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Abstract. If (Tt ) is a semigroup of Markov operators on an L1-space that admits a non-
trivial lower bound, then a well-known theorem of Lasota and Yorke asserts that the
semigroup is strongly convergent as t→∞. In this article we generalize and improve
this result in several respects. First, we give a new and very simple proof for the fact that
the same conclusion also holds if the semigroup is merely assumed to be bounded instead
of Markov. As a main result, we then prove a version of this theorem for semigroups which
only admit certain individual lower bounds. Moreover, we generalize a theorem of Ding
on semigroups of Frobenius–Perron operators. We also demonstrate how our results can
be adapted to the setting of general Banach lattices and we give some counterexamples to
show optimality of our results. Our methods combine some rather concrete estimates and
approximation arguments with abstract functional analytical tools. One of these tools is
a theorem which relates the convergence of a time-continuous operator semigroup to the
convergence of embedded discrete semigroups.

1. Introduction and preliminaries
This article is about the long-term behaviour of semigroups of operators. By a semigroup
T we mean a family of bounded linear operators (Tt )t∈J on a Banach space E where
the index set J is either N := {1, 2, . . .} or (0,∞) and where the semigroup law Tt+s =

Tt Ts is fulfilled for all s, t ∈ J . Operator semigroups describe the evolution over time of
linear autonomous systems and thus occur in various contexts. Of particular importance
in applications are positive semigroups; if E is a Banach lattice, then a semigroup T =

(Tt )t∈J is called positive if each Tt is a positive operator, i.e. if Tt f ≥ 0 for all 0≤ f ∈ E
and all t ∈ J .
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There are many different methods to study the long-term behaviour of such semigroups.
For example, the asymptotics of positive C0-semigroups can be studied effectively by
means of spectral theory since the generators of positive semigroups exhibit very special
spectral properties; we refer to the classical monograph [3] for an overview of this field,
to [32] for some recent contributions to the theory and to [1, 7, 17, 23, 44] for a series
of papers which employ spectral theoretic methods, but do not entirely focus on them.
Spectral theory also comes in handy in the study of time-discrete positive semigroups
since there is a well-developed spectral theory for positive operators on Banach lattices.
For an overview of important parts of this so-called Perron–Frobenius theory, we refer to
the survey article [22]; some very recent results can for example be found in [21].

On the other hand, there are also methods to analyse the asymptotic behaviour of
positive semigroups which do not employ spectral theory. Many of those were first
developed on L1-spaces and have then been extended to more general Banach lattices.
We refer to the monograph [13] and the survey article [12] for an excellent overview of
many such results.

Of course, L1-spaces have always been of particular importance in applications for
several reasons. For instance, the theory of Markov chains and Markov processes
naturally leads to so-called Markov semigroups on L1-spaces, i.e. to positive semigroups
which operate isometrically on the positive cone. Rather simple convergence criteria
for such Markov semigroups are available in the finite-dimensional case (see e.g.
[9, Theorem VI.1.1] and [40, Theorem 4.2]) while such criteria are more delicate in the
infinite-dimensional case, and in particular on non-discrete state spaces (see e.g. [6, §4.2]
and [20, Theorem 4.4] for different versions and proofs of a classical theorem of Doob
which addresses this issue; see also [18, Theorem 3.6] for a related Tauberian theorem).

Positive semigroups on L1-spaces also occur in ergodic theory. Here one studies the
asymptotic behaviour of semigroups of so-called Frobenius–Perron operators which are
associated to dynamical systems on measure spaces; see e.g. [8, 28] and the monograph
[26]; see also [33] and the recent monograph [10] for some related topics. Other
applications of positive semigroups on L1-spaces include models from mathematical
biology (see [36, §5] for some examples), the Boltzmann equation (see e.g. [25, §§8 and
9]) and transport equations (see e.g. [35]).

This wide range of applications has motivated the development of many sufficient
conditions for strong convergence of positive semigroups on L1-spaces. The survey papers
[5, 36, 38] give an excellent overview of many such theorems. We also refer to the
somewhat older paper [24], which contains a wealth of interesting results. Yet, even on
these spaces the theory still seems to be far from being complete.

1.1. Contribution of this article. One classical method to obtain semigroup
convergence on L1-spaces is the so-called lower bound technique. It was developed by
Lasota and Yorke ([28]; see also [25]), who proved that a semigroup of Markov operators
converges automatically to a rank-1 projection if it admits a so-called non-trivial lower
bound; see §3 for details. Later on, more general convergence results were discovered
which yield this result as a corollary; see again §3, in particular the comments before
Corollary 3.5, for a detailed discussion and several references. Yet, it appears that there
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is still some unexplored potential in classical approaches based on the existence of lower
bounds and we are going to prove several results, which, to the best of our knowledge,
cannot simply be derived from known convergence theorems. One of our main results
asserts that in the Lasota–Yorke theorem it suffices to assume the existence of an individual
lower bound for each orbit. The limit operator, however, does then no longer need to be of
rank 1. The complete statement reads as follows.

THEOREM 1.1. Let (�, µ) be an arbitrary measure space and let T = (Tt )t∈J be a
bounded positive semigroup on L1

:= L1(�, µ), where either J =N or J = (0,∞).
Suppose that for every normalized function 0≤ f ∈ L1 there exists a function 0≤ h f ∈ L1

such that ‖(Tt f − h f )
−
‖→ 0 as t→∞ and such that inf f ‖h f ‖> 0.

Then (Tt ) converges strongly as t→∞.

Theorem 1.1 follows from Corollary 4.5 below and is related to a paper of Ding [8],
who considered the individual lower bounds h f in the above theorem under somewhat
different assumptions; see §§4 and 5 for a detailed discussion. We also prove a converse
result, which asserts that under appropriate technical assumptions strong convergence of
the semigroup yields the existence of individual lower bounds. This is particularly neat for
Markov semigroups since in this case the existence of individual lower bounds which are
bounded below in norm completely characterizes strong convergence of the semigroup to
an arbitrary projection (see Theorem 4.4). In the Lasota–Yorke theorem, on the other hand,
strong convergence to a rank-1 projection is characterized by the existence of a uniform
lower bound.

It is worthwhile pointing out that for instance the semigroup which consists only of the
identity operator fulfils the assumptions of our Theorem 1.1. This shows that the theorem
cannot be a special case of any result which contains some kind of compactness condition
on the semigroup operators.

In order to give a complete summary of all our results, let us briefly outline the
content of the paper: in §2 we prove several abstract theorems about the convergence of
semigroups on Banach spaces. We show that, under appropriate boundedness assumptions,
a semigroup T = (Tt )t∈(0,∞) on a Banach space is convergent if all the embedded
discrete semigroups (Ttn)n∈N are convergent (Theorem 2.1). This result is implicitly
contained in some proofs in the literature but we could not find an explicit statement
of it. In case that the limit operator has rank 1, the result can be further improved
(Theorem 2.3). Moreover, we demonstrate how operator norm convergence of a semigroup
can be analysed by considering strong convergence of a lifting of the semigroup to an ultra
power (Theorem 2.5).

In §3 we revisit the classical Lasota–Yorke theorem about convergence of Markov
semigroups which admit a non-zero lower bound. It is known that this result also holds
for positive semigroups that are merely bounded and we give a new and very simple proof
for this fact (see Corollary 3.5). Then we discuss different ways to obtain a version of
the Lasota–Yorke theorem for convergence in operator norm (see Corollary 3.6 and the
subsequent discussion) and, finally, we show that lower bounds in the sense of Lasota and
Yorke cannot exist on any Banach lattices but on AL-spaces (Theorem 3.7).
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In §4 we prove (a slightly sharpened version of) the already stated Theorem 1.1
(Corollary 4.5) and from this we derive a convergence result about dominating semigroups
(Corollary 4.6).

In §5 we show that Theorem 1.1 also holds without the assumption inf f ‖h f ‖> 0 if
the adjoint of each operator Tt is a lattice homomorphism (Theorem 5.1); this generalizes
a result of Ding (see the discussion after Theorem 5.1). Moreover, we briefly consider
lower bounds for semigroups of lattice homomorphisms (Theorem 5.5) and we prove
a negative result about operator norm convergence of semigroups of Frobenius–Perron
operators (Corollary 5.8).

In the final §6 we show several Lasota–Yorke-type results on more general Banach
lattices, where the notion of lower bounds has to be adjusted appropriately (see
Theorems 6.2 and 6.3 as well as Propositions 6.6 and 6.7).

1.2. Preliminaries. Throughout this paper, all Banach spaces are real unless stated
otherwise. In all proofs we assume tacitly that the underlying Banach space E is non-
zero; it is, however, easy to see that our results themselves are also valid if E = {0}. If E
is a real or complex Banach space, then the space of all bounded linear operators on E is
denoted by L (E). The dual space of E is denoted by E ′ and for every T ∈L (E) we
denote by T ′ ∈L (E ′) the adjoint of T . For every f ∈ E and every ϕ ∈ E ′ the operator
ϕ ⊗ f ∈L (E) is defined by (ϕ ⊗ f )g = 〈ϕ, g〉 f for all g ∈ E . The identity operator on
a Banach space E will be denoted by idE . Let T ∈L (E). A vector f ∈ E is called a fixed
vector (or a fixed point) of T if T f = f ; a functional ϕ ∈ E ′ is called a fixed functional of
T if T ′ϕ = ϕ.

We assume the reader to be familiar with the basic theory of Banach lattices; standard
references for this topic are e.g. [31] and [39]. Since there exist some different conventions
concerning the notation, we summarize the most import notions in the following. Let E
be a Banach lattice. Then E+ := { f ∈ E : f ≥ 0} denotes the positive cone in E ; a vector
f ∈ E is called positive if f ≥ 0. For two vectors f, g ∈ E we write f < g to indicate
that f ≤ g but f 6= g; in particular, f > 0 means that f ≥ 0 but f 6= 0. This convention is
very common in Banach lattice theory but might be somewhat uncommon for people who
work mostly on function spaces. A vector f ∈ E+ is called a quasi-interior point of E+
if the so-called principal ideal E f :=

⋃
c>0{g ∈ E : |g| ≤ c f } is dense in E . An operator

T ∈L (E) is called positive if T E+ ⊆ E+ and we denote this by T ≥ 0. The dual space E ′

of a Banach lattice E is again a Banach lattice; for every functional ϕ ∈ E ′ we have ϕ ≥ 0
if and only if 〈ϕ, f 〉 ≥ 0 for all f ∈ E+. A functional ϕ ∈ E ′ is called strictly positive if
〈ϕ, f 〉> 0 for all f > 0.

A Banach lattice E is called an AL-space if ‖ f + g‖ = ‖ f ‖ + ‖g‖ for all f, g ∈ E+.
Every L1-space is an AL-space and conversely every AL-space is isometrically Banach
lattice isomorphic to L1(�, µ) for some (not necessarily σ -finite) measure space (�, µ).
A linear operator T ∈L (E) on an AL-space E is called a Markov operator if T ≥ 0
and ‖T f ‖ = ‖ f ‖ for all f ∈ E+. On every AL-space E there is a uniquely determined
functional 1 ∈ E ′ with the property 〈1, f 〉 = ‖ f ‖ for all f ∈ E+; this functional is called
the norm functional on E . Clearly, a positive operator T ∈L (E) is a Markov operator if
and only if T ′1= 1.
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A Banach lattice E is called a KB-space if every norm-bounded increasing sequence in
E is norm convergent. This is equivalent to the seemingly stronger condition that every
norm-bounded increasing net in E is norm convergent (which easily follows from the
fact that every KB-space is a band in its bi-dual and has order continuous norm; see
Theorem 2.4.12 and the paragraph after Definition 2.4.11 in [31]). We shall frequently
use the fact that every AL-space is a KB-space [31, Corollary 2.4.13].

For the sake of completeness, we recall from the very beginning that a semigroup on a
Banach space E is always understood to be a family T = (Tt )t∈J ⊆L (E) where either
J =N= {1, 2, . . .} or J = (0,∞) and where the semigroup law Tt+s = Tt Ts is fulfilled
for all s, t ∈ J . It is worth emphasizing that we do not require any continuity of the
mapping t 7→ Tt in case that J = (0,∞). A vector f ∈ E is called a fixed vector (or a fixed
point) of T if Tt f = f for all t ∈ J and a functional ϕ ∈ E ′ is called a fixed functional
of T if T ′t ϕ = ϕ for all t ∈ J . If E is a Banach lattice, then the semigroup T is called
positive if Tt ≥ 0 for all t ∈ J . If T is a positive semigroup on a Banach lattice E , then a
vector f ∈ E+ is called a super fixed vector (or a super fixed point) of T if Tt f ≥ f for
all t ∈ J . If E is an AL-space, then T is called a Markov semigroup if Tt is a Markov
operator for every t ∈ J .

Let T = (Tt )t∈J be a semigroup on a Banach space E . Then T is called bounded if
supt∈J ‖Tt‖<∞; it is called locally bounded at 0 if for one (equivalently all) c ∈ J we
have supt∈(0,c]∩J ‖Tt‖<∞. Note that if J =N, then T is automatically locally bounded
at 0.

We will very often be concerned with the question whether a semigroup T = (Tt )t∈J

on a Banach space E is convergent with respect to the strong operator topology or, on a
few occasions, with respect to the operator norm. Here we always mean convergence as
t→∞.

On some occasions in the article we freely make use of ultra powers of Banach spaces.
Here we only recall the basics in order to fix the notation: let E be a real or complex
Banach space and let U be a free ultra filter on N. Let `∞(N; E) denote the space
of all E-valued norm-bounded sequences, endowed with the supremum norm, and let
c0,U (N; E)⊆ `∞(N; E) be given by

c0,U (N; E) :=
{
( fn) ∈ `

∞(N; E) : lim
n→U

fn = 0
}
.

Then the space EU
:= `∞(N; E)/c0,U (N; E) is called the ultra power of E with respect

to U . For every f = ( fn) ∈ `
∞(N; E) we denote by f U

= ( fn)
U
:= f + c0,U (N; E)

the equivalence class of f in EU ; note that ‖ f U
‖ = limn→U ‖ fn‖. If f ∈ E , then we

denote by f U the equivalence class of the constant sequence ( f )n∈N in EU . The mapping
E→ EU , f 7→ f U is an isometric embedding of the Banach space E into the Banach
space EU and is called the canonical embedding of E into EU . If E is a Banach lattice,
then so is EU and the canonical embedding is a lattice homomorphism in this case.

Every operator T ∈L (E) has a lifting T U
∈L (EU ) which is given by T U f U

:=

(T fn)
U for every f = ( fn) ∈ `

∞(N; E) and the mapping L (E)→L (EU ), T 7→ T U

is an isometric Banach algebra homomorphism.
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2. Three abstract convergence theorems
In this section we prove three theorems on semigroup convergence which hold in the
general setting of Banach spaces and which are abstract in the sense that they do not
provide explicit criteria for the convergence of a semigroup. Instead, they clarify the
connection between different types of convergence. These theorems, in particular the first
one, will be very useful later on.

Our first theorem relates the convergence of a semigroup T = (Tt )t∈(0,∞) to the
convergence of the powers (Tt )

n
= Ttn as n→∞.

THEOREM 2.1. Let E be a real or complex Banach space and let T = (Tt )t∈(0,∞) be a
semigroup on E which is locally bounded at 0.
(a) The semigroup (Tt )t∈(0,∞) converges strongly if and only if for every t ∈ (0,∞) the

semigroup (Ttn)n∈N converges strongly.
(b) The semigroup (Tt )t∈(0,∞) converges with respect to the operator norm if and only if

for every t > 0 the semigroup (Ttn)n∈N converges with respect to the operator norm.
If the equivalent assertions in (a) or (b) hold, then all occurring limits coincide.

The method that we use to prove this theorem is essentially known from [29, Proof of
Theorem 4]. Yet, we could not find the theorem in its full generality in the literature. We
need the following simple lemma, whose proof is taken from [9, Proof of Theorem VI.1.1].

LEMMA 2.2. Let E be a real or complex Banach space and let P = (Pt )t∈(0,∞) be a
semigroup on E such that Pt is a projection for every t ∈ (0,∞). Then P is constant, i.e.
Pt = Ps for all t, s ∈ (0,∞).

Proof. Let τ, t ∈ (0,∞) and choose n ∈N such that τ/n < t . Then we have

Pt = Pt−τ/n Pτ/n = Pt−τ/n P(n+1)(τ/n) = Pt+τ .

This proves the lemma. �

Proof of Theorem 2.1. We only show assertion (a) because the proof of (b) is virtually the
same. Throughout, we may assume that the scalar field is complex, since otherwise we
replace E with a Banach space complexification of E . The implication ‘⇒’ is obvious. To
prove the converse implication, assume that for every t ∈ (0,∞) the semigroup (Ttn)n∈N

is strongly convergent.
We first show that the semigroup T is in fact bounded. Since T is locally bounded at

0, we have C := supt∈(0,1] ‖Tt‖<∞. Moreover, it follows from the uniform boundedness
principle that D := supn∈N ‖Tn‖<∞ since (Tn) converges strongly as n→∞. Hence,
we have ‖Tt‖ ≤ C D for every t ∈ (0,∞).

Now we show that the strong limits Pt := limn→∞ Ttn coincide for all t > 0. Clearly,
each operator Pt is a projection. Moreover, we have

Ps Pt = lim
n→∞

Tsn lim
n→∞

Ttn = lim
n→∞

TsnTtn = lim
n→∞

T(s+t)n = Ps+t

for all s, t ∈ (0,∞). Here we used that on bounded subsets of L (E) the operator
multiplication is jointly continuous with respect to the strong operator topology. Hence,
(Pt )t∈(0,∞) is a semigroup. We define P := Pt for some t > 0 and we conclude from
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Lemma 2.2 that P = Pt for every t > 0. Hence, we proved that limn→∞ Ttn = P for all
t > 0 and this implies that Tt P = limn→∞ Tt Ttn = P for every t > 0.

Now let x ∈ E and ε > 0. Observe that we have ‖Tn0 x − Px‖ ≤ ε for some sufficiently
large n0 ∈N. For all t > n0, we thus obtain

‖Tt x − Px‖ = ‖Tt−n0 Tn0 x − Tt−n0 Px‖ ≤ C D‖Tn0 x − Px‖ ≤ C Dε.

This proves that Tt x→ Px as t→∞. �

If the scalar field is real and the limit operators under consideration are of rank 1, then
Theorem 2.1 can be slightly improved. In this case, one only needs to show that at least one
of the embedded discrete semigroups (Tnt )n∈N converges in order to obtain convergence
of the entire semigroup. This is the content of our second abstract convergence theorem.
It was inspired by [30, Proposition 3.1], where part (a) of this result was proved for the
special case of a Markov semigroup on an AL-space.

THEOREM 2.3. Let E be a real Banach space and let T = (Tt )t∈(0,∞) be a semigroup on
E which is locally bounded at 0. Fix t0 ∈ (0,∞).
(a) The semigroup (Tt )t∈(0,∞) converges strongly to a rank-1 operator if and only if the

semigroup (Tnt0)n∈N converges strongly to a rank-1 operator.
(b) The semigroup (Tt )t∈(0,∞) converges to a rank-1 operator with respect to the

operator norm if and only if the semigroup (Tnt0)n∈N converges to a rank-1 operator
with respect to the operator norm.

If the equivalent assertions in (a) or (b) hold, then all occurring limits coincide.

Proof. Again, we only prove assertion (a) because the proof of assertion (b) is virtually
the same. The implication ‘⇒’ is obvious and we clearly have limt→∞ Tt = limn→∞ Tnt0
if both limits exist.

To prove the implication ‘⇐’, assume that (Tnt0)n∈N converges strongly to a rank-1
operator P as n→∞. Using that T is locally bounded at 0, one shows as in the proof of
Theorem 2.1 that the semigroup T is bounded.

Since P is of rank 1, we find a vector f0 ∈ E \ {0} and a functional ϕ ∈ E ′ \ {0} such
that P = ϕ ⊗ f0. Clearly, f0 is a fixed vector and ϕ a fixed functional of Tt0 . We show
next that f0 is a fixed vector of each operator Tt . To this end, define αt := 〈ϕ, Tt f0〉 ∈R

for every t ∈ (0,∞). Since

Tt f0 = Tt Tnt0 f0 = Tnt0 Tt f0→ 〈ϕ, Tt f0〉 f0 as n→∞,

we have Tt f0 = αt f0 for all t ∈ (0,∞) and we have to prove that αt = 1 for each time t .
If we had |αt |> 1 for some t ∈ (0,∞), this would imply that ‖Tnt f0‖ = |αt |

n
‖ f0‖→∞

as n→∞, which contradicts the boundedness of T . Now assume that |αt |< 1 for some
t ∈ (0,∞). Then Ttn f0→ 0 as n→∞ and, since T is bounded, we even obtain that
Ts f0→ 0 as s→∞. This contradicts the fact that f0 is a fixed point of Tt0 . Hence,
|αt | = 1 for all t ∈ (0,∞). Since the Banach space E is real, αt ∈ {−1, 1} for all
t ∈ (0,∞). For each t , we have

αt f0 = Tt f0 = Tt/2Tt/2 f0 = α
2
t/2 f0
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and thus we may conclude from f0 6= 0 that αt = α
2
t/2 > 0. Hence, αt = 1 for all t ∈

(0,∞), which proves that f0 is a fixed vector of T .
Now let f ∈ E be an arbitrary vector and let ε > 0. Choose n0 ∈N such that

‖Tn0t0 f − 〈ϕ, f 〉 f0‖ ≤ ε. For every t > n0t0, we then obtain

‖Tt f − 〈ϕ, f 〉 f0‖ = ‖Tt−n0t0 Tn0t0 f − 〈ϕ, f 〉Tt−n0t0 f0‖ ≤ sup
s∈(0,∞)

‖Ts‖ · ε.

This proves that (Tt ) converges strongly to ϕ ⊗ f0 as t→∞. �

Remarks 2.4.
(a) For the non-trivial implications in Theorem 2.3, the assumption that the limit

operator be of rank 1 cannot be dropped. For example, let T = (Tt )t∈(0,∞) be a non-
constant periodic semigroup on R2 with period t0 > 0. Then (Tnt0)n∈N converges, but
(Tt )t∈(0,∞) does not converge.

(b) The assumption that the Banach space E be real is essential in Theorem 2.3.
Indeed, the semigroup (ei t )t∈(0,∞) on C does not converge, while the embedded discrete
semigroup (ei2πn)n∈N is constantly 1 and thus convergent. On the other hand, if E is a
complexification of a real Banach space ER and the semigroup T leaves ER invariant,
then Theorem 2.3 clearly remains true.

(c) In the case of positive semigroups one can prove the following time-discrete
analogue of Theorem 2.3: let E be a Banach lattice and let T ∈L (E) be a positive
operator. If there is an integer m0 ∈N such that (T nm0)n∈N converges strongly (or with
respect to the operator norm) to a rank-1 operator, then (T n)n∈N converges strongly (or
with respect to the operator norm) to the same operator. The proof is essentially the same
as for Theorem 2.3, where the positivity assumption is used to ensure that none of the
numbers αn := 〈ϕ, T n f0〉 equals −1. Without the additional positivity assumption, the
assertion is false as the one-dimensional operator T =−1 ∈L (R) shows.

The third of our three abstract convergence theorems describes how the convergence of
a semigroup on a Banach space E with respect to the operator norm is related to strong
convergence of the semigroup on an ultra power EU .

THEOREM 2.5. Let E be a real or complex Banach space and let T = (Tt )t∈J be a
semigroup on E which is locally bounded at 0, where either J =N or J = (0,∞). Let U

be a free ultra filter onN and let P ∈L (E). Then the following assertions are equivalent.
(i) (Tt ) converges to P with respect to the operator norm.
(ii) (T U

t ) converges to PU with respect to the operator norm.
(iii) (T U

t ) converges strongly to PU .

In the context of semigroup convergence on ultra powers, we also refer the reader to the
paper [34], where so-called superstable operators are studied. Before we proceed with the
proof of Theorem 2.5, we stress some important observations.

Remarks 2.6. (a) Theorem 2.5 does not assert that strong convergence of the lifted
semigroup T U

:= (T U
t )t∈J implies operator norm convergence of the original semigroup

T . In fact, the theorem only makes this assertion under the additional assumption that
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the strong limit limt→∞ T U
t ∈L (EU ) is of the form PU for an operator P ∈L (E).

Without this assumption, the assertion is false, as the following counterexample shows.
Let E := `2

:= `2(N; C) and let A ∈L (`2) be the multiplication operator with symbol
(−1/n)n∈N. For each t ≥ 0, define Tt := et A. Then it follows from [2, Theorem 5.5.5(b)]
that the C0-semigroup T := (Tt )t∈[0,∞) converges strongly to 0. However, since the
spectral bound of A equals 0, the semigroup T does not converge to 0 with respect to
the operator norm and hence it does not converge with respect to the operator norm at all.

On the other hand, let U be a free ultra filter on N and consider the semigroup
T U
= (T U

t )t∈[0,∞). Then T U converges with respect to the strong operator topology
in L (EU ). To see this, first note that T U is a C0-semigroup on (`2)U = EU with
generator AU . Moreover, EU is a Hilbert space and the point spectrum of AU intersects
the imaginary axis only in 0. Therefore, [2, Theorem 5.5.6(b)] implies that T U is strongly
convergent and Theorem 2.5 shows that the limit operator cannot be of the form PU for
P ∈L (E).

(b) The semigroup structure of the net (Tt )t∈J is essential in Theorem 2.5, i.e. the
implication ‘(iii) ⇒ (i)’ does not hold for arbitrary sequences (or nets) in L (E). In
order to construct a counterexample, let E = `2

:= `2(N; C) and, for every n ∈N, define
Tn ∈L (`2) to be the multiplication operator whose symbol is the nth canonical unit
vector en ∈ `

∞. Clearly, (Tn) converges strongly to 0 as n→∞, but ‖Tn‖ = 1 for all
indices n, so (Tn) does not converge with respect to the operator norm. Nevertheless, for
every free ultra filter U on N the sequence of lifted operators (T U

n ) on the ultra power
EU
= (`2)U converges strongly to 0. To see this, let f = ( fk)k∈N ⊆ `

2 be a bounded
sequence. Aiming for a contradiction, we assume that (T U

n f U ) does not converge to 0 in
EU . Then we can find an ε > 0 and a strictly increasing sequence of integers (nm)m∈N

such that ‖T U
nm

f U
‖ ≥ ε for every index m. Hence, we have for every m ∈N

lim
k→U

| fk(nm)| = lim
k→U

‖Tnm fk‖ = ‖T U
nm

f U
‖ ≥ ε.

Now let M ⊆N be an arbitrary finite set. For every m ∈ M we can find a set Um ∈U such
that | fk(nm)| ≥ ε/2 for all k ∈Um . Since U is a filter, the intersection

⋂
m∈M Um is non-

empty, so we can find a number kM ∈
⋂

m∈M Um , and this number fulfils | fkM (nm)| ≥ ε/2
for all m ∈ M . Since all nm are distinct, this implies that

‖ fkM ‖
2
≥ |M |

(
ε

2

)2

.

This is a contradiction, as the sequence ( fk) is bounded in `2. Thus, (T U
n )n∈N converges

strongly to 0.

Proof of Theorem 2.5. We may assume throughout the proof that the scalar field is
complex; otherwise, we replace E with a Banach space complexification of E .

The implications ‘(i) ⇒ (ii)’ and ‘(ii) ⇒ (iii)’ are obvious. To prove the non-
trivial implication ‘(iii) ⇒ (i)’, it suffices to consider the case J =N; the assertion
for J = (0,∞) then follows from Theorem 2.1(b). So, we have T = (T n)n∈N for
T := T1 ∈L (E).
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Clearly, (T n) is strongly convergent to P . Thus, P is a projection and we have T P = P .
Define Q := idE −P . The projection QU commutes with T U and we have(

(T Q)U
)n
= (T U QU )n = (T U )n QU

→ 0 (2.1)

with respect to the strong operator topology on L (EU ) as n→∞. We show that
this implies that r(T Q) < 1. Since T Q is power bounded, we have r(T Q)≤ 1. Now
assume that r(T Q)= 1 and pick a spectral value λ ∈ σ(T Q) with |λ| = r(T Q)= 1. As
λ ∈ ∂σ(T Q), the value λ is an approximate eigenvalue of T Q and hence an eigenvalue of
(T Q)U [39, Theorem V.1.4(ii)]. This contradicts (2.1).

Therefore, r(T Q) < 1 and this implies that ‖T n Q‖ = ‖(T Q)n‖→ 0 as n→∞. Thus,
we have

T n
= T n(P + Q)= P + T n Q→ P as t→∞

with respect to the operator norm. �

3. The Lasota–Yorke theorem revisited
In this section we revisit a famous theorem of Lasota and Yorke, which asserts that
a Markov semigroup on an L1-space admitting a non-zero lower bound is strongly
convergent. It was originally proved in [28, Theorem 2 and Remark 3] for L1-spaces
over σ -finite measure spaces. However, the theorem is also true without any restriction
on the measure space (see Theorem 3.2 below or [11, Theorem 15]). This is not only a
nice gadget, but it is crucial to several of our following results in whose proofs L1-spaces
occur in an abstract way (e.g. as ultra powers), so that we cannot ensure that the underlying
measure space is σ -finite.

Recall that a Banach lattice E is isometrically Banach lattice isomorphic to L1(�, µ)

for some measure space (�, µ) if and only if E is a so-called AL-space, meaning that
the norm on E is additive on the positive cone. We prefer not to use the representation of
vectors in such spaces as integrable functions in our proofs but to argue with the abstract
properties of AL-spaces, instead. This has certain theoretical advantages: on the one hand
it becomes much clearer which properties of the space are used in the proofs; on the other
hand we do not have to care about any measurability questions or about any problems that
might be caused by non-σ -finite measures.

Let us start by recalling the definition of a lower bound.

Definition 3.1. Let E be a Banach lattice and let T = (Tt )t∈J be a semigroup of positive
operators on E where either J =N or J = (0,∞). A vector h ∈ E+ is called a lower
bound for T if ‖(Tt f − h)−‖→ 0 as t→∞ for every f ∈ E+ with ‖ f ‖ = 1.

While 0 is always a lower bound, the Lasota–Yorke theorem asserts that the existence
of a non-zero lower bound implies strong convergence of the semigroup. Here we state
the theorem in a version for AL-spaces, where the semigroup might be defined for discrete
times or on the time interval (0,∞).

THEOREM 3.2. (Lasota–Yorke) Let E be an AL-space and let T = (Tt )t∈J be a Markov
semigroup on E where either J =N or J = (0,∞). Then the following assertions are
equivalent.
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(i) There exists a normalized fixed point f0 ∈ E+ of T such that T converges strongly
to the rank-1 projection P = 1⊗ f0.

(ii) There exists a non-zero lower bound for T .

In the literature, the theorem is usually stated on L1-spaces over σ -finite measure
spaces; a version on AL-spaces can be found in [11, Theorem 15]. Here we want to
include a version of the original proof from [28, Theorem 2] on AL-spaces. Although only
minor adjustments are necessary to make this proof work on AL-spaces, we choose to
include the complete proof here, for the following two reasons: on the one hand, it can be
written down in a very concise way in the setting of AL-spaces; on the other hand, we use
the proof as a blueprint for the technically more involved proof of Theorem 4.4 in §4. So,
the reader might find it convenient to first read the proof of Theorem 3.2 before proceeding
with the proof of Theorem 4.4.

It is rather common in the literature to prove the Lasota–Yorke theorem first for the
time-discrete case. The case J = (0,∞) is then reduced to the first one by using a simpler
version of Theorem 2.1(a); see e.g. [26, Theorems 5.6.2 and 7.4.1] or [13, Theorem 3.2.1].
On the other hand, in [25, Theorem 1.1] an argument is given where J is allowed to be a
more general subsemigroup of the positive real numbers. We also treat the cases J =N
and J = (0,∞) at the same time.

Let us first show the following two simple lemmas.

LEMMA 3.3. Assume that in the situation of Theorem 3.2 the condition (ii) is fulfilled and
let H ⊆ E+ denote the set of all lower bounds for T . Then H has a maximum hmax and
this maximum fulfils 0< ‖hmax‖ ≤ 1 and Tt hmax = hmax for all t ∈ J .

Proof. One easily checks that H is closed and T -invariant and that ‖h‖ ≤ 1 for all h ∈ H .
Moreover, it follows from (a − x ∨ y)− = (a − x)− ∨ (a − y)− ≤ (a − x)− + (a − y)−

for all a, x, y ∈ E that h1 ∨ h2 ∈ H for all h1, h2 ∈ H . Hence, (h)h∈H is a norm-bounded
increasing net in E and, since every AL-space is a KB-space, hmax := limh∈H h exists
in E . Clearly, hmax = sup H , hmax ∈ H and ‖hmax‖ ≤ 1. Since H 6= {0} by assumption,
we also have hmax > 0. Moreover, for every time t ∈ J we have Tt hmax ∈ H and thus
Tt hmax ≤ hmax. Yet, as Tt is a Markov operator and as the norm on E is strictly monotone,
we conclude that in fact Tt hmax = hmax. �

LEMMA 3.4. Let E be an AL-space, let h ∈ E+ of norm 1 and let ( f j ) j∈J ⊆ E+ be a net
of vectors of norm 1. Assume that

lim
j
‖( f j − h)−‖ = 0.

Then ( f j ) converges to h.

Proof. It suffices to show that lim j ‖( f j − h)+‖ = 0. We have

1= ‖ f j‖ = ‖( f j − h)+ + h − ( f j − h)−‖

≥ ‖( f j − h)+ + h‖ − ‖( f j − h)−‖ = ‖( f j − h)+‖ + ‖h‖ − ‖( f j − h)−‖,

where the last equality follows from the fact that the norm is additive on E+. Since ‖h‖ =
1, it follows that ‖( f j − h)+‖ ≤ ‖( f j − h)−‖→∞, which proves the assertion. �
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Proof of Theorem 3.2. (i) ⇒ (ii): If (i) holds, then limt→∞ Tt f = f0 for all f ∈ E+ of
norm 1. Hence, f0 is a non-zero lower bound for T .

(ii)⇒ (i): Assume that (ii) holds. Let hmax > 0 be the maximal lower bound of T given
by Lemma 3.3 and recall that Tt hmax = hmax for all t ∈ J . We show that ‖hmax‖ = 1.
Indeed, suppose to the contrary that δ := 1− ‖hmax‖> 0. We show that (1+ δ)hmax

is then also a lower bound for T . So, let f ∈ E+, ‖ f ‖ = 1 and ε > 0. There are a
time t0 ∈ J and a positive vector et0 such that Tt0 f + et0 ≥ hmax and ‖et0‖< ε. The
vector g := Tt0 f + et0 − hmax is positive and has norm ‖g‖ ≥ 1− ‖hmax‖ = δ. For all
sufficiently large times s ∈ J , s ≥ s0 say, there is a vector ẽs such that ‖ẽs‖< ε and
Ts g + ẽs ≥ ‖g‖hmax ≥ δhmax. Hence, we obtain for all s ≥ s0

Ts Tt0 f = Ts g + Tshmax − Tset0 ≥ (1+ δ)hmax − Tset0 − ẽs .

Since ‖Tset0 + ẽs‖< 2ε, we have shown that ‖(Tt f − (1+ δ)hmax)
−
‖< 2ε for all t ≥

t0 + s0. Since f was arbitrary, this shows that (1+ δ)hmax is indeed a lower bound for T ,
which contradicts the maximality of hmax. We have therefore proved that ‖hmax‖ = 1.

Finally, let f ∈ E+ with ‖ f ‖ = 1. Since Tt f is of norm 1 for all t ∈ J and
asymptotically dominates the vector hmax, which also has norm 1, we conclude from
Lemma 3.4 that Tt f → hmax = 〈1, f 〉hmax as t→∞. By linearity, lim Tt f = 〈1, f 〉hmax

actually holds for all f ∈ E , which proves that (i) is true. �

It is natural to ask whether the Lasota–Yorke theorem remains true for semigroups
which are not Markov but merely bounded (where, of course, we have to modify assertion
(i) appropriately such that the trivial implication ‘(i) ⇒ (ii)’ remains true). The answer
to this question is ‘yes’. For contractive semigroups in the time-discrete case this was
proved by Zalewska-Mitura in [45, Theorem 2.1]; by a somewhat technical procedure she
reduced the assertion to the case of Markov operators. On the other hand, Komornı́k noted
in [24, Corollary 5.1] that the Lasota–Yorke theorem remains true even for power-bounded
positive operators; he derived this from a result about quasi-constrictive operators; see also
[12, Theorems 3 and 4]. Using Theorem 2.1(a), one can also treat the case J = (0,∞).

We are now going to give an alternative proof for the fact that Theorem 3.2 remains true
for bounded positive semigroups. Our argument is quite abstract and very short.

COROLLARY 3.5. Let E be an AL-space and let T = (Tt )t∈J be a bounded semigroup on
E where either J =N or J = (0,∞). Then the following assertions are equivalent.
(i) T converges strongly to a rank-1 projection P = ϕ ⊗ f0, where f0 ∈ E+ is a

normalized fixed vector of T and ϕ ∈ E ′ is a positive fixed functional of T such
that 〈ϕ, f0〉 = 1 and 〈ϕ, f 〉 ≥ ε for all f ∈ E+ of norm 1 and some constant ε > 0.

(ii) There exists a non-zero lower bound h for T .

Proof. (i)⇒ (ii): If (i) holds, then P f ≥ ε f0 for all f ∈ E+ of norm 1. Therefore, ε f0 is
a lower bound for T .

(ii) ⇒ (i): It suffices to consider the case J =N; the assertion for J = (0,∞) then
follows from Theorem 2.1(a). So, assume that (ii) holds and that T = (T n)n∈N, where
T := T1 ∈L (E). Fix an arbitrary Banach limit L on `∞(N;R) and define

‖ f ‖1 := 〈L , (‖T
n
| f |‖)n∈N〉
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for all f ∈ E . Then ‖ · ‖1 is an equivalent norm on E such that (E, ‖ · ‖1) is again an AL-
space. Indeed, ‖ · ‖1 is obviously a seminorm on E which is additive on the positive cone.
We clearly have ‖ f ‖1 ≤ supn∈N ‖T

n
‖‖ f ‖ for all f ∈ E . On the other hand, since h is a

lower bound of T , we have ‖ f ‖1 ≥ ‖h‖‖ f ‖ for every f ∈ E . Thus, the seminorm ‖ · ‖1
is indeed equivalent to ‖ · ‖ and, in particular, it is a norm. Moreover, ‖ · ‖1 is even a lattice
norm on E and, since ‖ · ‖1 is additive on E+, (E, ‖ · ‖1) is an AL-space, as claimed.

Finally, since the Banach limit L is shift invariant, it follows that T is a Markov operator
with respect to ‖ · ‖1. Hence, Theorem 3.2 implies that (T n) converges strongly to the
rank-1 projection P := 11 ⊗ f0, where f0 is a positive fixed point of T such that ‖ f0‖1 =

1 and 11 denotes the norm functional on (E, ‖ · ‖1). The fact that f0 is a positive fixed
point of T implies that ‖ f0‖ = ‖ f0‖1 = 1. Since 〈11, f 〉 ≥ ‖h‖> 0 for all f ∈ E+ of
norm 1, assertion (i) follows with ϕ := 11. �

As a further corollary, we obtain a similar result for convergence with respect to the
operator norm.

COROLLARY 3.6. Let E be an AL-space and let T = (Tt )t∈J be a bounded semigroup on
E where either J =N or J = (0,∞). Then the following assertions are equivalent.
(i) Assertion (i) of Corollary 3.5 holds and T converges to P even with respect to the

operator norm.
(ii) There exists a vector 0< h ∈ E such that

lim
t→∞

sup{‖(Tt f − h)−‖ : f ∈ E+, ‖ f ‖ = 1} = 0.

Proof. (i)⇒ (ii): If (i) holds, then, as in the proof of Corollary 3.5, we may take h = ε f0.
Since T converges even with respect to the operator norm, we obtain (ii).

(ii)⇒ (i): Since h is a non-zero lower bound for T , we know from Corollary 3.5 that
T converges strongly to a positive rank-1 projection P . Fix a free ultra filter U on N
and note that the ultra power EU is again an AL-space. Using the fact that ‖( fn)

U
‖ =

limn→U ‖ fn‖ for each ( fn)
U
∈ EU , one can conclude from assertion (ii) that the lifted

element hU
∈ EU is a non-zero lower bound of the lifted semigroup T U

:= (T U
t )t∈J .

Hence, by Corollary 3.5, (T U
t ) converges strongly to a positive rank-1 projection Q ∈

L (EU ) as t→∞. According to Theorem 2.5, it remains to show that Q = PU .
The operator Q is of the form Q = ψ ⊗ g0 where g0 ∈ EU is the unique positive fixed

point of T U of norm 1 and where ψ ∈ (EU )′ is the unique positive fixed functional of
T U that fulfils 〈ψ, g0〉 = 1. On the other hand, we know that the operator P is of the form
P = ϕ ⊗ f0 where f0 ∈ E is the unique positive fixed point of T of norm 1 and where
ϕ ∈ E ′ is the unique positive fixed functional of T that fulfils 〈ϕ, f0〉 = 1. Let f U

0 ∈ EU

be the lifting of f0 to EU and let ϕU
∈ (EU )′ be given by 〈ϕU , f U

〉 = limn→U 〈ϕ, fn〉

for all f U
= ( fn)

U
∈ EU . Then f U

0 is a positive fixed vector of T U of norm 1, so
f U
0 = g0. Similarly, ϕU is a positive fixed functional of T U which fulfils 〈ϕU , g0〉 =

〈ϕU , f U
0 〉 = 1, so ϕU

= ψ . From f U
0 = g0 and ϕU

= ψ , one readily derives that PU
=

(ϕ ⊗ f0)
U
= ψ ⊗ g0 = Q. Now the assertion follows from Theorem 2.5. �

Let us briefly outline an alternative way to prove Corollary 3.6: using the concept of
uniformly ε-overlapping operators [5, p. 400], one can conclude from [4, Theorem 1]

https://doi.org/10.1017/etds.2017.9 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2017.9


Lower bounds and asymptotics of semigroups 3025

that the non-trivial implication of Corollary 3.6 holds at least for time-discrete Markov
semigroups. Then one can use the Banach limit renorming trick from the proof of
Corollary 4.5 to conclude that the assertion is even true for time-discrete semigroups which
are positive and bounded. Theorem 2.1(b) finally allows us to obtain the case J = (0,∞)
as well.

It is natural to ask whether the theorem of Lasota and Yorke or its generalization in
Corollary 3.5 still holds on more general Banach lattices. Our last result in this section
shows that this is indeed true but for a trivial reason: if a bounded positive semigroup
admits a non-zero lower bound, then the underlying Banach lattice is isomorphic to an
AL-space.

THEOREM 3.7. Let E be a Banach lattice and let T = (Tt )t∈J be a bounded semigroup
of positive operators on E where J =N or J = (0,∞). If there exists a lower bound
h 6= 0 for T , then there exists an equivalent norm ‖ · ‖1 on E such that (E, ‖ · ‖1) is an
AL-space.

Proof. Choose a positive functional ϕ ∈ E ′+ such that 〈ϕ, h〉> 0. Moreover, let U be an
ultra filter on J which contains the filter base {[t,∞) ∩ J : t ∈ J } and define

‖ f ‖1 := lim
t→U
〈ϕ, Tt | f |〉.

Obviously, ‖ · ‖1 is a seminorm on E . Moreover, we have ‖ f ‖1 ≤ ‖ϕ‖ supt∈J ‖Tt‖ ‖ f ‖
and, since h is a non-zero lower bound for T , we also have ‖ f ‖1 ≥ ‖ f ‖〈ϕ, h〉. Therefore,
‖ · ‖1 is indeed a norm on E and equivalent to ‖ · ‖. Now it follows from the definition
of ‖ · ‖1 that (E, ‖ · ‖1) is a Banach lattice. Since ‖ · ‖1 is obviously additive on E+,
(E, ‖ · ‖1) is even an AL-space. �

4. Individual lower bounds
In this section we adapt the Lasota–Yorke theorem to a situation where the lower bound of
the semigroup is allowed to depend on the individual orbit. The precise definition of such
individual lower bounds is a follows.

Definition 4.1. Let E be a Banach lattice and let T = (Tt )t∈J be a positive semigroup on
E where either J =N or J = (0,∞). Let f ∈ E+. A vector h f ∈ E+ is called a lower
bound for (T , f ) if limt→∞ ‖(Tt f − h f )

−
‖ = 0.

This notion was introduced by Ding in [8, p. 312]. He proved that if an operator T on an
L1-space over a σ -finite measure space (�, µ) is a Frobenius–Perron operator associated
with a non-singular transformation of (�, µ) and, if ((T n)n∈N, f ) admits a non-zero lower
bound for every 0< f ∈ L1(�, µ), then the semigroup (T n)n∈N is strongly convergent.
To make this precise, we recall that a measurable mapping ϕ : �→� is called non-
singular if µ(ϕ−1(A)) > 0 implies that µ(A) > 0 for each measurable set A ⊆�. Given
such a ϕ, there exists a uniquely determined operator T : L1(�, µ)→ L1(�, µ) which
satisfies ∫

A
T f dµ=

∫
ϕ−1(A)

f dµ
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for all f ∈ L1(�, µ) and every measurable A ⊆�, and this operator is called the
Frobenius–Perron operator associated with ϕ. The precise statement of Ding’s theorem
now reads as follows.

THEOREM 4.2. (Ding [8, Theorem 1.1]) Let (�, µ) be a σ -finite measure space and let
ϕ : �→� be measurable and non-singular. Let T ∈L (L1(�, µ)) be the Frobenius–
Perron operator associated with ϕ and set T := (T n)n∈N.

If for every normalized f ∈ L1(�, µ)+ there exists a non-zero lower bound h f for
(T , f ), then (T n)n∈N converges strongly.

This theorem can, for instance, be applied in the analysis of measure-preserving
dynamical systems; see [19] for details.

It follows from Theorem 2.1(a) that an analogue of Ding’s theorem also holds for
semigroups T = (Tt )t∈J of Frobenius–Perron operators if J = (0,∞). We are going to
give a generalization of Theorem 4.2 in Theorem 5.1 in the next section. In the current
section we devote ourselves to the following question: Ding asked in [8, Remark 1.3]
whether Theorem 4.2 remains true if we replace the Frobenius–Perron operator T with an
arbitrary Markov operator on L1(�, µ). The following example shows that the answer is
‘no’, in general.

Example 4.3. Let `1
:= `1(N0) and denote by ek ∈ `

1 for k ∈N0 the kth canonical unit
vector. There is a positive operator T ∈L (`1) with the following properties.
(a) T is a Markov operator.
(b) The fixed space of T is one dimensional and spanned by e0.
(c) For every 0< f ∈ `1, there is a number c f > 0 such that T n f ≥ c f e0 for all n ∈N.

In particular, c f e0 is a lower bound for ((T n)n∈N, f ).
(d) No subsequence of (T n) is weakly convergent as n→∞.
Indeed, define h := (1, 1/2, 1/4, . . . , 1/2n, . . .) ∈ `∞ and let M ∈L (`1) be the
multiplication operator with symbol 1N0 − h. Let S ∈L (`1) denote the right shift
and define the operator T by T f := 〈h, f 〉e0 + SM f for every f ∈ `1. Then a brief
computation shows that T is a Markov operator and e0 is a fixed point of T . That the
fixed space is one dimensional follows from the fact that for any f ∈ `1 and all n ∈N,
(T n f )k = 0 for all 1≤ k ≤ n. For 0< f ∈ `1, define c f := 〈h, f 〉> 0. Then T f ≥ c f e0

and, since T is positive and e0 is a fixed point of T , it follows that T n f ≥ c f e0 for all
n ∈N. In order to verify property (d), one computes that

T ne1 = (1− γn)e0 + γnen+1 for all n ∈N0,

where γn :=
∏n

k=1(1− 1/2k) for each n ∈N0. Since (γn) converges to a number γ > 0
as n→∞, we conclude that no subsequence of (T ne1)n∈N0 is norm convergent; as `1 has
Schur’s property, it even follows that no subsequence of (T ne1)n∈N0 is weakly convergent.

The same construction as in the above example appears in [24, Example 4.1], where it
is used as a counterexample for another question; see also [13, Example 3.1.28].

Example 4.3 shows that the existence of non-zero individual lower bounds for a
semigroup is, in general, not sufficient for convergence. However, the situation is different
if the individual lower bounds can be chosen such that their norm is bounded below. This
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is the content of the subsequent theorem, which is also the major step towards the proof of
Theorem 1.1.

THEOREM 4.4. Let E be an AL-space and let T = (Tt )t∈J be a Markov semigroup on E
where either J =N or J = (0,∞). Then the following assertions are equivalent.
(i) T is strongly convergent.
(ii) For every normalized f ∈ E+, there exists a lower bound h f for (T , f ) such that

inf f ‖h f ‖> 0.

Proof. (i)⇒ (ii): If (i) holds and f ∈ E+ is of norm 1, then h f := limt→∞ Tt f is also of
norm 1 and a lower bound for (T , f ).

(ii)⇒ (i): Assume that (ii) holds and let β := inf f ‖h f ‖> 0. For each f ∈ E+ of norm
1, we denote by H f ⊆ E+ the set of all lower bounds for (T , f ). By the same argument
as in the proof of Lemma 3.3, it follows that each H f has a maximum h f,max, which is a
fixed point of T , and one has β ≤ ‖h f,max‖ ≤ 1.

Now fix a normalized vector f ∈ E+. It suffices to prove that ‖h f,max‖ = 1, because
then Lemma 3.4 implies that (Tt f ) converges as t→∞. Suppose to the contrary that
‖h f,max‖< 1 and let δ := 1− ‖h f,max‖> 0.

Let ε > 0. We construct recursively an increasing sequence (hn)n∈N0 ⊆ E+ of fixed
points of T with the following properties.
(a) ‖hn‖ ≥ 1− δ · (1− β)n for all n ∈N0.
(b) lim supt→∞ ‖(Tt f − hn)

−
‖< ε for every n ∈N0.

We set h0 := h f,max, which clearly fulfils conditions (a) and (b). Now assume that hn has
already been constructed for some n ∈N0 and let ε̃ := lim supt→∞ ‖(Tt f − hn)

−
‖. Since

ε̃ < ε by property (b), we have ‖(Tt0 f − hn)
−
‖< (ε̃ + ε)/2 for some t0 ∈ J . Using the

notation gn := (Tt0 f − hn)
+ and en := (Tt0 f − hn)

−, we have

‖gn‖ = ‖Tt0 f − hn + en‖ = ‖Tt0 f + en‖ − ‖hn‖ ≥ 1− ‖hn‖,

where the second equality holds since the norm is additive on E+. We note that it may
happen that gn = 0, in which case ‖hn‖ ≥ ‖Tt0 f ‖ = 1 and the above inequality is trivial.
Therefore,

an :=

{
0 if gn = 0,

‖gn‖ · hgn/‖gn‖,max if gn > 0,

satisfies ‖an‖ ≥ (1− ‖hn‖)β in any case and we have ‖(Ts gn − an)
−
‖→ 0 as s→∞.

Now define hn+1 := hn + an . Clearly, hn+1 ≥ hn and hn+1 is a fixed point of T since hn

and an are fixed points. Thus, using again that the norm is additive on E+, we obtain

‖hn+1‖ = ‖hn‖ + ‖an‖ ≥ ‖hn‖ + (1− ‖hn‖)β = β + (1− β)‖hn‖

≥ β + (1− β)(1− δ(1− β)n)= 1− δ(1− β)n+1.

Hence, hn+1 has property (a). In order to verify property (b), let s ∈ J . Then

Ts Tt0 f − hn+1 = Ts(gn + hn − en)− hn+1

= (Ts gn − an)
+
− (Ts gn − an)

−
− Tsen,
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where we used that hn is a fixed point of Ts . Hence,

‖(Ts Tt0 f − hn+1)
−
‖ ≤ ‖(Ts gn − an)

−
‖ + ‖Tsen‖

≤ ‖(Ts gn − an)
−
‖ +

ε̃ + ε

2
→

ε̃ + ε

2
< ε

as s→∞. This implies that ‖(Tt f − hn+1)
−
‖< 1/4ε̃ + 3/4ε for all sufficiently large

t ∈ J and hence hn+1 has property (b). This completes the construction of the sequence
(hn).

For every n ∈N0, it follows from property (b) and from

0≤ hn = hn − Tt f + Tt f ≤ (Tt f − hn)
−
+ Tt f

that ‖hn‖ ≤ ε + 1. Hence, the increasing sequence (hn)n∈N0 is bounded in norm and, thus,
since every AL-space is a KB-space, convergent to a vector h f,ε ∈ E+. It follows from (a)
and (b) that ‖h f,ε‖ ≥ 1 and lim supt→∞ ‖(Tt f − h f,ε)

−
‖ ≤ ε.

Choose a sequence (εn)n∈N ⊆ (0,∞) such that ε :=
∑
∞

n=1 εn <∞. For every k ∈N
and every n ≥ k, define

h f,k,n := h f,εk ∨ h f,εk+1 ∨ · · · ∨ h f,εn .

Using that (a − x ∨ y)− ≤ (a − x)− + (a − y)− for all a, x, y ∈ E , one easily checks
that

lim sup
t→∞

‖(Tt f − h f,k,n)
−
‖ ≤

n∑
j=k

ε j ≤

∞∑
j=k

ε j

for all k, n ∈N, k ≤ n, and therefore 1≤ ‖h f,k,n‖ ≤ 1+
∑
∞

j=k ε j . For each fixed k ∈N,
the increasing and norm-bounded sequence (h f,k,n)n≥k converges to a vector h f,k,∞,
which fulfils 1≤ ‖h f,k,∞‖ ≤ 1+

∑
∞

j=k ε j and lim supt→∞ ‖(Tt f − h f,k,∞)
−
‖ ≤∑

∞

j=k ε j . The sequence (h f,k,∞)k∈N ⊆ E+ is decreasing and thus convergent to a vector
h f,∞,∞ such that ‖h f,∞,∞‖ = 1 and lim supt→∞ ‖(Tt f − h f,∞,∞)

−
‖ = 0. The latter

equality shows that h f,∞,∞ ∈ H f , which contradicts the assumption that ‖h f,max‖< 1.
We therefore conclude that ‖h f,max‖ = 1 and the assertion follows from Lemma 3.4. �

For positive semigroups which are not Markov but merely bounded, we can use the same
argument as in Corollary 3.5 to obtain the following result, which is a slightly enhanced
version of Theorem 1.1.

COROLLARY 4.5. Let E be an AL-space and let T = (Tt )t∈J be a bounded positive
semigroup on E where either J =N or J = (0,∞). Then for every ε > 0 the following
assertions are equivalent.
(i) The semigroup T converges strongly to an operator P such that ‖P f ‖ ≥ ε‖ f ‖ for

every f ∈ E+.
(ii) For every normalized f ∈ E+, there is a lower bound h f for (T , f ) such that

‖h f ‖ ≥ ε.

Proof. (i) ⇒ (ii): If (i) holds and f ∈ E+ is of norm 1, then P f is a lower bound for
(T , f ) which fulfils ‖P f ‖ ≥ ε.
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(ii)⇒ (i): It suffices to show that T converges in the case J =N, since the convergence
for J = (0,∞) then follows from Theorem 2.1(a). So, assume that (ii) holds and that
T = (T n)n∈N, where T := T1 ∈L (E). Fix an arbitrary Banach limit L on `∞(N;R)
and define

‖ f ‖1 := 〈L , (‖T
n
| f |‖)n∈N〉

for all f ∈ E . As in the proof of Corollary 3.5, one shows that ‖ · ‖1 is an equivalent norm
on E , that (E, ‖ · ‖1) is also an AL-space and that T is a Markov operator with respect to
this norm. Hence, it follows from Theorem 4.4 that (T n) converges strongly as n→∞.

Now let P ∈L (E) be the strong limit of T , no matter whether J =N or J = (0,∞).
Then we have ‖P f ‖ ≥ ‖h f ‖ ≥ ε for every normalized f ∈ E+. This proves (i). �

It seems to be unclear whether one can obtain a version of Corollary 4.5 for convergence
in operator norm, as we have for the Lasota–Yorke theorem in Corollary 3.6. Of course,
we could try to employ an ultra power argument, again. However, since the limit operator
of the lifted semigroup does not need to have rank 1, it is not clear whether it is given as a
lifting of an operator on E ; thus, one cannot apply Theorem 2.5.

Let us derive one further corollary from the above results, which deals with the
convergence of asymptotically dominating semigroups. Note that there are several results
in the literature of the following type: let S and T be positive semigroups on a Banach
lattice such that S dominates T in some sense. If the dominating semigroup S is
strongly convergent, then it follows under appropriate technical assumptions that the
dominated semigroup T is also convergent; see e.g. [14] and the references therein. In the
following corollary we prove a contrary result: if the dominated semigroup T converges
and the limit operator behaves appropriately, then the dominating semigroup S converges,
too.

COROLLARY 4.6. Let E be an AL-space and let S = (St )t∈J and T = (Tt )t∈J be two
bounded positive semigroups on E where either J =N or J = (0,∞). Assume that S

asymptotically dominates T in the sense that ‖(St f − Tt f )−‖→ 0 as t→∞ for all
f ∈ E+.

If T is strongly convergent and its limit operator P fulfils ‖P f ‖ ≥ ε‖ f ‖ for all f ∈ E+
and some ε > 0, then S is strongly convergent, too.

Proof. Since T fulfils assertion (i) of Corollary 4.5, it also fulfils the equivalent assertion
(ii). This obviously implies that S fulfils assertion (ii) of the corollary, too, and hence it
fulfils the equivalent assertion (i). �

5. Ding’s theorem revisited
In the previous section we derived strong convergence of a semigroup under the
assumption that it admits, in some sense, individual lower bounds. According to
Example 4.3, this is only possible under an additional assumption. In Theorem 4.4, we
assumed in addition that the individual lower bounds are bounded below in norm. Ding,
on the other hand, required in Theorem 4.2 that the semigroup consists of Frobenius–
Perron operators. In the next theorem, we replace this condition with the slightly more

https://doi.org/10.1017/etds.2017.9 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2017.9


3030 M. Gerlach and J. Glück

general requirement that the adjoint of each operator is a lattice homomorphism and we
only assume the semigroup to be bounded instead of Markov.

THEOREM 5.1. Let E be an AL-space and let T = (Tt )t∈J be a bounded positive
semigroup on E where either J =N or J = (0,∞). Suppose that for every t ∈ J the
adjoint operator T ′t ∈L (E ′) is a lattice homomorphism. Then the following assertions
are equivalent.
(i) T is strongly convergent and the limit operator P ∈L (E) fulfils P f > 0 for every

f > 0.
(ii) For every 0< f ∈ E, there exists a non-zero lower bound h f for (T , f ).

Let us briefly explain why Theorem 5.1 generalizes Theorem 4.2. Let (�, µ) be a σ -
finite measure space and let ϕ : �→� be a measurable and non-singular mapping with
corresponding Frobenius–Perron operator T ∈L (L1(�, µ)). Since the measure space
is σ -finite, the dual space of L1(�, µ) is given by L∞(�, µ) and the adjoint T ′ is the
Koopman operator associated with ϕ. Hence, every operator (T n)′ = (T ′)n is a lattice
homomorphism and thus Theorem 4.2 is a special case of Theorem 5.1.

On the other hand one can show, under appropriate assumptions on the measure space,
that a Markov operator T on L1(�, µ) whose adjoint is a lattice homomorphism is
automatically a Frobenius–Perron operator. Hence, the major novelty about Theorem 5.1
is the fact that the semigroup T is allowed to be merely bounded instead of Markov.

For the proof of Theorem 5.1, we employ the main idea from the proof of
[8, Theorem 1.1], but we replace the usage of the explicit form of the operators with a
general observation that we recall in Proposition 5.2. In a Banach lattice E , we denote the
order interval between any f, g ∈ E by [ f, g] := {x ∈ E : f ≤ x ≤ g}.

PROPOSITION 5.2. Let E be a Banach lattice with order continuous norm and let T ∈
L (E) be such that the adjoint T ′ ∈L (E ′) is a lattice homomorphism. Then we have
T [ f, g] = [T f, T g] for all f, g ∈ E with f ≤ g.

Proof. This result can be found in [31, Example 1.4.E2]. �

It is tempting to try to reduce the proof of Theorem 5.1 to the case of Markov
semigroups as we have done on several occasions before. However, the renorming trick
that we first used in the proof of Corollary 3.5 does not work here: since the individual
lower bounds in Theorem 5.1 are not required to be bounded below in norm, the norm
‖ · ‖1 defined in the proof of Corollary 3.5 can no longer be guaranteed to be equivalent to
the original norm. This is why we need the following adjusted version of Lemma 3.3 in
order to prove Theorem 5.1 for the general case of bounded semigroups.

LEMMA 5.3. Let T = (Tt )t∈J be a bounded positive semigroup on an AL-space E where
either J =N or J = (0,∞) and suppose that for every 0< g ∈ E there exists a non-zero
lower bound for (T , g).

Let 0< f ∈ E and denote by Hfix ⊆ E+ the set of all lower bounds for (T , f ) that are
fixed points of T . Then Hfix has a non-zero maximum.
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Proof. Let H ⊆ E+ denote the set of all lower bounds for (T , f ). As in the proof of
Lemma 3.3, one can show that H is closed and T -invariant and that h1 ∨ h2 ∈ H for
all h1, h2 ∈ H . Moreover, since ‖h‖ ≤ supt∈J ‖Tt‖‖ f ‖ for all h ∈ H , it follows that there
exists hmax = sup H ∈ H . For every t ∈ J , we have Tt hmax ∈ H and hence Tt hmax ≤ hmax.
The net (Tt hmax)t∈J is thus decreasing and it converges to an element h0 ∈ E+ which is
trivially a lower bound for (T , f ). On the other hand, there exists a non-zero lower bound
for (T , hmax), which implies that h0 6= 0. Hence, h0 is a non-zero lower bound for (T , f )
and clearly a fixed point of T , i.e. 0 6= h0 ∈ Hfix.

Let H̃ := {h ∈ H : Tt h ≥ h for all t ∈ J } denote the set of all lower bounds for (T , f )
which are super fixed points of T . Then h0 ∈ H̃ , H̃ is closed and T -invariant and again
h1 ∨ h2 ∈ H̃ for all h1, h2 ∈ H̃ . Thus, the increasing and norm-bounded net (h̃)h̃∈H̃
converges to its supremum 0 6= h̃max ∈ H̃ . Since H̃ is invariant with respect to T , we
have Tt h̃max ≤ h̃max for all t ∈ J . On the other hand, h̃max is a super fixed point of T and
therefore Tt h̃max ≥ h̃max for all t ∈ J .

Thus, h̃max ∈ Hfix and, since Hfix ⊆ H̃ , h̃max is also the maximum of Hfix. �

We can now prove Theorem 5.1.

Proof of Theorem 5.1. (i)⇒ (ii): If (i) holds and 0< f ∈ E , then P f is a non-zero lower
bound for (T , f ).

(ii) ⇒ (i): It suffices to consider the case J =N; the assertion for J = (0,∞) then
follows from Theorem 2.1(a). So, assume that (ii) holds and that T = (T n)n∈N for T :=
T1 ∈L (E). Let 0< f ∈ E . According to Lemma 5.3, there exists a maximum h 6= 0 of
the set of all lower bounds for (T , f ) that are also fixed points of T .

We are going to show that T n f → h as n→∞. To this end, we first construct an
increasing sequence ( fn)n∈N0 with the following properties.
(a) 0≤ fn ≤ f for each n ∈N0.
(b) T n fn = h ∧ T n f for each n ∈N0.
Define f0 := f ∧ h, which clearly has the properties (a) and (b). Now assume that fn has
already been defined for some n ∈N0 and fulfils (a) and (b). Then

h ∧ T n+1 f = T h ∧ T (T n f )≥ T (h ∧ T n f )= T n+1 fn

and therefore h ∧ T n+1 f ∈ [T n+1 fn, T n+1 f ] = T n+1
[ fn, f ], where the equality of the

two sets follows from Proposition 5.2. Thus, we find a vector fn+1 ∈ [ fn, f ] that satisfies
conditions (a) and (b). This completes the construction of the sequence ( fn).

Since every AL-space is a KB-space, the increasing and norm-bounded sequence ( fn)

converges to a vector f̂ ∈ [0, f ] and for every n ∈N we have

0≤ (T n f̂ − h)− ≤ (T n fn − h)− = (T n f ∧ h − h)− = (T n f − h)−.

Since h is a lower bound for (T , f ), this implies that h is also a lower bound for (T , f̂ ).
We show now that f̂ = f , so suppose to the contrary that f̂ < f . Then, by Lemma 5.3,

there exists a lower bound h1 > 0 for (T , f − f̂ ) which is a fixed point of T . Hence,
h + h1 is a fixed point of T and a lower bound for (T , f̂ + ( f − f̂ ))= (T , f ). This
contradicts the maximality of h and it thus follows that f̂ = f .
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Now let ε > 0 and let M := supn∈N ‖T
n
‖. For all sufficiently large n, n ≥ n0 say, we

have ‖ f − fn‖ ≤ ε and ‖(T n f − h)−‖ ≤ ε. Hence, we obtain for all such n that

‖T n f − h‖ ≤ ‖T n fn − h‖ + Mε = ‖h ∧ T n f − h‖ + Mε

= ‖(T n f − h)−‖ + Mε ≤ (M + 1)ε.

This proves that T n f → h > 0 as n→∞. Thus, assertion (i) holds. �

Let us briefly compare Theorem 5.1 to Corollary 4.5: condition (ii) of the corollary
contains the additional assumption that ‖h f ‖ ≥ ε for every normalized f ≥ 0; on the other
hand, the limit operator in assertion (i) thus has to fulfil ‖P f ‖ ≥ ε‖ f ‖ for every f ≥ 0.
In Theorem 5.1, none of these additional properties occurs and one might ask whether
they are automatically fulfilled if the equivalent assertions (i) and (ii) hold. The following
examples show that the answer is ‘no’.

Example 5.4. Let `1
:= `1(N) and denote by ek ∈ `

1 for k ∈N the kth canonical unit
vector. Define h := (1, 1/2, 1/4, . . . , 1/2n, . . .) ∈ `∞ and let T := h ⊗ e1 ∈L (`1).
This operator has the following properties.
(a) The adjoint T ′ = e1 ⊗ h ∈L (`∞) is a lattice homomorphism and T is a

projection; thus, the semigroup T = (T n)n∈N = (T )n∈N fulfils the assumptions of
Theorem 5.1.

(b) Since T is a projection, T clearly converges strongly to the operator P := T and
thus condition (i) of Theorem 5.1 is fulfilled.

(c) Since ‖Pek‖ = 2−k for each k ∈N, there is no ε > 0 such that ‖P f ‖ ≥ ε‖ f ‖ for
each 0≤ f ∈ `1.

It is a natural question what happens if the assumption in Theorem 5.1 that the
adjoints T ′t be lattice homomorphisms is replaced with the assumption that the operators
Tt themselves be lattice homomorphisms. The following theorem shows that such a
semigroup can almost never have individual lower bounds.

THEOREM 5.5. Let E be an AL-space and let T = (Tt )t∈J be a bounded positive
semigroup on E where either J =N or J = (0,∞). Assume that every operator Tt is
a lattice homomorphism. Then the following assertions are equivalent.
(i) T converges strongly to an operator P that fulfils P f > 0 for every f > 0.
(ii) We have Tt = idE for all t ∈ J .
(iii) For every 0< f ∈ E, there exists a non-zero lower bound h f for (T , f ).

Proof. (i)⇒ (ii): This follows from the more general Proposition 5.6 below.
(ii)⇒ (iii): This implication is obvious.
(iii)⇒ (i): Assume that (iii) holds and fix a normalized vector 0< f ∈ E . According

to Lemma 5.3, there exists a maximum h 6= 0 of the set of all lower bounds for (T , f ) that
are also fixed points of T . We are going to show that ‖h‖ ≥ 1. Suppose to the contrary
that ‖h‖< 1. Then we have ‖ f ∧ h‖ ≤ ‖h‖< 1≤ ‖ f ‖ and, thus, f − f ∧ h > 0. On the
other hand, using that every operator Tt is a lattice homomorphism and that h is fixed point
of T , it follows from

(Tt ( f ∧ h)− h)− = (Tt f ∧ h − h)− = (Tt f − h)−
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that h is a lower bound for f ∧ h. Again according to Lemma 5.3 we find a fixed point
h1 > 0 of T which is a lower bound for (T , f − f ∧ h). Thus, h + h1 is a fixed point
of T and a lower bound for (T , f ∧ h + ( f − f ∧ h))= (T , f ), which contradicts the
maximality of h.

Hence, we have shown that for every normalized f ∈ E+ there exists a lower bound h
for (T , f ) such that ‖h‖ ≥ 1. Corollary 4.5 now implies assertion (i). �

The equivalence of the assertions (i) and (ii) in the above theorem is a special case of
the following proposition, which holds on general Banach lattices.

PROPOSITION 5.6. Let E be a Banach lattice and let T = (Tt )t∈J be a semigroup on E
where either J =N or J = (0,∞). If some operator Ts ∈T is a lattice homomorphism,
then the following assertions are equivalent.
(i) T converges strongly to an operator P ∈L (E) which fulfils P f > 0 for all f > 0.
(ii) We have Tt = idE for all t ∈ J .

Proof. The implication ‘(ii)⇒ (i)’ is obvious.
(i)⇒ (ii): Let f ∈ E . If (i) holds, then P is also the strong limit of (Tns)n∈N and thus

a lattice homomorphism. Hence, it follows from f − P f ∈ ker P that even | f − P f | ∈
ker P . Now condition (i) implies that | f − P f | = 0 and therefore P f = f . Hence, f is a
fixed point of T and, since f was arbitrary, we conclude that Tt = idE for every t ∈ J . �

Proposition 5.6 also has interesting consequences for semigroups of Frobenius–Perron
operators that we state in the following two corollaries.

COROLLARY 5.7. Let E be a Banach lattice and let T = (Tt )t∈J be a semigroup on E
where either J =N or J = (0,∞). Assume that the adjoint T ′s of some operator Ts ∈T

is a lattice homomorphism and that T has a fixed point f0 ≥ 0 which is a quasi-interior
point of E+.

If T converges with respect to the operator norm, then Tt = idE for all t ∈ J .

Proof. Assume that T converges with respect to the operator norm to an operator P ∈
L (E). Then the adjoint semigroup T ′ := (T ′t )t∈J converges with respect to the operator
norm and thus also strongly to P ′ ∈L (E). For every 0<ψ ∈ E ′, we have 〈P ′ψ, f0〉 =

〈ψ, P f0〉 = 〈ψ, f0〉> 0 since f0 is a quasi-interior point of E+, which shows that P ′ψ >
0. Proposition 5.6 now implies that T ′t = idE ′ for all t ∈ J . This completes the proof. �

As for instance observed by Lasota in [25, p. 398], convergence in operator norm is
rather uncommon for semigroups of Frobenius–Perron operators. The following corollary
shows that it can almost never occur if the underlying transformations are measure-
preserving mappings on a finite measure space.

COROLLARY 5.8. Let (�, µ) be a finite measure space and let J =N or J = (0,∞).
For every t ∈ J , let ϕt : �→� be a measurable mapping which is measure preserving,
meaning that µ(ϕ−1

t (A))= µ(A) for all measurable sets A ⊆�, and assume that ϕt+s =

ϕt ◦ ϕs for all t, s ∈ J .
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For each t ∈ J , denote by Tt : L1(�, µ)→ L1(�, µ) the Frobenius–Perron operator
associated with ϕt . If the semigroup T = (Tt )t∈J is convergent with respect to the
operator norm, then Tt = idL1(�,µ) for all t ∈ J .

Proof. For each t ∈ J , the adjoint operator T ′t : L∞(�, µ)→ L∞(�, µ) is the Koopman
operator associated with ϕt and hence a lattice homomorphism. Moreover, since every
mapping ϕt is measure preserving and the measure space (�, µ) is finite, the constant
function with value 1 is a fixed vector of T . Hence, the assertion follows from
Corollary 5.7. �

The assertion of the above corollary does no longer hold if one drops the condition
on ϕt to be measure preserving. As a counterexample, let �= {1, 2} be endowed with the
counting measure, let ϕ : �→� be given by ϕ(ω)= 1 for allω ∈� and define ϕt := ϕ for
all t ∈ J (no matter whether J =N or J = (0,∞)). Then we clearly have ϕt+s = ϕt ◦ ϕs

for all t, s ∈ J and the semigroup of the induced Frobenius–Perron operators is constant
and therefore convergent with respect to the operator norm. Yet, the semigroup operators
do not equal the identity operator.

6. Lower bounds on Banach lattices
In the following we generalize some of the results of the previous sections from AL-spaces
to more general Banach lattices. Theorem 3.7 however suggests that the previous concept
of lower bounds is not well adapted to other Banach lattices. In a series of papers [27, 37,
41–43] Rudnicki, Lasota and Socała used a modified lower bound condition by requiring,
in some sense, the existence of a lower bound for the sequences (T n f/‖T n f ‖)n∈N instead
of the sequences (T n f )n∈N in order to obtain convergence results on more general spaces.
Here we use another approach and consider lower bounds with respect to a given strictly
positive functional. A related idea can also be found in [16]. We make this precise in the
following definition.

Definition 6.1. Let E be a Banach lattice and let T = (Tt )t∈J be a positive semigroup on
E where either J =N or J = (0,∞). Let ψ ∈ E ′+.
(a) A vector h ∈ E+ is called a lower bound for T with respect to ψ if

〈ψ, (Tt f − h)−〉 → 0 as t→∞ for every f ∈ E+ with 〈ψ, f 〉 = 1.
(b) Let f ∈ E+. A vector h ∈ E+ is called a lower bound for (T , f ) with respect to ψ

if 〈ψ, (Tt f − h)−〉 → 0 as t→∞.

Now we can prove a result similar to Theorem 4.4 on general Banach lattices with order
continuous norm under an additional assumption on the semigroup.

THEOREM 6.2. Let E be a Banach lattice with order continuous norm and let T =

(Tt )t∈J be a bounded, positive semigroup on E where either J =N or J = (0,∞).
Assume that there exist a constant M > 0, a quasi-interior point f0 of E+ and a strictly
positive functional ψ ∈ E ′+ such that Tt f0 ≤ M f0 and T ′t ψ ≤ Mψ for all t ∈ J . Then the
following assertions are equivalent.
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(i) T is strongly convergent and the limit operator P fulfils P ′ψ ≥ εψ for some ε > 0.
(ii) For every f ∈ E+ with 〈ψ, f 〉 = 1, there exists a non-zero lower bound h f for

(T , f ) with respect to ψ such that inf f 〈ψ, h f 〉> 0.

Note that the inequalities Tt f0 ≤ M f0 and T ′t ψ ≤ Mψ for all t ∈ J and some constant
M > 0 are in particular fulfilled if f0 is a fixed vector and ψ is a fixed functional of T ; in
this case one can, of course, choose M = 1.

Proof of Theorem 6.2. (i)⇒ (ii): If (i) holds, then for every f ∈ E+ with 〈ψ, f 〉 = 1, P f
is a lower bound for (T , f ) with respect to ψ and we have 〈ψ, P f 〉 ≥ ε > 0.

(ii) ⇒ (i): Consider the norm ‖ f ‖ψ := 〈ψ, | f |〉 on E , which is clearly additive on
the positive cone. Since ‖Tt f ‖ψ ≤ 〈ψ, Tt | f |〉 ≤ M‖ f ‖ψ for all f ∈ E and all t ∈ J ,
the semigroup is bounded by M with respect to ‖ · ‖ψ . Denote by F the completion of
(E, ‖ · ‖ψ ) and by S = (St )t∈J the extension of T to F . Then S is a positive semigroup
on the AL-space F that is bounded by M . By assumption (ii), there exists a number δ > 0
with the following property: for every f ∈ E+, we can find a vector h f ∈ E+ which fulfils
‖h f ‖ψ ≥ δ‖ f ‖ψ and which is a lower bound for (S , f ) in F . Moreover, since

0≤ h f = h f − Tt f + Tt f ≤ (Tt f − h f )
−
+ Tt f

for all t ∈ J , we also have that ‖h f ‖ψ ≤ M‖ f ‖ψ .
Now let f ∈ F+ with ‖ f ‖ψ = 1. We show that there exists a lower bound h f ∈ E+ for

(S , f ) with ‖h f ‖ ≥ δ. To this end, let A := {g ∈ E+ : g ≤ f }. Clearly, A is an upwards-
directed set. Since E is dense in F , we can find a sequence ( fn)⊆ E which converges to
f with respect to ‖ · ‖ψ . As E has order continuous norm, it is an ideal in F [39, Lemma
IV.9.3]. Hence, ( f +n ∧ f ) is a sequence in A which converges to f with respect to ‖ · ‖ψ
and hence the net (g)g∈A converges to f with respect to ‖ · ‖ψ . By the same argument
as in the proof of Lemma 3.3, it follows that for every g ∈ A ⊆ E+ the set of all lower
bounds for (S , g) in F has a maximum hg ∈ F and this vector hg clearly fulfils δ‖g‖ψ ≤
‖hg‖ψ ≤ M‖g‖ψ . Moreover, we clearly have hg1 ≤ hg2 whenever g1 ≤ g2. Thus, the net
(hg)g∈A is increasing and norm bounded in the KB-space F and hence convergent to a
vector h f ∈ F that fulfils

‖h f ‖ψ = sup
g∈A
‖hg‖ψ ≥ sup

g∈A
δ‖g‖ψ = δ‖ f ‖ψ = δ.

Moreover, h f is a lower bound for (S , f ). Indeed, for a given ε > 0, choose g ∈ A such
that ‖g − f ‖< ε and ‖hg − h f ‖< ε. Then

‖(St f − h f )
−
‖
ψ
≤ ‖St f − St g‖ψ + ‖(St g − hg)

−
‖
ψ
+ ‖hg − h f ‖ψ ≤ Mε + ε + ε

whenever ‖(St g − hg)
−
‖
ψ
< ε. Thus, the assumptions of Corollary 4.5(ii) are fulfilled

and we conclude that S is strongly convergent.
Now let f be an element of the principal ideal E f0 and choose c > 0 such that | f | ≤

c f0. We proved that (Tt f )t∈J = (St f )t∈J converges with respect to ‖ · ‖ψ to a vector
g f ∈ F as t→∞. For every t ∈ J , we have |Tt f | ≤ Tt | f | ≤ cTt f0 ≤ cM f0 and therefore
|g f | ≤ cM f0. Since E is an ideal in F , this shows that g f ∈ E . As E and F have order
continuous norm, the fact that E is an ideal in F moreover implies that the topologies of
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‖ · ‖ and ‖ · ‖ψ coincide on every order interval in E [31, Theorem 2.4.8]. Therefore, the
net (Tt f )t∈J converges to g f with respect to ‖ · ‖.

We have shown that lim Tt f exists in E for every f in the principal ideal generated
by f0. Since f0 is a quasi-interior point, this principal ideal is dense in E and, as
the semigroup T is bounded, it follows that (Tt )t∈J converges strongly on E to an
operator P ∈L (E). Finally, let ε := inf f 〈ψ, h f 〉> 0, where the infimum runs over all
f ∈ E+ with 〈ψ, f 〉 = 1. Then P clearly fulfils 〈ψ, P f 〉 ≥ ε〈ψ, f 〉 for every f ∈ E+, so
P ′ψ ≥ εψ . �

We also obtain a similar result for strong convergence to a rank-1 projection.

THEOREM 6.3. Let E be a Banach lattice with order continuous norm and let T =

(Tt )t∈J be a bounded positive semigroup on E where either J =N or J = (0,∞). Assume
that there exist a constant M > 0, a quasi-interior point f0 of E+ and a strictly positive
functionalψ ∈ E ′+ such that Tt f0 ≤ M f0 and T ′t ψ ≤ Mψ for all t ∈ J . Then the following
assertions are equivalent.
(i) T is strongly convergent and the limit operator P is a rank-1 projection which fulfils

P ′ψ ≥ εψ for some ε > 0.
(ii) There exists a non-zero lower bound h for T with respect to ψ .

Proof. This follows from Corollary 3.5 by the same arguments that we used to derive
Theorem 6.2 from Corollary 4.5. In fact, the proof is even a bit shorter since one can see
by a simple approximation argument that the lower bound for the semigroup T is also a
lower bound for the extended semigroup S . We omit the details. �

Note that the above Theorems 6.2 and 6.3 yield something new even on AL-spaces,
since we might encounter a semigroup T on an AL-space which does not have a non-zero
lower bound (with respect to the norm) but a non-zero lower bound with respect to some
strictly positive functional.

Remarks 6.4.
(a) Using the methods from the proof of Theorem 6.2, it is easy to prove a version of

Theorem 5.1 on Banach lattices with order continuous norm, provided that there exist
a quasi-interior point f0 ∈ E+ and a strictly positive functional ψ ∈ E ′+ which fulfil
similar properties as in Theorem 6.2: using the notation from the proof of Theorem 6.2,
one can use the fact that E is an ideal in F together with Proposition 5.2 and [31,
Theorem 1.4.19(ii)] to show that the adjoint operators S′t ∈L (F ′) of the extended
semigroup S ⊆L (F) are lattice homomorphisms and thus one can apply Theorem 5.1.

(b) Similarly, one can prove a version of Theorem 5.5 under appropriate assumptions
on Banach lattices with order continuous norm.

(c) One cannot simply combine Theorem 6.3 with an ultra power argument to obtain
a result on convergence in operator norm as we did in Corollary 3.6. Even if an ultra
power EU of E has again order continuous norm (which is e.g. true for any L p-space
where p ∈ [1,∞)), the following problems occur: the lifting f U

0 ∈ (E
U )+ of a quasi-

interior point f0 ∈ E+ is in general not a quasi-interior point of (EU )+; similarly, the
lifting of a strictly positive functional ϕ ∈ E ′+ to the functional ϕU

∈ (EU )′, given by
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〈ϕU , ( fn)
U
〉 = limn→U 〈ϕ, fn〉, for all ( fn)

U
∈ EU is not a strictly positive functional

on EU , in general.

The role of ψ in Theorems 6.2 and 6.3 is quite different from the role of f0: the strictly
positive functional ψ is needed for the notion of a lower bound to make sense at all (see
the discussion at the beginning of this section). Hence, it can be seen as some kind of
substitute for the norm on AL-spaces and it appears in the equivalent conditions (i) and
(ii) of the theorems. The quasi-interior point f0 on the other hand does not appear in the
conditions (i) and (ii) and it has no counterpart in Corollaries 3.5 and 4.5 on AL-spaces; its
only purpose is to ensure that the orbits of the semigroup are order bounded in E . Hence,
the existence of f0 is an additional assumption which was superfluous on AL-spaces and
it is natural to ask whether this condition can be omitted in Theorems 6.2 and 6.3. Our
answer to this question consists of two parts: first we give a counterexample which shows
that the condition is needed in general; see Example 6.5. Afterwards we show that the
condition can, however, be dropped if the orbits of the semigroup are relatively compact;
see Propositions 6.6 and 6.7.

Example 6.5. Fix p ∈ (1,∞). There exist a finite measure µ on N0, a bounded linear
operator T on `p

:= `p(N0, µ) and a strictly positive linear functional ψ on `p with the
following properties.
(a) T is positive and power bounded.
(b) T ′ψ = ψ and there exists a non-zero lower bound for T = (T n)n∈N with respect

to ψ .
(c) The semigroup (T n)n∈N is not strongly convergent.
Indeed, define µ by µ(M)=

∑
k∈M 1/k p for all M ⊆N and µ({0})= 1. Since p > 1,

this measure is finite. We first define an operator T1 on `1
:= `1(N0, µ) and a functional

ψ1 on `1 and then we obtain T and ψ as their restrictions to `p. Let ψ1 be the norm
functional on `1, i.e.

〈ψ1, f 〉 =
∑

k∈N0

f (k)µ({k})= f (0)+
∞∑

k=1

f (k)
1

k p

for all f ∈ `1. Note that `p(N0, µ)=: `
p
⊆ `1 since µ is a finite measure and let ψ :=

ψ1|`p . Clearly, ψ is strictly positive. To define the operator T1, we introduce another
positive functional α1 on `1 given by

〈α1, f 〉 =
∞∑

k=2

k
k − 1

f (k − 1)
1

k p =

∞∑
k=1

k + 1
k

f (k)
1

(k + 1)p

for each f ∈ `1. One easily checks that 〈α1, f 〉 ≤ 〈ψ1, f 〉 = ‖ f ‖1 for all f ∈ `1
+, so α1 is

dominated by ψ1 and hence contractive. Now we define the operator T1 ∈L (`1) by

(T1 f )(k)=


〈ψ1 − α1, f 〉 if k = 0,

0 if k = 1,
k

k − 1
f (k − 1) if k ≥ 2.
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This is easily checked to be indeed a positive linear operator on `1. The functional ψ1 is a
fixed point of T ′1 since we have

〈ψ1, T f 〉 = (T f )(0)+
∞∑

k=2

k
k − 1

f (k − 1)
1

k p = 〈ψ1 − α1, f 〉 + 〈α1, f 〉 = 〈ψ1, f 〉

for every f ∈ `1. As T ′1ψ1 = ψ1, we conclude that T1 is a Markov operator. If f ∈ `p,
then we have

‖T1 f ‖p
p =

∞∑
k=0

|T f (k)|pµ({k})= |〈ψ1 − α1, f 〉|p +
∞∑

k=2

k p

(k − 1)p | f (k − 1)|p
1

k p

≤ 〈ψ, | f |〉p +
∞∑

k=1

| f (k)|p
1

k p ≤ (‖ψ‖
p
+ 1)‖ f ‖p

p <∞.

Hence, T1 leaves `p invariant and its restriction T := T1|`p is a bounded operator on `p.
In order to prove the claimed properties (a)–(c) of T , we first compute all powers of T1

applied to the canonical unit vectors e j . Of course we have T1e0 = e0 and hence T n
1 e0 = e0

for all n ∈N0. For j ∈N and n ∈N0, we have

(T n
1 e j )|N =

j + n
j
· e j+n; (6.1)

here we consider the restriction f |N of a vector f ∈ `1 again as an element of `1, which is
zero on the set {0} ⊆N0. Now we can prove (a)–(c).

(a) Since T1 is positive, so is T . To prove that T is power bounded, it is, due to the
uniform boundedness principle, sufficient to prove that (T n f )n∈N0 is bounded in `p for
each 0≤ f ∈ `p. So, let f be such a vector; for every n ≥ 1, we have 0≤ (T n f )(0)=
(T n

1 f )(0)= (T1T n−1
1 f )(0)≤ 〈ψ1, T n−1

1 f 〉 = 〈ψ1, f 〉. Therefore, it suffices to show that
the sequence ((T n f )|N)n∈N0 is bounded in `p. This follows from the computation

‖(T n f )|N‖
p
p = ‖(T

n( f |N))|N‖
p
p =

∥∥∥∥(T n
∞∑
j=1

f ( j)e j

) ∣∣∣∣
N

∥∥∥∥p

p

=

∥∥∥∥ ∞∑
j=1

j + n
j

f ( j)e j+n

∥∥∥∥p

p

=

∞∑
j=1

( j + n)p

j p f ( j)p 1
( j + n)p = ‖ f |N‖

p
p.

This completes the proof of (a).
(b) Note that the above computation also shows that ‖(T n f )|N‖p = ‖ f |N‖p for each

n ∈N0 and each 0≤ f ∈ `p. However, as we have seen in (6.1), T ne1 converges pointwise
to 0 and can therefore not be convergent in `p.

(c) Since we have T ′1ψ1 = ψ1, it follows that Tψ = ψ . To prove that T has a non-zero
lower bound with respect to ψ , we first show that T n

1 converges strongly as n→∞. Let
f ∈ `1

+. Then

‖(T n
1 f )|N‖1 =

∥∥∥∥(T n
∞∑
j=1

f ( j)e j

) ∣∣∣∣
N

∥∥∥∥
1

=

∥∥∥∥ ∞∑
j=1

j + n
j

f ( j)e j+n

∥∥∥∥
1

=

∞∑
j=1

j + n
j

f ( j)
1

( j + n)p =

∞∑
j=1

j p−1

( j + n)p−1 f ( j)
1
j p → 0
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as n→∞; the convergence follows from the dominated convergence theorem since p > 1
and

∑
∞

j=1 f ( j)1/j p <∞. Moreover,

(T n
1 f )(0)= (T1T n−1

1 f )(0)= 〈ψ1 − α1, T n−1
1 f 〉

= 〈ψ1, f 〉 − 〈α1, (T n−1
1 f )|N〉 → 〈ψ1, f 〉 as n→∞.

Hence, T n
1 f → 〈ψ1, f 〉e0 and by linearity it follows that (T n

1 ) converges strongly to
ψ1 ⊗ e0. This implies that e0 is a lower bound for (T n

1 )n∈N and thus it is also a lower
bound for (T n)n∈N with respect to ψ .

Recall that a semigroup T = (Tt )t∈J on a Banach space E is said to have relatively
compact orbits if for each f ∈ E the set {Tt f : t ∈ J } is relatively compact with respect
to the norm on E . This condition is frequently satisfied in applications. For example, if
T = (Tt )t∈[0,∞) is a bounded C0-semigroup whose generator has compact resolvent, then
T has relatively compact orbits [15, Corollary V.2.15].

PROPOSITION 6.6. Let E be a Banach lattice with order continuous norm and let T =

(Tt )t∈J be a positive semigroup on E where either J =N or J = (0,∞). Suppose that
there exists a strictly positive functional ψ ∈ E ′+ such that T ′t ψ ≤ Mψ for a constant M >

0 and all t ∈ J .
Assume that T has relatively compact orbits and suppose that for every f ∈ E+ with

〈ψ, f 〉 = 1 there exists a non-zero lower bound h f for (T , f ) with respect to ψ such that
inf f 〈ψ, h f 〉 ≥ 1. Then T is strongly convergent.

Proof. We repeat the first steps of the proof of Theorem 6.2: the semigroup T is bounded
with respect to the norm ‖ f ‖ψ := 〈ψ, | f |〉, which is additive on the positive cone E+.
Denote by F the completion of (E, ‖ · ‖ψ ) and by S = (St )t∈J the extension of T to F .
Using that E has order continuous norm, one can show as in the proof of Theorem 6.2 that
the assumptions of Corollary 4.5(ii) are fulfilled and, thus, (St ) converges strongly on F
to an operator P ∈L (F) as t→∞.

Now pick 0< f ∈ E and consider an arbitrary sequence of times (tn)⊆ J which
converges to ∞. Since the orbit {Tt f : t ∈ J } is relatively compact in E , we find a
subsequence (tnk ) of (tn) such that (Ttnk

f ) converges to a point g ∈ E with respect to
the norm in E . In particular, (Ttnk

f ) converges to g with respect to ‖ · ‖ψ and, thus, we
have g = P f . This shows that P f ∈ E and that every subsequence of (Tt f )t∈J has a
subsequence which converges to P f . Hence, lim Tt f = P f in E . �

In the above proposition, order continuity of the norm was only needed to show that the
extended semigroup S also admits individual lower bounds which are bounded below in
norm. If we have a single lower bound for the entire semigroup, this argument is much
simpler and, thus, we do not need order continuity of the norm.

PROPOSITION 6.7. Let E be a Banach lattice and let T = (Tt )t∈J be a positive semigroup
on E where either J =N or J = (0,∞). Assume that there exists a strictly positive
functional ψ ∈ E ′+ such that T ′t ψ ≤ Mψ for a constant M > 0 and all t ∈ J . If T has
relatively compact orbits and a non-zero lower bound with respect to ψ , then T converges
strongly to a rank-1 projection.
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The proof is almost the same as for Proposition 6.6, except for the fact that one refers
to Corollary 3.5 instead of Corollary 4.5. It is easy to see that the non-zero lower bound
for the original semigroup is also a lower bound for the extended one and, thus, one does
not need order continuity of the norm here.
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