub-map and all historical sub-
maps after capturing these packets. Meanwhile, the leading vehicle constructs various sub-maps by
measuring the terrain continuously, thus loop closures are also detected between the sub-map constructed
by vehicle 1 and all historical sub-maps. Here, 𝑧1,2

𝑘,𝑙 is used to denote the loop closure associated with
states 𝑋1

𝑘 of the leading vehicle and 𝑋2
𝑙 of vehicle 2, while 𝑧1,1

𝑘,𝑙 is the loop closure associated with both
states 𝑋1

𝑘 and 𝑋1
𝑙 of the leading vehicle.

The relative range between these two vehicles can be estimated efficiently according to the time
difference between packet sending and receiving, using the synchronous-clock, one-way-travel-time
acoustic method. Range measurement 𝑟𝑖,𝑘 represents the distance between the state 𝑋1

𝑖 of the leading
vehicle and the state 𝑋2

𝑘 of vehicle 2. With vehicles’ states, control vectors, loop closures, and range
measurements, the estimated trajectories X∗1 and X∗2 of both vehicles 1 and 2 can be generated, and a
detailed explanation is given in Section 5.

4. Bathymetric data transmission

4.1. Acoustic packet generation

Sharing sub-maps among multiple vehicles is essential in the cooperative bathymetric SLAM system.
However, transmitting all measured points of sub-maps through the low bandwidth acoustic channel is
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Figure 2. System definition of cooperative bathymetric SLAM system.

Figure 3. Transmission of the acoustic packets from vehicle 2 to vehicle 1.

infeasible. Vehicles must compress the information included in sub-maps before broadcasting them to
reduce the data throughput. Meanwhile, unlike visual SLAM algorithms, loop closures in bathymetric
SLAM methods are detected according to the similarity between terrain depths of all measured points
in a pair of sub-maps instead of some features extracted. Thus, the terrain depths of nearly all measured
points in a sub-map are still need to be estimated after the sub-map is highly compressed.

The sparse pseudo-input Gaussian processes (SPGPs) registration method is applied for registration
and prediction by constructing a SPGPs model using historical data. In the authors’ previous work, the
SPGP registration has been proved to be both efficient and accurate in terrain depth estimates. Unlike
traditional Gaussian processes registration (GPR) methods, the SPGPs model is trained using only a
small number of pseudo points which maintain most of the information of the sub-map, instead of all
historical bathymetric measurements. Thus, as shown in Figure 3, vehicle 2 compresses the sub-map
into some pseudo points and calculates the hyperparameters of the SPGPs model associated with the
sub-map, then the compressed sub-map will be reconstructed in vehicle 1, which makes it possible to
transmit sub-maps using limited data throughput.

For sub-map i, with generalised terrain depth H𝑖 = {ℎ𝑖 [𝑛], 𝑛 = 1, 2, . . . , 𝑁𝑏} from MBES data
consisting of 𝑁𝑏 measured points corresponding to depths ℎ𝑖 [𝑛] and horizontal positions 𝑥𝑖 [𝑛], the
horizontal positions X′

𝑖 = {𝑥 ′𝑖 [𝑚], 𝑚 = 1, 2, . . . , 𝑀} of M pseudo points can be computed by minimising

𝑝(H𝑖 |X𝑖 ,X′
𝑖 ,Θ) = N(0,K𝑁𝑀K−1

𝑀K𝑀𝑁 + Λ + 𝜎2I), (1)
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where X𝑖 = {𝑥𝑖 [𝑛], 𝑛 = 1, 2, . . . , 𝑁𝑏} denotes horizontal positions of measured points in the sub-map i,
Θ is the set of hyperparameters, and 𝜎2I represents the covariance of terrain depths in this sub-map. In
the above, Λ = 𝑑𝑖𝑎𝑔(𝝀) (𝝀 = {𝜆𝑛}, 𝑛 = 1, 2, . . . , 𝑁𝑏), and

𝜆𝑛 = 𝐾 (𝑥𝑖 [𝑛], 𝑥𝑖 [𝑛]) − k𝑇𝑛 K−1
𝑀k𝑛. (2)

In Equations (1) and (2), [𝑘𝑛]𝑚 = 𝐾 (𝑥𝑖 [𝑛], 𝑥
′
𝑖 [𝑚]), [K𝑀 ]𝑚𝑚′ = 𝐾 (𝑥𝑖 [𝑚], 𝑥𝑖 [𝑚

′]), both for 𝑚 =
1, 2, . . . , 𝑀; [K𝑁𝑀 ]𝑛𝑚 = 𝐾 (𝑥𝑖 [𝑛], 𝑥𝑖 [𝑚]), for 𝑛 = 1, 2, . . . , 𝑁𝑏 and 𝑚 = 1, 2, . . . , 𝑀 . 𝐾 (𝑥𝑖 [𝑛], 𝑥𝑖 [𝑛

′])

is the kernel function of the SPGPs model between measured point n and 𝑛′, given by

𝐾 (𝑛, 𝑛′) = 𝑐 exp
(
−

1
2
| |𝑏(𝑥𝑖 [𝑛] − 𝑥𝑖 [𝑛

′]) | |2

)
, (3)

where c and b are hyperparameters of the SPGPs model, and 𝜃 = {𝑏, 𝑐}. In (1), Θ = {𝜃, 𝜎2}. Equation
(3) is chosen as the kernel function because it has been proved to be effective in terrain depth estimation
according to reference (Barkby et al., 2012).

With the positions X′
𝑖 = {𝑥 ′𝑖 [𝑚], 𝑚 = 1, 2, . . . , 𝑀} of pseudo points and hyperparameters Θ =

{𝑏, 𝑐, 𝜎2} of the SPGPs model, the predicted depth ℎ′𝑖 [𝑚] of the pseudo point m is given by

𝑝(ℎ′𝑖 [𝑚] |𝑥 ′𝑖 [𝑚],X𝑖 ,H𝑖 ,Θ) = N(ℎ′𝑖 [𝑚] |𝜇𝑚,Ω𝑚), (4)

where

𝜇𝑚 = k𝑇
X𝑖
(K𝑁 + 𝜎2I)−1H𝑖 , (5)

Ω𝑚 = 𝐾 (𝑥 ′𝑖 [𝑚], 𝑥 ′𝑖 [𝑚]) − kT
𝑥′𝑖 [𝑚] (K𝑁 + 𝜎2I)−1k𝑥′𝑖 [𝑚] + 𝜎2. (6)

In Equations (5) and (6), [k𝑥′𝑖 [𝑚] ]𝑛 = 𝐾 (𝑥𝑖 [𝑛], 𝑥
′
𝑖 [𝑚]), [K𝑁 ]𝑛𝑛′ = 𝐾 (𝑥𝑖 [𝑛], 𝑥𝑖 [𝑛

′]), for 𝑛 =
1, 2, . . . , 𝑁𝑏 and 𝑛′ = 1, 2, . . . , 𝑁𝑏 .

Unlike the octree method in which the size of acoustic packets is dependent on the terrain complexity,
the size of acoustic packets generated using the proposed method is completely artificial constant. The
number of pseudo points are chosen according to the average size of the sub-maps. In this paper, the
number M of pseudo points is set as 150 (it has been proved that 150 pseudo points are enough for
bathymetric data transmission, see Section 6), thus the acoustic packet of a sub-map will consist of
150 pseudo points (including both X′

𝑖 and H′
𝑖), hyperparameters Θ, and the local trajectory included in

sub-map i. The length of the trajectory included in a sub-map is usually no more than 40 s.
As shown in Figure 4, pseudo points and the local trajectory included in a sub-map are broadcast

using 10 acoustic packets by vehicle 2 with a frequency of nearly 0·25 Hz. When one or two packets
out of 10 packets travelling across an acoustic channel fail to reach their destination, the leading vehicle
still captures 120∼135 pseudo points and all hyperparameters of the SPGPs model. Simulation results
in Section 6 proved that valid loop closures can be detected when the leading vehicle received no more
than 120 pseudo points. The structures of packets broadcast by the leading vehicle are also given in
Figure 4. When new loop closures are detected in the leading vehicle, the leading vehicle will beam the
estimated position of the last state of vehicle 2 contained in the acoustic packets captured.

4.2. Sub-map reconstruction

In the sub-map reconstruction stage, a gridded sub-map is constructed using the GPR method. With
the acoustic packet described above, the terrain depth in each node X𝐺

𝑖 = {𝑥𝐺𝑖 [𝑘], 𝑘 = 1, 2, . . . , 𝐾} of
the gridded sub-map and corresponding variance 𝛀𝑖 = {Ω𝑖 [𝑘], 𝑘 = 1, 2, . . . , 𝐾} can be estimated using
Equations (5) and (6) by replacing X𝑖 , X′

𝑖 , and H𝑖 with X′
𝑖 , X𝐺

𝑖 , and H′
𝑖 , respectively. The kernel function

used in the sub-map reconstruction stage is shown in Equation (3) and all hyperparameters required
have been included in the captured acoustic packets.
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Figure 4. Acoustic packet frame structures.

The coverage of sub-map i is estimated according to the positions of pseudo points received. The
horizontal boundary of the reconstructed sub-map is calculated according to the Delaunay triangulation
constructed using all pseudo points. More specifically, unstructured grids are generated based on all
pseudo points, and the outermost edges of all grids are represented as the boundaries of the sub-map.
In the reconstructed map, terrain depths with a covariance of more than 0·1 will be dropped to improve
the accuracy of residual error calculation in the loop closure detection.

As shown in Figure 5(a), a sub-map is constructed using bathymetric data collected in vehicle 2 and
then a set of pseudo points is generated. Using the acoustic packet transmitted over the acoustic channel,
the gridded sub-map (shown in Figure 5(b)) is reconstructed using Equations (5) and (6) in the leading
vehicle. The reconstructed sub-map is smoother than that measured by vehicle 2, but both sub-maps
show similar terrain changes. The loop closure detection results associated with reconstructed sub-maps
will be shown in Section 6.

4.3. Loop closure detection between sub-maps

Loop closures between a pair of sub-maps are detected by terrain matching methods. The terrain
matching method will find the estimated difference between positions of sub-maps 1 and 2 which can
minimise the residual error in the overlap between these two sub-maps. For the leading vehicle, the
residual error E in the overlap between a pair of sub-maps that are both measured by the leading vehicle
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(a) (b)

Figure 5. An example of sub-map compression and reconstruction: (a) sub-map built and compressed
in vehicle 2, (b) gridded sub-map reconstructed in the leading vehicle.

is given by

𝐸 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
𝑁𝑜

𝑁𝑜∑
𝑛=1

| |ℎ−𝑖 [𝑛] − ℎ 𝑗 [𝑛] | |𝜎2 𝑁𝑜 > 𝑁𝑇

inf 𝑁𝑜 ≤ 𝑁𝑇

, (7)

where ℎ 𝑗 [𝑛] and 𝜎2 have been defined in Equation (1), 𝑁𝑜 is the number of measured points in the
overlap area between two sub-maps, and ℎ−𝑖 [𝑛] describes the depth at the same place as ℎ 𝑗 [𝑛] in sub-map
j, which can be obtained using bilinear interpolation. If the number of measured points in the overlap
is no more than a given threshold 𝑁𝑇 , the residual error will be set as the infinite value. The value
of 𝑁𝑇 is usually calculated according to the rule of thumb. Increasing the value of 𝑁𝑇 will improve
the reliabilities of loop closures, but also reduce the number of loop closures. Considering that the
measurement variances of measured points are the same in all sub-maps, Equation (7) can be simplified
as

𝐸 =

⎧⎪⎪⎨⎪⎪⎩
1
𝑁𝑜

𝑁𝑜∑
𝑛=1

| |ℎ−𝑖 [𝑛] − ℎ 𝑗 [𝑛] | |2 𝑁𝑜 > 𝑁𝑇

inf 𝑁𝑜 ≤ 𝑁𝑇

. (8)

The residual error 𝐸 ′ between a sub-map measured by the leading vehicle and a reconstructed
sub-map is

𝐸 =

⎧⎪⎪⎨⎪⎪⎩
1
𝑁𝑜

𝑁𝑜∑
𝑘=1

| |ℎ′𝑖 [𝑘] − ℎ−𝑗 [𝑘] | |Ω𝑘
𝑁𝑜 > 𝑁𝑇

inf 𝑁𝑜 ≤ 𝑁𝑇

. (9)

Different from Equation (8), ℎ−𝑗 [𝑘] denotes the terrain depth at the same place as ℎ′𝑖 [𝑘] in sub-map i
because the variance Ω𝑘 of ℎ′𝑖 [𝑘] can be easily computed using Equation (6).

To adjust residual errors calculated using both Equations (8) and (9) to a notionally common scale,
Equation (9) can be simplified to Equation (10), thus

𝐸 =

⎧⎪⎪⎨⎪⎪⎩
1
𝑁𝑜

𝑁𝑜∑
𝑘=1

exp(−Ω𝑘 ) | |ℎ
′
𝑖 [𝑘] − ℎ−𝑗 [𝑘] | |2 𝑁𝑜 > 𝑁𝑇

inf 𝑁𝑜 ≤ 𝑁𝑇

. (10)

A loop closure between a pair of sub-maps will be detected if the minimal residual error calculated
using Equation (8) or (10) in the overlap between a pair of sub-maps is less than a threshold. All the
point cloud registration methods, including the template matching method and various ICP methods, can
provide an accurate terrain matching result. Marchel et al. (2020b) proposed a modified ICP algorithm
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Figure 6. Pose graph of the cooperative bathymetric SLAM system.

that calculated the similarity between a pair of measurements using multimodal weighting factors based
on the error modelling. In this paper, the template matching method is applied in the terrain matching
process. Detailed explanation of the usage of template matching method in the terrain matching process
is also drawn in Ma et al. (2020a).

5. Cooperative SLAM with graph method

In this paper, trajectories of both vehicles are estimated using a graph method that relies on a two-
stage architecture, namely, the front-end and back-end stages. In the front-end stage, a pose graph is
constructed to represent all historical bathymetric measurements and trajectories of both vehicles in the
cooperative bathymetric SLAM.

As shown in Figure 6, the pose graph of the cooperative bathymetric SLAM system consists of
nodes and edges, in which nodes represent states of both vehicles and the edge connected by two
nodes encodes loop closures, range information between two vehicles, and control vectors from a DR
system. Due to both model and measurement noise, erroneous edges may appear in the pose graph.
Using so-called pose-graph optimisation, which maximises the consistency of all edges in the back-end
stage, the optimal configuration of all vehicle states (also named as a trajectory of the vehicle) can be
generated.

In the back-end stage, the estimated trajectories X∗1 and X∗2 of both vehicles can be generated by
solving

X∗1,X∗2 = arg min
X∗1 ,X∗2

{
𝑁1−1∑
𝑖=1

| | 𝑓 (𝑋1
𝑖 , 𝑢

1
𝑖 ) − 𝑋1

𝑖+1 | |𝑄 +

𝑁2−1∑
𝑖=1

| | 𝑓 (𝑋2
𝑖 , 𝑢

2
𝑖 ) − 𝑋2

𝑖+1 | |𝑄

+
∑

( 𝑗 ,𝑘) ∈𝐿1

| |𝑋1
𝑗 − 𝑋1

𝑘 − 𝑧1,1
𝑗 ,𝑘 | |Λ1,1

𝑗,𝑘

+
∑

( 𝑗 ,𝑘) ∈𝐿2

| |𝑋1
𝑗 − 𝑋2

𝑘 − 𝑧1,2
𝑗 ,𝑘 | |Λ1,2

𝑗,𝑘

+
∑

( 𝑗 ,𝑘) ∈𝐿3

| |𝑋1
𝑗 − 𝑋2

𝑘 − 𝑟 𝑗 ,𝑘 | |Ψ

⎫⎪⎬⎪⎭ , (11)

in which 𝑓 (𝑋1
𝑖 , 𝑢

1
𝑖 ) and 𝑓 (𝑋2

𝑖 , 𝑢
2
𝑖 ) are state transition functions of both vehicles associated with control

vectors 𝑢1
𝑖 and 𝑢2

𝑖 , with a model noise 𝑁 (0, 𝑄); 𝐿3 is the set of pairs of times connected by range
information, in which ( 𝑗 , 𝑘) ∈ 𝐿3 denotes that the state 𝑋1

𝑗 of the leading vehicle and the state 𝑋2
𝑘

of vehicle 2 are connected by the range information 𝑟 𝑗 ,𝑘 with variance Ψ of the measurement noise.
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Figure 7. Simulation setups.

In the above, 𝐿1 and 𝐿2 both represent the sets of pairs of times connected by loop closures, where
( 𝑗 , 𝑘) ∈ 𝐿1 represents the states 𝑋1

𝑗 and 𝑋1
𝑘 of the leading vehicle which are connected by the loop

closure 𝑧1,1
𝑗 ,𝑘 with variance Λ1,1

𝑗 ,𝑘 , and ( 𝑗 , 𝑘) ∈ 𝐿2 denotes the state 𝑋1
𝑗 of the leading vehicle and the state

𝑋2
𝑘 of vehicle 2 connected by the loop closure 𝑧1,2

𝑗 ,𝑘 with variance Λ1,2
𝑗 ,𝑘 . Although variances of position

estimates and range information change during the mission, both Q and Ψ are considered as constants
for simplification in this paper.

This paper focuses on cooperative navigation for two vehicles. The designed system can be easily
extended to more vehicles, however, by adding nodes and edges associated with new vehicles in the
pose graph which can also be solved using Equation (11).

6. Simulation results

6.1. Validity of the bathymetric data transmission method

As shown in Figure 7, in the simulation, a loop closure is detected between a pair of sub-maps, in which
the first sub-map (sub-map 1) is a reconstructed sub-map and the latter (sub-map 2) is an original one
measured using MBES. All sub-maps used in the simulation were collected using shipborne MBES
in the at-sea experiments. More specifically, the seabed terrain around Zhongsha Reef, China, was
measured using the CMBS200 MBES, which emits 192 beams uniformly across a 120-degree swath
with a frequency of 4 Hz. Three cases (no packet loss, 10% packet loss, and 14% packet loss) were
applied to simulate the packet loss of acoustic packets caused by errors in data transmission over an
unreliable acoustic channel.

In the simulation, the number of sub-maps used is 200. The threshold of residual error E is 0·02
and 𝑁𝑇 is set as 120. For comparison, the sub-map 1 in Figure 7 was also compressed using the octree
method. The octree splits a block if the maximum depth of the block elements minus the minimum
depth of the block elements is greater than 1·25 m, making the number of nodes in the octree built using
sub-maps from set A around 200. The maximum and minimum sizes of a block in the octree are 2 m
and 32 m.

As shown in Figure 8(a), in case 1 (no packet loss), 120 loop closures (where 49·17% of 120 loop
closures are valid) are detected between reconstructed sub-maps using this method and original sub-
maps. The process of detection of loop closures between sub-maps compressed using the octree method
and original sub-maps generates 119 loop closures, in which 49 out of 120 loop closures are valid. As
shown in Figure 8(b), 63% of octrees built in the simulation have more than 200 nodes, leading to a bigger
storage consumption than that of the proposed method. Thus, sub-maps compressed and reconstructed
using the proposed method can provide more valid loop closures while reducing memory consumption.

Although the numbers of detected loop closures and valid loop closures decrease with an increase
in the number of losing pseudo points, 46·43% and 49·09% of detected loop closures are valid in cases
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(a)

(b)

Figure 8. Simulation results of loop closure detection: (a) number of detected loop closures, (b) storage
consumption in octree and the proposed method.

2 and 3, respectively. This means that losing some pseudo points during the acoustic communication
will not lead to more invalid loop closures, and the method can provide accurate loop closure detection
results with an unreliable acoustic channel.

6.2. Cooperative bathymetric SLAM

The cooperative bathymetric SLAM simulation was conducted using the field data collected in the at-sea
experiment around Zhongsha Reef. The equipment used is shown in Figure 9. The GPS trajectories of
vehicles were obtained using two GNNS receivers of the XW-GI5651 INS/ GNSS integrated navigation
system, installed in the longitudinal section of a vessel, with a distance of 4 m and delivering O(2 m)
position accuracy using precise point positioning method. The heading, pitch, and roll angles were
measured using the XW-GI5651 INS/ GNSS integrated navigation system with angular accuracies of
O(0·1 deg), O(0·01 deg), and O(0·01 deg), respectively, with a frequency of 4 Hz. Bathymetric data
were collected using a shipborne T-sea CMBS200 MBSE with a frequency of 4 Hz. The speed of the
vehicle was about 4 kn and the DR trajectories of both vehicles were simulated using

𝑋1𝐷𝑅
𝑖 = 𝑋1𝐷𝑅

𝑖 + 𝑢1
𝑖 + 𝑣

𝑋2𝐷𝑅
𝑖 = 𝑋2𝐷𝑅

𝑖 + 𝑢2
𝑖 + 𝑣.

(12)

In Equation (12), 𝑋1𝐷𝑅
𝑖 and 𝑋2𝐷𝑅

𝑖 are positions of both vehicles estimated using a DR system at
successive instants of time i, while 𝑋1𝐺𝑃𝑆

𝑖 and 𝑋2𝐺𝑃𝑆
𝑖 are corresponding GPS positions of vehicles. In
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Figure 9. Equipment used in field experiments.

the above, 𝑢1
𝑖 and 𝑢2

𝑖 have been described in Equation (11), and v denotes the simulated process noise
of the discrete-time model used to propagate vehicle state, with a distribution 𝑁 (0.1, 0.04).

The acoustic packets were broadcast by vehicle 1 with a frequency of 0·1 Hz. Packet loss of 14% of
acoustic packets was assumed due to the noisy acoustic channel. Due to the nearly flat terrain, invalid
loop closures identification is essential in bathymetric SLAM. In this paper, the MCM method discussed
in Ma et al. (2020a) will be applied for invalid loop closures identification.

According to Alves (2019), the range information between positions 𝑋1
𝑖 and 𝑋2

𝑘 of two vehicles was
simulated as

𝑧1,2
𝑖,𝑘 = Γ𝑖,𝑘 | |𝑋

1𝐺𝑃𝑆
𝑖 − 𝑋2𝐺𝑃𝑆

𝑘 | |2 + 𝜏𝑖,𝑘 , (13)

where 𝜏𝑖,𝑘 denotes the measurement noise with distribution 𝑁 (0, 1) and Γ𝑖,𝑘 can be given by

Γ𝑖,𝑘 =

{
1, for a non outlier with probability 𝜀
𝛿𝑟 , for a outlier with probability 1 − 𝜀

. (14)

In this paper, the value of 𝜀 was set as 0·2 and 𝛿𝑟 was 1·1.

Simulation 1

The play-back experiment in simulation 1 was conducted using field data obtained in the course of two
trajectories with an approximate duration of 40 min (vehicle 1) and 30 min (vehicle 2), respectively.
After the trajectory of vehicle 2 is completed, vehicle 2 will turn off the MBSE and move randomly
near its endpoint, but still maintain acoustic communication with vehicle 1. Here the cooperative
bathymetric SLAM with an extremely high communication bandwidth (>2 Mb/s) and the cooperative
bathymetric SLAM with octree method are chosen for comparison, in which the first means vehicles in
this cooperative bathymetric system can share all bathymetric measurement in real time. This extremely
high communication bandwidth is impossible in practice, but the navigation accuracy of the proposed
algorithm can also be shown by comparison with this system.

It should be noted that the position of vehicle 2 will be continuously estimated until vehicle 1
reaches its endpoint though the planned trajectory of vehicle 2 has been completed after nearly the 30th
minute of the mission. As shown in Figure 10, for vehicle 1, the mean location error of the proposed
cooperative bathymetric SLAM system is 19·76 m, which is 82·02% less than that of the DR system, and
the corresponding values for vehicle 2 are 22·27 m and 82·31%. Mean location errors of vehicles 1 and
2 in the cooperative bathymetric SLAM without communication limitation are 21·05 m and 22·40 m,
and the corresponding values for cooperative bathymetric SLAM with octree method are 23·69 m and
26·64 m, respectively. Over the low bandwidth, high latency, and unreliable acoustic communication, the
proposed system has a similar real-time navigation error as the cooperative bathymetric SLAM without
communication limitation. Due to the 14% acoustic packet loss, cooperative bathymetric SLAM with
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Figure 10. Location errors of both vehicles for increasing mission durations in simulation 1.

Figure 11. Trajectories of both vehicles during a complete mission in simulation 1.

octree method lost some sub-maps over the limited communication channel, resulting in the largest
navigation error among the three algorithms.

At the end of a complete mission, the location errors of both vehicles associated with the proposed
cooperative bathymetric SLAM are 3·41 m and 10·06 m, respectively, while the final location errors
generated by the cooperative bathymetric SLAM without communication limitation are 3·34 m and
9·17 m. The simulation proved that the proposed cooperative bathymetric SLAM achieves a navigation
precision similar to the cooperative bathymetric SLAM without communication limitation and yields
accurate navigation results with low bandwidth and unreliable acoustic communication.

Figure 11 shows the trajectories of both vehicles associated with the cooperative bathymetric SLAM
system and GPS during a complete mission. During a complete mission, 46 valid loop closures are
detected. The cooperative bathymetric SLAM system shares similar trajectory estimates of both vehicles
with GPS. The mapping result of the cooperative bathymetric SLAM system is shown in Figure 12.
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(a) (b)

Figure 12. Mapping results during a complete mission in simulation 1: (a) bathymetric map, (b)
registration error distribution.

Figure 13. Location errors of both vehicles for increasing mission durations in simulation 2.

The GPS positions of a vehicle are considered as to the ground truth positions, so the registration
errors can be computed according to the difference between the map built using a cooperative bathymetric
SLAM system and that associated with GPS. According to the simulation results shown in Figure 12, the
mean and median values of registration errors over the whole bathymetric map built by the cooperative
bathymetric SLAM system are 0·47 m and 0·33 m, while 88·06% of measured points have a registration
error less than 1 m. The proposed algorithm can construct accurate and consistent seabed maps.

Simulation 2

Simulation 2 was conducted using field data including two trajectories with an approximate duration of
55 min (vehicle 1) and 50 min (vehicle 2), respectively. Like simulation 1, vehicle 2 will also turn off the
MBES but broadcast acoustic packets which only include its trajectory and the timestamp continuously.

The same as the location results of vehicles in simulation 1, cooperative bathymetric SLAM system
yields accurate navigation results, and during the mission, the location errors for both vehicles are
bounded. As shown in Figure 13, the biggest and average location errors of vehicle 1 for increasing
mission durations are 53·80 m and 24·50 m, respectively, which are much smaller than 264·9 m and
135·67 m of the DR system. Corresponding errors associated with the cooperative bathymetric SLAM
system in vehicle 2 are 56·55 m and 29·26 m.

Figures 14 and 15 illustrate the trajectories and the mapping result associated with cooperative
bathymetric SLAM during a complete mission. The bathymetric map in Figure 15 has a mean registration
error of 0·54 m and a median registration error of 0·41 m, meanwhile, nearly 84·95% of terrain depths
over the whole map have a registration error less than 1 m.
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Figure 14. Trajectories of both vehicles during a complete mission in simulation 2.

(a) (b)

Figure 15. Mapping results during a complete mission in simulation 2: (a) bathymetric map, (b)
registration error distribution.

According to results in both simulations, over the low bandwidth, high latency, and unreliable acoustic
communication, the proposed cooperative bathymetric SLAM system can still yield accurate navigation
results for the vehicle, and the corresponding absolute trajectory error (ATE) value is no more than
20% of a DR system. Meanwhile, in the bathymetric map constructed by the proposed cooperative
bathymetric SLAM system, the registration error of nearly 85% of the measured points is less than 1 m,
which means the proposed method constructs high-resolution and consistent bathymetric maps.

7. Conclusion

In this paper, a communication-constrained cooperative bathymetric SLAM algorithm for multi-AUVs
is proposed. The following conclusions can be drawn:

1. The proposed bathymetric data transmission method can help to share a great number of
bathymetric measurements among multiple vehicles over a low bandwidth acoustic channel.
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2. Under a 10%∼14% packet loss, the sub-maps transmitted can still yield many loop closures in
which half of them are valid.

3. The cooperative bathymetric SLAM system can yield accurate navigation results in real time for
multiple vehicles and construct consistent seabed maps over low bandwidth, noisy, and unreliable
acoustic communication.

Due to the lack of the degree of freedoms on the range information between vehicles, the difference
between the positions of two vehicles may be unobservable during the mission. In this paper, the
observability of the range information is ignored because of the supplement of a large number of loop
closures detected during the complete mission. However, a small number of valid loop closures will be
detected when the cooperative bathymetric SLAM system is applied to navigate vehicles above the flat
seabed terrain, making it essential to analyse the observability of the cooperative bathymetric SLAM.
Future work will focus on the observability analysis and corresponding path planning for the cooperative
bathymetric SLAM system.
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