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A random multivariate polynomial system with more equations than variables is likely to be

unsolvable. On the other hand, if there are more variables than equations, the system has at

least one solution with high probability. In this paper we study in detail the phase transition

between these two regimes, which occurs when the number of equations equals the number

of variables. In particular, the limiting probability for no solution is 1/e at the phase

transition, over a prime field.

We also study the probability of having exactly s solutions, with s � 1. In particular, the

probability of a unique solution is asymptotically 1/e if the number of equations equals the

number of variables. The probability decreases very rapidly if the number of equations

increases or decreases.

Our motivation is that many cryptographic systems can be expressed as large multivariate

polynomial systems (usually quadratic) over a finite field. Since decoding is unique, the

solution of the system must also be unique. Knowing the probability of having exactly one

solution may help us to understand more about these cryptographic systems. For example,

whether attacks should be evaluated by trying them against random systems depends very

much on the likelihood of a unique solution.

1. Introduction

A random multivariate quadratic system in n variables is composed of m equations of the

form

a11x
2
1 + a12x1x2 + · · · + b1x1 + · · · + bnxn = c ,

where the coefficients are independently and uniformly distributed on GF(p) (in the case

of p = 2 the square terms are not present). More generally, a multivariate polynomial

system can have terms up to degree d.

In this paper we study the probability that a multivariate polynomial system has no

solutions. If the number of equations is much greater than the number of variables, it is

very likely that the system has no solution. On the other hand, if there are more variables

than equations, we expect to have at least one solution. For n + α random equations in n

variables over GF(p) with p prime, we show that the asymptotic probability that they have

no common solution is e−p−α

. The phase transition occurs when the number of equations

equals the number of variables. The asymptotic probability in that case is 1/e.

We also study the probability that a multivariate polynomial system has exactly s

solutions, with s � 1. Asymptotically, this probability follows the Poisson distribution
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λse−λ/s!, where λ = e−α log p. When s = 1, its highest value is e−1, which is attained when

the number of equations equals the number of variables. For a fixed set of variables, this

probability decays very rapidly as the number of equations increases or decreases.

The motivation for studying the probability of exactly s solutions comes from recent

developments in cryptography. Many attacks on cryptosystems have been based on solving

a large multivariate polynomial system over a finite field (these include Biryukov and De

Cannière (2003), Courtois et al. (2000) and Courtois and Pierpzyk (2002)). The idea is to

express the cryptosystem as a quadratic or cubic system, and then to use an ad hoc method

to solve it. The solution of this system is unique because it represents the decoded text.

One of the methods used to solve these systems is called XL, which was first proposed in

Courtois et al. (2000). It has been argued in Courtois et al. (2000) and subsequent papers

that XL takes advantage of the uniqueness of the solution. Knowing the probability of

having exactly one solution, we can understand how often XL has the claimed advantage

if applied to random quadratic systems.

The quadratic systems from cryptography are not perfectly random, but in the absence

of a better theory, we would like to get some insight by assuming that they are. In

particular, the asymptotic probability that a random quadratic system has exactly one

solution is 1/e if the number of equations equals the number of variables, and decays

very rapidly if the number of equations increases or decreases.

We ran a large set of experiments to confirm the validity of our results, including some

cases that are not covered by our proofs. We found that the variance of the distance

between our formulas and the experimental data is small in most cases.

In order to apply our formulas to polynomial systems from cryptanalysis, we also

consider particular configurations that occur in that case. Polynomial systems from

cryptanalysis have two important properties: their equations are linearly independent and

the systems are sparse. Experimental results confirm that our formulas also remain valid

in this case of linearly independent equations. We generated different types of sparse

systems and our formulas matched the experimental results in most cases.

Finally, we show the results of the application of our formulas to the quadratic systems

of some real cryptographic systems. Using the dimensions of those systems, we determine

the probability of having exactly one solution. This probability is extremely small, but, on

the other hand, there is a huge number of possible quadratic systems of that size.

This paper is organised as follows. Section 2 gives a brief overview of related work.

The probability formulas are derived in Section 3. Section 4 contains the results of some

experiments that confirm the general validity of our formulas. In Section 5, we apply our

formulas to some cryptographic systems.

2. Related work

Given a quadratic system, there is a well-known procedure for determining the number

of solutions. The outline of the method is the following. A single quadratic equation can

be transformed into canonical form, as described by Jordan (Jordan 1872) for p odd,

and Dickson (Dickson 1999) for p = 2. From this form it is easy to count the solutions.

Then, a system of quadratic equations can be handled by counting the solutions to a

https://doi.org/10.1017/S0960129508007251 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508007251


Phase transition of multivariate polynomial systems 11

number of single equations. A detailed description of this procedure for GF(2) is given in

Woods (1998). This method requires exponential time.

This is not surprising, as Valiant proved in Valiant (1979) that it is #P-complete to

count the number of solutions of a multivariate polynomial system of degree 2 or higher.

The problem we study in this paper is different. We are not computing the number

of solutions of given quadratic systems, but we are determining the probability that a

random system has no solutions or exactly s solutions.

Recently, much attention has been given to unsatisfiable systems, as there is a direct

connection between tautologies and unsatisfiable systems – see, for example, Beame

et al. (1996), Clegg et al. (1996), Buss et al. (1997) and Pitassi (1997). The focus of these

papers is the study of proof complexity, in particular, the determination of the conditions

under which a system is unsatisfiable. Here instead we determine probabilities, such as

the chance that a random system is unsatisfiable.

Woods showed (Woods 1998) that there exists a phase transition on multivariate

polynomial systems by showing that a system is unsatisfiable when the difference between

the number of equations and the number of variables goes to infinity, and that the

system has at least one solution when the difference between the number of variables

and the number of equations goes to infinity. In this paper we improve Woods’s results

substantially. In particular, we determine the point at which the phase transition occurs,

and compute the limiting value of the probability near the transition point.

To our knowledge this is the first detailed study of phase transitions in polynomial

systems. However, there is a well-known phase transition between satisfiability and

unsatisfiability for boolean formulas, which has been studied both theoretically and

experimentally. We believe that Friegut (Friegut 1999) was the first to prove the existence

of a phase transition in boolean formulas. More details have been found experimentally,

and surveys of this work have been given by Franco in Franco (2001) and Franco (2005).

Our results do say something about boolean formulas, since a boolean formula in

conjunctive normal form can be easily transformed into a quadratic system over GF(2)

(see, for example, H̊astad et al. (1993)). However, they are more general, in that we

consider polynomial systems of any degree and for any prime field. We also have rigorous

theorems to support our experimental observations.

3. Probability of no solutions and of exactly s solutions

The following theorems comprise our main result. Theorem 3.1 is a special case of

Theorem 3.2, but we prefer to state it separately to emphasise the phase transition.

Theorem 3.1. Let d � 2 and p be a prime number. Given a multivariate polynomial

system of n + α random equations of degree-d in n variables over GF(p), the probability

that the system has no solution is e−p−α

, asymptotically in n.

Corollary 3.1. For a system as in Theorem 3.1, the probability of no solution is e−1 if the

number of equations equals the number of variables (that is, α = 0).

Theorem 3.2. Let d � 2 and p be a prime number and λ = e−α log p. Given a multivariate

polynomial system of n + α random equations of degree-d in n variables in GF(p), the
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probability that the system has exactly s � 1 solutions follows the Poisson distribution

λse−λ/s! asymptotically in n.

Corollary 3.2. For a system as in Theorem 3.2, the probability that the system has exactly

s � 1 solutions is e−1/s! if the number of equations equals the number of variables (that

is, α = 0).

The rest of this section contains the proofs of these results.

Proof of Theorem 3.1. Let p be a prime, and for an n-tuple x = (x1, . . . , xn) of elements

from GF(p), let Rx = (1, . . . , xr, . . . , xrxs, . . .). For a system of degree d, Rx contains the

monomials up to degree d. Let G be the pn × ν matrix whose rows are the Rx for distinct

x, where ν ≈ nd is the number of coefficients in each equation.

Consider the indicator variable

Zx =

{
1 if x is a solution to all equations

0 otherwise.

Its expectation is E[Zx] = p−(n+α), and the probability that there is no common solution

is

E
[ ∏

x

(1 − Zx)
]
.

By the inclusion–exclusion principle, we have∏
x

(1 − Zx) � 1 −
∑
x

Zx

∏
x

(1 − Zx) � 1 −
∑
x

Zx +
∑
x,y

ZxZy

∏
x

(1 − Zx) � 1 −
∑
x

Zx +
∑
x,y

ZxZy −
∑
x,y,z

ZxZyZz ,

and so on. Any partial sum with an even (respectively, odd) number of terms provides a

lower (respectively, upper) bound. Also, in these sums, the indices x, y, z, and so on, refer

to distinct n-tuples, so each term is effectively a sum over subsets.

Now consider a typical term in the above sum, such as∑
x(1) ,...,x(k)

∏
i

Zx(i) .

Its expected value is

∑
x(1) ,...,x(k)

E

[∏
i

Zx(i)

]
. (1)

A subset for which the corresponding Z ’s are stochastically independent will contribute

p−k(n+α) to the sum. We need to show that most of the subsets are of this type. We say that

a subset {x(1), . . . , x(k)} is in general position if the extended vectors (1, x(1)), . . . , (1, x(k)) are

linearly independent. Observe that for any general position subset, the random variables

https://doi.org/10.1017/S0960129508007251 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508007251


Phase transition of multivariate polynomial systems 13

Zx(i) , are stochastically independent. The number of general position subsets is

pn(pn − 1)(pn − p) . . . (pn − pk−2)

k!
.

Hence, for large n, the general position subsets contribute the value

pnk

k!
p−k(n+α) =

p−αk

k!
.

If all the rows of G were linearly independent, all subsets would be in general position.

Unfortunately this is not true. However, by Lemma 3.1 below, the contribution from

subsets not in general position is insignificant compared to this.

Let k∗ be the largest odd integer not bigger than ν. For quadratic systems, k∗ is

approximately n2/2, and, in general, k∗ goes to infinity with n. Then, if

δ = Pr[no solution] −
k∗−2∑
k=0

p−αk

k!
,

we have, given Lemma 3.1,

− p−α(k∗−1)

(k∗ − 1)!
(1 + o(1)) � δ �

p−αk∗

k∗!
(1 + o(1)) .

By Stirling’s formula, the upper and lower bounds go to 0 as n → ∞, and the sum is the

Taylor series for the (entire) exponential function, so the limit of δ is 0, and we conclude

lim
n→∞

Pr[no solution] = e−p−α

.

Proof of Theorem 3.2. The indicator for exactly s solutions is

I =
∑
x(1)

Zx(1)

∑
x(2) �=x(1)

Zx(2) · · ·
∑

x(s) �=x(1)

···
x(s) �=x(s−1)

Zx(s)

∏
y �=x(1)

···
y �=x(s)

(1 − Zy) .

If we expand this and collect terms, we get∑
k�0

(−1)k
(
s + k

k

) ∑
x(1) ,...,x(s+k)

Zx(1) · · ·Zx(s+k) .

As before, the k-th inner sum is over the subsets of GF(p)n of size (s + k).

For each n, this expansion of I is a finite sum. Furthermore, the Z ’s are all non-negative,

so taking its expectation produces an alternating series. We can therefore evaluate the limit

of these expectations by computing limits termwise as we did in the proof of Theorem 3.1.

So let us consider a particular value of k. The number of general position subsets of

size s + k is given by

pn(pn − 1) · · · (pn − ps+k−2)

(s + k)!
.

Therefore, their contribution to the expectation is asymptotically

pn(s+k)p−(s+k)(n+α)

(s + k)!
=

p−(s+k)α

(s + k)!
.
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Using Lemma 3.1, with k replaced by s + k, we see that including subsets not in general

position will not change the value of this limit.

Arguing as before, the expectation of I has the limit

∑
k�0

(−1)k
(
s + k

k

)
p−(s+k)α

(s + k)!
=

p−sα

s!

∑
k�0

(−1)k
p−kα

k!
.

The value of the last sum is e−p−α

= e−λ, and this gives the desired result.

The following lemma is used in the proof of Theorems 3.1 and 3.2. It is the key

device for our analysis, as it allows us to compute limiting probabilities as if we had full

independence.

Lemma 3.1. Let p be a prime, and for an n-tuple x = (x1, . . . , xn) of elements from GF(p),

let Rx = (1, . . . , xr, . . . , xrxs, . . .). Let G be the pn × ν matrix whose rows are the Rx for

distinct x. For fixed k and n → ∞, the contribution to (1) from subsets not in general

position goes to 0.

Proof of Lemma 3.1. The points x(0), . . . , x(�) in GF(p)n are affinely independent if the

differences x(1) − x(0), . . . , x(�) − x(0) are linearly independent. For distinct points, this

happens if and only if the corresponding subset is in general position.

Let S be a particular k-subset of the rows of G, corresponding to a set of k points.

Let � + 1 be the maximum number of points in S that are affinely independent. We may

choose coordinates so that the rows for these points are

x1 x� x�+1 xn x2
1 x2

n xixj

1 0 · · · 0 0 · · · 0 0 · · · 0 · · · 0 · · ·
1 1 · · · 0 0 · · · 0 1 · · · 0 · · · 0 · · ·

...

1 0 · · · 1 0 · · · 0 0 · · · 1 · · · 0 · · ·

(2)

for a quadratic system. In general, for a degree d system, the coordinate would follow a

similar pattern.

Assume that � + 1 < k, that is, the subset S is degenerate. We claim that the rank of S

cannot be � + 1 (it is obviously at least this large). If it were, any other row would be of

the form

1 w1 · · · w� 0 · · · 0 w2
1 · · · w2

n · · · wiwj · · ·
Since it is a linear combination of rows from (2), we must have all wiwj = 0. This means

that at most one wi, say w1, is non-zero. Then we would have (from inspection of the x1

and x2
1 columns)

w1 · 1 = w2
1 .

So w1 ∈ {0, 1}, but this is impossible since the rows came from distinct points. Hence, the

rank is at least � + 2.
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For a fixed value of �, there will be at most

pn(pn − 1)(pn − p) · · · (pn − p�−1) × pk
2

such degenerate subsets of rows. The first factor is an upper bound for the number of

ways to choose � + 1 affinely independent points, and the second factor follows from

� � k and affine independence. (Once we have chosen coordinates, only wi with i � � are

eligible to be non-zero.) As n → ∞, we have

pn(pn − 1) · · · (pn − p�−1) × pk
2 ∼ p(�+1)n+k2

.

Now, if a collection of rows has rank r, the probability of choosing coefficients so that

a degree d function vanishes at the points corresponding to those rows is p−r . Similarly,

the probability of choosing m sets of coefficients independently with the same property is

p−mr . So, for any fixed �, the contribution of degenerate subsets to (1) is at most

p(�+1)n+k2

pmr
�

p(�+1)n+k2

pm(�+2)
.

This is because of our rank estimate. If we substitute m = n + α, this becomes

pk
2−(�+2)α

pn
,

which has the limit 0 as n goes to infinity.

3.1. Extension of the results to �/(pq)

In this section we derive the probability formulas for �/(pq) where p and q are distinct

primes.

Theorem 3.3. Given a multivariate polynomial system of n + α random equations of

degree d in n variables in �/(pq) with p and q distinct primes, the probability that the

system has no solution is e−p−α

+ e−q−α − e−(p−α+q−α), asymptotically in n.

Corollary 3.3. For a system as in Theorem 3.3, the limiting probability of no solution is

2e−1 − e−2 if the number of equations equals the number of variables (that is, α = 0).

Theorem 3.4. Let λ = e−α log p and μ = e−α log q . Given a multivariate polynomial system of

n+ α random equations of degree d in n variables in �/(pq) with p and q distinct primes,

the limiting probability that the system has exactly s � 1 solutions is

e−λ−μ
∑
uv=s
u,v�1

λu μv

u! v!

asymptotically in n.

Corollary 3.4. For a system as in Theorem 3.4, the limiting probability that the system has

exactly s � 1 solutions is e−2
∑

uv=s
u,v�1

1
u! v!

if the number of equations equals the number of

variables (that is, α = 0).
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Proof of Theorem 3.3. A solution does not satisfy the system modulo pq if it does not

satisfy it modulo p or it does not satisfy it modulo q. But calculating in this way we are

double counting the probability that it does not satisfy it both modulo p and modulo q.

The probability that there are no solutions modulo p and no solutions modulo q is the

product of these two probabilities:

e−p−α · e−q−α

= e−(p−α+q−α) .

The probability that there are no solutions modulo pq is the sum of the probability of

having no solutions modulo p and no solutions modulo q, minus the probability of no

solutions modulo p and modulo q together.

e−p−α

+ e−q−α − e−(p−α+q−α) .

Proof of Theorem 3.4. To have exactly s solutions modulo pq, we must have u solutions

mod p and v solutions mod q, where uv = s. For different factorisations of s, these events

are disjoint. Therefore, for n going to infinity, the probability is

e−λ−μ
∑
uv=s
u,v�1

λu μv

u! v!
.

Note that the previous two results can be further extended to products of several

distinct primes. To compute the probability of no solution modulo n = p1p2 · · · pr , we can

use the inclusion–exclusion principle. Alternatively, the asymptotic probability that there

is no solution is given by

1 −
r∏

i=1

(
1 − ep

−α
i

)
.

For the limiting probability of s � 1 solutions, we have the formula

e−
∑

λi
∑

u1u2 ···ur=s

ui�1

r∏
i=1

λuii
ui!

in which λi = e−α log pi .

From these considerations, it is clear that the ‘obstruction’ to finding formulas valid

for all n is in getting formulas that work mod pk , when k � 2. We see no difficulty in

extending our results to non-prime finite fields, but such extensions are left to the reader.

4. Experimental results

We have run a large set of experiments, and these confirm the validity of our results,

including for cases that are not covered by our proofs. We generated 10,000 random

polynomial systems for each configuration and counted the number of solutions in each

case. Figure 1a shows the fraction of quadratic systems with no solutions in �2. Figure 1b

shows the fraction of quadratic systems with exactly one solution in �2. The continuous

line represents the value of the functions described in the previous section, while the

discrete symbols give results from the experiments. We can see that the experimental
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Fig. 1. Fraction of quadratic systems with (a) no solutions and (b) exactly one solution in �2.

Fig. 2. Fraction of quadratic systems with (a) no solutions and (b) exactly one solution in �6.

results are consistent with the formulas even in the case of a small number of variables.

This is better than we were expecting since the formulas were derived for n going to

infinity. Figures 2a and 2b show similar results for �6. Figures 3a and 3b show that

similar results hold for cubic systems. Table 1a shows the variance of the experimental

values with respect to the formulas for the quadratic systems. The data in this table was

obtained by varying n from 4 to 16 and m from 1 to 28.

These experiments were designed to investigate a wider range of applicability than we

considered in our theorems. The fact that the variance is small makes us believe that our

theorems are valid more generally than our proofs would indicate.

4.1. Linearly independent equations

We considered the case of non-linear systems with linearly independent equations. This

is motivated by the fact that the quadratic systems used in cryptanalysis are restricted to

linearly independent equations.
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Fig. 3. Fraction of cubic systems with (a) no solutions and (b) exactly one solution in �3.

no solutions 1 solution

�2 1.66 · 10−5 1.95 · 10−5

�3 7.30 · 10−6 7.56 · 10−6

�5 2.48 · 10−6 1.74 · 10−6

�6 1.54 · 10−5 1.60 · 10−6

�7 2.00 · 10−6 2.78 · 10−6

no solutions 1 solution

�2 1.79 · 10−5 2.09 · 10−5

�3 7.30 · 10−6 7.56 · 10−6

�5 2.58 · 10−6 1.82 · 10−6

�6 1.65 · 10−5 1.72 · 10−6

�7 2.89 · 10−6 4.02 · 10−6

(a) (b)

Table 1. Variance of experimental values with respect to the formulas for (a) uniform at

random equation and (b) linearly independent equations.

The formulas derived in Section 3 hold in the case of linearly independent equations

also. This is because the equations of a random polynomial system are linearly independent

with very high probability. In fact, a system of degree q with n variables has more than

nq coefficients, which implies that the matrix of the coefficients is rectangular even when

we consider m > n. As shown in Gerth (1986), it is very likely that a random rectangular

matrix has maximal rank.

This is confirmed by the experimental data. We ran the same experiment as the one

described at the beginning of Section 4, but enforcing the requirement that the equations

must be linearly independent by eliminating the linearly dependent equations. Table 1b

shows that the variance is very small in this case also.

4.2. Sparse systems

In this section we check our formulas on sparse systems. Again the motivation comes

from cryptanalysis, where the quadratic systems are usually sparse. In order to simulate

the sparseness, we consider three kind of sparse systems:

1 Each coefficient can be 0 with probability z and non-zero with probability 1 − z. Note

that the known term can still assume any value with equal probability.

2 Each equation contains exactly a fraction f of the variables, that is, the coefficients of

the remaining variables are 0.
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z no solutions 1 solution

0.5 3.66 · 10−6 6.30 · 10−6

0.6 1.62 · 10−5 9.04 · 10−6

0.7 7.14 · 10−5 3.21 · 10−5

0.8 1.82 · 10−3 6.81 · 10−4

0.9 1.32 · 10−2 3.31 · 10−3

no solutions 1 solution

�2 3.74 · 10−5 3.27 · 10−5

�3 8.05 · 10−5 3.62 · 10−5

�5 1.54 · 10−4 7.81 · 10−5

�6 1.19 · 10−3 7.17 · 10−5

�7 1.27 · 10−4 4.00 · 10−5

(a) (b)
Table 2. Variance of experimental values with respect to the formulas for (a) different

values of z with random system in �3 and (b) different fields when the coefficients are

zero with probability z = 2/3.

Fig. 4. Fraction of quadratic systems with (a) no solutions and (b) exactly one solution in �2 with

coefficients set to 0 with probability z = 2/3.

3 Bi-affine equations. These are the type of equations used in Rijndael’s cryptanalysis

(see, for example, Courtois and Pierpzyk (2002)).

Case 1: The coefficients have higher probability of being 0. This is the most generic type

of sparseness we consider. The variance between the formulas from Section 3 and the

experimental results is very small for values of z up to 0.7. Table 2a shows how the

variance varies using different values of z with a random system in �3. A similar situation

is obtained in other prime fields. Table 2b shows the value of the variance of random

systems in different fields where the coefficients are zero with probability z = 2/3.

If z is smaller than 0.7, the results are very similar to Figures 1a and 1b. Figures 4a

and 4b show the result obtained with random systems in �2 where the coefficients are

zero with probability z = 0.8. The plot shows that the formula does not provide a good

approximation for a system with n = 4 variables, but it still works for bigger values of n.

Case 2: Each equation contains exactly a fraction f of the variables. In this case the

variance from the experiments is much higher. Table 2a shows the values of the variance

of random system in �3 generated by varying f from 0.1 to 0.5. Similar results are

obtained in other fields where f is fixed to 0.5, as shown in Table 2b.
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Fig. 5. Fraction of quadratic systems with (a) no solutions and (b) exactly one solution in �2 with

exactly 50% variables per equation.

f no solutions 1 solution

0.1 4.16 · 10−1 1.74 · 10−2

0.2 2.58 · 10−1 1.65 · 10−2

0.3 8.78 · 10−2 1.45 · 10−2

0.4 3.65 · 10−3 9.54 · 10−3

0.5 5.21 · 10−3 2.87 · 10−3

no solutions 1 solution

�2 3.34 · 10−3 2.56 · 10−3

�3 5.33 · 10−3 2.94 · 10−3

�5 9.17 · 10−2 4.11 · 10−3

�6 1.87 · 10−2 1.02 · 10−3

�7 1.91 · 10−2 7.90 · 10−3

(a) (b)

no solutions 1 solution

�2 9.17 · 10−6 2.00 · 10−5

�3 2.63 · 10−5 3.99 · 10−5

�5 1.24 · 10−6 9.04 · 10−6

�6 4.14 · 10−5 1.23 · 10−5

�7 4.10 · 10−6 5.10 · 10−6

(c)
Table 3. Variance of experimental values with respect to the formulas for (a) random

system in �3 generated varying f from 0.1 to 0.5 and (b) different fields when f is fixed

to 0.5. (c) Variance of experimental values with respect to the formulas for different

fields with bi-affine equations.

An explanation of these results is that this model reduces the freedom of the random

equations, which, in fact, are no longer perfectly uniform at random. For this reason,

the formulas no longer describe the phenomenon exactly, and the variance from the

experiment is much higher. This is also evident from figures 5a and 5b.

Case 3: Bi-affine equations. Bi-affine equations are only used for quadratic systems. The

variables are partitioned into two sets of equal size. Each quadratic term is composed

of one variable from the first set and one from the second (that is, two variables from

the same set never appear multiplied together). The variance in this case is small – see

Table 3c. The results for �2 are plotted in Figures 6a and 6b.
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Fig. 6. Fraction of quadratic systems with (a) no solutions and (b) exactly one solution in �2 with

bi-affine equations.

Cryptosystem n m α

Khazad 6464 7664 1200

Misty1 3856 3856 0

Kasumi 4264 4264 0

Camellia-128 3584 6224 2640

Rijndael-128 3296 6296 3000

Serpent-128 16640 17680 1040

(a)

Cryptosystem Total # of systems Pr[1 solution]

Khazad 6.86 · 106249185 5.81 · 10−362

Misty1 1.68 · 102239709 1/e

Kasumi 4.20 · 102738543 1/e

Camellia-128 1.64 · 101934992 1.91 · 10−795

Rijndael-128 5.40 · 101636625 8.13 · 10−904

Serpent-128 3.58 · 1041683551 8.49 · 10−314

(b)

Table 4. (a) Sizes of quadratic systems from cryptography. (b) Total number of quadratic

systems and the probability of exactly 1 solution.

5. Equations from cryptographic systems

In this section we apply the formula for exactly one solution to the sizes of quadratic

systems for some well-known cryptographic systems. The results obtained with the

experimental data (see Section 4) give us confidence in using the formula in this case,

even if this is not a case covered by our proofs. The data in Table 4a are from Biryukov

and De Cannière (2003). All the equations are in �2. For the quadratic systems of Misty1

and Kasumi, the parameters m and n are in the range of applicability of our formulas.

Table 4b shows that for many systems the probability of having exactly one solution

is extremely small. However, the number of systems with exactly one solution is not that

small if we consider that the total number of possible systems is huge.
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One inference that can be drawn from this study is that quadratic systems with unique

solutions are relatively rare, so rare that in most cases studying the performance of

solution algorithms for random systems might not tell us much about their efficacy in

attacking specific cryptosystems.

6. Conclusions and open problems

In this paper, we have shown that the probability that a random polynomial system has

no solution has a phase transition when the number of equations equals the number of

variables. The value of the probability at the phase transition is 1/e if the computation is

over a prime field.

We have also shown that probability of having exactly s solutions, s � 1, follows a

Poisson distribution with parameter λ = e−α log p for prime fields.

We then extended the result to �/(pq) with p and q distinct primes. Extending the

result to the case of �/(pr) with p prime is an open problem.

Adapting the formulas in the case of sparse systems where each equation contains

exactly a fixed number of variables is also an open problem.
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